
Santiago Escobar (Ed.)

 123

LN
CS

 8
66

3

10th International Workshop, WRLA 2014
Held as a Satellite Event of ETAPS
Grenoble, France, April 5–6, 2014
Revised Selected Papers

Rewriting Logic
and Its Applications

Lecture Notes in Computer Science 8663

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Santiago Escobar (Ed.)

Rewriting Logic
and Its Applications
10th International Workshop, WRLA 2014
Held as a Satellite Event of ETAPS
Grenoble, France, April 5–6, 2014
Revised Selected Papers

123

Editor
Santiago Escobar
Departamento de Sistemas Informáticos y

Computación
Universitat Politècnica de València
Valencia
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-12903-7 ISBN 978-3-319-12904-4 (eBook)
DOI 10.1007/978-3-319-12904-4

Library of Congress Control Number: 2014954581

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains a selection of the papers presented at the 10th International
Workshop on Rewriting Logic and its Applications (WRLA 2014), held during April
5–6, 2014 in Grenoble, France.

Rewriting logic (RL) is a natural model of computation and an expressive semantic
framework for concurrency, parallelism, communication, and interaction. It can be used
for specifying a wide range of systems and languages in various application fields. It
also has good properties as a metalogical framework for representing logics. In recent
years, several languages based on RL (ASF+SDF, CafeOBJ, ELAN, Maude) have been
designed and implemented. The aim of the workshop is to bring together researchers
with a common interest in RL and its applications, and to give them the opportunity to
present their recent works, discuss future research directions, and exchange ideas. The
previous meetings were held at Asilomar (USA) 1996, Pont-à-Mousson (France) 1998,
Kanazawa (Japan) 2000, Pisa (Italy) 2002, Barcelona (Spain) 2004, Vienna (Austria)
2006, Budapest (Hungary) 2008, Paphos (Cyprus) 2010, and Tallinn (Estonia) 2012.

Typically, the topics of interest include (but are not restricted to):

– foundations and models of RL;
– languages based on RL, including implementation issues;
– RL as a logical framework;
– RL as a semantic framework, including applications of RL to

• object-oriented systems,
• concurrent and/or parallel systems,
• interactive, distributed, open ended and mobile systems,
• specification of languages and systems;

– use of RL to provide rigorous support for model-based software engineering;
– formalisms related to RL, including

• real-time and probabilistic extensions of RL,
• rewriting approaches to behavioral specifications,
• tile logic;

– verification techniques for RL specifications, including

• equational and coherence methods,
• verification of properties expressed in first-order, higher-order, modal and temporal
logics,

• narrowing-based analysis and verification;

– comparisons of RL with existing formalisms having analogous aims;
– application of RL to specification and analysis of

• distributed systems,
• physical systems.

The last editions of WRLA were held as a satellite event of the European Joint
Conferences on Theory & Practice of Software (ETAPS). This year’s edition was a
satellite event of ETAPS 2014.

There were 21 original contributions to the workshop and the Program Committee
selected 13 papers for publication, and revised versions of these selected papers are
included in this volume. Each contribution was reviewed by at least three Program
Committee members. This volume also includes three invited contributions by
Francisco Durán from the University of Málaga, Spain, Alberto Lluch Lafuente from
the IMT Institute for Advanced Studies Lucca, Italy, and Peter Ölveczky from the
University of Oslo, Norway. We would like to thank them for having accepted our
invitation for both presentation at the workshop and this volume.

We would also like to thank all the members of the Program Committee and all the
referees for their careful work in the review process. Finally, I express our gratitude to
all members of the local organization of ETAPS 2014 and the Easychair system, whose
work has made the workshop possible.

August 2014 Santiago Escobar

VI Preface

Organization

Program Committee

Mark van den Brand Eindhoven University of Technology,
The Netherlands

Roberto Bruni Università di Pisa, Italy
Manuel Clavel Universidad Complutense de Madrid, Spain
Francisco Durán University of Málaga, Spain
Santiago Escobar Universitat Politècnica de València, Spain
Kokichi Futatsugi JAIST, Japan
Alexander Knapp Universität Augsburg, Germany
Alberto Lluch Lafuente IMT Institute for Advanced Studies Lucca, Italy
Dorel Lucanu Alexandru Ioan Cuza University, Romania
Narciso Martí Oliet Universidad Complutense de Madrid, Spain
Jose Meseguer University of Illinois at Urbana-Champaign, USA
Ugo Montanari Università di Pisa, Italy
Pierre-Etienne Moreau École des Mines de Nancy and Inria Nancy, France
Kazuhiro Ogata JAIST, Japan
Peter Ölveczky University of Oslo, Norway
Miguel Palomino Universidad Complutense de Madrid, Spain
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Vlad Rusu Inria Lille Nord-Europe, France
Mark-Oliver Stehr SRI International, USA
Carolyn Talcott SRI International, USA
Martin Wirsing Ludwig-Maximilians-Universität

München, Germany

Additional Reviewers

Abd Alrahman, Yehia
Aguirre, Luis
Asavoae, Irina Mariuca
Bodei, Chiara
Bosnacki, Dragan
Calvès, Christophe François Olivier
Gadducci, Fabio

Martin, Oscar
Riesco, Adrián
Sakai, Masahiko
Sammartino, Matteo
Stefanescu, Andrei
Vandin, Andrea
Wijs, Anton

Contents

Composition of Graph-Transformation-Based DSL Definitions
by Amalgamation . 1

Francisco Durán

Can We Efficiently Check Concurrent Programs Under Relaxed Memory
Models in Maude? . 21

Yehia Abd Alrahman, Marina Andric, Alessandro Beggiato,
and Alberto Lluch Lafuente

Real-Time Maude and Its Applications . 42
Peter Csaba Ölveczky

Conditional Narrowing Modulo in Rewriting Logic and Maude 80
Luis Aguirre, Narciso Martí-Oliet, Miguel Palomino, and Isabel Pita

Language Definitions as Rewrite Theories . 97
Andrei Arusoaie, Dorel Lucanu, Vlad Rusu, Traian-Florin Şerbănuţă,
Andrei Ştefănescu, and Grigore Roşu

Infinite-State Model Checking of LTLR Formulas Using Narrowing 113
Kyungmin Bae and José Meseguer

Modelling and Verifying Contract-Oriented Systems in Maude 130
Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto Zunino

Towards Static Analysis of Functional Programs Using Tree Automata
Completion . 147

Thomas Genet

A Framework for Mobile Ad hoc Networks in Real-Time Maude 162
Si Liu, Peter Csaba Ölveczky, and José Meseguer

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories . . . 178
Salvador Lucas and José Meseguer

2D Dependency Pairs for Proving Operational Termination of CTRSs 195
Salvador Lucas and José Meseguer

FunKons: Component-Based Semantics in K . 213
Peter D. Mosses and Ferdinand Vesely

An Integration of CafeOBJ into Full Maude . 230
Adrián Riesco

http://dx.doi.org/10.1007/978-3-319-12904-4_1
http://dx.doi.org/10.1007/978-3-319-12904-4_1
http://dx.doi.org/10.1007/978-3-319-12904-4_2
http://dx.doi.org/10.1007/978-3-319-12904-4_2
http://dx.doi.org/10.1007/978-3-319-12904-4_3
http://dx.doi.org/10.1007/978-3-319-12904-4_4
http://dx.doi.org/10.1007/978-3-319-12904-4_5
http://dx.doi.org/10.1007/978-3-319-12904-4_6
http://dx.doi.org/10.1007/978-3-319-12904-4_7
http://dx.doi.org/10.1007/978-3-319-12904-4_8
http://dx.doi.org/10.1007/978-3-319-12904-4_8
http://dx.doi.org/10.1007/978-3-319-12904-4_9
http://dx.doi.org/10.1007/978-3-319-12904-4_10
http://dx.doi.org/10.1007/978-3-319-12904-4_11
http://dx.doi.org/10.1007/978-3-319-12904-4_12
http://dx.doi.org/10.1007/978-3-319-12904-4_13

Rewriting Modulo SMT and Open System Analysis 247
Camilo Rocha, José Meseguer, and César Muñoz

Formal Specification of Button-Related Fault-Tolerance Micropatterns 263
Mu Sun and José Meseguer

A Formal Semantics of the OSEK/VDX Standard in K Framework
and Its Applications. 280

Min Zhang, Yunja Choi, and Kazuhiro Ogata

Author Index . 297

X Contents

http://dx.doi.org/10.1007/978-3-319-12904-4_14
http://dx.doi.org/10.1007/978-3-319-12904-4_15
http://dx.doi.org/10.1007/978-3-319-12904-4_16
http://dx.doi.org/10.1007/978-3-319-12904-4_16
http://dx.doi.org/10.1007/978-3-319-12904-4_16

Composition of Graph-Transformation-Based
DSL Definitions by Amalgamation

Francisco Durán(B)

University of Málaga, Málaga, Spain
duran@lcc.uma.es

Abstract. Given a graph-grammar formalization of DSLs, we build on
graph transformation system morphisms to define parameterized DSLs
and their instantiation by an amalgamation construction. Results on
the protection of the behavior along the induced morphisms allow us
to safely combine definitions of DSLs to build more complex ones. We
illustrate our proposal on our e-Motions definition of the Palladio DSL.
The resulting DSL allows us to carry on performance analysis on Palladio
models.

1 Introduction

In Model-Driven Engineering (MDE) [43], models are used to specify, simulate,
analyze, modify, and generate code. One of the key ingredients making this app-
roach particularly attractive is the use of domain-specific languages (DSLs) [49]
for the definition of such models. DSLs offer concepts specifically targeted at a
particular domain, which allow experts in such domains to express their prob-
lems and requirements in their own languages. On the other hand, the higher
amount of knowledge embedded in these concepts allows for much more complete
and specialized generation of executable solution code from DSL models [30].

The application of these techniques to different domains has resulted in the
proliferation of DSLs of very different nature: the more specific for a particu-
lar domain a DSL is, the more effective it is. However, DSLs are only viable
if their development can be made efficient. With this goal in mind, DSLs are
often defined by specifying their syntax in some standard formalisms, such as
MOF, thus facilitating the use of generic frameworks for the management of
models, including their composition, the definition of model transformations,
use of model editors, etc.

Syntax is however just part of the story. Without a definition of the opera-
tional behavior of the defined DSLs, we will not be able to simulate or analyze
the defined models. In recent years, different formalisms have been proposed for
the definition of the behavior of DSLs, including UML behavioral models [19,22],
abstract state machines [3,10], or in-place model transformations [9,39]. Between
all these approaches, we find the use of in-place model transformations particu-
larly powerful, not only because its expressiveness, but also because it facilitates
its integration with the rest of the MDE environment and tools.
c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 1–20, 2014.
DOI: 10.1007/978-3-319-12904-4 1

2 F. Durán

While we have reasonably good knowledge of how to modularize DSL syn-
tax, the modularization of language semantics is an as yet unsolved issue. Given
a graph-grammar [6,14,42] formalization of DSLs, we build on graph transfor-
mation system (GTS) morphisms to define composition operations on DSLs.
Specifically, we define parameterized GTSs, that is, GTSs which have other
GTSs as parameters. The instantiation of such parameterized GTSs is then pro-
vided by an amalgamation construction. We present formal results about GTSs
and GTSs morphisms between them. Specifically, we are interested on how these
morphisms preserve or protect behavior, and what behavior-related properties
may be guaranteed on the morphisms induced by the amalgamation construc-
tion defining the instantiation of parameterized GTSs. Of particular interest for
our goals is the identification of the circumstances in which we can guarantee
protection of behavior when DSLs get instantiated.

In the rest of the paper, we propose the use of parameterized DSLs, we
present their implementation in the e-Motions system, and show its potential
presenting the definition of the e-Motions implementation of a significant part
of the Palladio DSL. Although we motivate and illustrate our approach using
the e-Motions language [37], our proposal is language-independent, and all the
results are presented for GTSs and adhesive HLR systems [16,34]. e-Motions
graphical specifications are translated into Maude specifications [38]. Given this
transformation, models in DSLs developed in e-Motions, may be “simulated” in
accordance to the given semantics. Since the resulting specification is a valid
theory in rewriting logic, Maude’s formal tools, as its reachability analysis tool
or its model checker, may be used on it.

The rest of the paper is structured as follows. Section 2 introduces behavior-
reflecting and -protecting GTS morphisms, the construction of amalgamations
in the category of GTSs and GTS morphisms, and several results on these amal-
gamations. Section 3 presents the e-Motions definition of the Palladio DSL and
how the composition operations presented in Sect. 2 are used to provide mecha-
nisms to carry on performance-related monitoring and analysis of systems. The
paper presents some related work in Sect. 4 and finishes with some conclusions
and future work in Sect. 5.

2 Graph Transformation and GTS Amalgamations

Graph transformation [14,42] is a formal, graphical and natural way of expressing
graph manipulation based on rewriting rules. In graph-based modelling (and
meta-modelling), graphs are used to define the static structures, such as class and
object ones, which represent visual alphabets and sentences over them. A more
detailed presentation of the results in this section may be found in [11].

2.1 Rules, Rule Morphisms, and Rule Amalgamations

Our formalisation is developed for weak adhesive high-level replacement (HLR)
categories [14], making it much more general. The concepts of adhesive and

Composition of Graph-Transformation-Based DSL 3

(weak) adhesive HLR categories abstract the foundations of a general class of
models, and come together with a collection of general semantic techniques
[16,34]. Thus, e.g., given proofs for adhesive HLR categories of general results
such as the Local Church-Rosser, or the Parallelism and Concurrency Theorem,
they are automatically valid for any category which is proved an adhesive HLR
category. The category of typed attributed graphs, the one of interest to us, was
proved to be adhesive HLR in [18].

In the DPO approach to graph transformation, a rule with application
conditions p is of the form (L l← K

r→ R, ac) with graphs L, K, and R, called,
respectively, left-hand side, interface, and right-hand side, some kind of monomor-
phisms (typically, inclusions) l and r, and ac a (nested) application condition on
L. A graph transformation system (GTS) is a pair (P, π) where P is a set of rule
names and π is a function mapping each rule name p into a rule (L l← K

r→ R, ac).
An application of a rule p = (L l← K

r→ R, ac) to a graph G via a match
m : L → G, such that m satisfies ac, written m |= ac, is constructed as two
gluings (1) and (2), which are pushouts in the corresponding graph category,
leading to a direct transformation G

p,m
=⇒ H.

ac � L

m

��
(1)

K
l�� r ��

��
(2)

R

��
G D�� �� H

Application conditions may be positive or negative. Positive application condi-
tions have the form ∃a, for a monomorphism a : L → C, and demand a certain
structure in addition to L. Negative application conditions of the form �a forbid
such a structure. A match m : L → G satisfies a positive application condition ∃a
if there is a monomorphism q : C → G satisfying q ◦a = m. A matching m satis-
fies a negative application condition �a if there is no such monomorphism. Given
an application condition ∃a or �a, for a monomorphism a : L → C, another appli-
cation condition ac can be established on C, giving place to nested application
conditions [25]. Given an application condition ac on L and a monomorphism
t : L → L′, then there is an application condition Shift(t, ac) on L′ such that for
all m′ : L′ → G, m′ |= Shift(t, ac) ↔ m = m′ ◦ t |= ac.

ac � L
t ��

m ���
��

� L′

m′�����
�

Shift(t, ac)�

G

To improve readability, we assume projection functions ac, lhs and rhs,
returning, respectively, the application condition, left-hand side and right-hand
side of a rule. Thus, given a rule r = (L l← K

r→ R, ac), ac(r) = ac, lhs(r) = L,
and rhs(r) = R.

4 F. Durán

We only consider injective matches, that is, monomorphisms. If the matching
m is understood, a DPO transformation step G

p,m
=⇒ H will be simply written

G
p

=⇒ H. A transformation sequence ρ = ρ1 . . . ρn : G ⇒∗ H via rules p1, . . . , pn
is a sequence of transformation steps ρi = (Gi

pi,mi==⇒ Hi) such that G1 = G,
Hn = H, and consecutive steps are composable, that is, Gi+1 = Hi for all
1 ≤ i < n. The category of transformation sequences over an adhesive category
C, denoted by Trf(C), has all graphs in |C| as objects and all transformation
sequences as arrows.

Parisi-Presicce proposed in [36] a notion of rule morphism very similar to the
one below, although we consider rules with application conditions, and require
the commuting squares to be pullbacks instead of pushouts.

Definition 1 (From [11], Rule morphism). Given graph transformation
rules pi = (Li

li←− Ki
ri−→ Ri, aci), for i = 0, 1, a rule morphism f : p0 → p1 is

a tuple f = (fL, fK , fR) of graph monomorphisms fL : L0→L1, fK : K0→K1,
and fR : R0→R1 such that the squares with the span morphisms l0, l1, r0, and
r1 are pullbacks, as in the diagram below, and such that ac1 ⇒ Shift(fL, ac0).

p0 :

f
��

ac0 � L0

fL
��

pb

K0
l0�� r0 ��

fK
��

pb

R0

fR
��

p1 : ac1 � L1 K1
l1

��
r1

�� R1

Asking that the two squares are pullbacks means, precisely, to preserve the
“structure” of objects. I.e., we preserve what should be deleted, what should
be added, and what must remain invariant. Of course, pushouts also preserve
the created and deleted parts, but they reflect this structure as well, which we
do not want in general. With componentwise identities and composition, rule
morphisms define the category Rule.

A key concept in the constructions in Sect. 2.3 is that of rule amalgama-
tion [2]. The amalgamation of two rules p1 and p2 glues them together into
a single rule p̃ to obtain the effect of the original rules. I.e., the simultaneous
application of p1 and p2 yields the same successor graph as the application of
the amalgamated rule p̃. The possible overlapping of rules p1 and p2 is captured
by a rule p0 and rule morphisms f : p0 → p1 and g : p0 → p2.

Definition 2 (From [11], Rule amalgamation). Given graph transforma-
tion rules pi = (Li

li← Ki
ri→ Ri, aci), for i = 0, 1, 2, and rule morphisms f : p0 →

p1 and g : p0 → p2, the amalgamated production p1 +p0 p2 is the production

(L l← K
r→ R, ac) in the diagram below, where subdiagrams (1), (2) and (3) are

pushouts, l and r are induced by the universal property of (2) so that all subdia-
grams commute, and ac = Shift(̂fL, ac2) ∧ Shift(ĝL, ac1).

Composition of Graph-Transformation-Based DSL 5

ac0 � L0

fL

����������� gL
�����

(1)

K0

���
�

		���
�

����
l0�� r0 ��

(2)

R0

���
�

���

����

(3)

ac2 � L2

̂fL����
��

��
��

��
K2

				
		

		
		

	

l2��
r2

�� R2

		

ac1 � L1 ĝL

�����
K1

����l1

��
r1

�� R1

����

ac � L K
l

��
r

�� R

Notice that in the above diagram all squares are either pushouts or pull-
backs (by the van Kampen property [34]) which means that all their arrows are
monomorphisms (by being an adhesive HLR category).

2.2 Typed Graph Transformation Systems

A (directed unlabeled) graph G = (V,E, s, t) is given by a set of nodes (or
vertices) V , a set of edges E, and source and target functions s, t : E → V . Given
graphs Gi = (Vi, Ei, si, ti), with i = 1, 2, a graph homomorphism f : G1 → G2 is
a pair of functions (fV : V1 → V2, fE : E1 → E2) such that fV ◦ s1 = s2 ◦ fE and
fV ◦ t1 = t2 ◦ fE . With componentwise identities and composition this defines
the category Graph.

Given a distinguished graph TG, called type graph, a TG-typed graph (G, gG),
or simply typed graph if TG is known, consists of a graph G and a typing homo-
morphism gG : G → TG associating with each vertex and edge of G its type
in TG. However, to enhance readability, when the typing morphism gG can
be considered implicit, we will often refer to a typed graph (G, gG) just as
G. A TG-typed graph morphism between TG-typed graphs (Gi, gi : Gi → TG),
with i = 1, 2, denoted f : (G1, g1) → (G2, g2), is a graph morphism f : G1 → G2

which preserves types, i.e., g2 ◦ f = g1. GraphTG is the category of TG-typed
graphs and TG-typed graph morphisms, which is the comma category Graph
over TG.

If the underlying graph category is adhesive (resp., adhesive HLR, weakly
adhesive) then so are the associated typed categories [14], and therefore all
definitions in Sect. 2.1 apply to them. A TG-typed graph transformation rule
p = (L l← K

r→ R, ac) is a span of injective TG-typed graph morphisms and a
(nested) application condition on L. Given TG-typed graph transformation rules
pi = (Li

li← Ki
ri→ Ri, aci), with i = 1, 2, a typed rule morphism f : p1 → p2 is

a tuple (fL, fK , fR) of TG-typed graph monomorphisms such that the squares
with the span monomorphisms li and ri, for i = 1, 2, are pullbacks, and such
that ac2 ⇒ Shift(fL, ac1). TG-typed graph transformation rules and typed rule
morphisms define the category RuleTG, which is the comma category Rule
over TG.

Following [6], we use forward and backward retyping functors to deal with
graphs over different type graphs. A graph morphism f : TG → TG′ induces a for-
ward retyping functor f> : GraphTG → GraphTG′ , with f>(g1) = f ◦ g1 and
f>(k : g1→g2) = k by composition, as shown in the diagram in Fig. 1(a). Simi-
larly, such a morphism f induces a backward retyping functor f< : GraphTG′ →

6 F. Durán

Fig. 1. Forward and backward retyping functors.

GraphTG, with f<(g′
1) = g1 and f<(k′ : g′

1 → g′
2) = k : g1 → g2 by pullbacks and

mediating morphisms as shown in the diagram in Fig. 1(b). Since, as said above,
we refer to a TG-typed graph G → TG just by its typed graph G, leaving TG
implicit, given a morphism f : TG → TG′, we may refer to the TG′-typed graph
by f>(G).

A typed graph transformation system over a type graph TG, is a graph
transformation system where the given graph transformation rules are defined
over the category of TG-typed graphs. Since we deal with GTSs over different
type graphs, we will make explicit the given type graph. This means that, from
now on, a typed GTS is a triple (TG, P, π) where TG is a type graph, P is
a set of rule names and π is a function mapping each rule name p into a rule
(L l← K

r→ R, ac) typed over TG.
The set of transformation rules of a GTS specifies a behavior in terms of the

derivations obtained via such rules. A GTS morphism defines then a relation
between its source and target GTSs by providing an association between their
type graphs and rules.

Definition 3 (From [11], GTS morphism). Given typed graph transforma-
tion systems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism f : GTS0 →
GTS1, with f = (fTG, fP , fr), is given by a morphism fTG : TG0 → TG1, a
surjective mapping fP : P1→P0 between the sets of rule names, and a family of
rule morphisms fr = {fp : f>

TG(π0(fP (p))) → π1(p)}p∈P1 .

Given a GTS morphism f : GTS0 → GTS1, each rule in GTS1 extends a rule
in GTS0. However if there are internal computation rules in GTS1 that do not
extend any rule in GTS0, we can always consider that the empty rule is included
in GTS0, and assume that those rules extend the empty rule. Notice that to deal
with rule morphisms defined on rules over different type graphs we retype one
of the rules. Typed GTSs and GTS morphisms define the category GTS.

2.3 GTS Amalgamations and Preservation of Behavior

Given a GTS morphism f : GTS0 → GTS1, we say that it reflects behavior if for
any derivation that may happen in GTS1 there exists a corresponding derivation
in GTS0.

Composition of Graph-Transformation-Based DSL 7

Definition 4 (From [11], Behavior-reflecting GTS morphism). Given
transformation systems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism
f : GTS0 → GTS1 is behavior-reflecting if for all graphs G, H in |GraphTG1 |,
all rules p in P1, and all matches m : lhs(π1(p)) → G such that G

p,m
=⇒ H, then

f<
TG(G)

fP (p),f<
TG(m)

======⇒ f<
TG(H) in GTS0.

We call extension morphisms to those morphisms between GTSs that only add
to the transformation rules elements not in their source type graph. All extension
GTS morphisms are behavior-reflecting [11].

Definition 5 (From [11], Extension GTS morphism). Given graph
transformation systems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism
f : GTS0 → GTS1, with f = (fTG, fP , fr), is an extension morphism if fTG is
a monomorphism and for each p ∈ P1, π0(fP (p)) ≡ f<

TG(π1(p)).

When a DSL is extended with alien elements that do not interfere with its
behavior, e.g., to measure or to verify some property, we need to guarantee that
such an extension does not change the semantics of the original DSL. Specifically,
we need to guarantee that the behavior of the resulting system is exactly the
same, that is, that any derivation in the source system also happens in the
target one (behavior preservation), and any derivation in the target system was
also possible in the source one (behavior reflection). The following definition of
behavior-protecting GTS morphism captures the intuition of a morphism that
both reflects and preserves behavior, that is, that establishes a bidirectional
correspondence between derivations in the source and target GTSs.

Definition 6 (From [11], Behavior-protecting GTS morphism). Given
transformation systems GTSi = (TGi, Pi, πi), for i = 0, 1, a GTS morphism f :
GTS0 → GTS1 is behavior-protecting if for all graphs G and H in |GraphTG1 |,
all rules p in P1, and all matches m : lhs(π1(p)) → G, g<TG(G)

gP (p),g<
TG(m)

======⇒
g<TG(H) ⇐⇒ G

p,m
=⇒ H

We find in the literature definitions of behavior-preserving morphisms as mor-
phisms in which the rules in the source GTS are included in the set of rules
of the target GTS (see, e.g., [24,28]). Although these morphisms trivially pre-
serve behavior, they are not useful for our purposes. Notice that, in our case, in
addition to adding new rules, we are enriching the rules themselves.

GTS amalgamation provides a very convenient way of composing GTSs. The-
orem 1 below establishes behavior-related properties on the induced morphisms.

Definition 7 (From [11], GTS Amalgamation). Given typed graph trans-
formation systems GTSi = (TGi, Pi, πi), for i = 0, 1, 2, and GTS morphisms
f : GTS0 → GTS1 and g : GTS0 → GTS2, the amalgamated GTS ĜTS = GTS1
+GTS0GTS2 is the GTS (̂TG, ̂P , π̂) constructed as follows. We first construct the
pushout of typing graph morphisms fTG : TG0 → TG1 and gTG : TG0 → TG2,
obtaining morphisms ̂fTG : TG2 → ̂TG and ĝTG : TG1 → ̂TG. The pullback of
set morphisms fP : P1 → P0 and gP : P2 → P0 defines morphisms ̂fP : ̂P → P2

8 F. Durán

and ĝP : ̂P → P1. Then, for each rule p in ̂P , the rule π̂(p) is defined as the
amalgamation of rules ̂f>

TG(π2(̂fP (p))) and ĝ>TG(π1(ĝP (p))) with respect to the
kernel rule ̂f>

TG(g>TG(π0(gP (̂fP (p))))).

GTS0
f ��

g
��

GTS1
ĝ��

GTS2
̂f �� ĜTS

The following result gives conditions under which behavior-related guarantees
can be established on the morphisms induced by the amalgamation construction.

Theorem 1 (From [11]). Given typed transformation systems GTSi = (TGi,

Pi, πi), for i = 0, 1, 2, and the amalgamation ĜTS = GTS1 +GTS0 GTS2 of
GTS morphisms f : GTS0 → GTS1 and g : GTS0 → GTS2, if f is a behavior-
reflecting GTS morphism, then ̂f is a monomorphism, and if g is an extension
and behavior-protecting morphism, then ĝ is behavior-protecting as well.

GTS0
f ��

g
��

GTS1
ĝ��

GTS2
̂f �� ĜTS

3 Non-functional Properties as Parameterized Domain
Specific Languages

In previouswork [12,48], we have explored themodular definition of non-functional
properties as parameterized DSLs in the e-Motions framework [37]. These ideas
were further exploited in [35] to provide a modular reimplementation of a substan-
tive part of the Palladio Architecture Simulator [26] to perform predictive analy-
sis of architectural software models. In particular, we re-implemented the Palladio
Component Model [1], its workload model, and parts of its stochastic expressions
model.

We explicitly modeled simulations as graph transformations in the e-Motions
framework, and then, each NFP to be analyzed was modeled as an independent,
parameterized DSL ready to be composed with the base Palladio model. The
modular definition of NFPs as separate, parameterized DSLs allows its reuse,
but also makes it easy to define additional NFPs to be analyzed. For a particular
analysis problem, the relevant NFP DSLs can then be selected from a library
and composed as required.

The results presented in Sect. 2.3 provides guarantees for preservation of
semantics under composition, that is, the consideration of additional NFPs (sat-
isfying certain restrictions) do not change the behavior of the system being
modeled.

Composition of Graph-Transformation-Based DSL 9

In this section, we introduce Palladio, e-Motions, and then the definition
of the Palladio DSL in the e-Motions system. We pay special attention to the
definition of observers and how they are ‘woven’ with the Palladio system to
enrich the definition of its behavior for the observation of NFPs.

3.1 The Palladio DSL

The Palladio Architecture Simulator [26] is a predictive software analysis tool.
It consists of a number of metamodels, foremost the Palladio Component Model
(PCM) [1], that allow the high-level modeling of component-based architectures
and their properties relevant for performance and reliability analysis. Palladio
supports predictive analyses by transformation into a program that runs a sim-
ulation of the architecture’s behavior, and by transforming to formalisms more
amenable to analysis—e.g., Queuing Petri Nets.

Figure 2 shows the usage model and the component specification of a very
simple example, provided as part of the distribution of the Palladio Architecture
Simulator. The usage model in Fig. 2(a) specifies the way tasks arrive into the
system. In Palladio, the work load may be either closed or open. To be closed
(ClosedWorkload object) means that the number of requests is fixed by the popu-

lation attribute, and their corresponding inter-arrival rate given by the think time

attribute. Alternatively, an OpenedWorkload object represents an infinite stream
of arrivals. According to the usage model in Fig. 2(b), each work arriving to the
system consists on a system call action to a component, AnInterface.do, and then
a delay with a fixed time of 1.0 time units.

Figure 2(b) shows the specification of the component, in which the control
flow may branch into one of two flows. Each branch is associated with a particular
branch probability to indicate the likelihood of a particular branch being taken.
Finally, resource demands, i.e. CPU or HDD, are expressed as probability dis-
tributions. This is the kind of information required to perform execution-time
analysis on the component’s behavior as is standard in software performance
engineering (see, e.g., [45]). In addition, we could model failure information to
support reliability analysis.

The Palladio Simulator offers the results of the analysis of performance and
reliability of the system being analyzed in different formats.

3.2 The e-Motions System

e-Motions [37] is a graphical framework that supports the specification, simula-
tion, and formal analysis of real-time systems. It provides a way to graphically
specify the dynamic behavior of DSLs using their concrete syntax, making this
task very intuitive. The abstract syntax of a DSL is specified as an Ecore meta-
model, which defines all relevant concepts—and their relations—in the language.
Its concrete syntax is given by a GCS (Graphical Concrete Syntax) model, which
attaches an image to each language concept. Then, its behavior is specified with
(graphical) in-place model transformations.

10 F. Durán

Fig. 2. Minimum Example: Workload and component specification in Palladio.

In-place transformations are defined by rules, each of which represents a
possible action of the system. These rules are of the form [NAC]∗ × LHS →
RHS, where LHS (left-hand side), RHS (right-hand side) and NAC (negative
application conditions) are model patterns that represent certain (sub-)states of
the system. The LHS and NAC patterns express the conditions for the rule to
be applied, whereas the RHS represents the effect of the corresponding action.
A LHS may also have positive conditions, which are expressed, as any expression
in the RHS, using OCL [40]. Thus, a rule can be applied, i.e., triggered, if a
match of the LHS is found in the model, its conditions are satisfied, and none
of its NAC patterns occurs. If several matches are found, one of them is non-
deterministically chosen and applied, giving place to a new model where the
matching objects are substituted by the appropriate instantiation of its RHS
pattern. The transformation of the model proceeds by applying the rules on
sub-models of it in a non-deterministic order, until no further transformation
rule is applicable.

e-Motions provides a model of time, supporting features like duration, peri-
odicity, etc., and mechanisms to state action properties. There are two types
of rules to specify time-dependent behavior, namely, atomic and ongoing rules.
Atomic rules represent atomic actions with a duration. Atomic rules with dura-
tion zero are called instantaneous rules. Ongoing rules represent actions that

Composition of Graph-Transformation-Based DSL 11

progress continuously over time while the rule’s preconditions (LHS and not
NACs) hold. Both atomic and ongoing rules can be scheduled, or be given an
execution interval. From a DSL definition, e-Motions generates an executable
Maude [5] specification which can be used for simulation and analysis [38]. Other
tools in the Maude formal environment, as its model checker or its reachability
analysis tool, can also be used on this specification.

3.3 An e-Motions Re-implementation of Palladio

As for any DSL, the definition of the PCM includes its abstract syntax, its
concrete syntax and its behavior. Since Palladio has been developed following
MDE principles, and specifically it is implemented using the Eclipse Modeling
Framework, its metamodel may be used as abstract syntax definition of Palladio
in e-Motions.1 Palladio models consists of several views, namely UsageModel,
System, etc., corresponding to the different developer roles participating in the
architecture of a system. These models are conformant to metamodels Core PCM,
StoEx, Units, . . . used by the different Eclipse plug-ins in the PCM Bench. As we
will see in Sect. 3, using the PCM as abstract syntax will allow us to take models
generated in the Palladio Simulator into e-Motions, and to use them to perform
simulations in the e-Motions definition of Palladio.

The concrete syntax is provided by a GCS model in which each concept in the
abstract syntax of the DSL being defined is linked to an image. Since these images
are used to graphically represent Palladio models in e-Motions, we have used the
same images that the Palladio Simulator uses to represent these concepts. This
way, we maintain the PCM’s look in the e-Motions definition (see rules in Fig. 3).

In e-Motions, we describe how systems evolve by describing all possible
changes of the models by corresponding visual time-aware in-place transforma-
tion rules. We may visualize each execution of a Palladio model has a token
moving around such model. An action with a token has the control of execution.
In fact, there might be several concurrent executions, since new tasks may keep
arriving to the system, depending on its work load. The execution of each of these
tasks proceeds independently, as far as the required resources are available.

For illustration purposes, Fig. 3 shows two of the rules defining the behavior
of Palladio in e-Motions. As above explained, an open workload specifies an
infinite stream of tasks arriving at the system with some inter-arrival time given
by a random variable with some probability distribution. Each generated task
executes the specified scenario, and then leave the system. Figure 3(a) shows the
OpenWorkloadSpec rule, which specifies the behavior of a UsageScenario usSc with
an OpenWorkload ow. When the rule is triggered, a new token is added to the first
action of the system, i.e., the start action. The rule is fired every owRate, which
is a local variable whose value is given by ow’s random variable.

A ScenarioBehavior, which is included in a UsageScenario, as the one shown in
Fig. 2, describes the behavior of the system components by using actions Start,
1 The actual metamodel used is a conservative extension of the PCM to include
additional concepts such as tokens, see below. The interested reader is referred to
[35] for details.

12 F. Durán

Fig. 3. New task rule specification.

Stop, EntryLevelSystemCall, Branch, and Loop. Figure 3(b) models the EntryLevel-

SystemCall action, which is used to invoke an operation in a component. If a
(sub)-state matches the LHS of the rule, the SToken object associated to the
EntryLevelSystemCall action remains in this action, while a new CToken is created
and linked to the start action of the invoked component (effectively building up
a call stack). As the rule’s header shows, this rule is instantaneous (it takes zero
time).

The complete e-Motions definition of the Palladio DSL is available at http://
atenea.lcc.uma.es/Palladio.

Once the whole DSL has been defined, and given a model as initial state,
it may be simulated by applying the rules describing its behavior. This model
does not collect information on NFPs, and therefore is not ready for performance
analysis. We enrich them later, as explained in the following section.

3.4 Parameterized DSL for NFP Observation

Troya, Rivera and Vallecillo proposed in [47] an approach for the specification and
monitoring of non-functional properties of DSLs using observers. Observers are
objects with which we extend the e-Motions definition of systems for the analy-
sis of NFPs by simulation, such as mean and maximum cycle times, busy and
idle cycles of operation units, throughput, mean-time between failures, etc. We
explored in [12,48] how to define observers generically and independently from
any system, so that they can afterwards be woven and merged with different sys-
tems. Given systems described as DSLs and generic DSLs defining the different
observers, we can use the composition mechanisms presented in Sect. 2.3 to com-
bine them. The result is that we can use the combined enriched system DSL to

http://atenea.lcc.uma.es/Palladio
http://atenea.lcc.uma.es/Palladio

Composition of Graph-Transformation-Based DSL 13

monitor NFPs of our systems. Theorem 1 proves that, given very natural require-
ments on the observers and the instantiating mappings, the system thus obtained
is a conservative enrichment of the original system, in the sense that the observers
added do not change the behavior of the system.

Given an e-Motions definition of Palladio as the one presented in Sect. 3.3,
we can then enrich it with the definition of the observers we wish, which can
be selected from a library of generically specified observers. Specifically, we can
select those observers that monitor the properties available in the Palladio Sim-
ulator, but also others that monitor other properties. The NFPs chosen can then
be analysed by simulation.

Let us consider a generic DSL for monitoring the response time, which is
one of the properties available in Palladio. Response time can be defined as the
time that elapses since a request arrives to a system until it is served. Hence, the
same generic notion allows us to measure the response time of information pack-
ets being delivered through a network, of cars being manufactured in a produc-
tion line, or of passengers checking-in in an airport. Given a system description,
to measure response time, we just need to register the time at which requests
arrive to the system, and the time at which they are completed. With this data
and a simple calculation, we can easily get the response time.

A generic DSL achieving this is shown in Fig. 4. Its abstract syntax (the
metamodel in Fig. 4(a)) contains three generic and two concrete classes—generic
classes are shown with a shaded background. System, Server and Request are
parameter classes to be instantiated by specific classes, as explained below. The
System class represents the whole system, which is composed of a set of Servers.
These, in turn, can have Requests that they have to process. The class RespTi-

meOb represents the observer for measuring the response time. Note that there
is yet another observer in this metamodel, TimeStampOb, used to store the times
at which Requests arrive.

The behavior of this DSL is defined by the three in-place transformation
rules in Fig. 4, in which parametric concepts have no concrete syntax, they are
depicted as boxes, and have a shaded background. Observer objects have a con-
crete syntax, that will also be used to depict them in the woven rules (see below).
Rule CreateRespTOb deals with the creation of the response time observer. Its LHS
includes a condition that avoids the creation of new observer objects if there is
one, ensuring that only one of these observers is created per instantiated object.
The observer is associated to the system in its RHS. Rule RequestArrives gener-
ates a time stamp observer whenever a new Request appears. The observer gets
associated to the Request and keeps the time at which it appears in the system—
note the presence of the system object Clock, which provides the current time.
Finally, rule CompletedRequest computes the response time every time a Request

is consumed—the Request and its associated observer have disappeared in the
RHS. Attribute counter of RespTimeOb keeps the number of completed Requests,
while tAcc contains the addition of cycle times of all Requests, i.e., the time they
have spent in the system. Finally, attribute respT uses the former two attributes
to calculate the response time of the System.

14 F. Durán

Fig. 4. Response Time observer DSL definition.

3.5 Adding Observers to System Specifications

To add observers to our e-Motions specifications, we may compose the observer
DSLs with the DSL of our system, the e-Motions definition of Palladio in our
case. Let us use the amalgamation construction in Sect. 2.3 for it. Let us call
DSLObserver to the Response Time DSL from Sect. 3.4, and let us consider
the inclusion morphism from its parameter sub-DSL, DSLPar . Given this inclu-
sion morphism and a binding morphism B from DSLPar to the Palladio DSL,
DSLPalladio , we can build its amalgamation as shown in Fig. 5. The result are
morphisms î and ̂B to the DSL ̂Palladio, which is the Palladio DSL extended
with the response-time observer objects. Its metamodel is the Palladio meta-
model enriched with the additional classes as indicated in the mappings, and
the rules defining its behavior enriched with the observer objects.

The morphism B is just a mapping from elements in the parameter DSL
into elements in the Palladio DSL. This is done by defining a correspondences
model (see [12]). For example, for weaving the metamodel of response time with
the metamodel of our Palladio implementation in e-Motions, the Request class
is mapped to Token. Regarding rules, we basically need to map each rule in the

Composition of Graph-Transformation-Based DSL 15

Fig. 5. Amalgamation in the category GTS.

source DSL to a rule in the target one. The mapping defined for the metamodel
does most of the rest. The RequestArrives rule (Fig. 4(c)) is woven with the Open-

WorkloadSpec rule of our Palladio system (Fig. 4(a)), that represents the arrival
of a new Token in the system. Rule CreateRespTOb of the observer DSL is woven
with an identity rule, triggering the creation of observer objects if they were
not already created. Finally, rule CompletedRequest (Fig. 4(d)) is woven with the
StopUsageModel rule, which just models the elimination of a token upon its arrival
to a stop action.

Theorem 1 provides a checkable condition for verifying the conservative
nature of an extension in our example, namely if B is a behavior-reflecting GTS
morphism and i is an extension and behavior-protecting morphism, then ̂i is
behavior-protecting as well.

Once the observers DSL are defined and checked, they can be used as many
times as wished. To use them, we just need to provide the morphism binding
the parameter DSL and the target system.

4 Related Work

Graph transformation systems (GTSs) were proposed as a formal specifica-
tion technique for the rule-based specification of the dynamic behavior of sys-
tems [13]. Different approaches exist for modularization in the context of the
graph-grammar formalism [6,14,42]. All of them have followed the tradition of
modules inspired by the notion of algebraic specification module [17]. A module
is thus typically considered as given by an export and an import interface, and an
implementation body that realizes what is offered in the export interface, using
the specification to be imported from other modules via the import interface. For
example, Große-Rhode, Parisi-Presicce, and Simeoni introduce in [24] a notion of
module for typed graph transformation systems, with interfaces and implemen-
tation bodies; they propose operations for union, composition, and refinement
of modules. Other approaches to modularization of graph transformation sys-
tems include PROGRES Packages [44], GRACE Graph Transformation Units
and Modules [33], and DIEGO Modules [46]. See [29] for a discussion on these
proposals. For the kind of systems we deal with, the type of module we need
is much simpler. For us, a module is just the specification of a system, a GTS,
without import and export interfaces. Then, we build on GTS morphisms to
compose these modules, and specifically we define parameterized GTSs.

We find different forms of GTS morphisms in the literature, taking one form
or another depending on their concrete application. Thus, we find proposals

16 F. Durán

centered on refinements [23,24,28], views [21], and substitutability [20]. See [20]
for a first attempt to a systematic comparison of the different proposals and
notations. None of these notions fit our needs, and none of them coincide with
our behavior-aware GTS morphisms.

As far as we know, parameterized GTSs and GTS morphisms, as we discuss
them, have not been studied before. Heckel and Cherchago introduce parame-
terized GTSs in [27], but their notion has little to do with our parameterized
GTSs. In their case, the parameter is a signature, intended to match service
descriptions. They however use a double-pullback semantics, and have a notion
of substitution morphism which is related to our behavior preserving morphism.

The way in which we think about composition of reusable DSL modules is
related to work in aspect-oriented modeling (AOM). In particular, our ideas
for expressing parameterized metamodels are based on the proposals in [4,32].
Most AOM approaches use syntactic notions to automate the establishment of
mappings between different models to be composed, often focusing primarily on
the structural parts of a model. While our mapping specifications are syntactic in
nature, we focus on composition of behaviors and provide semantic guarantees.
In this sense, our work is perhaps most closely related to the work on MATA
[50] or semantic-based weaving of scenarios [31].

The idea of generic DSL has also been used in the context of model man-
agement by different authors. E.g., [8,41] use generic metamodel concepts as
an intermediate, abstract metamodel over which model management specifica-
tions are defined, enabling the application of the operations thus defined to any
metamodel satisfying the requirements imposed by the concept.

5 Conclusions

Our work was originally motivated by the specification of non-functional proper-
ties (NFPs), such as performance or throughput, in DSLs. We have been looking
for ways in which to encapsulate the ability to specify non-functional properties
into reusable DSL modules. Troya et al. used the concept of observers in [47,48]
to model non-functional properties of systems described by GTSs in a way that
could be analyzed by simulation. In [12,48], we have built on this work to allow
the modular encapsulation of such observer definitions in a way that can be
reused in different DSL specifications. We then formalized and generalized the
composition operations needed in [11], were we provided a full formal framework
of such language extensions.

In [35], we addressed the performance analysis problem by presenting a
modular, model-based partial reimplementation of one well-known analysis
framework—the Palladio Architecture Simulator. We have specified key DSLs
from Palladio in e-Motions, describing the basic simulation semantics as a set
of graph-transformation rules. Different properties to be analyzed have been
encoded as separate, parameterized DSLs, independent of the definition of Pal-
ladio. We have then composed these DSLs with the base Palladio DSL to generate
specific simulation environments. Models created in the Palladio IDE can be fed
directly into our simulation environment for analysis.

Composition of Graph-Transformation-Based DSL 17

We have demonstrated two main benefits of our approach: (1) The semantics
of the simulation and the non-functional properties to be analyzed are made
explicit in the respective DSL specifications, and (2) because of the composi-
tional definition, it is easy to add definitions of new non-functional properties
and their analyses. More importantly, our proposal provides a place were to
experiment with new features and tailor solutions for specific problems at a very
low development cost.

As future work, we plan to provide methods to check the preconditions of
Theorem 1, and automatically checkable conditions that imply these, so that
behavior protection of an extension can be checked effectively. This will enable
the development of tooling to support the validation of language or transforma-
tion compositions. We also plan to study relaxations of our definitions so as to
allow cases where there is a less than perfect match between the base DSL and
the DSL to be woven in.

We plan to incorporate additional features to our definition of Palladio, as,
for example, full resource models, and failures and reliability analysis. Indeed,
we foresee generic definitions of selectable features, such as resource handling
and deployment strategies, etc. We also plan to experiment with other NFPs,
such as reliability or security, and to use our flexible setting for the analysis of
dynamic systems, where components and resources are dynamically added to or
removed from the system under study.

Acknowledgements. This work is an overview of work developed in collaboration
with A. Moreno-Delgado, F. Orejas, J. Troya, A. Vallecillo, and S. Zschaler. I am
grateful to all of them. This work is partially funded by Project TIN2011-23795 and
by U. de Málaga, Campus de Excelencia Intl. Andalućıa Tech.

References

1. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the Palladio component model. In: Proceedings of 6th International Workshop on
Software and Performance (WOSP’07). ACM (2007)

2. Boehm, P., Fonio, H.-R., Habel, A.: Amalgamation of graph transformations with
applications to synchronization. In: Ehrig, H., Floyd, C., Nivat, M., Thatcher, J.
(eds.) TAPSOFT 1985. LNCS, vol. 185, pp. 267–283. Springer, Heidelberg (1985)

3. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with
model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

4. Clarke, S., Walker, R.J.: Generic aspect-oriented design with Theme/UML. In:
Aspect-Oriented Software Development, pp. 425–458. Addison-Wesley (2005)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The category of
typed graph grammars and its adjunctions with categories of derivations. In: Cuny,
J., et al. [7], pp. 56–74

7. Cuny, J., Ehrig, H., Engels, G., Rozenberg, G. (eds.): Graph Grammars 1994.
LNCS, vol. 1073. Springer, Heidelberg (1996)

18 F. Durán

8. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-
driven engineering. Softw. Syst. Model. 12(3), 453–474 (2013)

9. de Lara, J., Vangheluwe, H.: Automating the transformation-based analysis of
visual languages. Formal Asp. Comput. 22(3–4), 297–326 (2010)

10. Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for supporting dynamic semantics specifications of DSLs. Technical report
06.02, Laboratoire d’Informatique de Nantes-Atlantique (LINA), April 2006

11. Durán, F., Orejas, F., Zschaler, S.: Behaviour protection in modular rule-based
system specifications. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS,
vol. 7841, pp. 24–49. Springer, Heidelberg (2013)

12. Durán, F., Zschaler, S., Troya, J.: On the reusable specification of non-functional
properties in DSLs. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745,
pp. 332–351. Springer, Heidelberg (2013)

13. Ehrig, H.: Introduction to the algebraic theory of graph grammars. In: Claus, V.,
Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69.
Springer, Heidelberg (1979)

14. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2005)

15. Ehrig, H., et al. (eds.): Handbook of Graph Grammars and Computing by Graph
Transformation. Applications, Languages and Tools, vol. II. World Scientific,
Singapore (1999)

16. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)

17. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2. Module Specifica-
tions and Constraints. Springer, Heidelberg (1990)

18. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graph
transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.)
ICGT 2004. LNCS, vol. 3256, pp. 161–177. Springer, Heidelberg (2004)

19. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: a
graphical approach to the operational semantics of behavioral diagrams in UML.
In: Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–
337. Springer, Heidelberg (2000)

20. Engels, G., Heckel, R., Cherchago, A.: Flexible interconnection of graph transfor-
mation modules. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G.,
Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS,
vol. 3393, pp. 38–63. Springer, Heidelberg (2005)

21. Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A combined reference model- and
view-based approach to system specification. Intl. J. Softw. Eng. Knowl. Eng. 7(4),
457–477 (1997)

22. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph
rewrite language based on the unified modeling language and java. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764,
pp. 296–309. Springer, Heidelberg (2000)

23. Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Spatial and temporal refine-
ment of typed graph transformation systems. In: Brim, L., Gruska, J., Zlatuška,
J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 553–561. Springer, Heidelberg (1998)

24. Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Formal software specification
with refinements and modules of typed graph transformation systems. J. Comput.
Syst. Sci. 64(2), 171–218 (2002)

Composition of Graph-Transformation-Based DSL 19

25. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

26. Happe, J., Koziolek, H., Reussner, R.: Facilitating performance predictions using
software components. IEEE Softw. 28(3), 27–33 (2011)

27. Heckel, R., Cherchago, A.: Structural and behavioural compatibility of graphical
service specifications. J. Logic Algebraic Program. 70(1), 15–33 (2007)

28. Heckel, R., Corradini, A., Ehrig, H., Löwe, M.: Horizontal and vertical structuring
of typed graph transformation systems. Math. Struct. Comput. Sci. 6(6), 613–648
(1996)

29. Heckel, R., Engels, G., Ehrig, H., Taentzer, G.: Classification and comparison of
modularity concepts for graph transformation systems. In: Ehrig et al. [15], chap.
17, pp. 669–690

30. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model
transformation: a case study in transformation modularity. Softw. Syst. Modell.
9(3), 375–402 (2010)

31. Klein, J., Hélouët, L., Jézéquel, J.-M.: Semantic-based weaving of scenarios. In:
Proceedings of 5th International Conference on Aspect-Oriented Software Devel-
opment (AOSD’06). ACM (2006)

32. Klein, J., Kienzle, J.: Reusable aspect models. In: Proceedings of Aspect-Oriented
Modeling Workshop (2007)

33. Kreowski, H., Kuske, S.: Graph transformation units and modules. In: Ehrig et al.
[15], chap. 15, pp. 607–638

34. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)

35. Moreno-Delgado, A., Durán, F., Zschaler, S., Troya, J.: Modular DSLs for flexible
analysis: an e-Motions reimplementation of palladio. In: Cabot, J., Rubin, J. (eds.)
ECMFA 2014. LNCS, vol. 8569, pp. 132–147. Springer, Heidelberg (2014)

36. Parisi-Presicce, F.: Transformations of graph grammars. In: Cuny et al. [7], pp.
428–442

37. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-
dependent behavior of DSLs. In: Proceedings of IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC’09), pp. 51–55. IEEE (2009)

38. Rivera, J.E., Durán, F., Vallecillo, A.: On the behavioral semantics of real-time
domain specific visual languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol.
6381, pp. 174–190. Springer, Heidelberg (2010)

39. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral
semantics of visual modeling languages with maude. In: Gašević, D., Lämmel, R.,
Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 54–73. Springer, Heidelberg
(2009)

40. Roldán, M., Durán, F.: Dynamic validation of OCL constraints with mOdCL.
ECEASST, 44 (2011)

41. Rose, L.M., Guerra, E., de Lara, J., Etien, A., Kolovos, D.S., Paige, R.F.: Generic-
ity for model management operations. Softw. Syst. Model. 12(1), 201–219 (2013)

42. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations. Foundations, vol. I. World Scientific, Singapore (1997)

43. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)
44. Schürr, A., Winter, A., Zündorf, A.: The PROGRES-approach: language and envi-

ronment. In: Ehrig et al. [15], chap. 13, pp. 487–550
45. Smith, C.U., Williams, L.G. (eds.): Performance Solutions: A Practical Guide

to Creating Responsive, Scalable Software. Object-Technology Series. Addison-
Wesley, Boston (2002)

20 F. Durán

46. Taentzer, G., Schürr, A.: DIEGO, another step towards a module concept for graph
transformation systems. Electron. Notes Theoret. Comput. Sci. 2, 277–285 (1995)

47. Troya, J., Rivera, J.E., Vallecillo, A.: Simulating domain specific visual models by
observation. In: Proceedings of Spring Simulation Multiconference (SpringSim’10),
pp. 128:1–128:8. ACM (2010)

48. Troya, J., Vallecillo, A., Durán, F., Zschaler, S.: Model-driven performance analysis
of rule-based domain specific visual models. Inf. Softw. Technol. 55(1), 88–110
(2013)

49. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. SIGPLAN Not. 35(6), 26–36 (2000)

50. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: a unified
approach for composing UML aspect models based on graph transformation. In:
Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on AOSD VI.
LNCS, vol. 5560, pp. 191–237. Springer, Heidelberg (2009)

Can We Efficiently Check Concurrent Programs
Under Relaxed Memory Models in Maude?

Yehia Abd Alrahman1, Marina Andric1, Alessandro Beggiato1,
and Alberto Lluch Lafuente1,2(B)

1 IMT Institute for Advanced Studies Lucca, Lucca, Italy
2 DTU Compute, Technical University of Denmark, Lyngby, Denmark

albl@dtu.dk

Abstract. Relaxed memory models offer suitable abstractions of the
actual optimizations offered by multi-core architectures and by com-
pilers of concurrent programming languages. Using such abstractions
for verification purposes is challenging in part due to their inherent
non-determinism which contributes to the state space explosion. Several
techniques have been proposed to mitigate those problems so to make
verification under relaxed memory models feasible. We discuss how to
adopt some of those techniques in a Maude-based approach to language
prototyping, and suggest the use of other techniques that have been
shown successful for similar verification purposes.

1 Introduction

As we enter the so called multi-core era, electronic devices made of multiple com-
putational units that work over shared memory are becoming more and more
ubiquitous. The demand of performance on such systems is likewise increasing
but, unfortunately, the free lunch is over [1,2], that is, it is getting harder and
harder to develop more performant and energy efficient single computational
units. This has lead compiler constructors and hardware designers to develop
sophisticated optimization techniques that in some cases may affect the intended
semantics of programs. A prominent example are optimizations that give up
memory consistency to accelerate memory operations. Typically, such optimiza-
tions do not affect the meaning of sequential programs, but the situation is
different for concurrent programs as different threads may have subtly different
(inconsistent) views of the shared memory and thus their execution may result
in an unexpected (non-sequentially consistent) behaviour.

As a motivating example, consider the pseudocode in Fig. 1 which may be
seen as the initial part of Dekker’s algorithm for mutual exclusion. There are
two threads, 1 (left) and 2 (right), whose programs are symmetric. Initially, all
variables are assumed to have value 0. When thread 1 tries to enter the critical
section it sets flag1 to 1, and checks the value of flag2. If the value for flag2

Research supported by the European projects IP 257414 ASCENS and STReP
600708 QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 21–41, 2014.
DOI: 10.1007/978-3-319-12904-4 2

22 Y.A. Arrahman et al.

⎡
⎣

flag1 := 1

if (flag2 = 0) then

//critical section

⎤
⎦

⎡
⎣

flag2 := 1

if (flag1 = 0) then

//critical section

⎤
⎦

Fig. 1. Can both threads enter the critical section?

is 0, it assumes that thread 2 has not yet attempted to enter the critical section
and proceeds to enter it. Thread 2 proceeds similarly. Under the usual model
of shared memory (i.e. sequential consistency) the algorithm guarantees mutual
exclusion: either one thread enters the critical section or none of them does.
However, under some of the mentioned relaxations of memory consistency, it
is possible for both threads to enter the critical section. Indeed, as we shall
see, it may be also the case that updates on memory are delayed, so that both
threads execute their updates and then read the old value 0 on each other’s flag,
proceeding then together into the critical section. As a matter of fact, a direct
implementation of the above algorithm on Intel or AMD x86 multiprocessors
yields an incorrect program.

As we shall see, many authors have developed formal semantics for these opti-
mizations which relax the standard sequential consistency of programs. Very
often this has been done by defining appropriate abstract models of shared
memory called relaxed memory models. Using such abstractions for verification
purposes is challenging in part since they introduce yet another source of non-
determinism, thus contributing to the state space explosion.

Fig. 2. State-Space Size: Sc vs Tso

As an example consider the graph
in Fig. 2. The vertical axis presents the
size of the state space in terms of num-
ber of states while in the horizontal
axis we have the results obtained on 1-
entry versions of four mutual exclusion
algorithms (Dekker, Peterson, Lam-
port and Szymanski) and, for each of
them, three cases: the algorithm under
the usual sequential consistency mem-
ory model (Sc), and two versions of
the algorithms under a relaxed mem-
ory model (namely, Tso). The first of
these relaxed versions is incorrect, while the second one is a correct variant
obtained by adding some synchronization points referred as fences. The results
provide evidence of the state space increase due to relaxed memory models, even
in the case of correct algorithms. The situation is worse if one considers that even
the simple program while true do x:=0 has an infinite state space under some
memory models.

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 23

Several verification techniques that have been proposed to mitigate those
problems in the last years aimed at making verification under relaxed memory
models feasible. Some of them are described and discussed in Sects. 2 and 5.
Unfortunately, those techniques are sometimes language- or model-specific and
not directly applicable in the verification tasks typical of language design activi-
ties. We adopt in this work the perspective of a language designer who is willing
to prototype a new language for concurrent programs under some relaxed mem-
ory model. We assume that the language designer has chosen Maude as a frame-
work due to its suitability both as a semantic framework where different styles
(SOS, CHAM, K, etc.) can be easily adopted [3] and as a verification framework
featuring several tools (e.g. reachability analysis, LTL model checking, etc.). We
assume that the language designer is interested in performing simple verification
tasks using Maude’s search command for the sake of testing the semantics of
the language being prototyped by checking reachability properties of concurrent
programs. We further assume that he is certainly not willing to modify Maude’s
engine for the sake of a more efficient verification and would rather resort to ver-
ification optimizations that can be realized in Maude itself. We assume that he
is not willing to implement an existing technique before the language is mature
enough for the development of sophisticated applications that will require state-
of-the art verification techniques.

We discuss in this paper how to adopt in Maude some simple techniques to
optimize the verification of concurrent programs under relaxed memory models.
Some of the techniques are based or inspired by approaches to the verification
of relaxed memory models or by other approaches that have been shown to be
successful for similar verification purposes. We start the paper by providing in
Sect. 2 a gentle introduction to relaxed memory models, mainly aimed at read-
ers not familiar with this topic. We next introduce in Sect. 3 a running example
consisting of the language Pimp, a simple language for concurrent programs,
for which we provide a relaxed semantics. In Sect. 4 we discuss three families
of techniques for mitigating the state space explosion due to relaxed memory
models: approximations (Sect. 4.2), partial-orders (Sect. 4.3) and search strate-
gies (Sect. 4.4). Last we discuss some of the most relevant verification techniques
for relaxed memory models in Sect. 5 and draw some concluding remarks and
future research in Sect. 6.

2 Relaxed Memory Models

A memory consistency model is a formal specification of the semantics of a
shared memory, which can be a hardware-based shared-memory multiprocessor
or a large-scale distributed storage. In what follows we will mainly refer to the
former due to the focus on concurrent programing in our paper, but some of the
inherent ideas apply to distributed settings as well. The simplest and, arguably,
the most intuitive memory model is sequential consistency which can be seen
as an extension of the uniprocessor model to multiple processors. As defined by
Lamport [4], a multiprocessor is sequentially consistent if the result of any exe-
cution is the same as if the operations of all the processors were executed in some

24 Y.A. Arrahman et al.

sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program. Such model imposes two require-
ments: (1) write atomicity, that is, memory operations must execute atomically
with respect to each other and (2) total program order, which means that pro-
gram order is maintained between operations from individual processors.

Sequential consistency provides a clear and well-understood model of shared
memory to programmers but, on the other hand, it may affect the performance
of concurrent programs since it constrains many common hardware and compiler
optimizations. For instance, a common hardware optimization one can consider
are write buffers with bypass capability which are used to mitigate the latency
of write operations. The idea is that when a processor wants to perform a write
operation, it inserts it into a write buffer and continues executing without waiting
for the write to be completed. In a multiprocessor system each processor may
buffer its write operations thus allowing subsequent read operations to bypass
the write as long as the addresses being read differ from the address of any of the
buffered writes. This clearly leads to a violation of total program order and write
atomicity and hence the resulting programs are no more sequentially consistent.

Relaxed memory models provide an abstraction of the result of applying
similar consistency-relaxing optimizations. If we let X,Y ∈ {Read ,Write}, then
X-to-Y denotes the relaxation that allows to violate the program order by per-
forming a Y operation before an X operation that appears before in the program.
The instances of this relaxation are Write-to-Read, Write-to-Write, Read-to-Read
and Read-to-Write. Two common relaxations of write atomicity are Read other’s
write early, which allows a read operation to return the value of another proces-
sor’s write before the write is made visible to all other processors, and Read
own’s write early which allows a read operation to return the value of its own
previous write, before it is made visible to other processors.

Fig. 3. Hierarchy of relaxations

Figure 3 depicts a hierarchy of
memory models [5] and how they
relate to each other based the relax-
ations they allow. The strictest
model is sequential consistency (Sc)
which does not allow any relaxation.
In the second category fall total store
order (Tso), processor consistency
(PC) and IBM-370 as they allow the
Write-to-Read relaxation, all other
program orders are maintained. The
third category comprises of partial
store order (Pso) that allows both
Write-to-Read and Write-to-Write relaxations. The models at the bottom of
the hierarchy also allow Read-to-Read and Read-to-Write reorderings and hence
are the least strict.

The formalization of memory models has been mainly motivated by the fact
that many processor vendors often do not provide clear architectural specifi-
cations of the underlying memory models [6]. Instead, the documentation is

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 25

typically given in (sometimes ambiguous) informal prose, which makes it hard
to program above or to reason about. The formalization of memory models has
been tackled by several authors in different styles: e.g. axiomatic and opera-
tional. Some examples are the axiomatic x86-Tso model [7], which is sound
with respect to the Intel and AMD architectures, the axiomatic models for Java
and C++ languages [8,9], and the operational models of relaxed memories for
programming languages [10,11]. It is also worth to remark the efforts towards
unifying frameworks to capture most memory models [12] and the theory of
memory models of [13].

Fig. 4. Tso architecture

We focus in this work on the Tso model
which we introduce first informally, following
the usual operational description based on the
architectural view depicted in Fig. 4: (i) each
processor has a write buffer for storing write
operations, and each processor corresponds to
one thread; (ii) a thread that performs a read
operation must read its most recent buffered
write if there is one, otherwise reads are taken
from shared memory; (iii) a thread can see its
own writes before they are made visible to other
threads by committing the pending writes to
memory; (iv) delayed updates are committed from the buffer to the memory
non-deterministically by the multiprocessor system, one-by-one and respecting
their arrival order; (v) the programmer can use the mfence instruction to wait
until a buffer is fully committed, so to enforce memory order between preceding
and succeeding instructions. The next section will present a formal semantics of
a language running under this memory model.

3 A Simple Language with Relaxed Concurrency

We introduce in this section a simple language called Pimp that we shall use as
a case study and as a running example. Basically, Pimp is a simple imperative
language reminiscent of the while and imp languages [14] enriched with some
few concurrency features including shared memory communication, and blocking
wait and fence operations. In few words, Pimp allows one to specify sequential
threads that communicate over shared memory.

Definition 1 (threads). The programs of Pimp threads are terms generated
by S in the following grammar:

S ::= skip | x := u | mfence | S ; S′ | if B then S else S′ | while B do S | wait B

were X is a set of variables, x ∈ X , u ∈ N and B is a Boolean expression on X .

Most of the syntactic constructs of the language are rather standard. We just
mention here the mfence primitive (used to block a thread until its local view of
memory is consistent) and the wait primitive (used to specify blocking guards).
The construct skip is used to denote (immaterial) complete computations.

26 Y.A. Arrahman et al.

Definition 2 (programs). The programs of Pimp are terms generated by T
in the following grammar:

P ::= 〈T,M〉 T ::= [S|N]i | T ‖ T ′

N ::= ∅ | x �→ u | N • N M ::= ∅ | x �→ u | M,M

where x ∈ X , and i, u ∈ N.

Programs are obtained by the parallel composition of sequential threads (denoted
by juxtaposition). Each thread is indexed with a unique identifier i. Such iden-
tifier is later used to ease the presentation of some concepts but we often drop
it when unnecessary. Each thread comes equipped with a (possibly empty) local
memory N made of a composition of memory updates. In the case of Tso, N
models a buffer. Programs are turned into program configurations (i.e. terms
generated by P) by equipping them with a shared memory M , which we assume
to denote a function M ∈ (X �→ N) which may be partial on X but is certainly
total on the variables of the program. In the definition above , is considered to
be associative, commutative and idempotent with ∅ as identity and with no two
maps on the same variable. We shall also use the concept of thread configuration,
i.e. tuples 〈S,N,M〉, where S is the program of the thread, N is its local mem-
ory (buffer), and M is the global (shared) memory. Thread configurations ease
the presentation of the semantics, by allowing us to focus on individual threads
thanks to the interleaving semantics of parallel composition.

Memory Views. An important concept that eases the presentation of the seman-
tics is the memory view, which allow us to formalize the thread’s local view on
memory. More precisely, threads perceive memory as a particular composition
of the shared memory M and their local memory N . We shall see that in the
case of the Sc model there is in practice no local memory, and threads will only
perceive M as the available memory. In the case of Tso, the thread’s view on
memory will be M ◦ M ′, where M ′ is obtained by rewriting N as a set (denoted
N −→F M ′) and ◦ is a composition operation defined by

M ◦ ∅ = M
(M, x �→ u) ◦ (M ′, x �→ v) = (M, x �→ v) ◦ M ′

M ◦ (M ′, x �→ v) = (M, x �→ v) ◦ M ′ if M(x) = ⊥
Rewriting a local memory N as a memory M is formalized by the following rule
to be applied top-down

N −−→F M

N • x �→ u −−→F M ◦ x �→ u

Note that, in principle, −−→F has a functional behavior, i.e. for a given local
memory N there is only one possible rewrite N −−→F M . In this case we may
use F(N) to denote M . Later, however, we shall consider variants of local mem-
ories where • obeys some axioms and since we consider terms up to structural

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 27

Table 1. Rules of the operational semantics of Pimp

equivalence −−→F may have a non-functional behavior. An example of this will
be used later to model non-deterministic evaluations of Boolean expressions for
abstract local memories, where • enjoys the axioms of sets.

Pimp Semantics. The semantics of Pimp under a memory model M ∈ {Sc,Tso}
is a labeled transition system whose states are program configurations and whose
transitions →M⊆ P ×A×P are defined by the rules of Table 1. In the presented
rules, program and thread configurations are to be intended up to a structural
equivalence relation induced by the axiomatization of programs as multisets of
threads (i.e. juxtaposition is AC), memories as sets of updates (i.e. memory
composition , is ACI with identity ∅) and buffers as lists of updates (i.e. buffer
composition • is A with identity ∅). The labels in A are used for the only
purpose of decorating the semantics with information that will be useful in the
verification techniques presented in later sections. At this point it is sufficient
to understand that A contains labels of the form i � a, where i is either a
thread or buffer identifier and a is some action associated to the rules of the
semantics, essentially used to record in some cases the statement associated to
the transition. Label τ is used to denote some transition whose origin is not
relevant. We sometimes drop labels from transitions.

Rule Par is the only rule for program configurations and specifies the inter-
leaving semantics of the language. The rest of the rules specify then how individ-
ual threads evolve independently based on (and possibly modifying) the shared

28 Y.A. Arrahman et al.

memory M and their local buffer N . Rule Comp is defined as usual. It is however
worth to remark that skip is treated as the left identity of sequential composi-
tion to get rid of completed executions. The semantics of control flow constructs
is rather standard and defined by rules IfT, IfF, WhileT and WhileF. Such
rules are defined in a big-step style, i.e. the evaluation of a binary expression B
in some local view of memory M ′, denoted by [[B]]M ′ is performed atomically as
one thread transition. It is worth to remark that such evaluation is done based
on the thread’s view of the available memory (i.e. M ◦N ′). Note that in the case
of Sc, N ′ is always ∅ so that threads observe M directly. Rule Wait specifies
the semantics of the wait primitive which blocks the execution until the binary
condition B holds. The evaluation of the binary condition B is done in the same
manner as for control flow constructs. The semantics of assignments depends on
the memory model under consideration. We actually consider two cases defined
respectively by rules AssSc (for Sc) and AssTso (for Tso). Rule AssignSc is
as usual: an update is directly performed on the shared memory M . In the case
of Tso, the story is totally different. Indeed, rule AssTso models the fact that
updates are delayed by appending them to the thread’s buffer N . The delayed
updates in the buffers can be non-deterministically committed to memory in
the order in which they arrived. This is specified by rule Commit. A memory
commit consists in removing the update (x �→ u) at the beginning of the write
buffer of any thread and updating the value of variable x in memory. Finally,
rule Mfence specifies the semantics of the mfence primitive, which blocks the
thread until its write buffer becomes empty.

We assume that the reader has some familiarity with the canonical approaches
to encode operational semantic styles in rewriting logic and Maude are detailed [3].
We hence do not provide a detailed explanation on how to specify a Maude inter-
preter for Pimp. In few words, the main idea is to specify a rewrite theory RPimp =
〈Σ,E ∪ A,R〉 as a Maude module where (i) signature Σ models syntactic cate-
gories as sorts and contains all function symbols used in terms, (ii) equations and
axioms E ∪ A model the above mentioned structural equivalence on terms, and
(iii) rules R model the rules of the operational semantics. The obtained encoding is
faithful in the sense that there is a one-to-one correspondence between transitions
and 1-step rewrites of configuration-sorted terms.

4 Tackling the State Space Explosion

This section presents a number of techniques to tackle the state space explosion
caused by relaxed memory models. More precisely, Sect. 4.2 deals with approx-
imation techniques, focusing mostly in avoiding the generation of infinite state
spaces due to the potentially unlimited growth of store buffers; Sect. 4.3 presents
a partial order reduction technique aimed at reducing the number of interleav-
ings introduced by the non-deterministic nature of relaxed memory models, and
Sect. 4.4 discusses heuristic search strategies that can be adopted in order to
detect bugs in a more efficient way by guiding the search towards error states
and thus exploring a smaller portion of the state space.

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 29

4.1 Preliminaries

We introduce here some basic notation that we shall use in the rest of this section.
First, we shall consider Kripke structures as semantic model for verification
problems. These are obtained as usual, i.e. by enriching transition systems with
observations on states, so to abstract away from concrete representation of states
(as program configurations) and by restricting to reachable configurations only.

Definition 3 (M-Kripke structure). An M-Kripke structure is a Kripke
structure (S, s0,→,L,AP ,M) where: S ⊆ P is the set of s0-reachable configu-
rations, i.e. {s ∈ P | s0 →∗

M s}; s0 ∈ P is the initial state; →⊆ S × A × S is a
transition relation defined as (P × A × P)∩ →M, i.e. the restriction of →M to
reachable states; L : S → 2AP a labeling function for the states; AP is a set of
atomic propositions; and M ∈ {Tso,Sc} is a memory model.

M-Kripke structures are like ordinary Kripke structures with an explicit ref-
erence to the underlying memory model M and the corresponding transition
system semantics →M. In what follows we shall often fix M to be Tso unless
stated otherwise. We shall also use the term initial Kripke structure for some
program T to denote some Kripke structure whose initial state is an initial con-
figuration 〈T,M〉, i.e. a configuration where M maps all variables of T to 0.

Some of the techniques we shall consider allow us to obtain for a given
Kripke structure another (possibly smaller one) which is semantically related. We
assume familiarity with the usual notions of state-based equivalences and pre-
orders, such as weak/strong (bi)simulation and (stuttering) trace equivalence.
Those semantic relations with respect to the observations on states specified by
the labelling function L and the proposed techniques depend on the properties of
L. For a labelling function L we denote by ≡L⊆ P × P the equivalence relation
on program configurations induced by labelling equality. Often, we shall require
that L cannot distinguish states identified by some other equivalence relation R,
i.e. that ≡L⊇ R. For example, consider the smallest congruence relation induced
by axiom [S,N] = [S,N ′], denoted ≡[S,N]=[S,N ′], which identifies program config-
urations up to their local memories. Then requiring ≡L⊇≡[S,N]=[S,N ′] amounts
to require that L cannot observe local memories.

4.2 Approximations

Consider the simple sequential thread p � while true do x:=0 and the initial
configuration s = 〈[p | ∅], x �→ 0〉. Any initial Kripke structure (S, s,→,
L, AP,Sc) is clearly finite-state and just composed of state s with a self loop
s → s. However, the same program under TSO has an infinite state space, i.e.
Kripke structures (S, s,→,L, AP,Tso) have infinitely many states since it is pos-
sible to iterate the body of the while infinitely many times, each time adding
an entry to the buffer: s → 〈[x:=0;p | ∅], x �→ 0〉 → 〈[p | x �→ 0], x �→ 0〉 →
〈[x:=0;p | x �→ 0], x �→ 0〉 → 〈[p | x �→ 0 • x �→ 0], x �→ 0〉 → . . . The unbounded
growth of buffers is indeed one of the most challenging issues in the verification
of concurrent programs under relaxed memory models and several approaches

30 Y.A. Arrahman et al.

have been proposed in the literature as we shall discuss later in Sect. 5. In this
section we discuss one simple approach that one may easily adopt in Maude.
For the sake of illustration we present as well some simple ideas that cannot be
easily turned into useful sound approximations.

Simple Approximations. We shall consider in this section a simple approach to
realize approximations based on equating program configurations. This kind of
approximations can be easily implemented in Maude by language designers since
they require minimal changes in the formal specification of the language, such as
changing the equational attributes of some function symbols or introducing some
equations. Moreover, the Maude literature offers approaches, such as equational
abstractions [15] and c-reductions [16], to realize such kind of approximations in
a disciplined way, and to use possibly tool-based proof techniques to prove their
soundness and eventually correct them.

In this paper we will essentially follow an approach based on equational
abstractions [15]. The main idea is to consider some axioms A of the form t = t′

where t, t′ are terms denoting part of the program or thread configurations.
Such laws will then be then used to specify a rewrite theory RPimp/A which
specifies the approximated semantics. This is realized in Maude by introducing
the axioms of A as equational attributes or as equations in RPimp, the Maude
specification of Pimp. The effect is that for a Kripke structure K we obtain an
approximated Kripke structure KA that, under some reasonable conditions on
L (e.g. not being able to distinguish states identified by A), should simulate K.
In some cases concrete transitions may not have an approximated counterpart,
a situation that we can repair by introducing additional rules in the semantics.
The final effect of the approximations is that more states will be identified thus
resulting in smaller state spaces.

Buffers as Ordered Maps. Let us start considering the following simple approach
to get rid of the unbounded growth of Tso buffers. The idea is to keep in
the buffer just the latest update for each variable removing older updates. The
rationale would be that by doing so we still preserve the order of write operations
and all write operations will certainly have their chance to be committed to
memory. We are just forbidding to delay updates on the same variable too much.
This can be formalized by considering the following simple equation

Om � (x �→ u) • N • (x �→ v) = N • (x �→ v)

The question is whether this would result in a useful approximation. We shall see
that this is not the case. Let us consider first the Pimp program T in Fig. 5(a)
and let K be some initial Kripke structure for it. It is easy to see that in K it is
not possible to reach a state in which z takes the value 1, while this is possible
in KOm. The reason is, of course, that there exists an approximated execution in
which the commit of (x �→ 1) is discarded, and thus never visible to the second
thread. For the same reason deadlock states can be introduced as well.

Of course, obtaining new spurious behaviors is usual when considering over-
approximations. However, one would expect then that no concrete behavior is lost.

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 31

⎡
⎢⎢⎢⎢⎢⎣

x:=1;
y:=1;
x:=2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

wait(y �=0);
if x=0 then
z:=1

else
z:=2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x:=1;
x:=0;
if y �=1 then
if y=1 then
u := 1

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y:=1;
y:=0;
if x �=1 then
if x=1 then
v := 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x:=1;
x:=1;
if y=0 then
...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

y:=1
y:=1
if x=0 then
...

⎤
⎥⎥⎥⎥⎥⎦

(a) (b) (c)

Fig. 5. Some concurrent programs

We can also observe that this is unfortunately not the case. Consider, a concurrent
program T of the form in Fig. 5(b) and some initial Kripke structure K for it. It is
easy to see that in K we can reach a configuration where both u and v have value
1. This can happen if both threads perform and delay their first two assignments,
then enter the first branch of their first if statement, then commit their first pend-
ing write and finally enter the first branch of their second if statement thus pro-
ceeding to the update of u and v. Such behavior is however not possible in KOm.
Essentially, the considered approximation implies a loss of information that could
only be recovered by considering an approximated semantics that would take into
account all potentially (infinitely many) pending updates that could have been
removed. Therefore, while simple, the idea of removing old updates from buffers
is unlikely to provide a useful approximation.

Forced-commit Approximation. Let us consider now a similar idea, based on
handling updates on the same variables in a slightly different way. Suppose we
allow more than one update on the same variable with one exception: if the
head of the buffer is an update x �→ u on a variable x for which there is another
update x �→ v on the tail of the buffer, we remove the update x �→ u but this
time we commit it to memory. This time the equation under consideration is

Fc � 〈P, (x �→ u) • N • (x �→ v),M〉 = 〈P,N • (x �→ v),M ◦ (x �→ u)〉
Can we exploit Fc to build a useful approximation? It can be shown that
under some reasonable constraints on L no observable behavior is introduced,
but unfortunately, this approximation does not solve the problem of infinite
state spaces as illustrated by the simple program y:=0; while true do x:=0.
Clearly, there is an execution that delays and never commits the pending update
(y �→ 0) while cumulating repeated updates (x �→ 0). Moreover, this approxima-
tion loses some behaviours. This can be seen by a program T such as the one in
Fig. 5(c). In the initial Kripke structure K for T , it is possible for both threads
to execute the then branch of the if statement. However, in the corresponding
approximated Kripke structure KFc it is no longer possible to reach a state in
which both threads execute the then branch of the if statement.

Buffers as Set of Updates. What would then be a simple and still sound approx-
imation? A simple idea to get rid of multiple copies of a same commit in a buffer
is to approximate the buffer with a set of updates. This amounts to consider

32 Y.A. Arrahman et al.

those axioms Us that make the • operation become associative, commutative
and idempotent, with identity ∅. Even if it may seem that we are again losing
information, in particular about the order and multiplicity of pending updates,
this is not exactly true. The reason is that now the evaluation of expressions
automatically becomes non-deterministic due to the non-deterministic nature of
→F that would consider all possible orderings among updates. What is left is
the multiplicity of updates, which can be easily handled by introducing the rule

(CommitUs) 〈S,(x �→ u) • N,M〉 τ−→Tso 〈S,(x �→ u) • N,M ◦ (x �→ u)〉
in the semantics. The rationale is that any update can be committed to memory
but still kept in the buffer as it may represent an arbitrary number of copies of
the same update. An advantage of this approximation is that it can be easily
realized in Maude by changing the equational attributes of • and by adding a rule
modeling rule CommitUs. The obtained approximation may exhibit “spurious”
behaviours, but we are guaranteed to not miss any concrete behaviour provided
that we do not want to observe too much information on states.

Proposition 1. Let K be a Tso-Kripke structure whose labeling function L is
such that ≡L⊇≡[S,N]=S[S,N ′]. Then KUs simulates K.

Fig. 6. Approximated state spaces

Experiments. Figure 6 presents the
results of some of our experiments.
The vertical axis corresponds to the
size of the state space in terms of
number of states. In the horizon-
tal axis we have our four mutual
exclusion algorithms and, for each
of them, the result obtained with-
out (1st column) and with the above
discussed approximations: Om (2nd
column), Fc (3rd column), and Us
(4th column). Clearly, not all explorations make sense since some of the approx-
imations are unsound or incomplete but we included them here for a more com-
prehensive presentation of our experiments. The most relevant observation is
that simple approximations such as Us, do provide finite state spaces but may
enormously contribute to the state space explosion. This is evident in the con-
sidered mutual exclusion programs which are finite-state since they are 1-entry
instances of the algorithms (i.e. with no loop). Section 5 discusses several sophis-
ticated techniques that can provide more efficient approximations.

4.3 Partial-Order Reduction

As we have seen, relaxed memory models introduce a large amount of non-
determinism in the state space of concurrent programs. In the case of the Tso,
this is due to the introduction of buffers, which delay updates that are non-
deterministically committed at any time. Such non-determinism may lead to

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 33

an increase of the interleaving of actions some of which may be equivalent.
A popular and successful family of techniques to cope with this problem is Par-
tial Order Reduction (POR) [17–19]. These techniques have been extended and
implemented in several ways and are often part of the optimization features of
verification tools such as model checkers, and they have been already successfully
applied in the verification of programs under relaxed memory models [20,21].

POR in Maude. An easy way to adopt POR in Maude-based verification is to
instantiate the generic language-independent approach described in [22], that
we shall refer to as PorM. The method discharges relatively little requirements
on a language designer: (i) a formal executable specification of the semantics
of the programming language L under consideration (Pimp in our case) as a
rewrite theory RL satisfying some reasonable conditions explained below, and
(ii) the specification of some properties of the language (e.g. an approximation of
dependencies between actions). The latter, of course, may require some manual
proof. The advantages of the method are that no additional proof is needed to
guarantee the correctness of the approach, and that no change in the underlying
verification capabilities of Maude are necessary.

We recall that the main idea underlying the ample set approach to POR [18],
considered in PorM, is to prune redundant parts of the state space, avoid-
ing the exploration of paths that do not bring additional information. This is
done by considering at each state s a subset of its successors called ample set.
For presentation purposes, we recall now some useful definitions. Let K be the
Kripke structure under consideration. We denote with enabled(s) the set of all
the enabled transitions in state s ∈ S, i.e. enabled(s) = {s

α−→ s′}. We sometimes
use the notation t(s) to denote the target s′ of transition t = s

α−→ s′. Two fun-
damental concepts in POR are those of invisibility of actions and independence
between actions and between transitions.

Definition 4 (invisibility). Let K be a Kripke structure. A transition s
α−−→

s′ is invisible in K iff L(s) = L(s′). Similarly, an action α is invisible if all
transitions s

α−−→ s′ are invisible.

Definition 5 (independence). Two transition t0, t1 are independent if for
each state s such that t0 ∈ enabled(s) and t1 ∈ enabled(s) it holds: t1 ∈
enabled(t0(s)), t0 ∈ enabled(t1(s)), and t0(t1(s)) = t1(t0(s)). We define the
independence relation I ⊆ T × T as {(t0, t1) | t0 and t1 are independent}.
In words, independent transitions do not disable each other, and their execu-
tion commutes. If two transitions are not independent, we say that they are
dependent. We let D be simply defined as D = (T × T) \ I.

Instantiating PorM to Pimp. We recall that the PorM approach imposes some
restrictions on the language under consideration as well as on the approximation
of the dependency relation. The conditions on the language are: “(1) In each pro-
gram there are entities equivalent to threads, or processes, which can be uniquely
identified by a thread identifier. The computation is performed as the combina-
tion of local computations inside individual threads, and communication between

34 Y.A. Arrahman et al.

these threads through any possible discipline such as shared memory, synchro-
nous and asynchronous message passing, and so on. (2) In any computational
step (transition) a single thread is always involved. In other words, threads are
the entities that carry out the computations in the system. (3) Each thread has
at most one transition enabled at any moment.” Clearly, Pimp satisfies those
conditions by viewing buffers as independent computation entities (whose only
actions are to commit updates to memory).

The strategies to compute ample sets discussed in [22] guarantee correctness
given that the language designer provides a safe approximation of dependencies
between transitions, and a correct specification of visibility. Regarding visibility,
the idea we propose here for Pimp relies on the fact that, as long as the proper-
ties of interest do not concern the local memories or the program itself, all the
transitions caused by assignments are invisible. This leads to the first lemma
needed to ensure the correct instantiation of the PorM approach.

Lemma 1 (invisibility of assignments). Let K be a Kripke structure. If L is
such that ≡L⊇≡[S,N]=[S′,N ′] then all actions α = i � x := u are invisible in K.

Furthermore, it is easy to convince ourselves that the only way a transition could
be dependent on an assignment transition, is to be generated by the execution
of an instruction of the same thread following the assignment itself. Indeed, we
hence define the following over-approximation of D.

Definition 6 (dependency approximation). Let K be a Kripke structure
and let F ⊆ A × A be the relation on actions made of all pairs of actions (α, β)
or (β, α) such that α = (i � x := u), β = (j � a) and i �= j. We define D ⊆ T ×T

as the set (T × T) \ {(s α−−→ s′, s′′ β−→ s′′′) | (α, β) ∈ F}.
Lemma 2 (approximation of dependency). Let K be a Kripke structure.
We have D ⊆ D.

Of course, D is a very simple and coarse approximation but it serves well our
illustrative purposes and can be easily implemented. Indeed, the simplest strat-
egy of PorM consists of considering single transitions as candidates for ample
sets. For a single transition t to be accepted as ample set it must be invisible (C2
in [22]), such that no other thread has a transition in the future that is dependent
on t (C1’ in [22]) and should not close a cycle in the state space (C3 in [22]). In
our case, our approximation of dependency makes transitions corresponding to
assignments obvious candidates. If we denote by ample : P → 2P the function
computing ample sets that the simplest strategy of PorM implements and if
we let K = (S, s0,→,L,AP ,M) be an M-Kripke structure, then the PorM
reduction of K is KPorM = (S, s0,→ ∩{(s, s′) | s′ ∈ ample(s)},L,AP ,M).

Proposition 2 (Soundness). Let K be a Kripke structure whose labeling func-
tion L is such that ≡L⊇≡[S,N]=[S′,N ′], then K and KPORM are stuttering
bisimilar.

The correctness of Proposition 2 trivially follows from Theorem 1 of [22] and
Lemmas 1 and 2.

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 35

Fig. 7. Reduction with POR

Experiments. Figure 7 presents the
results of our experiments. The ver-
tical axis corresponds to the size of
the state space in terms of number of
states. In the horizontal axis we have
our four mutual exclusion algorithms
and, for each of them, the result
obtained without (left) and with
(right) POR. The obtained result
provides evidence of the advantages
of applying POR even in the simple form presented here.

4.4 Search Strategies

Verification tools based on explicit-state state space traversal often use quite
simple but efficient search algorithms based on depth-first and breadth-first
strategies. This is indeed the case of the standard verification capabilities of
Maude: the search command performs a breadth-first search traversal of the
state space of a rewrite theory, while the Maude LTL model checker [23] applies
the usual nested depth-first search algorithm for checking emptiness of ω-regular
languages. However, as many authors have noticed, using smart search strategies
can provide better verification performances, both in the time and the memory
consumed by the verification tool. The application of such techniques is often
known in the model checking community by directed model checking, a term orig-
inally coined in [24], and made popular by its adoption in several model checkers
such as SPIN [25] and Java Path Finder [26].

The main idea underlying such techniques is the use of search algorithms
whose exploration strategy depends on some heuristics that aim at exploring a
portion of the state space that is as small as possible for the required verification
task. The archetypal example is the use of standard AI algorithms such as A* and
best-first search in combination with heuristics that rank the states according to
their likelihood to lead to a violation of the property being verified. Bug-finding,
indeed, rather than verification, is the killer application of such techniques.

Search strategies are not novel in the Maude community. Indeed, they have
been thoroughly investigated in [27]. In the proof-of-concept spirit of this work
we have followed a very simple approach to give evidence of the advantages
of using heuristically guided search algorithms in the verification of concurrent
programs under relaxed memory models. In particular, we have implemented and
evaluated the best-first search algorithm in combination with simple heuristics.

We recall that the best-first search algorithm works by maintaining two sets
of states: a set of closed states (i.e. visited states whose transitions have been
already explored) and a set of open states (i.e. visited states whose transitions
are yet to be explored). The algorithm starts with an initially empty set of
closed states and only the initial state in the open set, and iteratively selects
one open state to be expanded and moved to the close set. Expanding a state
means exploring the states immediately reachable through outgoing transitions

36 Y.A. Arrahman et al.

and putting them in the open set if they have been never visited before. The
choice of the open state to be expanded depends on some heuristic function
that ranks the states according to some rationale. Our implementation is rather
canonical and exploits the reflective capabilities of the Maude language. Since
Maude’s meta-level module offers a metaSearch command to obtain the outgoing
transitions of a state, the implementation of best-first search in a declarative way
is almost straightforward.

Our heuristics are inspired by the work of Groce and Visser on so-called
structural heuristics for directed model checking in the Java Path Finder model
checker [26]. Such heuristics are based on inherently structural causes of errors
in concurrent software. For instance, some of the heuristics tend to promote
the exploration of executions with more context-switches or interleavings with
the rationale that programmers tend to think sequentially and bugs such as
race conditions often are due to unexpected interleavings. With this spirit we
have designed three simple heuristics tailored for finding bugs in concurrent
programs to be run under relaxed memory models, all of which map program
configurations into natural numbers with the idea that program configurations
with higher values are more likely to lead to a bug. The heuristics respectively
count the number of non-empty buffers (Neb), the number of pending writes
(Pw), i.e. the sum of the sizes of all buffers, and the number of inconsistent
pending writes (Ipw), i.e. the number of pending writes x �→ u that map a
variable x to a value u different from the value v assigned to x by the shared
memory. These heuristics are measures of the level of memory inconsistency.

Fig. 8. Bug-finding with heuristics

Figure 8 presents the results of
our experiments. As usual, the ver-
tical axis presents the number of
states that were explored. In this
case we were looking for violations
of the mutual exclusion property
and the verification stopped once the
first violation was found. In the hor-
izontal axis we have our four mutual
exclusion algorithms and, for each of
them, four cases: the usual breadth-
first (BFS) search and best-first (BF) search in combination with the three
heuristics. Without entering into details, the main observation is that the heuris-
tically guided search for errors is in general more space efficient than the standard
algorithm. Of course, there is a slight time overhead in our implementation since
breadth-first search is implemented in Maude itself (using the meta-level) and
the search command is provided by the Maude (C++) engine directly. How-
ever, our main point here is to show the potential of heuristically guided search
strategies that may be prototyped using the meta-level (as we do here) and even-
tually implemented as extensions of the Maude engine if high time performance
is needed.

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 37

5 Related Works

We discuss here some approaches, focusing the discussion on those that have
inspired the techniques we have adopted in our case study and describing as well
some archetypal examples of alternative techniques.

Partial order reduction techniques have been applied to the verification of
concurrent programs under relaxed consistency by several authors. For instance,
the authors of [20] use the SPIN model checker and exploit SPIN’s POR based
on the ample set approach [18], while the authors of [21] combine different tech-
niques (some discussed below) which include an implementation of the persistent
set approach to POR [17]. Those works should not be confused with the partial
order models used [28], whose authors address the problem of program verifi-
cation under relaxed memory (Tso, Pso, Rmo and Power) by using partial
orders to model executions of finite-state programs. Those models are then ana-
lyzed using a SAT-based technique called symbolic decision procedure for par-
tial orders, implemented in the Bounded Model Checker for ANSI-C programs
(CBMC) [29]. The key idea is the partial order model, which is a graph whose
nodes are the read/write operations of the program and whose directed arcs
model the data and control dependency between operations. While the data
dependency cannot be relaxed, the control dependency is relaxed according to
the memory model under consideration. The absence of undesirable properties
(e.g. possibility of reading certain values) is reduced to checking the presence of
cycles in the graph.

Several approximation techniques for concurrent programs under relaxed con-
sistency can be found in the literature (e.g. [30–32]). A representative example is
described in [33], whose authors propose a verification approach for concurrent
programs under Tso. The key idea is to approximate the (possibly unbounded)
store buffers in a way that not only makes verification under Tso feasible, but
also reduces the reachability problem under Tso to a reachability problem under
Sc, thus enabling the use of off-the-shelf Sc analysis tools (as other authors do,
e.g. [34]). The approach is based on context-bounded analysis [35]. A context is
a computation segment where only one thread is active. All memory updates
within a context are the result of committing delayed updates in the store buffer
of the active thread. The authors prove that for every concurrent program P ,
it is possible to construct another concurrent program P ′ such that when P ′

runs under Sc, the reachable states of P ′ are exactly the same of the reachable
states of P running under Tso with at most k context-switches for each thread.
Their translation is done with a limited overhead, i.e. a polynomial increase in
the size of the original program. The authors show that it is possible to use
only a k-dependent fixed number of additional copies of the shared variables as
local variables to simulate the store buffers, even if they are unbounded. The key
assumption is that each store operation produced by some thread cannot stay
in its store buffer for more than a bounded number of context switches of that
thread. As a consequence, for a finite-state program, the context-bounded analy-
sis of Tso programs is decidable. Such sort of bounded verification is proposed
by other authors and there are also approaches that address the infinite state

38 Y.A. Arrahman et al.

space by resorting to predicate abstractions (e.g. [36]) or symbolic approaches
(see e.g. [37–40])). A prominent example are buffer automata [41].

Apart from the already mentioned CBMC [29] several other verification tools
have been conceived with the aim of supporting the development of correct
and efficient C programs under relaxed memory models. For instance, Check-
Fence [42] is a tool that statically checks the consistency of a data type imple-
mentation for a given bounded test program and memory model (Tso or Rmo).
The tool checks all concurrent executions of a given C program under relaxed
consistency and produces a counterexample if it finds an execution that is not
sequentially consistent. Another example is the tool DFence [43] which imple-
ments a technique that, given a C program, a safety property and a memory
model (Tso or Pso), checks for violations of the property and infers fences
to constrain problematic reorderings causing the violations. Finally, it is worth
mention that the specification of KernelC in the K framework [44] includes as
well a x86-Tso semantics of the memory models [45] which allow one to use the
K tools (some of which are Maude-based) for verification purposes.

6 Conclusion

This paper addresses one of the problems that a language designer may
encounter when prototyping a language for concurrent programs with a weak
shared memory model, namely the state space explosion due to relaxed consis-
tency. We have discussed how the flexibility of the Maude framework can be
exploited to adopt some efficient verification techniques proposed in the liter-
ature. We have essentially focused on reachability analysis, since it plays an
important role in the development of concurrent programming languages and
programs, not only for verification purposes but also in techniques for auto-
matically porting programs from sequential consistency memories to relaxed
ones (e.g. by fence-insertion techniques [21,32,46,47]). The kind of verification
techniques we have discussed are approximations, partial order reduction and
heuristic search strategies. While approximations and partial order reduction
have been proposed before, as far as we know, the use of directed model check-
ing techniques in the domain of relaxed concurrency is a novelty. However, rather
than proposing novel verification techniques, our aim was to provide evidence of
the flexibility of Maude for adopting techniques that ease verification and lan-
guage design task in presence of relaxed consistency. We believe that there are
still many developments that can be carried out to provide language designers
with a powerful verification-based framework, in particular in what regards the
automatization of correctness proofs for the adopted verification techniques.

References

1. Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobbs J. 30(3), 202–210 (2005)

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 39

2. Sutter, H., Larus, J.R.: Software and the concurrency revolution. ACM Queue 3(7),
54–62 (2005)

3. Serbanuta, T.F., Rosu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Inf. Comput. 207(2), 305–340 (2009)

4. Lamport, L.: How to make a correct multiprocess program execute correctly on a
multiprocessor. IEEE Trans. Comput. 46(7), 779–782 (1997)

5. Memory consistency models, csc/ece 506 spring 2013/10c ks (2013). http://wiki.
expertiza.ncsu.edu/index.php/CSC/ECE 506 Spring 2013/10c ks

6. Zappa Nardelli, F., Sewell, P., Ševč́ık, J., Sarkar, S., Owens, S., Maranget, L.,
Batty, M., Alglave, J.: Relaxed memory models must be rigorous. In: Exploiting
Concurrency Efficiently and Correctly, CAV 2009 Workshop, June 2009

7. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

8. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Palsberg, J.,
Abadi, M. (eds.) POPL, pp. 378–391. ACM (2005)

9. Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation. ACM, Tucson,
7–13 June 2008

10. Boudol, G., Petri, G.: Relaxed memory models: an operational approach. In: Shao,
Z., Pierce, B.C. (eds.) POPL, pp. 392–403. ACM (2009)

11. Petri, G.: Studying operational models of relaxed concurrency. In: Abadi, M., Lluch
Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 254–272. Springer, Heidelberg
(2014)

12. Adve, S., Hill, M.D.: A unified formalization of four shared-memory models. IEEE
Trans. Parallel Distrib. Syst. 4, 613–624 (1993)

13. Saraswat, V.A., Jagadeesan, R., Michael, M.M., von Praun, C.: A theory of memory
models. In: Yelick, K.A., Mellor-Crummey, J.M. (eds.) PPOPP, pp. 161–172. ACM
(2007)

14. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergrad-
uate Topics in Computer Science. Springer, London (2007)

15. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theor. Com-
put. Sci. 403(2–3), 239–264 (2008)

16. Lluch Lafuente, A., Meseguer, J., Vandin, A.: State space c-reductions of con-
current systems in rewriting logic. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012.
LNCS, vol. 7635, pp. 430–446. Springer, Heidelberg (2012)

17. Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput.
110(2), 305–326 (1994)

18. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

19. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

20. Jonsson, B.: State-space exploration for concurrent algorithms under weak memory
orderings: (preliminary version). SIGARCH Comput. Archit. News 36(5), 65–71
(2008)

21. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS
2013). LNCS, vol. 7795, pp. 339–353. Springer, Heidelberg (2013)

22. Farzan, A., Meseguer, J.: Partial order reduction for rewriting semantics of pro-
gramming languages. Electr. Notes Theor. Comput. Sci. 176(4), 61–78 (2007)

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2013/10c_ks
http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2013/10c_ks

40 Y.A. Arrahman et al.

23. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude ltl model checker. Electr.
Notes Theor. Comput. Sci. 71, 162–187 (2002)

24. Reffel, F., Edelkamp, S.: Error detection with directed symbolic model checking.
In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, p. 195. Springer,
Heidelberg (1999)

25. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. STTT 5(2–3), 247–267 (2004)

26. Groce, A., Visser, W.: Heuristics for model checking java programs. STTT 6(4),
260–276 (2004)

27. Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: A rewriting semantics for maude strate-
gies. Electr. Notes Theor. Comput. Sci. 238(3), 227–247 (2009)

28. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

29. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

30. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

31. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for
relaxed memory models. In: Hall, M.W., Padua, D.A. (eds.) PLDI, 187–198. ACM
(2011)

32. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
In:Bloem, R., Sharygina, N. (eds.) FMCAD, pp. 111–119. IEEE (2010)

33. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011)

34. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for
weak memory via program transformation. In: Felleisen, M., Gardner, P. (eds.)
Programming Languages and Systems. LNCS, vol. 7792, pp. 512–532. Springer,
Heidelberg (2013)

35. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. ACM SIGPLAN Not. 42(6), 446–455 (2007)

36. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol.
7935, pp. 84–104. Springer, Heidelberg (2013)

37. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

38. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded model checking of concurrent
data types on relaxed memory models: a case study. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006)

39. Gopalakrishnan, G.C., Yang, Y., Sivaraj, H.: QB or not QB: an efficient execution
verification tool for memory orderings. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 401–413. Springer, Heidelberg (2004)

40. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

Can We Efficiently Check Concurrent Programs Under Relaxed Memory 41

41. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying pro-
grams on relaxed memory models. In: van de Pol, J., Weber, M. (eds.) Model
Checking Software. LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010)

42. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of
concurrent data types on relaxed memory models. In: Ferrante, J., McKinley, K.S.
(eds.) PLDI, pp. 12–21. ACM (2007)

43. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M.T., Yahav, E.: Dynamic synthesis
for relaxed memory models. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp. 429–440.
ACM (2012)

44. Rosu, G., Serbanuta, T.F.: An overview of the K semantic framework. J. Log.
Algebr. Program. 79(6), 397–434 (2010)

45. Şerbănuţă, T.F.: A Rewriting Approach to Concurrent Programming Language
Design and Semantics. Ph.D. Thesis, University of Illinois at Urbana-Champaign,
December 2010. https://www.ideals.illinois.edu/handle/2142/18252

46. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion
in relaxed memory systems. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops
2011. LNCS, vol. 6823, pp. 144–160. Springer, Heidelberg (2011)

47. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
SIGACT News 43(2), 108–123 (2012)

https://www.ideals.illinois.edu/handle/2142/18252

Real-Time Maude and Its Applications

Peter Csaba Ölveczky(B)

University of Oslo, Oslo, Norway
peterol@ifi.uio.no

Abstract. Real-Time Maude extends the rewriting-logic-based Maude
system to support the executable formal modeling and analysis of real-
time systems. Real-Time Maude is characterized by its general and
expressive, yet intuitive, specification formalism, and offers a spectrum
of formal analysis methods, including: rewriting for simulation purposes,
search for reachability analysis, and both untimed and metric tempo-
ral logic model checking. Real-Time Maude is particularly suitable for
specifying real-time systems in an object-oriented style, and its flexible
formalism makes it easy to model different forms of communication.

This modeling flexibility, and the usefulness of both Real-Time Maude
simulation and model checking, has been demonstrated in many advanced
state-of-the-art applications, including both distributed protocols of dif-
ferent kinds and industrial embedded systems. Furthermore, Real-Time
Maude’s expressiveness has also been exploited to define the formal seman-
tics of a number of modeling languages for real-time/embedded systems.
Real-Time Maude thereby provides formal analysis for these languages for
free, and such analysis has been integrated into the tool environment of a
number of modeling languages.

This paper gives an informal overview of Real-Time Maude and some
of its applications.

1 Introduction

Real-Time Maude is a rewriting-logic-based formal specification language and
simulation and model checking tool that extends Maude to support the formal
modeling and analysis of real-time systems. Being an extension of Maude, Real-
Time Maude inherits Maude’s key features:

– a simple and intuitive formalism;
– expressiveness and generality; and
– providing a natural model of object-based real-time systems.

In Real-Time Maude the data types are user-defined as an algebraic equa-
tional specification; that is, the user declares her sorts and functions on those
sorts. Some functions are “constructors” that together define the “elements”
of the sorts, and the other functions are defined by (first-order) conditional
equations. Local transitions that are assumed to take zero time are specified by
(possibly conditional) rewrite rules of the form crl [l]: t => t′ if cond , where t

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 42–79, 2014.
DOI: 10.1007/978-3-319-12904-4 3

Real-Time Maude and Its Applications 43

and t′ are two terms, possibly containing variables, denoting (sets of) local state
fragments. Finally, time elapse is modeled explicitly using tick rewrite rules of
the form crl [l]: {t} => {t′} in time Δ if cond ; this ensures uniform time
elapse in all parts of the system, since the entire state should have the form {u}.
The duration of the transition is given by the term Δ, which may contain vari-
ables, including variables not appearing in t. The time domain can be discrete
or dense.

Some key features of Real-Time Maude, which distinguish it from other real-
time formalisms and formal analysis tools, include:

– Expressiveness and flexibility. Any computable data type can be defined as an
algebraic specification [18]. In particular, we may have “advanced” functions,
unbounded data structures, etc. Likewise, the rewrite rules can define very
sophisticated transition patterns.

– Object-based distributed real-time systems can be naturally modeled in Real-
Time Maude, including features such as

• dynamic object creation and deletion, and
• hierarchical objects, which may contain entire dynamic subsystems.

– Real-Time Maude is not based on a fixed model of communication, into which
other models of communication have to be encoded. Instead, the desired form
of communication can be specified directly in the logic.

– Simple and intuitive formalism. Both static, dynamic, and real-time aspects
are specified in a simple and intuitive framework (equations and rewrite rules),
that should make Real-Time Maude a low-threshold tool for developers with
limited formal methods experience.

– A range of automatic formal analyses, including simulation and different kinds
of timed and untimed temporal logic model checking.

– The possibility of defining parametrized atomic propositions.

Real-Time Maude provides a number of automated explicit-state analyses,
including:

– timed rewriting for simulation,
– timed reachability analysis,
– untimed—but possibly time-bounded—LTL model checking, and
– timed CTL (TCTL) model checking.

The price to pay for this modeling convenience is that key system properties are
undecidable: the above analysis methods are in general not sound and complete.

Real-Time Maude should be seen as complementing the highly successful
timed automaton formalism [6]—which is a fairly restricted formalism to ensure
that key system properties are always decidable—and its equally successful tools
such as Uppaal [14] (and RED [63]), by focussing on expressiveness and mod-
eling convenience. Real-Time Maude can also be seen to complement languages
such as IF [21] and BIP [13] by having (essentially) a single formalism instead of
being composed of three fairly different formalisms for three different aspects, by
supporting the specification of any data type in a logic instead of in Java, by not

44 P.C. Ölveczky

being based on a fixed communication model, and by supporting the dynamic
creation and deletion of (possibly hierarchical) objects.

The key question concerning Real-Time Maude is of course whether all these
features are needed or useful. That is:

Question 1. Are there interesting systems where the above features of
Real-Time Maude are needed/useful, and where meaningful Real-Time
Maude analysis is still possible?

Since Real-Time Maude analyses are in general not sound and complete, an
important part of answering Question 1 is to answer the following question:

Question 2. Are there interesting classes of systems for which Real-
Time Maude analyses are guaranteed to be sound and complete?

The goal of this paper is to briefly and informally introduce Real-Time Maude
and its applications. In particular, Sect. 2 introduces modeling in Real-Time
Maude. Section 3 explains how Real-Time Maude specifications are executed,
and gives an overview of the tool’s analysis features. Section 4 addresses Ques-
tion 2 by presenting classes of systems for which LTL and TCTL model checking
is indeed sound and complete. The main part of the paper is Sect. 5, which sum-
marizes some applications of Real-Time Maude. Section 6 discusses extensions
of Real-Time Maude, and Sect. 7 gives some concluding remarks.

The formal treatment of Real-Time Maude and its semantics is given in [49];
the underlying real-time rewrite theory model is presented in [47]; and early
summaries of some of the uses of Real-Time Maude to define the semantics of
modeling languages were presented in [43,44].

Finally, Real-Time Maude is a Maude program that is available free of charge
at http://ifi.uio.no/RealTimeMaude.

2 Specification in Real-Time Maude

A Real-Time Maude module tmod M is (Σ,E, IR,TR) endtm specifies a real-
time rewrite theory [47], where Σ is an algebraic signature declaring sorts (key-
words sort and sorts) subsorts (subsort), and function symbols. A function
declaration has the form op f : s1 . . . sn -> s [atts], which declares a function
f with n arguments of sorts s1, . . . , sn, respectively, that gives an element of
sort s. The optional set atts of function attributes could declare f to be a con-
structor symbol that constructs the elements of the sort s, or could declare the
function—in case it is a binary function—to be associative (assoc), commuta-
tive (comm), and/or to have an identity element, or declare that f is a frozen
operator, so that rewrites cannot take place in its subterms. E is a set of (pos-
sibly conditional) equations of the form eq t = t′ and ceq t = t′ if cond ; the
terms t and t′ could contain mathematical variables, which are declared with the
keyword var or vars. IR is a set of declarations of instantaneous rewrite rules
rl [l] : t => t′ and crl [l] : t => t′ if cond , where l is a label; such rules define
local transitions that are assumed to take zero time. Finally, TR is a set of tick

http://ifi.uio.no/RealTimeMaude

Real-Time Maude and Its Applications 45

(rewrite) rules of the form rl [l] : {t} => {t′} in time u and crl [l] : {t} =>
{t′} in time Δ if cond that are used to model time advance in the system.

The equational specification (Σ,E) must contain a specification of a time
domain, which may be dense or discrete. Real-Time Maude has predefined
useful time domains such as NAT-TIME-DOMAIN (unbounded natural numbers)
and POSRAT-TIME-DOMAIN (unbounded nonnegative rational numbers), and their
extensions NAT-TIME-DOMAIN-WITH-INF and POSRAT-TIME-DOMAIN-WITH-INF
that add a supersort TimeInf of Time with an “infinity” element INF.

The global state of the system must always have the form {u}, where u is a
term of sort System. The form of the tick rule then ensures that time advances
uniformly in all parts of the system.

We illustrate specification in Real-Time Maude with a small example bor-
rowed from [49].

Example 1. The following module models a “retrograde” clock with a dense
time domain. The clock may be running (in which case the system is in state
{clock(r)} for r the time shown by the clock) or may have stopped
(in which case the system is in state {stopped-clock(r)} for r the clock value
when it stopped). When the clock shows 24 it must be reset to 0 immediately:

(tmod DENSE-CLOCK is protecting POSRAT-TIME-DOMAIN .

ops clock stopped-clock : Time -> System [ctor] .

vars R R’ : Time .

crl [tickWhenRunning] :

{clock(R)} => {clock(R + R’)} in time R’ if R’ <= 24 - R [nonexec] .

rl [tickWhenStopped] :

{stopped-clock(R)} => {stopped-clock(R)} in time R’ [nonexec] .

rl [reset] : clock(24) => clock(0) .

rl [batteryDies] : clock(R) => stopped-clock(R) .

endtm)

The two tick rules model the effect of time elapse on a system by increasing the
clock value of a running clock according to the time elapsed, and by leaving a
stopped clock unchanged. The rules reset and batteryDies are instantaneous
rules modeling events that take zero time.

To specify all possible behaviors in a dense time domain, the duration of the
tick rules is given by a variable (R’) that is not present in the lefthand sides of
the rules. This means that time may elapse by any amount less than 24−r from
a state {clock(r)}, and by any amount from a state {stopped-clock(r)}.

Tick rules—especially in dense time domains—typically have the forms

rl [l] : {t} => {t′} in time x .

crl [l] : {t} => {t′} in time x if cond .

crl [l] : {t} => {t′} in time x if x <= u .

crl [l] : {t} => {t′} in time x if x <= u /\ cond .

where x is a variable that does not appear in t and is not instantiated in the
condition. Section 3 explains how such tick rules are executed.

46 P.C. Ölveczky

2.1 Object-Oriented Specifications

In Real-Time Maude, we can declare classes in object-oriented timed modules
((tomod M is . . . endtom)). A class declaration

class C | att1 : s1, ... , attn : s1 .

declares a class C with attributes att1 to attn of sorts s1 to sn, respectively. An
object of class C in a given state is represented as a term

< O : C | att1 : val1, ..., attn : valn >

of sort Object, where O, of sort Oid, is the object’s identifier, and where val1 to
valn are the current values of the attributes att1 to attn. A message m with para-
meters p1, . . . , pn of sorts s1, . . . , sn can be represented as a term m(p1, . . . , pn)
of sort Msg; such messages are declared

msg m : s1 ... sn -> Msg .

A configuration is term of the sort Configuration, and is a multiset of
objects and messages. Multiset union for configurations is denoted by a juxta-
position operator (empty syntax) that is associative and commutative, so that
rewriting is multiset rewriting supported directly in Real-Time Maude. Since a
class attribute may have sort Configuration, we can have hierarchical objects
which contain a subconfiguration of other (possibly hierarchical) objects and
messages.

The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w)

< O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z >

m’(O’,x) .

defines a parameterized family of transitions (one for each substitution instance)
in which a message m, with parameters O and w, is read and consumed by an
object O of class C, the attribute a1 of the object O is changed to x + w, and
a new message m’(O’,x) is generated. The message m(O,w) is removed from
the state by the rule, since it does not occur in the right-hand side of the rule.
Likewise, the message m’(O’,x) is generated by the rule, since it only occurs in
the right-hand side of the rule. Attributes whose values do not change and do
not affect the next state of other attributes or messages, such as a3, need not be
mentioned in a rule. Similarly, attributes whose values influence the next state of
other attributes or the values in messages, but are themselves unchanged, such
as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.
Messaging delay can be modeled by sending a “delayed” message dly(m, d),

where d is the remaining delay of the message. When the remaining delay is
0, the message is “ripe” and becomes m. The dly wrapper can be declared as
follows (the sort NEConfiguration denotes non-empty configurations):

Real-Time Maude and Its Applications 47

sort DlyMsg .

subsorts Msg < DlyMsg < NEConfiguration .

op dly : Msg Time -> DlyMsg [ctor right id: 0] .

Most object-oriented Real-Time Maude specifications use the tick rule

var T : Time . var SYSTEM : Configuration .

crl [tick] :

{SYSTEM} => {timeEffect(SYSTEM, T)} in time T if T <= mte(SYSTEM) .

where

– the function mte defines the maximum t ime that may elapse before some
(instantaneous) event must take place, and

– the function timeEffect defines how the passage of a certain amount of time
affects the state of the system.

These functions typically distribute over the elements (objects and messages)
in a configuration as follows:

vars T T1 T2 : Time . vars C1 C2 : Configuration . vars M : Msg .

op mte : Configuration -> TimeInf [frozen (1)] .

eq mte(none) = INF . --- infinity value

ceq mte(C1 C2) = min(mte(C1), mte(C2)) if C1 =/= none and C2 =/= none .

op timeEffect : Configuration Time -> Configuration [frozen (1)] .

eq timeEffect(none, T) = none .

ceq timeEffect(C1 C2, T) = timeEffect(C1, T) timeEffect(C2, T)

if C1 =/= none and C2 =/= none .

eq timeEffect(dly(M, T1), T2) = dly(M, T1 monus T2) .

where the built-in operator monus is defined by x monus y = max(x − y, 0). If a
message must be read exactly when it becomes “ripe”, i.e., when its remaining
delay is 0, mte is defined as follows:

eq mte(dly(M, T)) = T .

However, if the message delay instead denotes the minimum delay, and the
message can be read at any time after the messaging delay has expired, the
following definition of mte on messages should be used instead:

eq mte(dly(M, T)) = INF .

To fully specify the timing behavior an object-oriented real-time system it is
then enough to define mte and timeEffect on single objects, as illustrated in
the following example, which is also borrowed from [49].

48 P.C. Ölveczky

Example 2. We illustrate object-oriented specification with a simple protocol for
computing round trip times (i.e., the time it takes for a message to travel from
a given node to another node, and back) between pairs of nodes in a network.

The protocol is straightforward: A message findRtt(initiator, neighbor)
kicks off the protocol and indicates that the node initiator wants to find the
round trip time to the neighbor node. An initiator cannot participate in multi-
ple runs of the protocol, as an initiator, at the same time.

The initiator node has a local clock and starts a run of the protocol by sending
an rttReq message to its neighbor neighbor with its current time stamp r (rule
startSession). When the neighbor receives the rttReq message, it replies with
an rttResp message containing the received time stamp r (rule rttResponse).
When the initiator reads the rttResp message with its original time stamp r,
the rtt value is just its current clock value minus r (rule treatRttResp).

Since the transmission times might depend on factors such as network traffic,
we assume that the messaging delay of a single message could be any value
greater than or equal to MIN-DELAY. If the initiator does not receive a response
in time less than MAX-RTT, it initiates another round of the protocol exactly time
MAX-RTT after its first attempt (rule tryAgain). The process is repeated until an
rtt value less than MAX-RTT is found. The rule ignoreOldResp ignores responses
from earlier rounds of the protocol.

In the following specification, each Node object uses a timer attribute to
ensure that a new attempt is initiated at every MAX-RTT time units, until an
rtt value is found. If the timer has value r, it must “ring” in time r from the
current time. The timer is turned off when its value is INF. The class Node has
the attributes nbr, which denotes the node whose rtt value it is interested in
(and is noOid otherwise), and a clock attribute denoting the value of its local
clock. The rtt attribute stores the rtt to its neighbor:

(tomod RTT is protecting NAT-TIME-DOMAIN-WITH-INF .
ops MIN-DELAY MAX-RTT : -> Time .
eq MIN-DELAY = 1 . eq MAX-RTT = 4 .

op noOid : -> Oid [ctor] . ---"null" object name

class Node | clock : Time, rtt : TimeInf, nbr : Oid, timer : TimeInf .

msgs rttReq rttResp : Oid Oid Time -> Msg .
msg findRtt : Oid Oid -> Msg . --- start a run

vars O O’ : Oid . vars R R’ : Time . var TI : TimeInf .

--- start a session, and set timer:

rl [startSession] :
findRtt(O, O’)
< O : Node | clock : R >

=>
< O : Node | timer : MAX-RTT, nbr : O’ >
dly(rttReq(O’, O, R), MIN-DELAY) .

--- respond to request:

Real-Time Maude and Its Applications 49

rl [rttResponse] :
rttReq(O, O’, R)
< O : Node | >

=>
< O : Node | >
dly(rttResp(O’, O, R), MIN-DELAY) .

--- received resp within time MAX-RTT; record rtt value and turn off timer:

crl [treatRttResp] :
rttResp(O, O’, R)
< O : Node | clock : R’ >

=>
< O : Node | rtt : (R’ monus R), timer : INF >

if (R’ monus R) < MAX-RTT .

--- ignore and discard too old message:

crl [ignoreOldResp] :
rttResp(O, O’, R)
< O : Node | clock : R’ >

=>
< O : Node | >

if (R’ monus R) >= MAX-RTT .

--- start new round and reset timer when timer expires:

rl [tryAgain] :
< O : Node | timer : 0, clock : R, nbr : O’ >

=>
< O : Node | timer : MAX-RTT >
dly(rttReq(O’, O, R), MIN-DELAY) .

... --- the tick rule, dly, mte, and timeEffect are defined as above

--- and are not shown

eq timeEffect(< O : Node | clock : R, timer : TI >, R’) =
< O : Node | clock : R + R’, timer : TI monus R’ > .

eq mte(< O : Node | timer : TI >) = TI .
eq mte(dly(M, T)) = INF .

endtom)

This use of timers, clocks, and the functions mte and timeEffect is fairly typical
for object-oriented real-time specifications. The following timed module defines
an initial state with three nodes n1, n2, and n3:

(tomod RTT-I is including RTT .
ops n1 n2 n3 : -> Oid [ctor] .
op initState : -> GlobalSystem .
eq initState =

{findRtt(n1, n2) findRtt(n2, n3) findRtt(n3, n1)
< n1 : Node | clock : 0, timer : INF, nbr : noOid, rtt : INF >
< n2 : Node | clock : 0, timer : INF, nbr : noOid, rtt : INF >
< n3 : Node | clock : 0, timer : INF, nbr : noOid, rtt : INF >} .

endtom)

50 P.C. Ölveczky

3 Formal Analysis

This section gives an overview of the formal analyses supported by the Real-Time
Maude tool.

3.1 Time Sampling Strategies

Maude specifications are executable under reasonable conditions. However, as
explained above, in dense time domains, tick rules will typically have the forms

crl [l] : {t} => {t′} in time x if cond [nonexec] .

crl [l] : {t} => {t′} in time x if x <= u /\ cond [nonexec] .

(where cond might be omitted), where x a variable not occurring in t and not ini-
tialized in cond , which allows any moment in time to be “visited.” Such tick rules
are not directly executable ([nonexec]). Timed automata “discretize” dense
time by defining “clock regions,” so that all states in the same clock region sat-
isfy the same properties [6]. The clock region construction cannot be employed in
the much more expressive Real-Time Maude formalism. The Real-Time Maude
approach to such tick rules is to provide a set of time sampling strategies that
define how to instantiate the variable x in the tick rules:

– The default time sampling strategy increases time by a user-given value.
– The maximal time sampling strategy advances time as much as possible

(as given by u). If there is no bound on the time elapse, time is advanced
by a user-given value.

The user selects her time sampling strategy by giving either the command (set
tick def r .) or the command (set tick max def r .).

All applications of time-nondeterministic tick rules—whether it is for rewrit-
ing, search, or model checking—are performed using the given time sampling
strategy. This means that some behaviors in the system, namely those obtained
by applying the tick rules differently, are not analyzed. The result of a Real-Time
Maude analysis should be understood as being in general incomplete: counterex-
amples are true counterexamples, but (except for the case of discrete time when
all states are visited) satisfaction of a property only shows that it holds for the
states visited. Section 4 shows that Real-Time Maude analyses are, nevertheless,
sound and complete for many interesting systems.

3.2 Analysis Commands

Simulation. The timed rewrite command

(tfrew t0 in time <= r .)

simulates one behavior of the system from initial state t0 up to a total duration
less than or equal to the Time value r. The time bound can also have the forms
in time < r and with no time limit. Real-Time Maude’s tracing facilities
allow us to trace the steps in a timed rewrite sequence (see [42] for details).

Real-Time Maude and Its Applications 51

Example 3. Before we can analyze our retrograde clock, we need to define a time
sampling strategy. Since the clock may stop at any time, we use the time sampling
strategy that increases time by one time unit in each tick rule application:

Maude> (set tick def 1 .)

We can then simulate one behavior of the clock system up to time 100:

Maude> (tfrew {clock(0)} in time <= 100 .)

Result ClockedSystem : {stopped-clock(0)} in time 100

Reachability Analysis. Explicit-state timed search can be used to analyze not just
one behavior, but to analyze all behaviors from a given initial state, relative to
the chosen time sampling strategy. The syntax variations of the timed search
command—which is used to search for states which match a search pattern and
which are reachable in a given time interval—are:

(tsearch t0 arrow pattern with no time limit .)

(tsearch t0 arrow pattern in time ∼ r .)

(tsearch t0 arrow pattern in time-interval between ∼′ r and ∼′′ r′ .)

where t0 is the initial state, pattern is either t or has the form t such that cond,
for a term t and a semantic condition cond, ∼ is either <, <=, >, or >=, ∼′ is either
>= or >, ∼′′ is either <= or <, and r and r′ are ground terms of sort Time. The
arrow is either =>1, =>*, and =>+, which searches for states reachable from t0 in,
respectively, one, zero or more, and one or more rewrite steps. The arrow =>! is
used to search for states which cannot be further rewritten. The search command
can be parametrized by the number of solutions sought ((tsearch [n] ...)).
As explained in Sect. 3.3, timed search maintains a “system clock” in the state.
The set of reachable “timestamped states” will therefore be infinite even when
the reachable state space is finite. Therefore, the untimed search command

(utsearch t0 arrow pattern .)

which abstracts from the “system clock,” can be used when the reachable state
space is finite.

Example 4. We continue analyzing our retrograde clock with the time sampling
strategy chosen above. Although the time domain is dense, the reachable state
space (from {clock(0)}) should be finite when the time sampling strategy is
taken into account. We check whether it is possible to reach a bad state where
a running clock shows 25 or more:

Maude> (utsearch [1]

{clock(0)} =>* {clock(T:Time)} such that T:Time >= 25 .)

No solution

52 P.C. Ölveczky

Checking whether it is possible to reach a state where the running clock
shows 1/2 also returns “No solution”:

Maude> (utsearch [1] {clock(0)} =>* {clock(1/2)} .)

No solution

In this case, our time-sampling-based analysis is incorrect, since in the model it
is indeed possible to reach the state {clock(1/2)}.

Example 5. The reachable state space from initState is infinite in our round
trip time protocol, since the (local) clock values may grow beyond any bound and
since the state may contain any number of old messages. Search should therefore
be time-bounded to ensure termination. We set the time sampling strategy with
the command (set tick def 1 .) to cover the discrete time domain.

The command

Maude> (tsearch [1]

initState =>* {< O:Oid : Node | rtt : T:Time > REST:Configuration}

such that T:Time > 4 in time <= 9 .)

No solution

then checks whether a state with a rtt value > 4 can be reached within time 9.

LTL Model Checking. Real-Time Maude extends Maude’s explicit-state LTL
model checker to timed modules. Atomic propositions are terms of sort Prop.
A useful feature is the possibility to define parametrized atomic propositions
p(t1, . . . , tn) as follows:

op p : s1 ... sn -> Prop [ctor] .

The semantics of such state propositions are given by equations of the forms

eq {statePattern} |= p(t1, . . . , tn) = b

and
ceq {statePattern} |= p(t1, . . . , tn) = b if condition,

for b a term of sort Bool, which defines the state proposition p(u1, . . . , un) to
hold in all states {t} where {t} |= p(u1, . . . , un) evaluates to true.

Real-Time Maude also supports the definition of “clocked” atomic proposi-
tions, whose semantics can depend on the elapsed time in the system:

eq {statePattern} in time t |= p(t1, . . . , tn) = b

and

ceq {statePattern} in time t |= p(t1, . . . , tn) = b if condition.

Real-Time Maude and Its Applications 53

An LTL formula is constructed by state propositions and temporal logic
operators such as True, ~ (negation), /\, \/, -> (implication), [] (“always”),
<> (“eventually”), and U (“until”). Then, the unbounded (resp., time-bounded)
LTL model checking commands

(mc t0 |=u ϕ .) and (mc t0 |=t ϕ in time <= τ .)

check whether the formula ϕ holds in all behaviors from the initial state t0 (resp.,
in all behaviors up to time τ). Only time-bounded model checking may involve
clocked propositions. If the formula does not hold, the model checker returns a
behavior that does not satisfy the formula.

The module TIME-MODEL-CHECKER should be imported by the modules defin-
ing the atomic propositions.

Example 6. The following module defines the state propositions clock-dead
(which holds for all stopped clocks) and clock-is(r) (which holds if a running
clock shows r), and the clocked proposition clockEqualsTime (which holds if
the running clock shows the time elapsed in the system):

(tmod MODEL-CHECK-DENSE-CLOCK is including TIMED-MODEL-CHECKER .

protecting DENSE-CLOCK .

ops clock-dead clockEqualsTime : -> Prop [ctor] .

op clock-is : Time -> Prop [ctor] .

vars R R’ : Time .

eq {stopped-clock(R)} |= clock-dead = true .

eq {clock(R)} |= clock-is(R’) = (R == R’) .

eq {clock(R)} in time R’ |= clockEqualsTime = (R == R’) .

endtm)

A natural correctness requirement is that the clock shows the elapsed time
in the system, either until time 24 is reached or until the clock stops:

Maude> (mc {clock(0)} |=t clockEqualsTime U (clock-dead \/ clock-is(24))

in time <= 50 .)

Result Bool : true

Timed CTL Model Checking. Real-Time Maude has recently been equipped with
an explicit-state Timed CTL (TCTL) model checker for timed temporal logic
properties such as “every request will be followed by a response within 100ms”
or “the minimum time between two p-states is 10 s” [34,35].

In TCTL, the temporal modalities are annotated with time intervals: �≤5 φ,
♦>8 φ, and φ1 U[2,9] φ2, and so on. We refer to [35] for the full syntax of TCTL
in Real-Time Maude. The model checker uses the logical operators not, and,
or, implies, and so on. A formula ∀�≤20 φ is written AG[<= than 20] φ, a
formula ∃♦>11 φ is written EF[> than 11] φ, and a formula ∀φ1 U[2,9] φ2 is
written A φ1 U[c 2, 9 c] φ2.

54 P.C. Ölveczky

The TCTL model checking has the syntax

(mc-tctl t0 |= formula.)

At the moment, the model checker only gives a “yes/no” answer, and does
not have a “time-bounded” version to deal with systems with infinite reachable
state space. The module TCTL-MODEL-CHECKER should be imported when using
the TCTL model checker.

Example 7. We check whether from any state where the running clock shows 5,
it is possible to reach, in exactly 24 time units, a state where the running clock
also shows 5:

Maude> (mc-tctl

{clock(0)} |= AG (clock-is(5) implies EF[c 24,24 c] clock-is(5)) .)

Property satisfied

Other Commands. Real-Time Maude also provides commands for finding the
shortest time it takes a desired state, and the longest time it takes to find the
desired state for the first time.

3.3 Implementation

Real-Time Maude is implemented in Maude as an extension of Full Maude [22].
For efficiency purposes, all simulation, search, and LTL model checking com-
mands have been implemented by transforming a Real-Time Maude module M ,
a time sampling strategy s, an initial state t0, and a Real-Time Maude command
C into a core Maude module M ′, an initial state t′0, and a Maude command C ′

that is then executed in Maude [49]. The results from Maude are then trans-
formed back into suitable Real-Time Maude output.

The target Maude module M ′ is a function of both the Real-Time Maude com-
mand and the time sampling strategy used. For the unbounded search (utsearch)
and LTL model checking ((mc ... |=u)) commands, the transformation
abstracts from the “system clock”. Therefore, if the reachable state space is finite
in the original model, it will remain so in the transformed Maude model M ′. How-
ever, simulation and time-bounded search (tsearch) and LTL model checking
((mc ... |=t ...)) need to keep track of elapsed time; therefore, the states in
the resulting Maude module M ′ have the form t in time r, where t is the state
component, and r is the “time stamp” (or “system clock”). A single state t in
M can then lead to multiple “time-stamped states” t in time r1, t in time
r2, . . . , in M ′, which leads to an infinite reachable timestamped state space; how-
ever, with an appropriate time sampling strategy, the set of such states reachable
within a given upper time bound should be finite.

The other commands (find earliest/latest and TCTL model checking) can-
not be transformed into Maude commands and are implemented directly using
Maude’s meta-level.

Real-Time Maude and Its Applications 55

4 Sound and Complete Real-Time Maude Analysis

Section 3 explains that the time-sampling-based explicit-state reachability analy-
sis and temporal logic model checking methods used by Real-Time Maude are
in general not sound and complete, since only a subset of all possible behaviors
are explored. Section 4.1 shows that maximal-time-sampling-based reachability
and LTL model checking analyses are sound and complete for many interesting
systems encountered in practice, and for which there were previously no such
soundness/completeness results. Section 4.2 discusses the semantics of TCTL
and soundness and completeness of TCTL model checking in Real-Time Maude.

4.1 Sound and Complete Reachability Analysis and LTL Model
Checking in Real-Time Maude

Explicit-state model checking in a dense time domain cannot visit all moments
in time. If the time domain is discrete, all behaviors can be explored by apply-
ing the time sampling strategy that advances time by the smallest time unit in
each application of a tick rule. However, in many applications, this would be
prohibitively expensive. For example, in the wireless sensor network algorithm
analyzed in [52] and mentioned in Sect. 5, the time domain is milliseconds, while
each round of the algorithm is 1000 s. Most of the time the system is idling.
Clearly, visiting each single moment in time yields a very inefficient simulation,
and the large number of states encountered would make any model checking
analysis unfeasible. Therefore, using maximal time sampling is in practice nec-
essary also for many discrete-time systems.

An important question, posed as Question 2 in the introduction, is whether
there are interesting classes of systems for which maximal-time-sampling-based
Real-Time Maude analysis is guaranteed to give the correct result. In [48],
José Meseguer and I answer this question affirmatively by identifying classes
of real-time rewrite theories for which maximal-time-sampling-based reachabil-
ity analysis and LTL model checking are sound and complete analysis methods.
In particular, we show that such analyses are sound and complete when:

– The system is time-robust, which means that no instantaneous action can take
place after a tick step that does not advance time as much as possible.

– The atomic propositions appearing in the formula are tick-invariant, which
means that their valuation is not affected by applying a tick rule.

More precisely, if R is a time-robust real-time rewrite theory, and Rmts is the
theory obtained by applying the tick rules in R according to the maximal time
sampling strategy, then for any CTL∗ formula φ excluding the next-state oper-
ator © and involving only tick-invariant atomic propositions, we have

R, t0 |= φ if and only if Rmts , t0 |= φ.

The paper [48] also gives soundness and completeness results with somewhat
weaker restrictions. Furthermore, it gives some easily checkable conditions for
time-robustness of object-oriented Real-Time Maude specifications.

56 P.C. Ölveczky

Although time-robustness and tick-invariance seem to be fairly restrictive
conditions, many systems encountered in practice satisfy these conditions. For
example, in many network protocols, actions are triggered either by the expira-
tion of a timer or by the reception of a message with fixed delay; these systems
are time-robust. Tick-invariance is almost always satisfied in practice, since the
tick rules typically only affect timers and local clocks, which almost never affect
the valuation of an atomic proposition.

Our retrograde clock is not time-robust, since the rule batteryDies can
be applied at any time—including after non-maximal tick steps. Likewise, our
round trip time example is not time-robust, since a message can be received at
any time after its minimum delay has expired. If we replace the equation

eq mte(dly(M:Msg, T)) = INF .

with

eq mte(dly(M:Msg, T)) = T .

then the system is time-robust, since every message now has a fixed deadline
(since time cannot advance when there is an unread ripe message in the state).

Among the large applications mentioned in Sect. 5, the OGDC wireless sensor
network algorithm, the AER/NCA active network multicast protocol, Ptolemy
II DE models, Timed Rebeca models, etc., are all time-robust. All of the these
systems/languages go beyond the class of systems that can be captured by timed
automata. Our results therefore yield sound and complete model checking pro-
cedures for dense-time systems beyond timed automata. On the other hand, the
class of timed automata include many non-time-robust systems.

4.2 Sound and Complete TCTL Model Checking

In contrast to untimed LTL model checking, TCTL model checking using max-
imal time sampling is not sound and complete for time-robust real-time rewrite
theories. Assume, for example, that from a state {f(0)}, the next event will take
place after time 3; that is, we have the tick rule

crl [tick] : {f(T)} => {f(T + T’)} in time T’ if T’ <= 3 - T .

Consider the property ∃♦[1,2] true; that is, it is possible to reach a
state in some time t ∈ [1, 2] where true holds. This property holds from initial
state {f(0)}, since there is a non-maximal tick step to {f(1)} in time 1, and
true holds in {f(1)}. However, maximal time sampling would rewrite {f(0)}
in one step to {f(3)}, and hence the above property would not be satisfied.

Now consider the property ∀♦[1,2] true; that is, in all behaviors we can
reach a state some time in the time interval [1, 2]. Does this property hold in
our specification? If we only consider all possible behaviors in the system, this
property clearly does not hold, since time can advance from {f(0)} to {f(3)} in
one tick step that advances time by 3 time units. However, it may be natural to

Real-Time Maude and Its Applications 57

understand the above tick rule as modeling a “continuous process” from {f(0)}
to {f(3)}. In that case, this second property should hold.

These two ways of interpreting a real-time rewrite theory are called, respec-
tively, the pointwise semantics and the continuous semantics.

In [35], Daniela Lepri, Erika Ábrahám, and I show that we can obtain sound
and complete TCTL model checking of time-robust theories in both the pointwise
and the continuous semantics, by advancing time by a value r0 in each tick step.
This value r0 is “half the greatest common divisor” of the following values:

– all the tick durations obtained by applying the tick rules according to the
maximal time sampling strategy; and

– all the non-zero time bounds occurring in the TCTL formula being analyzed.

Such TCTL model checking can be performed by giving the command

(mc-tctl-gcd t0 |= φ .)

5 Some Real-Time Maude Applications

This section gives a brief overview of some Real-Time Maude applications,
thereby answering Question 1 in the introduction: are there interesting systems
where the expressiveness and the more advanced modeling features of Real-Time
Maude are needed, and where Real-Time Maude analysis still can provide use-
ful results? In particular, Sect. 5.1 summarizes some “concrete” applications of
Real-Time Maude. Real-Time Maude has been particularly useful to provide
a formal semantics and formal analysis capabilities to domain-specific model-
ing languages for real-time systems; such applications are discussed in Sect. 5.3.
Other applications of Real-Time Maude are mentioned in Sects. 5.2 and 5.4.

5.1 Some Concrete Applications

This section gives an overview of some “concrete” applications of Real-Time
Maude.

Wireless Sensor Network Algorithms. OGDC [65] is a sophisticated state-
of-the-art density control algorithm for wireless sensor networks developed at
UIUC. The goal of a density control algorithm is to maximize the lifetime of
a wireless sensor network by periodically turning nodes on and off while main-
taining coverage of the entire area. The OGDC algorithm is based on always
trying to turn on the “best placed” node, w.r.t. nodes that are already turned
on, next. The OGDC developers used the ns-2 network simulator with a wireless
extension to show that OGDC outperforms other density control algorithms.

Wireless sensor networks pose(d) many challenges to formal methods, includ-
ing new forms of communication (area broadcast with delays, possibly sent with
different signal strength), the need to analyze both performance and correctness,

58 P.C. Ölveczky

and so on. OGDC adds the need to deal with geometrical areas, angles, amount
of overlap between multiple coverage areas, and so on.

Thorvaldsen and I model and analyze OGDC in [52]. The key Real-Time
Maude features were the ability to easily define the new form of communication,
defining data types for geometrical areas, and defining complex functions on such
areas. To the best of our knowledge, the Real-Time Maude analysis of OGDC
was the first formal analysis of an advanced wireless sensor network algorithm.

We performed a series of simulations of OGDC with up to 800 sensor nodes.
The Real-Time Maude simulations gave performance figures very similar to
the ns-2 simulations when we did not consider transmission delays. Since the
OGDC developers did not include delays in their simulations, this indicates
that Real-Time Maude simulations provide quite accurate performance estimates
of OGDC. However, messaging delays play a crucial role in the OGDC algo-
rithm. Real-Time Maude simulations with delays showed that the performance
of OGDC is actually more than twice as bad as in the ns-2 simulations. Further-
more, we found a significant flaw in OGDC that explains its bad performance.

The techniques in [52] were then used and extended by Katelman, Meseguer,
and Hou in their definition of the LMST topology control algorithm for wireless
sensor networks in [31]. The goal is to minimize power consumption by adjusting
the broadcast signal strength while maintaining network connectivity. Real-Time
Maude was used to verify network connectivity by model checking a number of
4-node configurations. Their Real-Time Maude model was then extended with
a number of probabilistic “implementation” features, such as quartz clock drift
and 802.11 MAC contention, and the resulting probabilistic rewrite theory was
subjected to statistical model checking using the VeStA [59] tool.

Mobile Ad Hoc Networks. Wireless mobile ad hoc networks (MANETs)
combine wireless communication with node mobility. However, it is quite chal-
lenging to provide realistic models of mobility combined with wireless communi-
cation, since both the sender and a potential receiver may move—possible into
or out of transmission range—during the “transmission time.” In [37], Si Liu,
José Meseguer, and I define a framework for modeling popular node mobility
models together with wireless communication in Real-Time Maude.

In [38], we used our framework to model and analyze the well known leader
election protocol for MANETs by Vasudevan, Kurose, and Towsley [62]. Our
more detailed and flexible model of MANETs allowed us to study the protocol
under various mobility and communication scenarios, including unidirectional
communication links resulting from transmitting with different signal strength.

Scheduling Algorithms. The CASH algorithm is a sophisticated state-of-
the-art scheduling algorithm developed by Marco Caccamo at UIUC. The idea
is that tasks that do not need all of their allocated CPU time can put the
unused budgets into a queue, so that other tasks can use that CPU time for
improved system performance. Caccamo and I used Real-Time Maude to model
and analyze a proposed optimization of CASH [46]. Real-Time Maude simulation

Real-Time Maude and Its Applications 59

showed that the queue of unused budgets can grow beyond any bound; since
unbounded data structures are needed, the algorithm cannot be modeled by,
e.g., timed automata. Real-Time Maude search uncovered a subtle behavior in
the proposed optimization that led to missed hard deadlines. Furthermore, by
using a pseudo-random function, we could generate tasks with “random” arrival
and execution times, and use rewriting to perform “Monte-Carlo simulations.”
Extensive such simulation indicated that it is unlikely that the missed deadline
could be found by simulation alone.

Prabhakar, Liu, and I have shown in [51] how resource-sharing algorithms,
such as the priority inheritance and the priority ceiling protocol, can be formal-
ized and analyzed using Real-Time Maude.

Embedded Car Software. Real-Time Maude has been used by a Japanese
research institute to find several time-dependent bugs in embedded car software
used by major car makers. The time sampling approach of Real-Time Maude
was supposedly crucial to detect the bugs, which could not be found by the usual
model-checking tools employed in industry.

Timing Features in AUTOSAR OS. AUTOSAR (AUTomotive Open Sys-
tem ARchitecture) is automotive open system architecture standard intended
to unify and standardize automotive software development methodologies. The
core group defining AUTOSAR includes BMW, Bosch, Daimler, General Motors,
Toyota, and Volkswagen. In [66], Longfei Zhu and others use Real-Time Maude to
formalize and analyze a number of timing properties in a part of the AUTOSAR
operating system. In particular, many tasks are scheduled by the OS on a specific
electronic control unit (ECU): tasks with different priorities as well as interrupts
that must be handled. Zhu et al. model the task scheduling in AUTOSAR OS
and use Real-Time Maude to analyze the following properties:

– schedulability, by searching for a task that misses its deadline;
– non-fault-propagation: other tasks should not miss their deadlines if the exe-

cution time of one task is longer than expected; and
– consistent configuration of components.

Google’s Megastore and Its Extension. Cloud systems need to replicate
data to ensure scalability and high availability. Unfortunately, combining wide-
area replication with data consistency is quite hard. Some applications, such as
Facebook and online newspapers, can tolerate low levels of consistency. However,
to be able to use a cloud infrastructure also for consistency-critical applications
such as stock exchange systems, online auctions, and banking and medical sys-
tems, replicated data stores must provide transactions. Megastore, developed at
Google and used for, e.g., Gmail, Android Market, Google+, and Google App-
Engine, is one of very few data stores that provide transactions. The problem is
that the only publicly available description of Megastore is short and informal.

60 P.C. Ölveczky

To facilitate the widespread study, adoption, and further development of Mega-
store’s novel approach to transactions on replicated data, a much more detailed
and precise description is needed.

In [29], Jon Grov and I develop a fairly detailed Real-Time Maude model
of Megastore consisting of 56 rewrite rules. Since our starting point was a brief
and informal overview paper, we had to in essence develop our own version of
Megastore. We used Real-Time Maude simulation and model checking exten-
sively throughout our development of this very complex system to improve our
model to the point where we could not find any flaws during model checking. One
Real-Time Maude feature that made this work possible was the ability to define
complex atomic propositions; this allowed us to model check the serializability
property of distributed concurrent transactions (as well as data consistency).

Megastore combines high performance, availability, and consistency by par-
titioning data into entity groups, and only guarantees data consistency if each
transaction only accesses data from a single entity group. Grov and I define in [30]
Megastore-CGC, an extension of Megastore that provides consistency also for
transactions accessing data from multiple entity groups, thereby increasing the
applicability of such cloud data stores. Megastore-CGC achieves this extra con-
sistency without introducing significant additional message exchanges. We use
Real-Time Maude to verify key properties, but also to compare the performance
of Megastore with that of Megastore-CGC.

Avionics Systems. To smoothly turn an airplane, the airplane’s ailerons and
its rudder need to move in a synchronized way. (An aileron is a flap attached to
the end of each wing, and a rudder is a flap attached to the plane’s vertical tail.)
A turning algorithm takes the desired next direction from the pilot as input, and
should give commands to the aileron and rudder controllers to achieve a smooth
turn in the desired direction.

In [10], Kyungmin Bae, Joshua Krisiloff, José Meseguer, and I formalize
and analyze in Real-Time Maude a textbook turning algorithm for smaller air-
crafts. Real-Time Maude simulations revealed that the turning algorithm failed
to ensure a smooth turn: the (undesired) adverse yaw can become greater than
1.5◦ when the pilot gives a sharp turn command. We then modified the turning
algorithm, and verified using Real-Time Maude model checking that, with the
new turning algorithm, the plane will reach the desired direction fairly quickly
and that the adverse yaw angle is less than 1.0◦ throughout the turn.

José Meseguer and I analyze a different avionics system in [39]: the active
standby system developed by Steve Miller and Darren Cofer at Rockwell-Collins.
In integrated modular avionics (IMA), a cabinet is a chassis with a power supply,
internal bus, and general purpose computing, I/O, and memory cards. There are
always two or more cabinets that are physically separated on the aircraft so that
physical damage does not take out the computer system. The active standby
system considers the case of two cabinets and focuses on the logic for deciding
which side is active. Each side could fail, and can recover after failure. In case
one side fails, the non-failed side should be the active side. In addition, the pilot

Real-Time Maude and Its Applications 61

can toggle the active status of these sides. The architecture of the system is
shown in Fig. 1. The active standby system is virtually synchronous: it proceeds
in rounds, and in each round, the components get an input in all their input
channels (depicted as arrows in Fig. 1). LTL model checking showed that the
desired properties were not satisfied. However, we could verify weakened versions
of the desired requirements, which turned out to be exactly the same properties
discovered independently by Cofer and Miller during their NuSMV analysis.

Fig. 1. The architecture of the active standby system.

Multicast Protocols. AER/NCA is a suite of protocols aimed at achieving
network-friendly and reliable multicast in active networks. The informal spec-
ification of AER/NCA that was the starting point of the Real-Time Maude
modeling and analysis effort described in [50] consisted of more than 50 pages of
prose and informal “use-case” descriptions. Some of the challenges—apart from
the sheer size of the protocol suite—included the need to analyze the proto-
cols both in isolation and in combination, a detailed communication model that
took packet size, link capacity, etc., into account, and sophisticated functions to
update various parameters based on measures such networks congestion.

Class inheritance techniques allowed us analyze both single protocols and dif-
ferent combinations of protocols without modifying the protocols significantly.
Another key feature was that Real-Time Maude allowed us to easily define the
desired low-level model of communication very easily. In particular, we could ana-
lyze the protocols under many different link scenarios by just modifying a few
parameters of the link objects. Thanks to this flexibility, our Real-Time Maude
analysis—mostly simulation—found all the errors that the protocol develop-
ers had discovered independently using network simulators and testbeds, but
had not told us about. Furthermore, our Real-Time Maude analysis revealed a
significant error in the protocols that essentially invalidated the protocol, and
that the protocol developers were not aware of.

Elisabeth Lien and I used many of the same techniques to model and analyze
parts of an earlier version of the NORM multicast protocol developed by the

62 P.C. Ölveczky

IETF [36]. Our model checking efforts uncovered a few errors; however, those
had been corrected in later versions of NORM.

Some Other Applications. Minyoung Kim et al. use Real-Time Maude re-
writing in [33] to estimate the performance of several power management schemes
for an MPEG video streaming client. Shin Nakajima explains in [41] how Real-
Time Maude can be used to model check power consumption automata to ana-
lyze power consumption in smartphones. Finally, in [64] Martin Wirsing et al.
model pervasive user-centric applications—in particular, an interactive advertis-
ing board that monitors whether a person is standing in front of the board and
acts accordingly—and verify them using timed temporal logic model checking.

5.2 Formalizing Formal Patterns

José Meseguer describes formal patterns as the formal counterparts of the well
known design patterns in software engineering [40]. Formal patterns provide
solutions to frequently occurring problems in system design, but are in additional
formally specified and verified. The point is that the effort spent on verifying
a formal pattern is amortized over all the instances of the pattern; they all
satisfy the correctness properties. A formal pattern can be seen as a theory
transformation P transforming a system T , with additional parameters Γ , into
a system P(T, Γ) that satisfies the correctness properties of the pattern. Real-
Time Maude has been used to formalize a number of formal patterns, including
the following.

The Command Shaper Pattern for Medical Devices. The command
shaper pattern developed by Mu Sun, Meseguer, and Lui Sha aims at ensur-
ing the safe operation of medical devices connected to patients [61]. The pattern
transforms a controller T that sends commands to a medical device to a new
controller CS(T, Γ) to ensure that:

– the patient is not in a stress situation for too long; and
– the time between stress periods is sufficiently long.

The developers mention three instances of their pattern:

1. Modern pacemakers are flexible and allow a faster heart rate for limited dura-
tions, e.g., when a person is exercising. The command shaper pattern trans-
forms a system T controlling the heart rate, together with parameters Γ
denoting the durations of the stress periods, rest times, etc., into the device
controller CS(T, Γ) that ensures that the pacemaker does not provide heart
rates above normal for too long, and that the rest time between strenuous
activities is sufficiently long.

2. A patient in pain can control an infusion pump to administer, e.g., morphine.
To avoid the patient overdosing by operating the infusion pump incorrectly,
her commands can go through the command shaper to ensure that morphine

Real-Time Maude and Its Applications 63

is only pumped for certain durations, and that the time between infusions is
sufficiently long.

3. A mechanical ventilator helps a patient breathing, e.g., during surgery. How-
ever, it sometimes needs to be turned off, for example to avoid blurry pictures
when taking X-rays. The command shaper pattern can ensure that the ven-
tilator is not turned off for too long, and that the time between each pause
of the ventilator is sufficiently long.

The PALS and Multirate PALS Synchronizers for Cyber-Physical Sys-
tems. Many cyber-physical systems, such as avionics, automotive, and robotics
systems, are virtually synchronous: they proceed logically in rounds, and in each
round they read input, update their local states, and produce outputs. How-
ever, such distributed systems are hard to design because of asynchrony, clock
skews, and network delays. Furthermore, the model checking verification of such
systems quickly becomes unfeasible due to the state space explosion caused
by asynchrony. The idea of the PALS pattern [3]—developed by Steve Miller
and Darren Cofer at Rockwell-Collins, Lui Sha, José Meseguer, Mu Sun, and
Abdullah Al-Nayeem at UIUC, and myself—is to reduce the design and ver-
ification of a virtually synchronous CPS to designing and verifying its much
simpler underlying synchronous design. Formally, PALS is a pattern transform-
ing a synchronous design T and performance bounds Γ on the network delays,
clock skews, execution times into the corresponding distributed real-time system
PALS(T, Γ), that satisfy the same temporal logic properties as T [39].

The benefits of PALS can be illustrated by the active standby avionics sys-
tem mentioned in Sect. 5.1. The synchronous system has 185 reachable states,
whereas the number of reachable states in the simplest possible distributed ver-
sion, with perfect clocks and no network delays, is 3,047,832. If the network
delay can be either 0 and 1, then no model checking is feasible. Other instances
of PALS include the LMST wireless sensor network protocol [32] and, presum-
ably, the well known steam-boiler controller benchmark [1].

One limitation of PALS and other synchronizers is the assumption that all
components share the same period. However, different controllers may operate at
different rates. For example, the aileron controllers and the rudder controller of
an airplane typically operate with different periods, yet they must synchronize to
turn an airplane. Bae, Meseguer, and I therefore extended PALS to the Multirate
PALS pattern to deal with virtually synchronous hierarchical multirate control
systems [7]. Figure 2 shows the hierarchical multirate nature (with the period of
each subsystem given in parenthesis) of the airplane turning system mentioned
in Sect. 5.1. The number of states reachable in 3 s in the synchronous version of
this system is 2,111, whereas the number of states reachable in 3 s is 4,415,784
in the much simplified asynchronous setting.

5.3 Semantics and Formal Analysis of Modeling Languages

Most modeling languages for real-time embedded systems (RTESs) that are used
in industry currently lack a formal semantics, which not only limits unambiguous

64 P.C. Ölveczky

Fig. 2. The architecture of our airplane turning control system.

communication between model developers, but also implies that models described
in such languages cannot be subjected to formal analysis. Furthermore, some
modeling languages are not executable, which limits the possibility to even sim-
ulate their models. There is therefore a clear need for:

– A formal semantic framework in which the precise semantics of a modeling
language for RTESs can be defined in a natural way; and

– associated simulation and formal analysis tools which support the automated
formal analysis of models in such languages.

To be useful for model-based system engineering in practice, the formal analysis
framework should also:

1. Allow model developers to define analysis commands without understanding
the formal language or the formal representation of their models; and

2. provide formal analysis results, such as counterexamples in temporal logic
model checking, that the model developer can easily understand.

A number of advanced modeling tools provide a code generation infrastructure
to support the generation of deployment code from a design model. Once the for-
mal semantics of a modeling language has been defined, we can leverage this code
generation infrastructure to automatically generate a formal verification model
from the informal design model, enabling a formal model-engineering process
that combines the convenience of modeling using an informal but intuitive mod-
eling language with formal analysis.

An important point is that informal modeling languages invariably are fairly
expressive; all of the languages mentioned in this section are Turing-complete.
Therefore, they cannot be given a semantics using a decidable formalism. How-
ever, Real-Time Maude, with its natural model of time and its expressiveness,
should make it a suitable semantic framework for modeling languages for RTESs.
Furthermore, since it provides both rewriting and model checking, it should also
be a suitable simulation and formal analysis back-end for such languages.

Real-Time Maude addresses the desiderata (1) and (2) above as follows:

1. Parametric atomic state propositions allow us to (pre-)define useful para-
metric state propositions in the Real-Time Maude interpreter of a language,
making it easy for the user to define temporal logic formulas.

Real-Time Maude and Its Applications 65

2. A key requirement to (i) understanding the results of Real-Time Maude analy-
ses, and (ii) being able to map them back into the original modeling formalism
is to have, respectively, a small representational distance between the origi-
nal models and their formal counterparts, and a one-to-one correspondence
between these models. Since hierarchical composition and encapsulation play
key roles in modeling languages for industrial systems, the possibility of defin-
ing hierarchical objects enable us to achieve both small representational dis-
tance and the above one-to-one correspondence.

This section summarizes some uses of Real-Time Maude to define the semantics
and provide a formal analysis back-end for RTESs modeling languages.

Ptolemy II Discrete-Event Models. Ptolemy II [23] is a well-established
graphical modeling language and simulation tool for real-time and embedded sys-
tems used in industry. In Ptolemy II, real-time systems are modeled as discrete-
event (DE) models. Like many graphical modeling languages, Ptolemy II DE
models lack formal verification capabilities.

A Ptolemy II model consists of a set of actors with input ports and output
ports used to pass events between actors. There are different kinds of actors,
including clocks that generate events, timers, delay actors that output their input
event after a fixed delay, and finite state machine (FSM) actors; furthermore, a
Ptolemy II model can be encapsulated as a composite actor. Each event has a
timestamp denoting the model time at which the event occurs.

An event queue is used for the execution. In each iteration of the system, the
events in the queue with the smallest timestamp are executed. All components
with input execute synchronously. Since connections are instantaneous and the
components execute in lock-step, we must compute the fixed point of the input
for each component in the round before its execution; this input comes from
the output of another actor’s execution in the same synchronous round. Figure 3
shows a hierarchical Ptolemy II model of a fault-tolerant traffic light system,
consisting of one car light and one pedestrian light, at a pedestrian crossing.

Defining the formal semantics of Ptolemy II DE models is challenging; in
addition to FMSs with unbounded variables, it involves unbounded queues, and,
in particular, computing fixed points in hierarchical systems. Kyungmin Bae and
others define the Real-Time Maude semantics of Ptolemy II DE models in [11].

We have used Ptolemy II’s code generation infrastructure to integrate both
the synthesis of a Real-Time Maude model from a Ptolemy II model as well
as Real-Time Maude model checking of the synthesized model into Ptolemy II
itself. When the blue RTMaudeCodeGenerator button in a Ptolemy II DE model
is double-clicked, Ptolemy II opens a dialog window (shown in Fig. 4) which
allows the user to give model checking commands to formally analyze her model.

We have also predefined in our model checker useful atomic propositions. For
example, the proposition

actorId | var1 = value1, . . . , varn = valuen

66 P.C. Ölveczky

Fig. 3. A hierarchical fault-tolerant traffic light system in Ptolemy II.

holds if the value of the parameter vari of the actor actorId equals valuei.
Similarly, actorId | port p is value and actorId | port p is status hold if,
respectively, the port p of actor actorId has the value value and status status.

The Real-Time Maude formalization of a Ptolemy II DE model is time-
robust, and the above atomic propositions are tick-invariant; Real-Time Maude
model checking using the efficient maximal time sampling strategy therefore
yields a sound and complete model checking procedure for Ptolemy II DE models.

In the traffic light system, the following timed CTL property states that the
car light will turn yellow, and only yellow, within 1 time unit of a failure:

AG ((’HierarchicalTrafficLight . ’Decision | port ’Error is present) implies
AF[<= than 1] (’HierarchicalTrafficLight | ’Cyel = 1, ’Cgrn = 0, ’Cred = 0))

Model checking shows that this property is not satisfied (see Fig. 4), which made
us aware of a previously unknown error: the car light may show red or green in
addition to blinking yellow during a failure.

AADL. The Architecture Analysis & Design Language (AADL) [28,58] is an
industrial modeling standard used in avionics, aerospace, automotive, medical

Real-Time Maude and Its Applications 67

Fig. 4. Dialog window for the Real Time Maude code generation and analysis.

devices, and robotics communities—including Honeywell, Rockwell-Collins,
Lockheed Martin, General Dynamics, Airbus, the European Space Agency,
Dassault, EADS, Ford, and Toyota—to describe an embedded real-time system
as an assembly of software components mapped onto an execution platform. The
OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

The AADL standard is defined using English prose, which makes it ambigu-
ous and also fails to make explicit important assumptions. In joint work with
José Meseguer, I have defined the Real-Time Maude semantics of a subset of
the software components of AADL [45]. This subset defines the architectural
and behavioral specification of a system as a set of hierarchical components with
ports and connections, with the thread behaviors given by Turing-complete tran-
sitions systems defined in AADL’s behavior annex. Together with Artur Boronat,
we have also developed an OSATE plug-in that generates a Real-Time Maude
specification from an AADL model.

Papers by Belala et al. describe other efforts to define the semantics of a
subset of behavioral AADL models in Real-Time Maude [15,16].

Synchronous AADL and Multirate Synchronous AADL. As mentioned
in Sect. 5.2, the PALS pattern can greatly simplify the design and verification of

68 P.C. Ölveczky

virtually synchronous cyber-physical systems. To make the PALS methodology
easily accessible to the modeler, Bae, Meseguer, Al-Nayeem and I have in [8]:

– Defined the Synchronous AADL language to allow a modeler to define her
synchronous PALS model in AADL.

– Defined the Real-Time Maude semantics of Synchronous AADL.
– Implemented the SynchAADL2Maude [9] OSATE plug-in to support the

development and verification of Synchronous AADL models in OSATE.

For LTL model checking purposes, our tool has pre-defined useful parametric
atomic propositions, and we have used SynchAADL2Maude to model and verify
(the weakened) correctness requirements of the Active Standby system mentioned
in Sect. 5.1. Furthermore, Al-Nayeem has also automated the generation of an
AADL model of the real-time system PALS(T, Γ) from a synchronous PALS
model T defined using Synchronous AADL.

In the same way, Bae, Meseguer, and I have defined the Multirate Synchro-
nous AADL language to support the modeling of Multirate PALS synchronous
designs in AADL [12]. We have defined the Real-Time Maude semantics of our
language, and have integrated the MR-SynchAADL tool to support the mod-
eling and Real-Time Maude analysis of Multirate Synchronous AADL models
inside OSATE.

To support the easy definition of temporal logic properties, we have again
defined a number of useful parametric atomic propositions, including

full component name | boolean expression

which holds if boolean expression evaluates to true in the given component.
Figure 5 shows the MR-SynchAADL window for the airplane turning algo-

rithm system in Sect. 5.1. In the editor part, two system requirements, safety
(the yaw angle is always less than 1.0◦) and safeTurn (the yaw angle is less
than 1.0◦ until we eventually reach the goal direction and the plane is stable) are
specified using the requirement specification language and listed in the “AADL
Property Requirement” table. The Constraints Check, the Code Generation,
and the Perform Verification buttons are used to perform, respectively, the
syntactic validation of the model, the Real-Time Maude code generation, and
the LTL model checking. The Perform Verification button has been clicked
and the results are shown in the “Maude Console.”

Both Synchronous AADL and Multirate Synchronous AADL models are
time-robust and the predefined atomic propositions are tick-invariant, so that
Real-Time Maude analyses are sound and complete.

Timed Rebeca. Timed Rebeca [2] is an actor-based modeling language with
a Java-like syntax and a simple and intuitive message-driven and object-based
computational model. In addition to a statement language with (nondetermin-
istic) assignments, conditionals, and loops, Timed Rebeca also supports the
dynamic creation of new actors. Zeynab Sabahi-Kaviani and others define the
Real-Time Maude semantics of Timed Rebeca and integrate formal analysis in

Real-Time Maude and Its Applications 69

Fig. 5. MR-SynchAADL window in OSATE.

the Rebeca toolset in [56,57]. Real-Time Maude’s possibility of creating new
objects dynamically is key to define the semantics of Timed Rebeca. It is again
worth mentioning that the resulting Real-Time Maude specifications are time-
robust.

Timed Model Transformations Frameworks. The MOMENT2 [20] formal
model transformation framework is based on a formalization of MOF meta-
models in rewriting logic. The static semantics of a system is given as a class
diagram (or meta-model) describing the set of valid system states (or models)
that are represented as object diagrams, and the dynamics of a system is defined
as an in-place model transformation. In joint work with Artur Boronat, I have
extended MOMENT2 to support the definition of timed behaviors by providing
a set of basic constructs such as clocks and timers [19], and have defined the
semantics of such timed model transformations in Real-Time Maude [19].

The e-Motions model transformation framework [55] for domain-specific
visual languages is also based on EMF. Although the specification of behaviors
is based on in-place model transformations, e-Motions does not use (“low-level”)
constructs such as clocks and timers to support timed model transformations.
Instead, timed behaviors are defined by different kinds of timed model transfor-
mation rules of the form

[NAC]∗ × LHS
[tmin,tmax]−→ RHS

where LHS (its left-hand side), RHS (its right-hand side), and the optional
NAC s (negative application conditions) are model patterns that represent state

70 P.C. Ölveczky

fragments, and the interval [tmin, tmax] defines the possible durations of the
rule. A rule “instance” is triggered as soon as it is enabled, and is executed some
time t ∈ [tmin, tmax] after being triggered. An atomic rule can also be declared
to be soft, which means that it is not triggered eagerly, and/or may be declared
to be periodic, in which case it is triggered periodically (for each instance) as
long it is enabled. Ongoing rules do not have a fixed duration but are applied
as long as the precondition holds. These are powerful constructs that typically
imply that many different rules are being applied simultaneously to an object.
This also means that a Real-Time Maude semantics is clearly needed, and is
indeed provided by Rivera, Dúran, and Vallecillo in [54,55].

A Modeling Language for Handset Software. In [4], Musab AlTurki and
researchers at DOCOMO USA Labs give a Real-Time Maude semantics to a sim-
ple but powerful specification language, called L, that is claimed to be well suited
for describing a spectrum of behaviors of various software systems. The language
provides flexible SDL-inspired timing constructs that yield a more expressive
language for timed behaviors than Erlang.

The language has an expression language, imperative features for describing
sequential computations, and asynchronously communicating processes that can
be dynamically created or destroyed. It is worth remarking that already the
dynamic process creation places L outside the class of systems that can be
represented as timed automata; so does its expression language and imperative
features which make L Turing-complete.

5.4 Analysis of Distributed Maude Programs

(Core) Maude provides support for communication with external objects by
means of TCP sockets. In this way multiple Maude processes running on dif-
ferent machines can be connected, giving rise to distributed Maude programs.
Since such a program cannot be model checked directly, it must be related to
a more abstract non-distributed (Real-Time) Maude model for formal analysis
purposes. For real-time systems, this involves relating logical time in a Real-
Time Maude specification to real physical time in a distributed implementation.
This section summarizes three papers that verify Real-Time Maude abstractions
of distributed Maude implementations.

Implementing and Analyzing the EIGRP Routing Protocol. In [53],
Adŕıan Riesco and Alberto Verdejo provide a distributed formalization/“imple-
mentation” of the Enhanced Interior Gateway Routing Protocol (EIGRP), which
is a CISCO proprietary distance-vector routing protocol, in Maude.

EIGRP is a real-time protocol: a router periodically broadcasts “hello” mes-
sages to its one-hop neighbors; if a router does not hear a “hello” message for a
certain amount of time, it assumes that the link to that router is down. Since
Maude does not provide support for distributed real-time application directly,
Riesco and Verdejo use another external object, a Java object with access to

Real-Time Maude and Its Applications 71

real time, for timing purposes as follows: a Maude object can send a message
wait(n) to this external Java “clock” object, asking that object to reply back
with a tick message after n milliseconds of real time have elapsed.

For analysis purposes, Riesco and Verdejo transform their distributed model
back to a single Real-Time Maude system. A key technique here is to formalize
the properties of Maude’s socket features, so that the specification being model
checked resembles the original distributed system as closely as possible.

Two of the advantages of EIGRP compared to other routing protocols is
that EIGRP has loop-free routing and fast convergence. Riesco and Verdejo use
Real-Time Maude’s find latest command to analyze the convergence time, its
search command to check whether all routes are always loop-free, and its LTL
model checker to check whether the best routes are eventually found. No errors
in EIGRP were discovered during this analysis.

Generating and Analyzing Distributed Implementations of Orc Pro-
grams. Orc is an elegant and powerful programming language for orchestrating
web services. In [5], Musab AlTurki and José Meseguer show how (i) one can
go from an Orc specification to a distributed Maude implementation of the Orc
specification, using their Maude semantics of Orc and Maude sockets; and (ii)
how such distributed implementations can be model checked using Real-Time
Maude. Orc is a timed language, and, as in [53], AlTurki and Meseguer integrate
physical time in their distributed implementations by each distributed node hav-
ing a local clock object. This clock is a Java object that uses the built-in Java
classes Timer and Socket to send a “tick” message every t time units to the
co-located Maude process.

To formally analyze a distributed implementation, AlTurki and Meseguer
also formally specify in Real-Time Maude both the internet sockets support-
ing the distributed implementation and the local clock objects. They illustrate
their methodology by taking an Orc specification of a simplified online auction
management system, generating the distributed Maude implementation of the
system, executing the distributed Maude program using the erew command in
Maude, transforming this distributed Maude implementation into a Real-Time
Maude specification using formal specification of the behaviors of the sockets
and external clocks, and, finally, model checking the resulting specification using
Real-Time Maude.

Real-Time Emulation of Verified Medical Device Controllers. Mu Sun
and José Meseguer go the other way in [60]: from verified Real-Time Maude
models to concrete systems operating with their environments in real time. More
precisely, they create executable emulations of medical device controllers from
Real-Time Maude models that are instances of their command shaper pattern.
These emulations can be connected to real devices to validate the safety of the
device in a real environment. Essentially, an execution “wrapper” around the
Real-Time Maude model deals with handling time and messages to and from the
external world. Model time is again related to physical time by interacting with a

72 P.C. Ölveczky

Java thread. Sun and Meseguer advance time maximally by sending a “time-out
request” to the time thread; however, they can also deal with “interrupts” from
external devices which may happen at any time. They analyze the time that the
“instantaneous” transitions and message passing take (never more than 0.2 s),
and make sure that any skew is not multiplied over time.

Sun and Meseguer present two case studies, where the safe device controllers
are instances of the command shaper pattern. The first case study is a pacemaker
controller. Sun and Meseguer connect their device controller emulator to

– a “user” that sends a “dangerous” sequence of pacemaker commands to the
device controller; and

– a Java widget that simulates a pacemaker by receiving pacemaker commands
(from the device controller) and drawing the corresponding ECG trace.

The ECG trace shows that the device controller ensured a safe heart rate. In
their second case study they actually connect their wrapped Real-Time Maude
model of a safe syringe pump controller to a real Multi-Phaser NE-500 syringe
pump, and validate their controller by weighing the amount of liquid infused
from the syringe pump.

6 Extensions of Real-Time Maude

This section presents two extensions of Real-Time Maude, namely, to hybrid
systems and priced timed systems.

6.1 HI-Maude: Object-Oriented Modeling and Formal Analysis
of Continuously Interacting Hybrid Systems

Section 5 shows that Real-Time Maude’s expressiveness and modeling flexibility
have made it possible to successfully apply the tool to a number of large and
complex applications, all of which have been modeled in an object-oriented style.
An important question is whether Real-Time Maude can also successfully model
and analyze complex hybrid systems in an object-oriented way.

It is a nightmare to define the continuous dynamics of many hybrid systems,
since different components may influence each other’s continuous behaviors; we
call such systems (continuously) interacting hybrid systems. Consider the prob-
lem of keeping track of the temperature of a hot cup of coffee in a colder room.
The temperature of the coffee will continuously decrease and the temperature
of the room will continuously increase due to heat transfer from the coffee.
Although the continuous behaviors of the single components and the heat flow
between them are well known, it is very hard to define the continuous behav-
ior of the entire system “in one shot,” which is what current formal models of
hybrid systems require. Existing formalisms therefore also do not support the
object-oriented specification of continuously interacting hybrid systems, since
the continuous behavior must be completely redefined for each new configura-
tion of objects (for example, if we have three cups of coffee), and therefore cannot
be defined at the class level.

Real-Time Maude and Its Applications 73

Muhammad Fadlisyah, Erika Ábrahám, and I have addressed the formal
modeling and analysis of interacting hybrid systems in [24–27]. In our object-
oriented modeling methodology, which is based on the effort/flow method, both
the physical entities and the physical interactions between the entities are mod-
eled explicitly as objects. For example, heat flows from the coffee and the cup to
the room through heat convection, and heat flows between the coffee and the
cup through heat conduction. This approach is applicable to different kinds of
systems, including mechanical translation systems, mechanical rotation systems,
electrical systems, fluidic systems, and thermal systems.

Our modeling methodology is supported by the HI-Maude tool [24], which
extends Real-Time Maude. In HI-Maude, one can define the continuous dynam-
ics of single physical component objects and single interaction objects. HI-
Maude then computes the continuous dynamics of the entire system. This enables
object-oriented modeling, since both the discrete and the continuous dynamics
are defined at the class level, and since the dynamic creation/deletion of physical
components is supported. For example, to add another cup of coffee, one could
just add (possibly dynamically) a new coffee object, a new cup object, and three
new interaction objects to the state.

To analyze hybrid systems—and HI-Maude targets complex systems whose
continuous dynamics may be defined by differential equations that are not ana-
lytically solvable—we have adapted different numerical methods (the Euler
method and the Runge-Kutta methods of 2nd and 4th order) to our model-
ing methodology to give approximate solutions to coupled differential equations.
These approximations are then used in HI-Maude simulation, reachability analy-
sis, and linear temporal logic model checking. For example, HI-Maude’s hybrid
rewrite command is used to simulate one behavior of the system from a given
initial state initState up to duration timeLimit :

(hrew initState in time <= timeLimit using numMethod stepsize stepSize .)

where numMethod ∈ {euler, rk2, rk4} is the numerical approximation method
used and stepSize is the time increment used in the approximations.

Since the numerical methods only approximate the real continuous behaviors,
HI-Maude analyses are in general not sound and complete. The main value of
HI-Maude is therefore to formally define and simulate complex hybrid systems.

Case Study: Modeling the Human Thermoregulatory System. The human ther-
moregulatory system (HTS) attempts to ensure human survival and comfort in
different environments. The HTS has been studied extensively—sometimes by
experimentation on live subjects—to analyze how long a person can survive in
cold water, how long he can exercise in hot weather without succumbing to
heat stroke, and how to provide the most comfortable environment for pilots,
astronauts, and airplane passengers, and so on.

In the HTS, the hypothalamus part of the brain enables the following mech-
anisms to support heat loss from the body when needed: increasing the diam-
eter of blood vessels to let more blood flow underneath the skin (vasodilation),

74 P.C. Ölveczky

Fig. 6. Effort/flow model of the human thermoregulatory system.

which promotes heat loss by radiation, convection, and conduction; and increas-
ing sweat production, which promotes heat loss by evaporation. When the body
temperature is decreasing, the hypothalamus may decrease the diameter of blood
vessels to let less blood flow underneath the skin (vasoconstriction) to reduce
heat loss, and may stimulate the skeletal muscles to cause shivering to increase
heat production. Behavioral thermoregulation (e.g., putting on or taking off a
jacket) is related to a part of the brain called the cerebral cortex.

In [27] we define a HI-Maude model of the human thermoregulatory system
according to accepted physiological facts and models, where the body core and
the skin are two main components. Heat flows between them through blood flows
where the diameter of the blood vessels changes continuously. The main forms
of heat exchange between skin and environment are by conduction/convection,
radiation, and evaporation of sweat; between core and environment heat flows
mainly through respiration. Figure 6 shows the physical entities (boxes) and
interactions (ovals) in our model, where heat production by metabolism and by
shivering are represented as one-sided interactions.

We can connect our fairly sophisticated model to different environments.
We chose to analyze possible causes of the accident at the 2010 Sauna World
Championships, which ended in a tragedy when the two finalists collapsed with
severe burn injuries after about six minutes; one of them died the next day. The
cause of this tragedy is still under investigation. Our HI-Maude analyses show
that even the average person should endure 12 min in the sauna before the onset
of major injuries. We also used HI-Maude to analyze what scenarios could cause
major injuries to a five-time world champion in around 6 min [27].

Priced-Timed Maude. Reasoning about the accumulated cost (say, price
or energy usage) during behaviors is crucial in embedded systems and sensor

Real-Time Maude and Its Applications 75

networks where minimizing overall energy consumption is critical. The Priced-
Timed Maude tool [17] extends Real-Time Maude to support the formal mod-
eling of non-hierarchical object-oriented priced and timed systems by adding
priced rules of the form c => c′ with cost u if cond, where c and c′ are terms
of sort Configuration, and priced tick rules of the form {t} => {t′} in time τ
with cost u if cond. Apart from extending Real-Time Maude’s analysis com-
mands in the expected way, Priced-Timed Maude also adds commands for finding
optimal solutions, such as the cheapest behavior leading to a desired state.

Although Priced-Timed Maude has been applied to benchmarks such as
energy task graph scheduling, the airplane landing problem, and to the slightly
larger problem of efficiently routing passengers within a subway network while
minimizing power consumption of the trains, the tool has not been applied to
state-of-the-art applications.

7 Concluding Remarks

Real-Time Maude is an expressive modeling language and a formal analysis tool
that is particularly useful for defining distributed real-time systems in an object-
oriented way. Indeed, virtually all the Real-Time Maude applications summa-
rized in Sect. 5 have been object-oriented Real-Time Maude specifications. I have
shown that Real-Time Maude features such as user-definable data types, hier-
archical objects, dynamic object creation, unbounded data structures, and the
possibility to easily define the appropriate communication model have all been
needed to apply the tool on a number of advanced state-of-the-art applications
and to define the formal semantics of several modeling languages.

Despite the size and complexity of the applications, Real-Time Maude analy-
sis – both simulation and model checking – could still be used to discover signifi-
cant previously unknown flaws in many of the applications, as well as to provide
formal analysis capabilities for the modeling languages. Furthermore, many of
those applications and modeling languages are formalized as time-robust Real-
Time Maude specifications, which means that their Real-Time Maude analyses
are guaranteed to be sound and complete.

Many large real-time systems are probabilistic systems, either because their
algorithms are probabilistic in nature or because there is a need to analyze
their performance in an environment which can be seen as probabilistic. Real-
Time Maude should therefore be extended to model probabilistic behaviors. This
would also enable useful and scalable analysis by means of statistical model
checking. Finally, Real-Time Maude should also incorporate symbolic analysis
techniques, including the use of SMT solvers, to increase the efficiency and ana-
lytic power of Real-Time Maude model checking.

Acknowledgments. I thank all my coauthors for very nice collaborations which have
motivated, improved, and validated Real-Time Maude. In particular, I would like to
thank José Meseguer, who has been part of the entire Real-Time Maude journey, Martin
Wirsing, who initiated this journey, and Kyungmin Bae. I am also grateful to Santiago
Escobar for inviting me to give an invited talk at WRLA 2014 and for patiently waiting
for this paper to be finished.

76 P.C. Ölveczky

References

1. Abrial, J.-R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control. LNCS, vol.
1165. Springer, Heidelberg (1996)

2. Aceto, L., Cimini, M., Ingólfsdóttir, A., Reynisson, A.H., Sigurdarson, S.H.,
Sirjani, M.: Modelling and simulation of asynchronous real-time systems using
Timed Rebeca. In: Proceedings of FOCLASA’11, vol. 58. EPTCS (2011)

3. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: RTSS’09. IEEE (2009)

4. AlTurki, M., Dhurjati, D., Yu, D., Chander, A., Inamura, H.: Formal specification
and analysis of timing properties in software systems. In: Chechik, M., Wirsing,
M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 262–277. Springer, Heidelberg (2009)

5. AlTurki, M., Meseguer, J.: Dist-Orc: A rewriting-based distributed implementation
of Orc with formal analysis. In: Proceedings of RTRTS’10, vol. 36. EPTCS (2010)

6. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

7. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate distributed
real-time systems. Sci. Comput. Programm. 91(A), 3–44 (2014)

8. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
its formal analysis in Real-Time Maude. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 651–667. Springer, Heidelberg (2011)

9. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude
tool. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engi-
neering. LNCS, vol. 7212, pp. 59–62. Springer, Heidelberg (2012)

10. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying dis-
tributed cyber-physical systems using Multirate PALS: an airplane turning control
system case study. Sci. Comput. Programm. (2014, to appear). doi: 10.1016/j.scico.
2014.09.011

11. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical
Ptolemy II discrete-event models using Real-Time Maude. Sci. Comput. Program.
77(12), 1235–1271 (2012)

12. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of Mul-
tirate Synchronous AADL. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 94–109. Springer, Heidelberg (2014)

13. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011)

14. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

15. Belala, F., Benammar, M., Barkaoui, K., Hicheur, A.: Formal modeling and analy-
sis of AADL threads in Real-Time Maude. J. Softw. Eng. Appl. 5, 187–192 (2012)

16. Benammar, M., Belala, F.: How to make AADL specification more precise. Int. J.
Comput. Appl. 8(10), 16–23 (2010)

17. Bendiksen, L., Ölveczky, P.C.: The Priced-Timed Maude tool. In: Kurz, A., Lenisa,
M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 443–448. Springer,
Heidelberg (2009)

18. Bergstra, J.A., Tucker, J.V.: Algebraic specification of computable and semicom-
putable data types. Theoret. Comput. Sci. 50, 137–181 (1987)

http://dx.doi.org/10.1016/j.scico.2014.09.011
http://dx.doi.org/10.1016/j.scico.2014.09.011

Real-Time Maude and Its Applications 77

19. Boronat, A., Ölveczky, P.C.: Formal real-time model transformations in
MOMENT2. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol.
6013, pp. 29–43. Springer, Heidelberg (2010)

20. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification
of model transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 18–33. Springer, Heidelberg (2009)

21. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004)

22. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

23. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity–the Ptolemy approach. Proc. IEEE
91(2), 127–144 (2003)

24. Fadlisyah, M., Ölveczky, P.C.: The HI-Maude tool. In: Heckel, R., Milius, S. (eds.)
CALCO 2013. LNCS, vol. 8089, pp. 322–327. Springer, Heidelberg (2013)

25. Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Formal modeling and analysis of
hybrid systems in rewriting logic using higher-order numerical methods and
discrete-event detection. In: Proceedings of CSSE’11. IEEE (2011)

26. Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Object-oriented formal modeling
and analysis of interacting hybrid systems in HI-Maude. In: Barthe, G., Pardo,
A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 415–430. Springer,
Heidelberg (2011)

27. Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Formal modeling and analysis of inter-
acting hybrid systems in HI-Maude: What happened at the 2010 Sauna World
Championships? Sci. Comput. Programm. (2014). http://dx.doi.org/10.1016/j.
scico.2014.06.010

28. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL. Addison-Wesley,
Upper Saddle River (2012)

29. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014)

30. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Heidelberg (2014)

31. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G.,
de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer,
Heidelberg (2008)

32. Katelman, M., Meseguer, J.: Using the PALS architecture to verify a distributed
topology control protocol for wireless multi-hop networks in the presence of node
failures. In: Proceedings of RTRTS’10, vol. 36. EPTCS (2010)

33. Kim, M., Dutt, N., Venkatasubramanian, N.: Policy construction and validation
for energy minimization in cross layered systems: a formal method approach. In:
Proceedings of IEEE RTAS’06 Work-in-Progress Session, pp. 4–7 (2006)

34. Lepri, D., Ábrahám, E., Ölveczky, P.C.: A timed CTL model checker for Real-
Time Maude. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp.
334–339. Springer, Heidelberg (2013)

http://dx.doi.org/10.1016/j.scico.2014.06.010
http://dx.doi.org/10.1016/j.scico.2014.06.010

78 P.C. Ölveczky

35. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Sound and complete timed CTL model
checking of timed Kripke structures and real-time rewrite theories. Sci. Comput.
Program. (2014). http://dx.doi.org/10.1016/j.scico.2014.06.006

36. Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast pro-
tocol. In: Proceedings of SEFM’09. IEEE (2009)

37. Liu, S., Ölveczky, P., Meseguer, J.: A framework for mobile ad hoc networks in
Real-Time Maude. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 162–
177. Springer, Heidelberg (2014)

38. Liu, S., Ölveczky, P., Meseguer, J.: Formal analysis of leader election in MANETs
using Real-Time Maude. In: Festschrift honoring Martin Wirsing. LNCS. Springer,
Heidelberg (2015)

39. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS architec-
tural pattern for distributed real-time systems. Theoret. Comput. Sci. 451, 1–37
(2012)

40. Meseguer, J.: Taming distributed system complexity through formal patterns. Sci.
Comput. Program. 83, 3–34 (2014)

41. Nakajima, S.: Model-based power consumption analysis of smartphone applica-
tions. In: Proceedings of ACESMB@MoDELS, CEUR Workshop Proceedings, vol.
1084. CEUR-WS.org (2013)

42. Ölveczky, P.C.: Real-Time Maude 2.3 Manual (2007). http://ifi.uio.no/
RealTimeMaude/

43. Ölveczky, P.C.: Formal model engineering for embedded systems using Real-Time
Maude. In: Proceedings of AMMSE’11, vol. 56. EPTCS (2011)

44. Ölveczky, P.C.: Semantics, simulation, and formal analysis of modeling languages
for embedded systems in Real-Time Maude. In: Agha, G., Danvy, O., Meseguer,
J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol.
7000, pp. 368–402. Springer, Heidelberg (2011)

45. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behav-
ioral AADL models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.) FMOODS
2010, Part II. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg (2010)

46. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in Real-Time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006.
LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006)

47. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoret. Comput. Sci. 285, 359–405 (2002)

48. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
ENTCS 176(4), 5–27 (2007)

49. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order Symbolic Comput. 20(1–2), 161–196 (2007)

50. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods
Syst. Des. 29(3), 253–293 (2006)

51. Ölveczky, P.C., Prabhakar, P., Liu, X.: Formal modeling and analysis of real-
time resource-sharing protocols in Real-Time Maude. In: Proceedings of IPDPS’08.
IEEE (2008)

52. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
ret. Comput. Sci. 410(2–3), 254–280 (2009)

53. Riesco, A., Verdejo, A.: Implementing and analyzing in Maude the Enhanced Inte-
rior Gateway Routing Protocol. ENTCS 238(3), 249–266 (2009)

http://dx.doi.org/10.1016/j.scico.2014.06.006
http://ifi.uio.no/RealTimeMaude/
http://ifi.uio.no/RealTimeMaude/

Real-Time Maude and Its Applications 79

54. Rivera, J.E.: On the semantics of real-time domain specific modeling languages.
Ph.D. thesis, Universidad de Málaga (2010)

55. Rivera, J.E., Durán, F., Vallecillo, A.: On the behavioral semantics of real-time
domain specific visual languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol.
6381, pp. 174–190. Springer, Heidelberg (2010)

56. Sabahi-Kaviani, Z., Khosravi, R., Ölveczky, P.C., Khamespanah, E., Sirjani, M.:
Formal semantics and efficient analysis of Timed Rebeca in Real-Time Maude
(2014, submitted for publication)

57. Sabahi-Kaviani, Z., Khosravi, R., Sirjani, M., Ölveczky, P.C., Khamespanah, E.:
Formal semantics and analysis of Timed Rebeca in Real-Time Maude. In: Artho,
C., Ölveczky, P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 178–194. Springer,
Heidelberg (2014)

58. SEA International: Architecture Analysis & Design Language (AADL). Standard
AS5506, Revision B, September 2012. http://standards.sae.org/as5506b/

59. Sen, K., Viswanathan, M., Agha, G.A.: VeStA: a statistical model-checker and
analyzer for probabilistic systems. In: Proceedings of QEST’05. IEEE (2005)

60. Sun, M., Meseguer, J.: Distributed real-time emulation of formally-defined patterns
for safe medical device control. In: Proceedings of RTRTS’10. vol. 36. EPTCS
(2010)

61. Sun, M., Meseguer, J., Sha, L.: A formal pattern architecture for safe medical
systems. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 157–173.
Springer, Heidelberg (2010)

62. Vasudevan, S., Kurose, J.F., Towsley, D.F.: Design and analysis of a leader election
algorithm for mobile ad hoc networks. In: Proceedings of ICNP’04. IEEE (2004)

63. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
Softw. Tools Technol. Trans. 6(1), 77–97 (2004)

64. Wirsing, M., Bauer, S.S., Schroeder, A.: Modeling and analyzing adaptive user-
centric systems in Real-Time Maude. In: Proceedings of RTRTS’10, vol. 36. EPTCS
(2010)

65. Zhang, H., Hou, J.C.: Maintaining sensing coverage and connectivity in large sensor
networks. Wirel. Ad Hoc Sens. Netw. Int. J. 1(1–2), 89–124 (2005)

66. Zhu, L., Liu, P., Shi, J., Wang, Z., Zhu, H.: A timing verification framework for
AUTOSAR OS component development based on Real-Time Maude. In: Proceed-
ings of TASE’13. IEEE (2013)

http://standards.sae.org/as5506b/

Conditional Narrowing Modulo in Rewriting
Logic and Maude

Luis Aguirre(B), Narciso Mart́ı-Oliet, Miguel Palomino, and Isabel Pita

Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
{luisagui,narciso,miguelpt,ipandreu}@ucm.es

Abstract. This work studies the relationship between verifiable and
computable answers for reachability problems in rewrite theories with
an underlying membership equational logic. These problems have the
form

(∃x̄)s(x̄) →∗ t(x̄)

with x̄ some variables, or a conjunction of several of these subgoals.
A calculus that solves this kind of problems has been developed and
proved correct. Given a reachability problem in a rewrite theory, this
calculus can compute any normalized answer that can be checked by
rewriting, or a more general one. Special care has been taken in the
calculus to keep membership information attached to each term, using
this information whenever possible.

Keywords: Maude · Narrowing · Reachability · Rewriting logic · Uni-
fication · Membership equational logic

1 Introduction

Rewriting logic is a computational logic that has been around for more than
twenty years [Mes90], whose semantics [BM06] has a precise mathematical mean-
ing allowing mathematical reasoning for property proving, providing a more flex-
ible framework for the specification of concurrent systems. It turned out that it
can express both concurrent computation and logical deduction, allowing its
application in many areas such as automated deduction, software and hardware
specification and verification, security, etc. One important property of rewrit-
ing logic is reflection [CM96]. Intuitively, reflection means representing a logic’s
metalevel at the object level, allowing the definition of strategies that guide rule
application in an object-level theory.

Reachability problems have the form

(∃x̄)s(x̄) →∗ t(x̄)

Research supported by MINECO Spanish project StrongSoft (TIN2012–39391–C04–
04) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 80–96, 2014.
DOI: 10.1007/978-3-319-12904-4 4

Conditional Narrowing Modulo in Rewriting Logic and Maude 81

with x̄ some variables, or a conjunction of several of these subgoals. They can
be solved by model checking methods for finite state spaces. A technique known
as narrowing [Fay78] that was first proposed as a method for solving equational
goals (unification), has been extended to cover also reachability goals [MT07],
leaving equational goals as a special case of reachability goals. In recent years
the idea of variants of a term has been applied to narrowing. A strategy for
order-sorted unconditional rewrite theories known as folding variant narrowing
[ESM12], which computes a complete set of variants of any term, has been devel-
oped by Escobar, Sasse and Meseguer, allowing unification modulo a set of equa-
tions and axioms. The strategy terminates on any input term on those systems
enjoying the finite variant property, and it is optimally terminating. It is being
used for cryptographic protocol analysis [MT07], with tools like Maude-NPA
[EMM05], termination algorithms modulo axioms [DLM+08], and algorithms
for checking confluence and coherence of rewrite theories modulo axioms, such
as the Church-Rosser (CRC) and the Coherence (ChC) Checkers for Maude
[DM12].

This work explores narrowing for membership conditional rewrite theories,
going beyond the scope of folding variant narrowing which works on order-sorted
unconditional rewrite theories. A calculus that computes answers to reachability
problems in membership conditional rewrite theories has been developed and
proved correct with respect to idempotent normalized answers.

The work is structured as follows: in Sect. 2 all needed definitions and prop-
erties for rewriting and narrowing are introduced. Section 3 introduces the first
part of the narrowing calculus, the one that deals with equational unification.
Section 4 introduces the part of the calculus dealing with reachability and its
proof of correctness. Section 5 shows the calculus at work. In Sect. 6, related
work, conclusions and current lines of investigation for this work are presented.
An extended version of this paper, with all the missing proofs, can be found at
http://maude.sip.ucm.es/cnarrowing/, together with a previous version of this
work with transformation rules and a prototype.

2 Preliminaries

We assume familiarity with rewriting logic [BM06]. There are several language
implementations of rewriting logic, including Maude [CDE+07]. Rewriting logic
is parameterized by an underlying equational logic. In Maude’s case this logic is
membership equational logic [Mes97].

2.1 Tower of Hanoi Example

Throughout this paper the Tower of Hanoi puzzle will be used as a motivating
example to explain the definitions in a less abstract way. We have Rods a, b and
c, and Disks 1, 2, 3 and 4 which can slide onto any Rod. We call a Rod with
zero or more stacked Disks (written juxtaposed) a Tower. If smaller Disks are
always stacked on top of bigger Disks we have a ValidTower (abbreviated VT).

http://maude.sip.ucm.es/cnarrowing/

82 L. Aguirre et al.

A set of valid towers (written separated by commas) is a State (abbreviated St).
A move between a Pair of towers (written separated by a − symbol) is defined
by the rules: 1) only one Disk may be moved at a time, 2) each move consists of
taking the upper Disk from one Tower and placing it on top of another Tower,
and 3) Disk X may be placed on top of Disk Y only if X is smaller than Y
(written X < Y = t, where t is the true Boolean value). The goal of the puzzle
is to reach a desired State from a given initial State.

2.2 Membership Equational Logic

A membership equational logic (Mel) signature [BM06] is a triple Σ = (K,Ω, S),
with K a set of kinds, Ω = {Σw;k}(w;k)∈K∗xK a many-kinded algebraic signature,
and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts. For simplicity, we
only allow overloading of operators whenever the result belongs in the same kind.
The kind of a sort s is denoted by [s]. The sets TΣ,s, TΣ(X)s, TΣ,k and TΣ(X)k

denote, respectively, the set of ground Σ-terms with sort s, the set of Σ-terms
with sort s over the set X of sorted variables, the set of ground Σ-terms with
kind k and the set of Σ-terms with kind k over the set X of sorted variables.
We write TΣ , TΣ(X) for the corresponding term algebras. Var(t) ⊆ X denotes
the set of variables in t ∈ TΣ(X).

In the Tower of Hanoi puzzle, Σ = (K,Ω, S) is:

– K = {TS, P, D, B},
– Ω = {·D TS;TS, ,TS TS;TS , −TS TS;P, moveP;P, <D D;B},
– S = {STS, SP, SD, SB}, where

STS = {Rod, VT, Tower, St}, SP = {Pair}, SD = {Disk}, SB = {Boolean}.

Finally, {a, b, c}, {1, 2, 3, 4}, and {t} are the atoms with sort Rod, Disk, and
Boolean respectively.

Positions in a term t: we represent the root of t as ε and the other positions
as strings of nonzero natural numbers in the usual way, considering t as a tree.
The set of positions of a term is written Pos(t). t|p is the subtree below position
p. t[u]p is the replacement in t of the subterm at position p with term u.

A substitution σ : Y → TΣ(X) is a function from a finite set of sorted vari-
ables Y ⊆ X to TΣ(X) such that σ(y) has the same or lower sort as that of
the variable y ∈ Y (s1 ≤ s2, formally defined in the next paragraph). Substi-
tutions are written as σ={x1 �→t1, . . ., xn �→tn} where Dom(σ)={x1, . . ., xn} and
Ran(σ)=

⋃n
i=1 Var(ti). The identity substitution is id . The restriction of σ to a

set of variables V is σ|V . Composition of two substitutions is denoted by σσ′.
For substitutions σ and σ′ where Dom(σ)∩Dom(σ′)=∅, we denote their union
by σ ∪ σ′.

A Mel theory [BM06] is a pair (Σ, E), where Σ is a Mel signature and
E is a finite set of Mel sentences, either conditional equations or conditional
memberships of the forms:

(∀X) t=t′ if
∧

i

Ai, (∀X) t:s if
∧

i

Ai

Conditional Narrowing Modulo in Rewriting Logic and Maude 83

for t, t′ ∈ TΣ(X)k and s ∈ Sk, the latter stating that t is a term of sort s,
provided the condition holds, and each Ai can be of the form t=t′, t:s, or t:=t′

(a matching equation). Matching equations are treated as ordinary equations,
but they impose a limitation in the syntax of admissible Mel theories, as we will
see. We also admit unconditional sentences in E . Order-sorted (sugared) notation
s1 ≤ s2 can be used instead of (∀x:[s1]) x:s2 if x:s1. An operator declaration
f : s1 × · · · × sn → s corresponds to declaring f at the kind level and giving the
membership axiom (∀x1:[s1], . . . , xn:[sn]) f(x1, . . . , xn):s if

∧

1≤i≤n xi:si. Given
a Mel sentence φ, we denote by E � φ that φ can be deduced from E using the
rules in Fig. 1, where = can be either = or := as explained before [BM12]. The
rules of Fig. 1 specify a sound and complete calculus. A Mel theory (Σ, E) has
an initial algebra, denoted by TΣ/E , whose elements are the equivalence classes
[t]E ⊆ TΣ of ground terms identified by the equations in E .

Fig. 1. Deduction rules for membership equational logic.

The Mel theory for the Tower of Hanoi puzzle consists of Σ = (K,Ω, S) and
the following set E of Mel sentences where we omit the universal quantifiers:

X : St if X : VT; X : Tower if X : VT;
X : St if X : Rod; X : Tower if X : Rod;
X : St if X : Rod; X : VT if X : Rod;
XY : Tower if X : Disk ∧ Y : Tower;
X,Y : St if X : St ∧ Y : St;
X,Y = Y,X (commutativity);
(X,Y), Z = X, (Y,Z) (associativity);
X − Y : Pair if X : Tower ∧ Y : Tower;
X − Y = Y − X (commutativity);
X < Y : Boolean if X : Disk ∧ Y : Disk;
XR : VT if X : Disk ∧ R : Rod;
XY T : VT if X : Disk ∧ Y : Disk ∧ T : Tower ∧ X<Y = t ∧ Y T : Vt;
1 < 2 = t; 1 < 3 = t; 1 < 4 = t;
2 < 3 = t; 2 < 4 = t; 3 < 4 = t;
move(XT − R) = T − XR if X : Disk ∧ T : Tower ∧ R : Rod;

84 L. Aguirre et al.

move(XT − Y T ′) = T − XY T ′ if X : Disk ∧ Y : Disk ∧ T : Tower ∧
∧ T ′ : Tower ∧ X < Y = t; move(X) : Pair if X : Pair.

A single Disk stacked on a Rod is always a ValidTower. For multiple Disks,
we compare them recursively. The operator move distinguishes between two
cases: if one Tower is empty, i.e. a Rod, then we can stack any Disk on it;
else the sizes of the top Disks on each Tower must be compared (<) and we can
stack the smaller one on top of the other.

2.3 Rewriting Logic

A rewrite theory R = (Σ, E , R) consists of a Mel theory (Σ, E) together with a
finite set R of conditional rewrite rules each of which has the form

(∀X) l → r if
∧

i

pi=qi ∧
∧

j

wj :sj ∧
∧

k

lk → rk,

where l, r are Σ-terms of the same kind and = can be either = or :=. Rewrite
rules can also be unconditional.

Such a rewrite rule specifies a one-step transition from a state t[lθ]p to the
state t[rθ]p, denoted by t[lθ]p →1

R t[rθ]p, provided the condition holds. The
subterm t|p is called a redex.

In the example, R has as only element the conditional rewrite rule: D,E →
F,G if D : Tower∧E : Tower∧F −G := move(D −E)∧F : Tower∧G : Tower.

F and G are new variables on the right side of the rule. They are instantiated
by matching on the conditional part of the rule.

The inference rules in Fig. 2 for rewrite theories can infer all possible com-
putations in the system specified by R [BM12]. We can reach a state v from a
state u if we can prove R � u → v.

The relation →1
R/E on TΣ(X) is =E ◦ →1

R ◦ =E . →1
R/E on TΣ(X) induces a

relation →1
R/E on TΣ/E(X), the equivalence relation modulo E , by [t]E →1

R/E [t′]E
iff t →1

R/E t′. The transitive (resp. transitive and reflexive) closure of →1
R/E is

denoted →+
R/E (resp. →∗

R/E). We say that a term t is →R/E -irreducible (or just
R/E-irreducible) if there is no term t′ such that t →1

R/E t′.

Fig. 2. Deduction rules for rewrite theories.

Conditional Narrowing Modulo in Rewriting Logic and Maude 85

A rewrite rule l → r if cond , is sort-decreasing if for each substitution σ,
we have that for any sort s if lσ ∈ TΣ(X)s and (cond)σ is verified implies
rσ ∈ TΣ(X)s. A Σ-equation t = t′ is regular if Var(t) = Var(t′). It is sort-
preserving if for each substitution σ, we have tσ ∈ Tσ(X)s implies t′σ ∈ Tσ(X)s

and vice versa.
A substitution is called E-normalized (or normalized) if xσ is E-irreducible

for all x ∈ V .
The relation →1

R/E is terminating if there are no infinite rewriting sequences.
The relation →1

R/E is operationally terminating if there are no infinite well-
formed proof trees. The relation →1

R/E is confluent if whenever t→∗
R/E t′ and

t→∗
R/Et′′, there exists a term t′′′ such that t′→∗

R/Et′′′ and t′′→∗
R/E t′′′. In a con-

fluent, terminating, sort-decreasing, and operationally terminating membership
rewrite theory, for each term t ∈ TΣ(X), there is a unique (up to E-equivalence)
R/E-irreducible term t′ obtained by rewriting to canonical form, denoted by
t →!

R/E t′, or t ↓R/E when t′ is not relevant, which we call canR/E(t).

2.4 Executable Rewrite Theories

For a rewrite theory R = (Σ, E , R), whether a one step rewrite t →1
R/E t′

holds is undecidable in general. We impose additional conditions, similar to
those required for functional and system modules in Maude, under which we can
decide if t →1

R/E t′ holds. We decompose E into a disjoint union E ∪ A, with A

a set of equational axioms (such as associativity, and/or commutativity, and/or
identity). We define the relation →1

E,A on TΣ(X) as follows: t →1
E,A t′ if there is

a position ω ∈ Pos(t), an equation l = r if cond ∈ E, and a substitution σ such
that t|ω =A lσ (A-matching), (cond)σ is satisfied, and t′ = t[rσ]ω. The relation
→1

R,A is similarly defined. We define →1
R∪E,A as →1

R,A ∪ →1
E,A. A rewrite theory

R = (Σ,E ∪ A,R) is executable if each kind k in Σ is nonempty, E, A, and R
are finite and the following conditions hold:

1. E and R are operationally terminating and admissible [CDE+07]. Then we
have a deterministic 3-CTRS [Ohl02]. Any new variable in the conditions will
be instantiated by matching. New variables are distinguished in Maude by
using a := symbol instead of = in the condition. They appear on the left terms
of these matching equations. Conditions in deterministic 3-CTRS’s must be
solved in left to right order.

2. Equality modulo A is decidable and there exists a finite matching algorithm
modulo A producing a finite number of A-matching substitutions, or failing
otherwise.

3. The equations in E are sort-decreasing, and terminating and confluent modulo
A when we consider them as oriented rules, where →1

E/A is defined in the same
way as we did for →1

R/E .

86 L. Aguirre et al.

4. →E,A is coherent with A, i.e., ∀t1, t2, t3 we have t1 →+
E,A t2 and t1 =A t3

implies ∃t4, t5 such that t2 →∗
E,A t4, t3 →+

E,A t5 and t4 =A t5 [MT07].

t1 →+
E,A t2 →∗

E,A t4
‖A ‖A

t3 −→+
E,A t5

5. →R,A is E-consistent with A, i.e., ∀t1, t2, t3 we have t1 →R,A t2 and t1 =A t3
implies ∃t4 such that t3 →R,A t4 and t2 =E t4. Also →R,A is E-consistent
with →E,A, i.e., ∀t1, t2, t3 we have t1 →R,A t2 and t1 →∗

E,A t3 implies ∃t4, t5
such that t3 →∗

E,A t4 and t4 →R,A t5 and t2 =E t5. In both cases the →R,A

rewriting steps from t3 and t4 must be performed with the same rule that
was applied to t1 [MT07].

t1 →R,A t2

‖A ‖E
t3 →R,A t4

(a) E-consistency of →R,A with A

t1 −→R,A t2

↓∗
E,A ‖E
t3 →∗

E,A t4 →R,A t5

(b) E-consistency of →R,A with →E,A

Technically, what coherence means is that the weaker relation →1
E,A becomes

semantically equivalent to the stronger relation →1
E/A, so we can decide t →1

R/E t′

by finding t′′ such that canE,A(t) →1
R t′′ and canE,A(t′) =A canE,A(t′′), which

is decidable, since the number of rules is finite and A-matching is decidable and
finite.

Under these conditions we can implement →R/E on terms using →R∪E,A

[MT07]. This lemma links →R/E with →E,A and →R,A. Patrick Viry gave a
proof for unsorted unconditional rewrite theories [Vir94], which can easily be
lifted to our membership conditional case.

Lemma 1. Let R = (Σ, E , R) be an executable rewrite theory, that is, it has all
the properties specified in Sect. 2.4. Then t1 →R/E t2 if and only if t1 →∗

E,A→R,A

t3 for some t3 =E t2.

The rewrite theory for the Tower of Hanoi puzzle is executable if we decompose
E in the following way: the set A has as elements the associative equation and
the commutative equations in E ; the set E has as elements the rest of equations
and all memberships in E , and we add to R the following rule needed for E-
consistency:

D,E, S → F,G, S if D : Tower ∧ E : Tower ∧ S : State ∧
∧ F − G := move(D − E) ∧ F : Tower ∧ G : Tower.

2.5 Unification

Given a rewrite theory R = (Σ, E , R), a Σ-equation is an expression of the form
t = t′ where t, t′ ∈ TΣ(X)s for an appropriate s. The E-subsumption preorder

Conditional Narrowing Modulo in Rewriting Logic and Maude 87

�E on TΣ(X)s is defined by t �E t′ if there is a substitution σ such that
t =E t′σ. For substitutions σ, ρ and a set of variables V we define σ|V �E ρ|V if
there is a substitution η such that σ|V =E (ρη)|V . Then we say that ρ is more
general than σ with respect to V . When V is not specified, we assume that
V = Dom(σ) = Dom(ρ) and we say that ρ is more general than σ.

A system of equations F is a conjunction of the form t1 = t′1 ∧ . . . ∧ tn = t′n
where for 1 ≤ i ≤ n, ti = t′i is a Σ-equation. We define Var(F) =

⋃

i Var(ti) ∪
Var(t′i). An E-unifier for F is a substitution σ such that tiσ =E t′iσ for 1 ≤ i ≤ n.
For V = Var(F) ⊆ W , a set of substitutions CSUW

E (F) is said to be a complete
set of unifiers modulo E of F away from W if

– each σ ∈ CSUW
E (F) is an E-unifier of F ;

– for any E-unifier ρ of F there is a σ ∈ CSUW
E (F) such that ρ|V �E σ|V ;

– for all σ ∈ CSUW
E (F), Dom(σ) ⊆ V and Ran(σ) ∩ W = ∅.

An E-unification algorithm is complete if for any given system of equations
it generates a complete set of E-unifiers, which may not be finite. A unification
algorithm is said to be finite and complete if it terminates after generating a
finite and complete set of solutions.

2.6 Reachability Goals

Given a rewrite theory R = (Σ, E , R), a reachability goal G is a conjunction of
the form t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n where for 1 ≤ i ≤ n, ti, t

′
i ∈ TΣ(X)si

for
appropriate si. We define Var(G) =

⋃

i Var(ti) ∪ Var(t′i). A substitution σ is a
solution of G if tiσ →∗

R/E t′iσ for 1 ≤ i ≤ n. We define E(G) to be the system of
equations t1 = t′1 ∧ . . . ∧ tn = t′n. We say σ is a trivial solution of G if it is an
E-unifier for E(G). We say G is trivial if the identity substitution id is a trivial
solution of G.

For goals G : t1 →∗ t2 ∧ . . .∧ t2n−1 →∗ t2n and G′ : t′1 →∗ t′2 ∧ . . .∧ t′2n−1 →∗

t′2n we say G =E G′ if ti =E t′i for 1 ≤ i ≤ 2n. We say G →R G′ if there is an odd
i such that ti →R t′i and for all j �= i we have tj = t′j . That is, G and G′ differ
only in one subgoal (ti → ti+1 vs t′i → ti+1), but ti → t′i, so when we rewrite ti
in G to t′i we get G′. The relation →R/E over goals is defined as =E ◦ →R ◦ =E .

2.7 Narrowing

Let t be a Σ-term and W be a set of variables such that Var(t) ⊆ W . The R,A-
narrowing relation on TΣ(X) is defined as follows: t �p,σ,R,A t′ if there is a
non-variable position p ∈ PosΣ(t), a rule l → r if cond in R, properly renamed,
such that Var(l)∩W = ∅, and a unifier σ ∈ CSUW ′

A (t|p = l) for W ′ = W∪Var(l),
such that t′ = (t[r]p)σ and (cond)σ holds. Similarly E,A-narrowing and R ∪ E,
A-narrowing relations are defined.

2.8 Associated Rewrite Theory

Any executable Mel theory (Σ,E∪A) has a corresponding rewrite theory RE =
(Σ′,A, RE) associated to it [DLM+08]: we add a fresh new kind Truth with a

88 L. Aguirre et al.

constant tt to Σ, and for each kind k ∈ K an operator eq : k k → Truth. �
represents a conjunction of any number of tt ’s. There are rules eq(x:k, x:k) → tt
for each kind k ∈ K. For each conditional equation or membership in E the set
RE has a conditional rule or membership of the form

t → t′ if A•
1 ∧ . . . ∧ A•

n t:s if A•
1 ∧ . . . ∧ A•

n

where if Ai is a membership then A•
i =Ai, if Ai ≡ ti:=t′i then A•

i is t′i→ti, and if
Ai ≡ t=t′ then A•

i is eq(t, t′)→tt .

Fig. 3. Inference rules for membership rewriting.

Systems of equations in (Σ,E ∪ A) with form G ≡ ∧m
i=1(si = ti) become

reachability goals in RE of the form
∧m

i=1 eq(si, ti) → tt . A substitution σ is a
solution of G if there are derivations for

∧m
i=1(siσ = tiσ), or

∧m
i=1 eq(siσ, tiσ)

rewrites to �.
The inference rules for membership rewriting in RE are the ones in Fig. 3,

adapted from [DLM+08, Fig. 4, p. 12], where the rules are defined for context-
sensitive membership rewriting.

3 Conditional Narrowing Modulo Unification

Narrowing allows us to assign values to variables in such a way that a reachability
goal holds. We implement narrowing using a calculus that has the following
properties:

1. If σ is an R/E-normalized idempotent solution for a reachability goal G, the
calculus can compute a more general answer σ �E σ′ for G.

2. If the calculus computes an answer σ for G, then σ is a solution for G.

That is, we want to compute a complete set of answers for G, a set that includes
a generalization of any possible solution for G, with respect to R/E-normalized
substitutions.

We are going to split this task into two subtasks: first we will solve the part
of the calculus that deals with unification; second, we will solve the part that
deals with reachability.

Conditional Narrowing Modulo in Rewriting Logic and Maude 89

3.1 Calculus Rules for Unification

We assume we are working with an executable rewrite theory named M . We
refer to the set of equations and memberships in M as E, to the set of rules as
R and to the set of axioms as A. We also assume that we have an A-unification
algorithm that returns a CSU for any pair of terms.

A unification equation is a term s:S = t:T , which is a shorthand for the
system of equations s = t ∧ s = XS ∧ t = YT (we will also write s = t, s:S,
t:T). This means that we intend to unify s and t, with resulting sorts S and
T respectively. A unification goal is a sequence (understood as conjunction) of
unification equations.

Admissible goals, or simply goals, are any sequence of s:S=t:T , s:S:=t:T ,
s:S→t:T , s:S→1t:T and t:T . Any condition in an equation, of the form s=t or
s:=t is turned into an admissible goal by adding inferred sorts to it. If any term
s is a variable or a constant, we use the sort of s as inferred sort. If the term is
of the form f(s̄), we use the kind of any membership for f .

Our calculus is defined by the following set of inference rules derived from
those in Fig. 3. The first two rules, [u] and [x], transform equational problems
into rewriting problems modulo axioms, rule [u] playing the part of the added
rules eq(x:k, x:k) → tt in the associated rewrite theory; rule [n] describes one
step of unification narrowing where the conditions on the applied rule are turned
into subgoals and the instantiated right side of the rule (rθ) is required to have
a sort which is a common subsort of S and T ; rule [t] allows us to apply several
unification narrowing steps; rule [i] decomposes a term allowing rule [n] to be
applied to any subterm of it; rule [r] allows instantiation of variables on unificable
terms; rule [m1] solves the membership problem for variables, and rules [s] and
[m2] for the rest of terms, using the membership conditions in E:

– [u] unification
s:S = t:T,G′

s:S′ → XS′ :S′, t:S′ → XS′ :S′, G′

where XS′ fresh variable, S′ ≤ S, S′ ≤ T.

– [x] matching
s:S := t:T,G′

t:S′ → s:S′, G′

where S′ ≤ S, S′ ≤ T.

– [n] narrowing
s:S →1 X:T,G′

((c,)X:S′, G′)ρθ

where s is not a variable, (c)eq l=r (if c) ∈ E has fresh variables,
S′ ≤ S, S′ ≤ T, θ ∈ CSUA(s = l), ρ={X �→ r}.

90 L. Aguirre et al.

– [t] transitivity
s:S → t:T,G′

s:S′ →1 XS′ :S′,XS′ :S′ → t:S′, G′

where XS′ fresh variable, S′ ≤ S, S′ ≤ T.

– [i] imitation
f(s̄:S̄):S →1 X:T,G′

G′θ, si:Si →1 X ′
Si

:Si,Xθ:S′, G′′θ

with X /∈Var(s), θ = {X �→ f((s1, . . ., si−1,X
′
Si

:Si, si+1, . . ., sn))},

X ′
Si

fresh variable, S′ ≤ S, S′ ≤ T.

– [r] removal of equations
s:S → t:T,G′

(G′, s:S′, G′)θ

with θ ∈ CSUA(s = t), S′ ≤ S, S′ ≤ T

– [s] subject reduction
s:S,G′

s:[S] →1 XS :S,G′

XS fresh variable.
– [m1] membership

XS :T,G′

(G′)θ

where θ = {XS �→ X ′
S′} with X ′

S′ fresh variable and S′ ≤ S, S′ ≤ T.

– [m2] membership
s:S,G′

((c,) G′)θ

where (c)mb t:T (if c) is a fresh variant, with T ≤ S, of a (conditional)
membership in E, and θ ∈ CSUA(s = t).

From a unification equation u a derivation is made applying rules of the calculus.
If the derivation ends in the empty goal, denoted by �, then the composition
of the substitutions used on each derivation step, restricted to those variables
appearing in u, is a computed answer for u.

Theorem 1. The calculus for unification is sound and weakly complete.

That is, given a unification goal G, if G �∗
σ � then Gσ can be derived, so σ is a

solution for G in →E/A, and if ρ is an E/A-normalized idempotent answer of G
(Gρ →∗

E/A �), then there is ρ′ idempotent, with ρ �A ρ′, such that G �ρ′ �.

Proof. We prove correctness of the calculus with respect to E/A-normalized
idempotent substitutions for the executable Mel theory (Σ,E ∪ A) and the
corresponding rewrite theory RE = (Σ′,A, RE) associated to it.

1. Soundness: by structural induction on the calculus rule for unification applied.
2. Completeness: by induction on the length of inferences in R = (Σ′,A, RE),

looking at the last inference rule used.

Conditional Narrowing Modulo in Rewriting Logic and Maude 91

4 Reachability by Conditional Narrowing

Conditional narrowing relies on conditional unification. As we have used the
symbol → in the calculus rules for unification, we will use a different symbol
⇒ in the calculus rules for reachability. Our goal, given a reachability problem
∧

i si:Si ⇒ ti:Ti, is to find a solution σ (ground or not) such that
∧

i siσ:Si ⇒R/E
tiσ:Ti. For executable rewrite theories this is equivalent to

∧

i siσ:Si ⇒R∪E,A
∧

i tiσ:Ti. These new calculus rules deal with the �R,A part. Narrowing, we
call it replacement here, takes place only at position ε of terms, thanks to new
transitivity and imitation calculus rules.

Reachability goals are any sequence (understood as conjunction) of subgoals
of the form s:S ⇒ t:T . Admissible goals, or simply goals, are now extended to
be any sequence of s:S⇒t:T , s:S⇒1t:T , s:S=t:T , s:S→t:T , s:S→1t:T , s:S:=t:T
and t:T . If the calculus derives the empty goal from a reachability goal G with
a substitution σ, then σ is a computed answer for G.

As for unification, any reachability subgoal in our calculus of the form of
s:S ⇒(1) t:T is equivalent to the admissible goal s ⇒(1) t, s:S, t:T .

4.1 Calculus Rules for Reachability

Reachability by conditional narrowing is achieved using the calculus rules pre-
sented in Sect. 3, extended with the following calculus rules, based on the deduc-
tion rules for rewrite theories in Fig. 2. Rule [X] solves reachability problems by
unification; rule [R] applies one step of reachability narrowing; rule [T] enables
reachability narrowing modulo and multiple steps of reachability narrowing. It
is a direct consequence of Lemma 1; rule [I] allows us to imitate narrowing at
non root term positions, replacing the rewriting rule for congruence, that can
now be achieved by transitivity and imitation. Recall that narrowing steps for
reachability (⇒1), which are generated by rule [T], impose no sort within the
given kind on the right side of the step:

– [X] reflexivity
s:S ⇒ t:T,G′

s:S = t:T,G′

– [R] replacement
s:S ⇒1 X[S]:[S], G′

(s:S, (c,), G′)ρθ

where s is not a variable, (c)rl l ⇒ r (if c) is a fresh variant of a
(conditional)rule in R, ρ = {X[S] �→ r}, θ ∈ CSUA(s = l).

– [T] transitivity

s:S ⇒ t:T,G′

s:S → X ′
S :S,X ′

S :S ⇒1 X ′′
[S]:[S],X ′′

[S]:[S] ⇒ t:T,G′

where X ′
S and X ′′

[S] are fresh variables.

92 L. Aguirre et al.

– [I] imitation
f(s̄:S̄):S ⇒1 X[S]:[S], G′

si:Si ⇒1 X ′
Si

:Si, f(s̄:S̄):S,G′θ

where X[S] /∈Var(s), θ = {X[S] �→ f((s1, . . .,X ′
Si

:Si, . . ., sn))}, X ′
Si

fresh variable.

From a reachability goal r a derivation is made applying rules of the calculus.
Each application of the reflexivity rule generates a unification equation. These
unification equations as well as any generated membership goals must be solved
using the calculus rules for unification. If the derivation ends with an empty goal,
written �, then the composition of the substitutions used on each derivation step,
restricted to those variables appearing in r, is a computed answer for r.

Theorem 2. The calculus for reachability is sound and weakly complete.

That is, given a reachability goal G, if G �∗
σ � then Gσ can be derived, so σ is

a solution for G in →R/E , and if θ is an R/E-normalized idempotent answer for
a reachability problem G in →R/E , then there is σ idempotent, with θ �E σ,
such that G �∗

σ �.

Proof. We prove correctness of the calculus for reachability with respect to R/E-
normalized (equivalently R ∪ E,A) idempotent substitutions for the executable
rewrite theory R = (Σ, E , R) in →R/E .

1. Soundness: By structural induction on the calculus rule for reachability applied.
2. Completeness: We prove that for R/E-normalized idempotent answers ⇒1

solves →1
R,A reachability problems and ⇒ solves →∗

R/E reachability problems,
according to [MT07, Theorem 3] and Lemma 1. Then it follows that if θ is an
R/E-normalized idempotent answer for a reachability problem G in →R/E ,
then there is σ idempotent, with θ �E σ, such that G �∗

σ �. Inferred sorts
are treated as in the proof of completeness of the calculus for unification (see
extended version). We don’t show the inferred sorts here.
(a) We prove that if sρ →1

R,A t then s ⇒1 t′ �∗
σ �, with ρ�Eσ and t�Et′.

By definition there is a position p in sρ, a rule l→r if c ∈ R and a
matching θ such that sρ|p=lθ, cθ can be derived and t ≡ (sρ)[rθ]p.
By the same reasoning we used for the completeness of the calculus for
unification, p must be a nonvariable position in s. Otherwise ρ would not
be R/E-normalized. From s ⇒1 X, by imitation we can reach position p,
turning our reachability problem into s|p ⇒1 Xp with η={X �→ s[Xp]p}.
Applying replacement, as sρ|p=lθ, there is σ(≡ ρ′ ∪θ′) ∈ CSUA(sρ|p=l),
with ρ �E ρ′, θ �E θ′ and t′ ≡ Xησ ≡ (sρ′)[rθ′]p.

It is important to remember, again, that ACU-coherence completion
allows A-unification of the left term of the ACU-coherence completed
version of the rule, l, with the whole sρ|p whenever the original left term
l can be A-unified with some subterm of a recombination of sρ|p.

(b) We prove that if sρ →∗
R/E tρ, ρ is a solution, then s ⇒ t �∗

σ �, with
ρ �E σ. We distinguish two cases:

Conditional Narrowing Modulo in Rewriting Logic and Maude 93

– Reflexive case: sρ =E tρ. Then s⇒t �[X] s=t �∗
σ �, with ρ �E σ

by correctness of the calculus for unification.
– Rest of the cases: According to [MT07, Lemmas 7 and 8] and the

Lemma in Sect. 2.4 it suffices to show that (�∗
E,A�R,A)+ =E is

implemented by ⇒. This is done in the transitivity rule

s:S ⇒ t:T,G′

s:S → X ′
S :S,X ′

S :S ⇒1 X ′′
[S]:[S],X ′′

[S]:[S] ⇒ t:T,G′

s:S → X ′
S implements �∗

E,A as proved in the calculus for unification.
X ′

S :S ⇒1 X ′′
[S]:[S] implements �R,A as proved in the previous point.

X ′′
[S]:[S] ⇒ t:T allows iteration (the + part) through several uses of

the transitivity rule ending with the =E part through the use of the
reflexivity rule, which is the only rule that enables us to exit the loop
generated by the transitivity rule.

Finally, correct typing is ensured because s:S and t:T are included
as conditions.

5 Example

As an example of our calculus we use the specification of the Tower of Hanoi
puzzle in Sect. 2 and the reachability problem

(3T 0
T , b, c):S ⇒ (a, b, T 1

T):S

where from a State composed of one Tower with Disk 3 on top of it and
two Towers with Rods b and c alone respectively we want to reach a State
composed of two Towers with Rods a and b alone respectively and another
Tower. The subindex of each variable means its type (sort or kind) and we write
D,R, V, T, P, S instead of Disk, Rod, ValidT, Tower, Pair, State for readability.:

1. (3T 0
T , b, c):S ⇒ (a, b, T 1

T):S �[T]

Transitivity decomposes reachability into several rewriting narrowing steps.
2. (3T 0

T , b, c):S → X1
S :S,X1

S :S ⇒1 X2
[S]:[S],X2

[S]:[S] ⇒ (a, b, T 1
T):S

�[r],{T 0
T �→a,X1

S �→(3a,b,c)} T 0
T is instantiated through rule [r].

3. (3a, b, c):S, (3a, b, c):S ⇒1 X2
[S]:[S],X2

[S]:[S] ⇒ (a, b, T 1
T):S

We focus on the first subgoal.
4. (3a, b, c):S �[m2],S1

[S],S
2
[S]:S if S1

[S]:S
∧

S2
[S]:S,{S1

[S] �→(3a,b),S2
[S] �→c}

5. c:S, (3a, b):S � . . .
6. 3a:S �[m2],X[D]R[R]:V if X[D]:D

∧

R[R]:R,{X[D] �→3,R[R] �→a}. OK because V ≤ S.
7. 3:D, a:R � . . . similar to previous steps. First subgoal finished.
8. (3a, b, c):S ⇒1 X2

[S]:[S],X2
[S]:[S] ⇒ (a, b, T 1

T):S. We focus on the first subgoal.

94 L. Aguirre et al.

9. (3a, b, c):S ⇒1 X2
[S]:[S] �[R],D[T],E[T],X[S]→F[T],G[T],X[S] if

D[T]:T∧E[T]:T∧X[S]:S∧F[T]:T∧G[T]:T∧F[T]−G[T]:=move(D[T]−E[T]),

θ={D[T] �→3a,E[T] �→c,X[S] �→b},ρ={X2
[S]:[S] �→F[T],G[T],X[S]} Narrowing step.

10. (3a, b, c):S, 3a:T, c:T, b:S, (F[T] − G[T]):[P] := move(3a − c):[P] � . . .

11. F[T] − G[T]:[P] := move(3a − c):[P] �[x]

12. move(3a − c):[P] → F[T] − G[T]:[P] �[t]

Transitivity decomposes unification into several unification narrowing steps.
13. move(3a − c):[P] →1 Y[P]:[P], Y[P]:[P] → F[T] − G[T]:[P] �[n],

move(X[D]T[T]−R[R])=T[T]−X[D]R[R] if X[D]:D
∧

T[T]:T
∧

R[R]:R,

θ={X[D] �→3,T[T] �→a,R[R] �→c},ρ={Y[P] �→T[T]−X[D]R[R]}
Unification narrowing step. Y[P] is instantiated to a ground term.

14. a − 3c:[P], 3:[D], a:[T], c:[R], a − 3c:[P] → F[T] − G[T]:[P] � . . .

15. a − 3c:[P] → F[T] − G[T]:[P] �[r],θ1={F[T] �→a,G[T] �→3c} Removal of equations.

16. a − 3c:[P] � . . . We omit this and go back to the second subgoal on step 8.

17. (a, 3c, b) : [S] ⇒ (a, b, T 1
T):S �[X] . . .

18. (a, 3c, b) : S → XS :S, (a, b, T 1
T):S → XS :S �[r],{XS �→(a,3c,b)}

19. (a, 3c, b) : S, (a, b, T 1
T):S → (a, 3c, b):S � . . .

20. (a, b, T 1
T):S → (a, 3c, b):S �[r],{T 1

T �→3c} T 1
T is instantiated through rule [r].

21. (a, b, 3c) : S � . . . �

From the substitutions in steps 2 and 20 the answer {T 1
T �→ 3c, T 0

T �→ a} is
computed. The calculus has found the solution (3a, b, c):S ⇒ (a, b, 3c):S which
is an instance of the given reachability problem (3T 0

T , b, c):S ⇒ (a, b, T 1
T):S.

6 Related Work, Conclusions and Future Work

A classic reference in equational conditional narrowing modulo is the work of
Bockmayr [Boc93]. The topic is addressed here for Church-Rosser equational
CTRS with empty axioms, but non terminating axioms (like ACU) are not
allowed. Non conditional narrowing modulo order-sorted equational logics is
covered by Meseguer and Thati [MT07], the reference for recent development
in this area, which is actively being used for cryptographic protocol analysis.
This work is partially based on the work of Viry [Vir94] where R/E rewrit-
ing is defined in terms of R,A and E,A for unsorted rewrite theories. Another
topic addressed by the present work, membership equational logic, is defined by
Meseguer [Mes97]. An equivalent rewrite system for Mel theories is presented
by Durán, Lucas et al. [DLM+08], allowing unification by rewriting. Strategies,
which also play a main role in narrowing, have been studied by Antoy, Echahed
and Hanus [AEH94]. Their needed narrowing strategy, for inductively sequential
rewrite systems, generates only narrowing steps leading to a computed answer.
The use of this lazy narrowing strategy has been explained by Alpuente, Lucas
and Escobar [ALE99] inside the programming language Curry. Recently Escobar,

Conditional Narrowing Modulo in Rewriting Logic and Maude 95

Sasse, and Meseguer [ESM12] have developed the concepts of variant and folding
variant, a narrowing strategy for order-sorted unconditional rewrite theories that
terminates on those theories having the finite variant property. As an extension
to rewrite theories Bruni and Meseguer [BM06] have defined generalized rewrite
theories that support context-sensitive rewriting, thus allowing rewrites only on
certain positions of terms.

In this work we have developed a narrowing calculus for unification in mem-
bership equational logic and a narrowing calculus for reachability in rewrite
theories with an underlying membership equational logic. The main features in
these calculi are that they make use of membership information whenever pos-
sible, reducing the state space, and also that they only allow steps leading to
a different state, no mutual cancelling steps are allowed. The calculi have been
proved correct. This work is part of a bigger effort where we attempt to explore
the possibilities of performing conditional narrowing with constraint solvers.
A transformation for rules and goals that will make both calculi strongly com-
plete is under study. Strong completeness of reachability for topmost rewrite
theories, Russian dolls configurations and linear theories are also under study.
Finally, decidability of the calculus for unification in the case of operationally
terminating Mel theories with a finitary and complete A-unification algorithm
[LM09], using the required strategy for deterministic 3-CTRS’s of solving sub-
goals from left to right, is being studied.

Our current line of investigation also intends to study the extension of the
calculi to handle constraints and their connection with external constraint solvers
for domains such as finite domains, integers, Boolean values, etc., that could
greatly improve the performance of any implementation. We also plan on the
extension of the calculi, adding support for generalized rewrite theories. Better
strategies that may help reducing the state space will also be studied. All the
improvements will have new sets of transformation rules that will allow their
implementation on Maude.

Acknowledgments. We are very grateful to Santiago Escobar and the referees for
their helpful comments and suggestions to improve this paper. Santiago also deserves
special thanks for many conversations about narrowing and everything else.

References

[ALE99] Alpuente, M., Lucas, S., Escobar, S.: An incremental needed narrowing cal-
culus for curry. In: Meo, M.C., Ferro, M.V. (eds.) APPIA-GULP-PRODE,
pp. 75–88 (1999)

[AEH94] Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. In:
Boehm, H.-J., Lang, B., Yellin, D.M. (eds.) POPL, pp. 268–279. ACM
Press (1994)

[BM06] Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite the-
ories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)

[BM12] Bae, K., Meseguer, J.: Model checking LTLR formulas under localized
fairness. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 99–117.
Springer, Heidelberg (2012)

96 L. Aguirre et al.

[Boc93] Bockmayr, A.: Conditional narrowing modulo a set of equations. Appl.
Algebra Eng. Commun. Comput. 4, 147–168 (1993)

[CDE+07] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C. (eds.): All About Maude - A High-Performance Logical
Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)

[CM96] Clavel, M., Meseguer, J.: Reflection and strategies in rewriting logic. Elec-
tron. Notes Theor. Comput. Sci. 4, 126–148 (1996)

[DLM+08] Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving opera-
tional termination of membership equational programs. High. Order Sym-
bolic Comput. 21(1–2), 59–88 (2008)

[DM12] Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties
of conditional order-sorted rewrite theories. J. Logic Algebraic Program.
81(7–8), 816–850 (2012)

[EMM05] Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference sys-
tem for the NRL protocol analyzer: grammar generation. In: Atluri, V.,
Samarati, P., Küsters, R., Mitchell, J.C. (eds.) FMSE, pp. 1–12. ACM
(2005)

[ESM12] Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal
variant termination. J. Logic Algebraic Program. 81(7–8), 898–928 (2012)

[Fay78] Fay, M.J.: First-Order Unification in an Equational Theory. University of
California, Santa Cruz (1978)

[LM09] Lucas, S., Meseguer, J.: Operational termination of membership equational
programs: the order-sorted way. Electr. Notes Theor. Comput. Sci. 238(3),
207–225 (2009)

[Mes90] Meseguer, J.: Rewriting as a unified model of concurrency. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR ’90. LNCS, vol. 458, pp. 384–400.
Springer, Heidelberg (1990)

[Mes97] Meseguer, J.: Membership algebra as a logical framework for equational
specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376,
pp. 18–61. Springer, Heidelberg (1998)

[MT07] Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing
and its application to verification of cryptographic protocols. High. Order
Symbolic Comput. 20(1–2), 123–160 (2007)

[Ohl02] Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York
(2002)

[Vir94] Viry, P.: Rewriting: an effective model of concurrency. In: Halatsis, C.,
Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 648–660. Springer, Heidelberg (1994)

Language Definitions as Rewrite Theories

Andrei Arusoaie1(B), Dorel Lucanu1, Vlad Rusu2, Traian-Florin Şerbănuţă1,3,
Andrei Ştefănescu4, and Grigore Roşu4

1 Alexandru Ioan Cuza University, Iaşi, Romania
andrei.arusoaie@gmail.com

2 Inria Lille Nord Europe, Lille, France
3 University of Bucharest, Bucharest, Romania

4 University of Illinois at Urbana-Champaign, Champaign, USA

Abstract. K is a formal framework for defining the operational seman-
tics of programming languages. It includes software tools for compiling K
language definitions to Maude rewrite theories, for executing programs
in the defined languages based on the Maude rewriting engine, and for
analyzing programs by adapting various Maude analysis tools. A recent
extension to the K tool suite is an automatic transformation of language
definitions that enables the symbolic execution of programs, i.e., the exe-
cution of programs with symbolic inputs. In this paper we investigate the
theoretical relationships between K language definitions and their trans-
lations to Maude, between symbolic extensions of K definitions and their
Maude encodings, and how the relations between K definitions and their
symbolic extensions are reflected on their respective representations in
Maude. These results show, in particular, how analyses performed with
Maude tools can be formally lifted up to the original language definitions.

1 Introduction

K [11] is a framework for formally defining the semantics of programming lan-
guages. The current version of K includes options that have Maude [3] as a
backend: the K compiler transforms any K definition into a Maude module; then,
the K runner uses Maude to run or analyze programs in the defined language.

Recently, K has been extended with symbolic execution support [2]. Briefly,
a K language definition is automatically transformed into a symbolic-language
definition, such that the concrete executions of programs using the symbolic defi-
nition are symbolic executions of programs using the original language definition.
The transformation amounts to incorporating path conditions in program con-
figurations, and to changing the language’s semantic rules so that they match on
symbolic configurations and that they automatically update the path conditions.

Symbolic executions are called feasible if their path conditions are satisfiable.
Two results relating concrete and symbolic program executions are proved in [2]:
coverage, saying that for each concrete execution there is a feasible symbolic one
taking the same path on the program; and precision, saying that for each feasible
symbolic execution there is a concrete one taking the same program path.
c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 97–112, 2014.
DOI: 10.1007/978-3-319-12904-4 5

98 A. Arusoaie et al.

In this paper we propose two ways of representing K language definitions
in Maude: a faithful representation and an approximate one. We then study
the relationships between K language definitions (including the symbolic ones,
obtained by the above-described transformation) and their representations in
Maude. We also show how the coverage and precision results, which relate a
language L and its symbolic extension Ls, are reflected on their respective rep-
resentations in Maude. These results show, in particular, how (symbolic) analyses
performed with Maude tools on the (faithful and approximate) Maude represen-
tations of languages can be lifted up to the original language definitions. The
various results that we have obtained can be graphically depicted as in following
diagram (dashed arrows show the results proved in the paper):

In the faithful encoding, each semantic rule of the language definition L is
translated into a rewrite rule of the rewrite theory R(L). Equations are only
introduced in order to express equality in the data domain. The resulting rewrite
theory is proved to be executable by Maude, and the transition system gener-
ated by the language definition is shown to be isomorphic to the one generated
by the rewrite theory. Some variations of this encoding are also discussed, all
of which satisfy the executability and faithfulness properties. As a consequence,
both positive and negative results of reachability analyses, obtained on rewrite
theories (i.e., by using the Maude search command) also hold on the original lan-
guage definitions. Moreover, all symbolic reachability analysis results obtained
on the rewrite-theory representation R(Ls) of a symbolic language Ls also hold
on the rewrite-theory representation R(L) of the language L. The latter prop-
erty is analoguous to the results obtained in [10], where rewriting modulo SMT
is shown to be related to (usual) rewriting in a sound and complete way.

For nontrivial language definitions, the faithful encoding is not very practi-
cal, because it typically generates a huge state-space that is not amenable to
reachability analysis. This is why we introduce approximate representations of
language definitions as two-layered rewrite theories. These approximations are
obtained by splitting the semantic rules of the language into two sets, called lay-
ers, such that the first layer forms a terminating rewrite system. The one-step
rewriting in such a theory is obtained by computing an irreducible form w.r.t.
rules from the first layer (according to a given strategy), and then applying a
rule from the second layer. A simple example of a two-layered rewrite theory is
a Maude module consisting of equations and rules, where the equations (denot-
ing the first layer) are only required to be terminating, and both the equations

Language Definitions as Rewrite Theories 99

and rules (which form the second layer) specify transitions in the underlying
transition-system model of the theory.

In an (approximating) two-layered rewrite theory R(L), only a subset of the
executions of programs in the original language L are represented. The conse-
quence is that only positive results of reachability analyses on the two-layered
rewrite theories can be lifted up to the corresponding language definitions. In
addition to reducing the state-space to be explored, the approximate encoding
of a language by a two-layered rewrite theory can also be seen as the output of
a compiler that solves some semantic choices left by the language definition at
compile-time. For example, in C, the order in which the operands of addition
are evaluated is a compile-time choice. By turning the operand-evaluation rules
into first-layer rules, and by letting Maude automatically execute these rules
in various orders according to certain strategies, one can reproduce the various
design compile-time choices for the evaluation of arguments.

We note that approximating two-layered rewrite theories have some limita-
tions: only the coverage property relating the language definition L to its sym-
bolic version Ls also holds on their respective approximate encodings theories;
the precision property holds only in some restricted cases. However, the precision
property between the approximate symbolic encoding R(Ls) and the language
definition L always holds. Hence, one can trace symbolic reachability analyses
(performed on R(Ls)) back to programs in L, and also (in some restricted cases)
to the representation of programs in R(L), which, as discussed above, can be
seen as compiled programs where some semantic choices are left to the compiler.

Organisation. In Sect. 2 we present our working examples, which are two pro-
grams belonging to the CinK kernel of C++, which was specified in K [7].
A partial description of the K definition for CinK is included. In Sect. 3 we
introduce a formal notion of a language-definition framework, which allows us
to make our approach independent of the K language definitional framework and
to abstract away some particular implementation details of K . For the same rea-
son, we will be using rewrite theories (instead of their implementations as Maude
modules) for the encodings of language definitions. We also briefly present the
language-independent symbolic execution approach [2] and recap some essential
notions related to the executability of rewrite theories.

Section 4 presents the faithful and the approximate representations of lan-
guage definitions into a rewrite theory and the various relations between them
(graphically depicted in the above diagram). Section 5 presents the applications
of these representations to the compilation of K language definitions as Maude
modules. Finally, Sect. 6 presents conclusions and related work.

2 Running Example

Our running example is CinK [7], a kernel of the C++ programming language.
The K definition of CinK can be found on the K Framework Github repository:
http://github.com/kframework/cink-semantics. As any K definition, it consists
of the language syntax, given using a BNF-style grammar, and of its semantics,

http://github.com/kframework/cink-semantics

100 A. Arusoaie et al.

given using rewrite rules on configurations. In this paper we only exhibit a small
part of the K definition of CinK, whose syntax is shown in Fig. 1. Some of the
grammar productions are annotated with K -specific attributes.

Fig. 1. CinK syntax

A major feature of C++ expressions is that given by the “sequenced before”
relation [1], which defines a partial order over the evaluation of subexpressions.
This can be easily expressed in K using the strict attribute to specify an eval-
uation order for an operation’s operands. If the operator is annotated with the
strict attribute then its operands will be evaluated in a nondeterministic order.
For instance, all the binary operations are strict. Hence, they may induce non-
determinism in programs because of possible side-effects in their arguments.

Another feature is given by the classification of expressions into rvalues and
lvalues. The arguments of binary operations are evaluated as rvalues and their
results are also rvalues, while, e.g., both the argument of the prefix-increment
operation and its result are lvalues. The strict attribute for such operations has
a sub-attribute context for wrapping any subexpression that must be evaluated
as an rvalue. Other attributes (funcall , divide, plus,minus, . . .) are names asso-
ciated to each syntactic production, which can be used for referring to them.

The K framework uses configurations to store program states. A configuration
is a nested structure of cells, which typically include the program to be executed,
input and output streams, values for program variables, and other additional infor-
mation. The configuration of CinK (Fig. 2) includes the 〈〉k cell containing the code
that remains to be executed, which is represented as a list of computation tasks
C1 � C2 � . . . to be executed in the given order. Computation tasks are typ-
ically statements and expression evaluations. The memory is modeled using two
cells 〈〉env (which holds a map from variables to addresses) and 〈〉state (which holds
a map from addresses to values). The configuration also includes a cell for the
function call stack and another one for the return values of functions.

Fig. 2. CinK configuration

Language Definitions as Rewrite Theories 101

When the configuration is initialised at runtime, a CinK program is loaded
in the 〈〉k cell, and all the other cells remain empty. A K rule is a topmost
rewrite rule specifying transitions between configurations. Since usually only a
small part of the configuration is changed by a rule, a configuration abstraction
mechanism is used, allowing one to only specify the parts transformed by the
rule. For instance, the (abstract) rule for addition, shown in Fig. 3, represents
the (concrete) rule

〈〈I1+I2 � C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg
⇒
〈〈I1 +Int I2 � C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg

Fig. 3. Subset of rules from the K semantics of CinK

where +Int is the mathematical operation for addition. Note that the ellipses in
a cell (e.g., 〈 ···〉k) represent the part of the cell not affected by the rule.

The rule for division has a side condition which restricts its application.
The conditional statement if has two corresponding rules, one for each possible
evaluation of the condition expression. The rule for the while loop is unrolled
into an if statement. The increment and update rules have side effects in the
〈〉store cell, modifying the value stored at a specific address. Finally, the reading
of a value from the memory is specified by the lookup rule, which matches a
value in the 〈〉store and places it in the 〈〉k cell. The auxiliary construct $lookup
is used, e.g., when a program variable is evaluated as an rvalue.

In addition to these rules (writtten by the K user), the K framework automat-
ically generates so-called heating and cooling rules, which are induced by strict
attributes. We show only the case of division, which is strict in both arguments:

A1 / A2 ⇒⇒⇒ rvalue(A1) � � / A2 (1)

A1 / A2 ⇒⇒⇒ rvalue(A2) � A1 / � (2)

rvalue(I1) � � / A2 ⇒⇒⇒ I1 / A2 (3)

rvalue(I2) � A1 / � ⇒⇒⇒ A1 / I2 (4)

where � is a special symbol, destined to receive the result of an evaluation.
We shall be using the following two programs in the sequel. The program

counter in Fig. 4 is nondeterministic; nondeterminism arises from the undefined

102 A. Arusoaie et al.

Fig. 4. Two C++ programs

evaluation order for the arguments of the + operation and from the side-effects
in its arguments. The program log in the same figure is a symbolic one because
A:Int is a symbolic value, which can denote any integer value. When it is com-
pleted the variable k holds [log2(A)] where [] denotes the integer part of a
real number. In Sect. 5 we show how the behaviours of these programs can be
analysed using our encodings of the CinK language as Maude programs.

3 Background

3.1 The Ingredients of a Language Definition

In this section we identify the ingredients of language definitions in an algebraic
and term-rewriting setting. The concepts are explained on the K definition of
CinK. We assume the reader is familiar with the basics of algebraic specification
and rewriting. A language L can be defined as a triple (Σ, T ,S), consisting of:

1. A many-sorted algebraic signature Σ, which includes at least a sort Cfg for
configurations and a sort Bool for constraint formulas. For the sake of pre-
sentation, we assume in this paper that the constraint formulas are Boolean
terms built with a subsignature ΣBool ⊆ Σ including the boolean constants
and operations. Σ may also include other subsignatures for other data sorts,
depending on the language L (e.g., integers, identifiers, lists, maps,. . .). Let
ΣData denote the subsignature of Σ consisting of all data sorts and their
operations. We assume that the sort Cfg and the syntax of L are not data,
i.e., they are defined in Σ \ ΣData. Let TΣ denote the Σ-algebra of ground
terms and TΣ,s denote the set of ground terms of sort s. Given a sort-wise
infinite set of variables Var , let TΣ(Var) denote the free Σ-algebra of terms
with variables, TΣ,s(Var) denote the set of terms of sort s with variables, and
var(t) denote the set of variables occurring in the term t.

2. A ΣData-model D, which interprets the data sorts and operations. For conve-
nience, we assume that Dd ⊂ Σd for each data sort d, i.e., the constants are
elements of the corresponding signature. Let T � T (D) denote the free Σ-
model generated by D. The satisfaction relation ρ |= b between valuations ρ

Language Definitions as Rewrite Theories 103

and constraint formulas b ∈ TΣ,Bool(Var) is defined by ρ |= b iff ρ(b) = Dtrue .
For simplicity, we write true, false, 0, 1 . . . instead of Dtrue ,Dfalse ,D0,D1,

3. A set S of rewrite rules. Each rule is a pair of the form l∧∧∧ b ⇒⇒⇒ r, where l, r ∈
TΣ,Cfg(Var) are the rule’s left-hand-side and right-hand-side, respectively,
and b ∈ TΣ,Bool(Var) is the condition. The formal definitions for rules and
for the transition system defined by them are given below.

Remark 1. For the sake of presentation, here we consider only “pure” language
definitions, where the semantics is given only by semantic rules between configu-
rations. Some definitions may include additional functions defined by equations.
For such cases the language definition may additionally includes a set of axioms
A0, e.g., associativity and/or commutativity of some functions, and a set of equa-
tions E0. Then the model T is the free algebra modulo A0 ∪E0. We believe that
the approach presented in this paper can be extended to these more involved
definitions, but this requires more investigation and is left for future work.

We now formally introduce the notions required for defining semantic rules.

Definition 1 (pattern [12]). A pattern is an expression of the form π ∧∧∧ b,
where π ∈ TΣ,Cfg(Var) is a basic pattern and b ∈ TΣ,Bool(Var). If γ ∈ TCfg and
ρ :Var → T then we write (γ, ρ) |= π ∧∧∧ b iff γ = ρ(π) and ρ |= b.

A basic pattern π defines a set of (concrete) configurations, and the condition b
gives additional constraints these configurations must satisfy.

Remark 2. The above definition is a particular case of a definition in [12]. There,
a pattern is a first-order logic formula with configuration terms as sub-formulas.
In this paper we keep the conjunction notation from first-order logic but separate
basic patterns from constraints. Note that first-order formulas can be encoded as
terms of sort Bool, where the quantifiers become constructors. The satisfaction
relation |= is then defined, for such terms, like the usual FOL satisfaction.

We identify basic patterns π with patterns π ∧∧∧ true. Sample patterns are
〈〈I1 + I2 � C〉k〈Env〉env〉cfg and 〈〈I1 / I2 � C〉k〈Env〉env〉cfg ∧∧∧ I2 �=Int 0.

Definition 2 (rule, transition system). A rule is a pair of patterns of the
form l ∧∧∧ b ⇒⇒⇒ r (note that r is in fact the pattern r ∧∧∧ true). Any set S of rules
defines a labelled transition system (TCfg ,⇒S) such that γ

α=⇒S γ′ iff there exist
α � (l ∧∧∧ b ⇒⇒⇒ r) ∈ S and ρ : Var → T such that (γ, ρ) |= l ∧∧∧ b and (γ′, ρ) |= r.

3.2 Symbolic Execution

We briefly recap our approach to symbolic execution from [2]. The main idea is
to automatically generate a new definition (Σs, T s,Ss) for a language Ls from
a given definition (Σ, T ,S) of a language L. The new language Ls has the same
syntax, and its semantics extends L’s data domains with symbolic values and
adapts the semantical rules of L to deal with the new domains.

Let V s denote an infinite, data sort-wise set of symbolic values, disjoint from
Var and from symbols in Σ. The data algebra is extended to Ds, which is the
algebra of ground terms over the signature ΣData(V s).

104 A. Arusoaie et al.

Remark 3. The approach in [2] allows some freedom in choosing the algebra Ds,
to enable the use of decision procedures for handling symbolic artifacts.

The signature Σs extends Σ with the symbolic values V s as constants, a new
sort Cfgs and a constructor ∧∧∧ : Cfg × Bool → Cfgs. The model T s is defined
as being the free Σs-model generated by Ds, similarly to how T is built over D.
The ground terms π ∧∧∧ φ ∈ T s

Cfgs are called symbolic configurations. Let [[π ∧∧∧ φ]]
denote the set of concrete configurations {γ | (∃ρ) (γ, ρ) |= π ∧∧∧ φ}.

Thanks to the rule transformation procedure presented in [2], we make with-
out loss of generality the assumption that the basic patterns in left-hand sides of
rules do not contain operations on data, and the rules are left-linear. Concrete
semantic rules l ∧∧∧ b ⇒⇒⇒ r ∈ S are then systematically transformed into rules

l ∧∧∧ ψ ⇒⇒⇒ r ∧∧∧ (ψ ∧ b) (5)

where ψ ∈ Var is a fresh variable of sort Bool playing the role of a path condition.
This means that symbolic rules are applied like concrete rules, except for the
fact that the current path condition ψ is enriched with the rule’s condition b.

Then, the symbolic execution of L programs is the concrete execution of
the corresponding Ls programs, i.e., the application of the rewrite rules in the
semantics of Ls. Building the definition of Ls amounts to extending the signature
Σ to a symbolic signature Σs, extending the Σ-algebra T to a Σs-algebra T s,
and turning the concrete rules S into symbolic rules Ss. The transition system
(T s

Cfgs ,⇒Ss) is defined using Definitions 1, 2 applied to Ls. In [2] it is proved
that the symbolic transition system forward-simulates the concrete one, and that
the concrete transition system backward-simulates the symbolic one. These two
results then imply the naturally expected properties of symbolic execution.

Theorem 1 (Coverage [2]). For every concrete execution γ0
α1=⇒S γ1

α2=⇒S
· · · αn=⇒S γn

αn+1=⇒S · · · there is a symbolic execution π0 ∧∧∧ φ0
α1=⇒Ss π1 ∧∧∧ φ1

α2=⇒Ss

· · · αn=⇒Ss πn ∧∧∧ φn
αn+1=⇒Ss · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

A symbolic configuration π ∧∧∧ φ ∈ T s
Cfgs is satisfiable if there is a valuation

ϑ : V s → D such that ϑ |= φ (which is equivalent to [[π ∧∧∧ φ]] �= ∅). We call a
symbolic execution feasible if all its configurations are satisfiable.

Theorem 2 (Precision [2]). For every feasible symbolic execution π0∧∧∧φ0
α1=⇒Ss

π1 ∧∧∧ φ1
α2=⇒Ss · · · αn=⇒Ss πn ∧∧∧ φn

αn+1=⇒Ss · · · there is a concrete execution
γ0

α1=⇒S γ1
α2=⇒S · · · αn=⇒S γn

αn+1=⇒S · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

3.3 Rewrite Theories

A rewrite theory [3] R = (Σ,E∪A,R) consists of a signature Σ, a set of equations
E, a set of axioms A, e.g., associativity, commutativity, unity or combinations
of these, and a set of rewrite rules R of the form l → r if b, where l and r
are terms with variables and b is a term of sort Bool. We are only interested in
rewrite theories R that are executable, i.e., (Σ,E ∪ A,R) where:

Language Definitions as Rewrite Theories 105

1. there exists a matching algorithm modulo A;
2. (Σ,E∪A) is ground Church-Rosser and terminating modulo A (the equations

E are seen here as rewrite rules oriented from left to right). Thus, each ground
term t has a canonical form canE/A(t) that is unique modulo the axioms A;

3. R is ground coherent w.r.t. E modulo A [13]: for all t, t1 ∈ TΣ with t →R/A t1
there is t2 ∈ TΣ s.t. canE/A(t) →R/A t2 and canE/A(t1) =A canE/A(t2).

The relation →R/A denotes the one-step rewriting relation defined by apply-
ing a rule from R modulo axioms A: u →R/A v iff there are the terms u′, v′,
a rule l → r if b in R, position p in u′, and substitution σ such that u =A u′,
v =A v′, u′|p = σ(l)1, v′ = u[σ(r)]p2, and σ(b) =A true.

The rewriting relation →R defined by an executable rewrite theory R is:
t1 →R t2 iff canE/A(t1) →R/A t′2 and canE/A(t′2) = t2. This is equivalent to
→R/(E∪A) due to confluence and coherence. We write t1

α−→R t2 to emphasise
that α � (l → r if b) ∈ R is applied in the rewriting step canE/A(t1)→R/A t′2.

4 Translating Language Definitions into Rewrite Theories

This section includes the main contribution of the paper. We introduce two
encodings of language definitions as rewrite theories: a faithful encoding and an
approximate encoding. Since the symbolic extension of a language is also a lan-
guage definition, we automatically get encodings of both concrete languages and
their symbolic extensions. We investigate how the properties relating a language
definition and its symbolic extension are reflected on their respective encodings.

Definition 3 (faithful encoding). Let L = (Σ, T ,S) be a language definition.
The faithful encoding of L is R(L) = (Σ,E ∪ A,R), where

– A = ∅;
– for each operation f in ΣData and d1, . . . , dn ∈ D of corresponding sorts, E

includes an equation f(d1, . . . , dn) = Df (d1, . . . , dn);
– R = S, where each rule π ∧∧∧ b ⇒⇒⇒ r ∈ S becomes a rewrite rule l → r if b ∈ R.

Theorem 3. Let L = (Σ, T ,S) be a language definition. Then R(L) is an
executable rewrite theory satisfying γ

α=⇒S γ′ iff γ
α−→R(L) γ′, for all γ, γ′ ∈ TCfg .

Remark 4. The construction of the rewrite theory R(L), with data domain D ⊆
ΣData defined by the set of equations E given in Definition 3, corresponds to the
data domains D being builtin sorts in the Maude terminology. A builtin sort is a
sort that is not built algebraically but one that, for efficiency reasons, is directly
implemented in code (C++ code in the case of Maude). For example, natural
numbers are specified by the equational specification 0 : Nat, s : Nat → Nat,
but using the resulting unary-notation for them would be highly inefficient. This
is why natural numbers are implemented as builtins. The construction R(L)
1 t|p denotes subterm of t at position p.
2 t[u]p denotes the term obtained from t by replacing the subterm at position p with u.

106 A. Arusoaie et al.

can, however, be extended to accomodate non-builtin sorts, i.e., sorts that are
defined as the initial model of a finite set of equations E′ that are confluent and
terminating modulo a set A of axioms. For this, it is enough to ensure that E′∪E
is also confluent and terminating modulo A - where E is the set of equations given
in the proof of Theorem 3. This typically happens, as E and E′ refer to different
sorts - the builtin ones for the former, and the non-builtin ones for the latter. If
this is the case then the proof of the ground coherence property in Theorem 3
still holds, because it only depends on E′ ∪ E being confluent and terminating
modulo A, not on the particular form of the equations. The proof of faithfulness
of the encoding remains the same. This observation is important, since it ensures
that we obtain executable Maude rewrite-theories R(L) for languages-definitions
L whose data are specified using either bulitin sorts or non-builtin sorts. The
faithfulness of the encoding then ensures that all results of reachability analyses
(either positive or negative) performed on R(L), e.g., obtained using Maude’s
search command, also hold on L.

The symbolic extension of a language definition can be encoded as a rewrite
theory as well. Let Ls = (Σs, T s,Ss) be the symbolic extension of L = (Σ, T ,S).
Recall that Σs is Σ extended with the constructor of symbolic configurations ∧∧∧
and with the symbolic values V s seen as constants. The symbolic configurations
are ground terms π∧∧∧φ ∈ T s

Cfgs . If R(Ls) = (Σs, E∪A,R) is the faithful encoding
given by Theorem 3, then E = A = ∅ because the data algebra Ds we considered
is the ΣData(V s)-algebra of the ground terms built over D and V s. Recall that
we assumed that D ⊆ Σ ⊆ ΣData(V s).

The relationship between a language definition L and its symbolic extension
Ls can be now reflected at the level of the encodings R(L) and R(Ls). A sym-
bolic configuration π ∧∧∧ φ consists of a configuration ground term π (of sort Cfg)
and a formula ground term φ (of sort Bool). The constants V s play the role of
logical variables, and the definition of satisfiability for patterns extends to their
representations as symbolic configurations. Moreover, the notion of feasible exe-
cution in R(Ls) is defined similarly to how it is defined for Ls. The following
two results are direct consequences of Theorems 3, 1, and 2, respectively.

Corollary 1 (Coverage for Encoding Rewrite Theories). For every con-
crete execution γ0

α0−→R(L) γ1
α2−→R(L) · · · αn−−→R(L) γn

αn+1−−−→R(L) · · · there
is a symbolic execution π0 ∧∧∧ φ0

α1−→R(Ls) π1 ∧∧∧ φ1
α2−→R(Ls) · · · αn−−→R(L) πn ∧∧∧

φn
αn+1−−−→R(Ls) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

Corollary 2 (Precision for Encoding Rewrite Theories). For every fea-
sible symbolic execution π0 ∧∧∧ φ0

α1−→R(Ls) π1 ∧∧∧ φ1
α2−→R(Ls) · · · αn−−→R(L)

πn ∧∧∧ φn
αn+1−−−→R(Ls) · · · there is a concrete execution γ0

α0−→R(L) γ1
α2−→R(L)

· · · αn−−→R(L) γn
αn+1−−−→R(L) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

The faithful encoding thus enjoys nice theoretical properties, but it has a limited
practical value when we consider actual K definitions of nontrivial languages:

Language Definitions as Rewrite Theories 107

– The heating and cooling rules, which are symmetric each other, may lead to
infinite rewritings;

– The generated state space may be very large, even for small programs.

There are currently two proposals for obtaining abstractions of the rewrite
theories: equational abstraction [9] or transforming some semantical rules into
equations [6].

The former amounts to basically deriving a new definition, where the new
model T is the quotient of the original one, usually requiring substantial input
from the user, which is something we would like to avoid.

The latter might not be suitable for language definitions in general because,
semantically, it would equate elements that are supposed to be distinct in T .
Consider a language construct randBool with two rules: randBool => true
and randBool => false. Assume now we want to analyze a program which
uses randBool, but who fails to satisfy a given property regardless of whether
randBool transits to true or to false. In this case it might beneficial to collapse
the state space by considering only one of the cases; however, if we transform the
two rules above into equations, this will semantically identify true and false in
T , collapsing much more of the state space than desirable. An additional oper-
ational concern is that transforming certain rules into equations might destroy
coherence and/or confluence, thus falling out of the executability requirements.

Two-layered rewrite theories, introduced below, allow us to preserve the ben-
efits of the techniques above (state space reduction, efficient execution), while
avoiding their semantical consequences (unnecessary collapse of states in the
semantical model T).

Definition 4. A two-layered rewrite theory is a tuple R = (Σ,E ∪ A, 1R ∪
2R, ε), where (Σ,E ∪ A, 1R ∪ 2R) is an executable rewrite theory, E ∪ 1R is
ground terminating modulo A, and ε : TΣ → TΣ is a function that, for any
t ∈ TΣ, returns an element in the set of (E ∪ 1R)/A-irreducible terms {t′ ∈
TΣ | t →!

(E∪1R)/A t′} (which is nonempty precisely because E ∪ 1R is ground
terminating modulo A). The one-step rewrite relation �R is defined by t1 �R t2
iff ε(t1) →2R/A t′2 and canE/A(t′2) =A t2.

Theorem 4. Let L = (Σ, T ,S) be a language definition and R(L) = (Σ,E ∪
A, 1R ∪ 2R, ε) be a two-layered rewrite theory with (Σ,E ∪ A, 1R ∪ 2R) built as
in Definition 3 but where the set of rules is partitioned into two subsets 1R and
2R and E ∪ 1R is terminating modulo A. If γ �R(L) γ′ then γ ⇒+

S γ′.
We say that R(L) is an approximate encoding of L.

Corollary 3 (precision for approximate encoding). Let L = (Σ, T ,S) be
a language definition and R(Ls) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approximate
encoding of Ls. For each feasible symbolic execution π0∧∧∧φ0 −→Rs π1∧∧∧φ1 −→R(Ls)

· · · −→R(Ls) πn ∧∧∧ φn −→R(Ls) · · · there is a concrete execution in L: γ0
α1=⇒+

S
γ1

α2=⇒+
S · · · αn=⇒+

S γn
αn+1=⇒+

S · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1,

108 A. Arusoaie et al.

An interesting and practically relevant question is whether the coverage/precision
relationships between L and Ls can be reflected on the level of the approx-
imate encodings as two-layered rewrite theories. To investigate these relation-
ships, we have to find a way to define an approximate two-layered rewrite theory
R(Ls) that extends a given approximate two-layered rewrite theory R(L). A first
attempt is to define R(Ls) = (Σs, E ∪ A, 1Rs ∪ 2Rs, εs) from R(L) in the same
way Ls is obtained from L, but this is not enough to have a coverage-like result.
The program log in Fig. 4 is deterministic and terminating for each ϑ(A) ∈ Int .
So we may execute any instance of it with an approximate encoding R having
no second-layer rules, i.e., 2R = ∅. If 2Rs = ∅, then 1Rs is non terminating
because there is an infinite execution corresponding to the case when the value
of the program variable X in the current configuration is always greater the zero.
Another problem is to specify how the strategy ε is extended to εs. Since it is
hard to give general definitions for these questions, we opted for a particular
solution that can be implemented in Maude.

Definition 5 (symbolic approximate encoding). Let Ls = (Σs, T s,Ss) be
the symbolic extension of L = (Σ, T ,S) and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) an
approximate encoding of L. We assume that there is a total order relation ≺
over 1R such that:

1. the rewrite t →!
(E∪1R)/A ε(t) uses the minimal rule from 1R w.r.t. ≺ whenever

such a rule is applicable;
2. if α is unconditional and α′ is conditional then α ≺ α′.

We let the approximated encoding of Ls be R(Ls) = (Σs, E ∪ A, 1Rs ∪ 2Rs, εs):

– 1Rs = {αs | α ∈ 1R, α unconditional};
– 2Rs = {αs | α ∈ 1R, α conditional} ∪ {αs | α ∈ 2R};
– αs ≺s α′s iff α ≺ α′;
– εs uses the minimal rule from 1Rs w.r.t. ≺s.

Theorem 5 (coverage for approximate rewrite theories). Let L =
(Σ, T ,S) be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an
approximate encoding of L. For every concrete execution γ0 −→R(L) γ1 −→R(L)

· · · −→R(L) γn −→R(L) · · · there is a symbolic execution π0 ∧∧∧ φ0 −→+
R(Ls)

π1 ∧∧∧ φ1 −→+
R(Ls) · · · −→+

R(Ls) πn ∧∧∧ φn −→+
R(Ls) · · · such that γi ∈ [[πi ∧∧∧ φi]] for

i = 0, 1,

However, the precision relationship between R(L) and R(Ls) does not hold
in general. The reason is that 1Rs has fewer rules than 1R and hence the
representative-selection strategy εs is weaker than ε. Therefore there are no
guarantees that the concrete execution given by Corollary 3 will be the same
with that chosen by the strategy ε. If the strategy εs is the “isomorphic image”
of ε via the transformation • �→ •s, then the precision result holds:

Theorem 6 (precision for approximate rewrite theories). Let L =
(Σ, T ,S) be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an

Language Definitions as Rewrite Theories 109

approximated encoding of L such that 1R includes only unconditional rules
(hence 1Rs = {αs | α ∈ 1R}). For every feasible symbolic execution π0 ∧∧∧
φ0 −→R(Ls) π1 ∧∧∧ φ1 −→R(Ls) · · · −→R(Ls) πn ∧∧∧ φn −→R(Ls) · · · there is a con-
crete one γ0 −→R(L) γ1 −→R(L) · · · −→R(L) γn −→R(L) · · · such that γi ∈ [[πi ∧∧∧ φi]]
for i = 0, 1,

5 Implementing the K Framework in Maude

The current implementation of the K framework uses Maude as a rewrite engine.
In [4], the framework, at that time called K-Maude, was presented as an extension
of Maude consisting in several meta-transformations which gradually translate
K modules into executable Maude modules. In the current version of K we use
a compiler for language definitions where each of these meta-transformations
is actually a separate compilation step. Through compilation, K definitions are
translated into Maude rewrite theories which are then used for running/analysing
programs. The main components of a K definition are the syntax declarations,
the configuration and the K (rewrite) rules. To these, the tool adds automatically
the rules generated from strictness annotations (e.g. heating/cooling rules 1–4.

The work described in this article is concerned with how the set of rules is
compiled into a two-layered rewrite theory, which is then encoded into Maude
by using equations for the first-layer rules and rewrite rules for the second-layer
rules. By default, all K rules are translated into (conditional) equations, that is
1R = S and 2R = ∅. This behavior can be altered by specifying (at compile
time) that certain rules are to be considered transitions, which will trigger their
transformation into (conditional) rewrite rules in the resulted Maude module.

To specify that a rule is a transition, one must pass the rule name as an
argument for the -transition option at compilation time:

$ kompile cink.k -transition "division"

The above command specifies the rule division as a transition; thus, the rule
for division is included in 2R. By this command we express our intent that the
tool considers the rule for division as a transition when exploring an execution’s
transition system. By making it a rewrite rule in Maude, we can explore the
non-determinism generated by the rule when using Maude’s search command.

Another source of non-determinism arises from strictness annotations. When
the strict attribute is given to some syntactical construct, the tool chooses by
default an arbitrary, fixed order to evaluate its arguments. This optimisation has
the side effect of possibly losing behaviours due to missed interleavings.

Some of these missed interleavings can be restored using the -superheat
option. This option is used to instruct the K tool to exhaustively explore all the
non-deterministic evaluation choices for the strictness of a language construct.

Once we know which rules are transitions and which are not, we can easily
deduce the two sets 1R and 2R, and thus we obtain the executable rewrite theory
R(L) as discussed in Sect. 4.

The following example shows how one can explore more behaviours by spec-
ifying second-layer rules at compile time. If we compile the language definition

110 A. Arusoaie et al.

of CinK without any options, then running the program counter (Fig. 4) will
result in a single solution, where the return value is either 1 (when the tool first
evaluates dec() and then inc()) or 3 (when it first evaluates inc() and then
dec()). However, if we set the operation plus as superheat:

$ kompile cink -superheat "plus"

then we obtain both solutions, because the heating rule for addition can be
applied in two ways and the option tells the tool to explore them both.

The symbolic transformations discussed in Sect. 3.2 are implemented as com-
pilation steps in the K compiler [2]. The tool uses the same translation to Maude
discussed above in order to obtain the rewrite theory R(Ls). An important step
in this process is that conditional rules whose conditions cannot be reduced to
true are compiled as transitions, that is, they are included in 2R. When per-
forming search in Maude, these rules are essential in exploring all the execution
paths, thereby ensuring the Coverage (Theorem 5) property. Note that none
of the symbolic transformations applied by the tool to the language definition
changes the initial semantics of the language.

The implementation uses a slightly modified version of Maude which includes
a hook to the Z3 SMT solver [5] and a corresponding operation called checkSat.
It receives as argument an SMTLib string, which is sent to the solver to check its
satisfiability. The result returned by the solver is propagated back through the
hook to Maude as a string, so checkSat can return “sat”, “unsat”, or “unknown”.
In practice, our tool uses checkSat to reduce the search space by slicing unfeasi-
ble execution paths, and thus being very important in preserving the precision
property. To obtain R(Ls) from a language definition one uses the symbolic
backend as follows:

$ kompile cink -backend symbolic

This command applies the symbolic transformations, moves the appropriate rules
in 2R, and generates the rewrite theory R(Ls). Using R(Ls) one can execute
programs using either concrete values or symbolic ones. However, running pro-
grams with symbolic values may lead to infinite loops when the loop conditions
contain symbolic values. In such cases one can bound the number of execution
paths:

$ krun log.imp -search -bound 3 -cIN=".List" -cPC="true"

This executes log (Fig. 4) symbolically, until a number of 3 solutions is found.
Each solution consists in a result configuration and a formula which constitutes
the path condition. The symbolic values are represented as fresh variables with
a specific sort (e.g. A:Int). These can also be passed as input at the command
line of the tool as arguments of the -cIN parameter. Users can also set the initial
path condition using the -cPC option. During the symbolic execution the tool
applies a rule only if the next state is feasible: the current path condition and
the new conditions imposed by the application of the rule are not “unsat”.

Language Definitions as Rewrite Theories 111

6 Conclusion and Related Work

We presented some results that relate language definitions to different kinds
of rewrite theories, which encode the language definitions both faithfully and
approximately. The results show how (symbolic) analyses performed on a rewrite
theory are reflected on the corresponding language definition. The general results
are applied to the current implementation of K language definitions in Maude.

The faitfful encoding of K language definitions as rewrite theories is relatively
simple but the resulting theory is not efficient in practice. Therefore we extended
the notion of rewrite theory in order to work with under-approximations of the
language definitions (and implicitly of the rewrite theories). The approximating
theories are more efficient and flexible – the user has the freedom to work with
various levels of approximations –, but heir use for program analysis must be
done with care because they do not preserve all the behavioural properties. The
coverage/precision results proved in this paper can help the user in correctly
assessing which analyses hold on which representations.

Related Work. K started as methodology for defining the semantics of the
programming languages in Maude. The first tool supporting K [4] was written
in Maude’s meta-level, as a series of transformations translating K definitions
into Maude programs. Then the K compiler became a more complex tool that
translates a K definition into an intermediate language, which is then used to
generate code for various backends, including Maude. A presentation of this tool
is given in [8]. There, a brief description of the semantics of K definitions is
also included. The programming-language definition framework presented here
in Sect. 3 is a specialised case of that definition.

The coverage and precision properties, which relate the faithful rewrite-
theory encoding of a language and of that language’s symbolic version, are
analoguous to the soundness and completeness results in [10], which relate usual
rewriting and rewriting modulo SMT. An interesting alternative to defining sym-
bolic execution by as executions in a transformed language (as we do it in [2])
would be to compile a language into a rewriting-modulo-SMT Maude module.

Our construction of two-layered rewrite theories have some similarities with
equational abstractions [9] and with the state-space reduction techniques obt-
ained by transforming rules into equations presented in [6]. However, our first-
layer rewrite rules do not equate states as Maude equations do; their semantics
is that of transformation, not of equality. Therefore these rules do not have to
satisfy the executability and property-preservation requirements of [6,9].

Acknowledgement. This work was supported by the strategic grant POSDRU/159/
1.5/S/137750, “Project Doctoral and Postdoctoral programs support for increased com-
petitiveness in Exact Sciences research” cofinanced by the European Social Found
within the Sectorial Operational Program Human Resources Development 2007–2013.

112 A. Arusoaie et al.

References

1. Standard for Programming Language C++. Working Draft. http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

2. Arusoaie, A., Lucanu, D., Rusu, V.: A generic framework for symbolic execu-
tion. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225,
pp. 281–301. Springer, Heidelberg (2013). (Also available as a technical report
at http://hal.inria.fr/hal-00766220/)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

4. Şerbănuţă, T.F., Roşu, G.: K-maude: a rewriting based tool for semantics of pro-
gramming languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp.
104–122. Springer, Heidelberg (2010)

5. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Farzan, A., Meseguer, J.: State space reduction of rewrite theories using invisible
transitions. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp.
142–157. Springer, Heidelberg (2006)

7. Lucanu, D., Serbanuta, T.F.: Cink - an exercise on how to think in k. Technical
Report TR 12–03, Version 2, Alexandru Ioan Cuza University, Faculty of Computer
Science, December 2013

8. Lucanu, D., Şerbănuţă, T.F., Roşu, G.: K framework distilled. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)

9. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theor. Com-
put. Sci. 403(2–3), 239–264 (2008)

10. Rocha, C., Meseguer, J., Munoz, C.A.: Rewriting modulo SMT. In: Escobar, S.
(ed.) WRLA 2014. LNCS, vol. 8663, pp. 247–262. Springer, Heidelberg (2014)

11. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

12. Roşu, G., Ştefănescu, A.: Checking reachability using matching logic. In: Leavens,
G.T., Dwyer, M.B. (eds) OOPSLA, pp. 555–574. ACM (2012)

13. Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285(2), 487–517
(2002)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf
http://hal.inria.fr/hal-00766220/

Infinite-State Model Checking of LTLR
Formulas Using Narrowing

Kyungmin Bae(B) and José Meseguer

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

{kbae4,meseguer}@cs.uiuc.edu

Abstract. The linear temporal logic of rewriting (LTLR) is a simple
extension of LTL that adds spatial action patterns to the logic, expressing
that a specific instance of an action described by a rewrite rule has been
performed. Although the theory and algorithms of LTLR for finite-state
model checking are well-developed [2], no theoretical foundations have
yet been developed for infinite-state LTLR model checking. The main
goal of this paper is to develop such foundations for narrowing-based
logical model checking of LTLR properties. A key theme in this paper is
the systematic relationship, in the form of a simulation with remarkably
good properties, between the concrete state space and the symbolic state
space. A related theme is the use of additional state space reduction
methods, such as folding and equational abstractions, that can in some
cases yield a finite symbolic state space.

Keywords: Model checking · Infinite-state systems · LTLR · Narrowing

1 Introduction

This paper further develops previous efforts to use rewriting logic and narrowing
to perform symbolic model checking of infinite-state systems.1 Those efforts have
gradually increased the expressiveness of the properties that can be verified, first
focusing on reachability analysis [16] and then expanding the range to general
LTL formulas [1,6]. It is by now clear that state-based temporal logics are not
expressive enough to deal with properties involving events, such as message
sends and receives; and that the temporal logic of rewriting [14] is a perfect
match—at the level of property specification—for rewriting logic—at the level of
system specification—so that both can be used seamlessly as a tandem for model
checking. For finite-state systems, the authors have developed model checkers
that demonstrate the power and usefulness of this tandem of logics [2]. The
question asked and positively answered in this paper is: can properties of a
rewrite theory R expressed in the linear temporal logic of rewriting (LTLR) [14]
be model checked symbolically by narrowing under reasonable assumptions?
1 The temporal logics that can be verified by infinite-state model checking techniques
are generally less expressive than those supported by finite-state model checkers.

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 113–129, 2014.
DOI: 10.1007/978-3-319-12904-4 6

114 K. Bae and J. Meseguer

The answer to this question is nontrivial, because of a difficulty which can
be best explained by briefly recalling how narrowing-based reachability analysis
and LTL model checking are performed for a rewrite theory R. For reachability
analysis, any non-variable term t, symbolically denoting a typically infinite set
of concrete state instances, can be narrowed to try to reach an instance of a
goal pattern term g. However, for LTL model checking, not all such terms t
denote states in the symbolic state space. The reason is that LTL formulas have
a set AP of state propositions, but for a symbolic term t such propositions
may not be defined: different term instances of t may satisfy different state
propositions. The solution proposed in [1,6] is to specialize t to most general
instances t1, . . . , tn for which all state propositions in AP are either true or
false. If the equations defining such propositions have the finite variant property,
this can be done by variant narrowing [1,6]. Therefore, narrowing-based LTL
model checking symbolically explores the state space of all such AP -instantiated
symbolic terms.

Suppose that we now want to perform not just LTL model checking but
symbolic LTLR model checking, and that our formula ϕ involves both state
propositions in AP and spatial action patterns. For example, a spatial action
pattern l(θ) can appear in ϕ, stating that a rule l : q −→ r has been performed
with an instantiation that further specializes the substitution θ. As part of the
model checking verification of ϕ we may reach a symbolic state t where we need
to check whether the action specified by l(θ) can be performed. This check will
succeed if t can be narrowed with a rule l and a substitution σ such that θ is
an instance of σ. However, σ can be incomparable to θ in general; that is, σ
may have instances for which this property holds, and other instances for which
it definitely fails. This is analogous to the lack of AP -instantiation discussed
above for narrowing-based LTL model checking. Let ACT be the set of spatial
action patterns we are using, so that, say, l(θ) ∈ ACT . Our problem is that
the symbolic transitions in the LTLR state space need to be ACT -instantiated,
while the symbolic states are AP -instantiated.

Lack of ACT -instantiations is a subtler problem than lack of AP -instantiation.
After all, state propositions in AP are equationally defined as Boolean predicates
in both their positive and negative cases, so that variant narrowing can automate
AP -instantiation. The problem of ACT -instantiation has to do with effectively
characterizing the negative cases in which an action pattern does not hold. This
turns out to be closely related to the problem of computing complement patterns
of a pattern term; e.g., for a pattern l(θ), terms u1, . . . , uk such that any ground
term is an instance of exactly one term in the set

{l(θ), u1, . . . , uk}.

Not all terms have such complements. For example, for an unsorted signature
with constant 0, unary operator s, and free binary operator f , the term f(x, x)
has no such complements. However, effective methods have been developed to
check when a term t has complements and to compute them (for example,
[8,9,12]). Under appropriate assumptions, they can provide a method to solve
the ACT -instantiation problem.

Infinite-State Model Checking of LTLR Formulas Using Narrowing 115

Having identified conditions under which the state space for narrowing-based
LTRL model checking can be built, the rest of the paper develops the theoretical
foundations of narrowing-based LTLR model checking. A key theme in such
foundations is the systematic relationship between concrete and symbolic states.
This takes the form of a simulation relation from concrete to symbolic states
that preserves both state propositions and spatial action patterns. A related
theme is the use of additional state space reduction methods, such as folding
and equational abstractions, that can in some cases yield a finite symbolic state
space. How these foundations can be used in practice to prove nontrivial LTLR
properties of infinite-state systems is illustrated with a running example.

2 Preliminaries

Rewriting Logic. An order-sorted signature is a triple Σ = (S,≤, Σ) with
poset of sorts (S,≤) and operators Σ = {Σw,k}(w,k)∈S∗×S typed in (S,≤). The
set TΣ(X)s denotes the set of Σ-terms of sort s over X an infinite set of S-sorted
variables, and TΣ,s denotes the set of ground Σ-terms of sort s. We assume that
TΣ,s �= ∅ for each sort s in Σ. Positions in a term t represent tree positions when
t is parsed as a tree, and the replacement in t of a subterm at a position p by
another term u is denoted by t[u]p. A substitution σ : X → TΣ(X) is a function
that maps variables to terms of the same sort, and is homomorphically extended
to TΣ(X) in a natural way. The domain of σ is a finite subset dom(σ) ⊆ X , where
σx = x for any x /∈ dom(σ). The restriction of σ to Y ⊆ X is the substitution
σ|Y such that σ|Y (x) = σ(x) if x ∈ Y , and σ|Y (x) = x otherwise.

A rewrite theory is a formal specification of a concurrent system [13]. To
apply narrowing-based methods, we consider unconditional order-sorted rewrite
theories R = (Σ,E,R), where: (i) (Σ,E) is an equational theory with Σ an
order-sorted signature and E a set of equations, specifying the system’s states
as the initial algebra TΣ/E (i.e., each state is an E-equivalence class [t]E ∈ TΣ/E

of ground terms); and R is a set of unconditional rewrite rules of the form
l : q −→ r with label l and Σ-terms q, r ∈ TΣ(X)s, specifying the system’s
transitions as a one-step rewrite

t[l(θ)]p : [t[θq]p]E −→R [t[θr]p]E

from a state [t[θq]p]E ∈ TΣ/E containing a substitution instance θq of q to the
corresponding state [t[θr]p]E ∈ TΣ/E in which θq has been replaced by θr, where
t[l(θ)]p is called a one-step proof term.

We also require R = (Σ,E,R) being topmost for narrowing-based methods.
That is, there is sort State at the top of one of the connected component of
(S,≤) such that: (i) for each rule l : q −→ r ∈ R, both q and r have the top sort
State; and no operator in Σ has State or any of its subsorts as an argument sort.
This ensures that all rewrites with rules in R must take place at the top of the
term. In practice, many concurrent systems, including object-oriented systems
and communication protocols, can be specified by topmost rewrite theories [16].

116 K. Bae and J. Meseguer

We can associate to R a corresponding Kripke structure for LTL model
checking. A Kripke structure is a 4-tuple K = (S,AP ,L,−→K) with S a set of
states, AP a set of atomic state propositions, L : S → P(AP) a state-labeling
function, and −→K ⊆ S ×S a total transition relation in which every state s ∈ S
has a next state s′ ∈ S with s −→K s′. A state proposition is defined as a term
of sort Prop, whose meaning is defined by equations using the auxiliary operator
|= : State Prop → Bool. By definition, p ∈ TΣ/E,Prop is satisfied on a state [t]E

iff (t |= p) =E true. We assume that sort Bool has two constants true and false
with true �=E false and any t ∈ TΣ,Bool is provably equal to either true or false.

Definition 1. Given R = (Σ,E,R) and a set AP ⊆ TΣ/E,Prop defined by E,
the corresponding Kripke structure is K(R)AP = (TΣ/E,State,AP ,LE ,−→R),2

where LE([t]E) = {p ∈ AP | (t |= p) =E true}.

Linear Temporal Logic of Rewriting. The linear temporal logic of rewriting
(LTLR) is a state/event extension of LTL with spatial action patterns [2]. An
LTLR formula ϕ may include spatial action patterns δ1, . . . , δn as well as state
propositions p1, . . . , pm, and therefore may describe properties involving both
states and events. Given a set of state propositions AP and a set of spatial
action patterns ACT , the syntax of LTLR is defined by

ϕ ::= p | δ | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ,

where p ∈ AP and δ ∈ ACT . Other operators can be defined by equivalences,
e.g., ♦ϕ ≡ true Uϕ and �ϕ ≡ ¬♦¬ϕ.

Spatial action patterns describe properties of one-step rewrites by defining a
set of matching one-step proof terms. For example, a pattern l describes that a
rule with label l is applied, and a pattern l(θ) describes that a rule with label l
is applied and the related variable instantiation is a further instantiation of the
substitution θ [2,14]. In a similar way that state propositions of LTL are defined
by equations, the matching relation |= between a one-step proof term γ and a
spatial action pattern δ can be defined by equations using the auxiliary operator
|= : ProofTerm Action → Bool, where γ |= δ ⇐⇒ (γ |= δ) =E true.

The semantics of an LTLR formula is defined on a labeled Kripke structure
(LKS), an extension of a Kripke structure with transition labels [2,3]. An LKS
is a 5-tuple K̄ = (S,AP ,L,ACT ,−→K̄) with S a set of states, AP a set of state
propositions, L : S → P(AP) a state-labeling function, ACT a set of spatial
action patterns, and −→K̄ ⊆ S ×P(ACT)×S a total labeled transition relation.
A path (π, α) is a pair of functions π : N → S and α : N → P(ACT) such
that π(i) α(i)−−−→K̄ π(i + 1), and (π, α)k denotes the suffix of (π, α) beginning at
position k such that (π, α)k = (π ◦ sk, α ◦ sk) with s the successor function.

We can associate to a rewrite theory R a corresponding LKS K̄(R)AP,ACT for
LTLR model checking, provided that the state propositions AP and the spatial
action patterns ACT are defined by its equations.
2 Since −→R needs to be total, we also assume that R is deadlock-free. Note that R
can be easily transformed into an equivalent deadlock-free theory [15].

Infinite-State Model Checking of LTLR Formulas Using Narrowing 117

Definition 2. Given a rewrite theory R = (Σ,E,R), sets AP ⊆ TΣ/E,Prop and
ACT ⊆ TΣ/E,Action defined by E, the corresponding LKS is

K̄(R)AP,ACT = (TΣ/E,State,AP ,LE ,ACT ,−→K̄(R)AP,ACT
),

where LE([t]E) = {p ∈ AP | (t |= p) =E true}, and [t]E A−−→K̄(R)AP,ACT
[t′]E iff

γ : [t]E −→R [t′]E and A = {δ ∈ ACT | (γ |= δ) =E true}.
Given an LTLR formula ϕ and an initial state s0 ∈ S, the satisfaction relation
K̄, s0 |= ϕ holds iff for each path (π, α) of K̄ beginning at s0, the path satisfaction
relation K̄, (π, α) |= ϕ holds, which is defined inductively as follows:

– K̄, (π, α) |= p iff p ∈ L(π(0))
– K̄, (π, α) |= δ iff δ ∈ α(0)
– K̄, (π, α) |= ¬ϕ iff K̄, (π, α) �|= ϕ
– K̄, (π, α) |= ϕ ∧ ϕ′ iff K̄, (π, α) |= ϕ and K̄, (π, α) |= ϕ′

– K̄, (π, α) |= ©ϕ iff K̄, (π, α)1 |= ϕ
– K̄, (π, α) |= ϕUϕ′ iff ∃k ≥ 0. K̄, (π, α)k |= ϕ′, ∀0 ≤ i < k. K̄, (π, α)i |= ϕ.

Example. We present a topmost rewrite theory R = (Σ,E,R) that specifies
Lamport’s bakery protocol for mutual exclusion of an unbounded number of
processes (adapted from [1,6]), and its corresponding LKS K̄(R)AP,ACT . Each
state of the system has the form n ; m ; [i1, d1] . . . [ik, dk], given by the operator
; ; : Nat Nat ProcSet → State, where n is the current number in the bakery’s

number dispenser, m is the number currently being served, and [i1, d1] . . . [ik, dk]
are a set of customer processes, each with a name il and in a mode dl. A mode
can be idle (not yet picked a number), wait(n) (waiting with number n), or
crit(n) (being served with number n). The behavior is specified by the following
topmost rewrite rules in the Maude language:

rl [wake]: N ; M ; [I,idle] PS => s N ; M ; [I,wait(N)] PS .

rl [crit]: N ; M ; [I,wait(M)] PS => N ; M ; [I,crit(M)] PS .

rl [exit]: N ; M ; [I,crit(M)] PS => N ; s M ; [I,idle] PS .

where natural numbers are modeled as multisets of s with the multiset union
operator (empty syntax) and the empty multiset 0 (e.g., 0 = 0, and 3 = s s s).

We are interested in verifying the liveness property “process 0 is eventually
served,” under the fairness assumption “if process 0 can eventually pick a number
forever, it must pick a number infinitely often,” expressed as the LTLR formula

(♦�enabled .wake(0) → �♦wake(0)) → ♦in.crit(0),

where the spatial action pattern wake(0) holds if the wake rule is applied for
process 0 (i.e., the variable I in the wake rule is matched to the term 0), the
state proposition enabled .wake(0) holds in a state where process 0 is idle, and
the state proposition in.crit(0) holds in a state where process 0 is being served
(see [1] for the mutual exclusion property).

118 K. Bae and J. Meseguer

For the set of state propositions AP = {in.crit(0), enabled .wake(0)} and the
set of spatial action patterns ACT = {wake(0)}, we can construct the related
LKS K̄(R)AP,ACT for the bakery protocol specification R. For example, given
the initial state 0 ; 0 ; [0,idle], we obtain the infinite path in Fig. 1 within
K̄(R)AP,ACT that contains an infinite number of different states. Notice that
this system is infinite-state since: (i) the counters n and m are unbounded; and
the number of customer processes is unbounded.

Fig. 1. A path from 0 ; 0 ; [0,idle] in the LKS K̄(R)AP,ACT for the bakery protocol.

3 Narrowing-Based LTLR Model Checking

Narrowing [10,11] generalizes term rewriting by allowing free variables in terms
and by performing unification instead of matching. An E-unifier of t = t′ is
a substitution σ such that σt =E σt′ and dom(σ) ⊆ vars(t) ∪ vars(t′), and
CSUE(t = t′) denotes a complete set of E -unifiers in which any E-unifier ρ of
t = t′ has a more general substitution σ ∈ CSUE(t = t′), i.e., (∃η) ρ =E η ◦ σ.
We assume that there exists a finitary E-unification procedure to find a finite
complete set CSUE(t = t′) of E-unifiers (e.g., there exists a finitary E-unification
procedure if E has the finite variant property as explained in [5,7]).

Definition 3. Given a topmost rewrite theory R = (Σ,E,R), each rewrite rule
l : q −→ r ∈ R specifies a topmost narrowing step t �l,σ,R t′ (or t �R t′) iff
there exists an E-unifier σ ∈ CSUE(t = q) such that t′ = σr.

For LTL model checking we can associate to R = (Σ,E,R) a corresponding
logical Kripke structure N (R)AP [6]. The states of N (R)AP are AP -instantiated
elements of TΣ/E(X)

State
and its transitions are specified by �R. A state of

N (R)AP is not a concrete state, but a state pattern t(x1, . . . , xn) with logical
variables x1, . . . , xn, representing the set of all concrete states [θt]E that are its
ground instances. Such a logical Kripke structure N (R)AP can be considered as
an abstraction of the (possibly infinite) concrete system K(R)AP ; that is, for an
LTL formula ϕ and a state pattern t, we have:

N (R)AP , [t]E |= ϕ =⇒ (∀θ : X → TΣ) K(R)AP , [θt]E |= ϕ.

Generalizing such narrowing-based LTL model checking, this section presents
narrowing-based LTLR model checking for infinite-state systems.

Infinite-State Model Checking of LTLR Formulas Using Narrowing 119

One-Step Proof Terms for Narrowing. Spatial action patterns for rewriting
define their matching one-step proof terms, representing the corresponding one-
step rewrites. For a topmost rewrite theory R = (Σ,E,R), one-step proof terms
have the form l(θ), indicating that a rule l : q −→ r ∈ R has been applied with
a substitution θ (at the top position of the term), where dom(θ) ⊆ vars(q) ∪
vars(r).

In order to define spatial action patterns for narrowing steps, we also need
to have an appropriate notion of one-step proof terms for narrowing. Consider a
topmost narrowing step t �l,σ,R t′ using a rule l : q −→ r. Intuitively, the rule
label l and the restriction of the substitution σ to the variables in the rule3 give
the one-step proof term for the narrowing step t �l,σ,R t′.

Definition 4. Given a topmost rewrite theory R = (Σ,E,R), for a topmost
narrowing step t �l,σ,R t′ using a rule l : q −→ r, its one-step proof term is
given by l(σ|vars(q)∪vars(r)), often denoted by l(σl).

The following lemma implies that a one-step proof term l(σl) for narrowing
faithfully captures its corresponding one-step proof terms l(θ) for rewriting, in
the sense that θ =E η ◦ σl for some substitution η. This lemma is adapted from
the soundness and completeness results of topmost narrowing in [16].

Lemma 1. Given a topmost rewrite theory R = (Σ,E,R), for a non-variable
term u and a substitution ρ, assuming no variable in u appears in the rules R:

(∃t′, θ) l(θ) : ρu −→R t′

⇐⇒ (∃u′, σ, η) u �l,σ,R u′ ∧ ρ|vars(u) =E (η ◦ σ)|vars(u)
where θ =E (η ◦ σ)|dom(θ) and t′ =E ηu′.

Proof. (⇒) Suppose that l(θ) : ρu −→R t′ for a topmost rule l : q −→ r, where
dom(θ) ⊆ vars(q) ∪ vars(r). Then, θq =E ρu and t′ = θr. Since no variable
in u appears in l : q −→ r, we have dom(θ) ∩ vars(u) = ∅. Thus, we can
define the substitution θ ∪ ρ|vars(u) with domain dom(θ) ∪ vars(u) such that
(θ ∪ ρ|vars(u))|dom(θ) = θ and (θ ∪ ρ|vars(u))|vars(u) = ρ|vars(u). Since θ ∪ ρ|vars(u)
is an E-unifier of q = u, there exist substitutions σ ∈ CSUE(u = q) and η′

satisfying (θ ∪ ρ|vars(u))|vars(q)∪vars(u) =E η′ ◦ σ with domain vars(q) ∪ vars(u).
Therefore, u �l,σ,R u′ for u′ = σr. Next, let η be the extended substitution
such that ηx = η′x if x ∈ vars(q) ∪ vars(u), and ηx = θx otherwise. Then,
ρ|vars(u) =E (η ◦ σ)|vars(u) and θ =E (η ◦ σ)|dom(θ), since dom(θ) ∩ vars(u) = ∅
and dom(θ) ⊆ vars(q) ∪ vars(r). Furthermore, t′ = θr =E (η ◦ σ)r = ηu′.
(⇐) Suppose that u �l,σ,R u′ and ρ|vars(u) =E (η ◦ σ)|vars(u). Then, for a
topmost rule l : q −→ r, σ ∈ CSUE(u = q) and u′ = σr. Since σu =E σq and
(vars(q)∪vars(r))∩vars(u) = ∅, we have l(σ|vars(q)∪vars(r)) : σu −→R u′. Thus,
we have l(η ◦ σ|vars(q)∪vars(r)) : (η ◦ σ)u −→R ηu′, where (η ◦ σ)u =E ρu, since
rewrites are stable under substitutions. ��
3 Since one-step proof terms for rewriting only contain variables in rules, we restrict
one-step proof terms for narrowing in the same way.

120 K. Bae and J. Meseguer

Equational Definition of State/Event Predicates. The semantics of a
spatial action pattern can be defined by means of equations using the auxiliary
operator |= : ProofTerm Action → Bool [2]. By definition, δ ∈ TΣ/E,Action is
matched to a one-step proof term γ iff (γ |= δ) =E true. For a topmost rewrite
theory R, a one-step proof term l(θ) can be represented as a term

{′l : ′x1\θx1 ; . . . ; ′xm\θxm}

of sort ProofTerm using the operator { : } : Qid Substitution → ProofTerm,
where ′l, ′x1, . . . ,

′xm are quoted identifiers of sort Qid and ′x1\θx1; . . . ; ′xm\θxm

is a semicolon separated set of variable assignments. For the bakery example, a
topmost narrowing step from the term N ; N ; [0,idle] by the wake rule gives
the one-step proof term {’wake : ’N \ N ; ’M \ N ; ’I \ 0 ; ’PS \ none}.

For narrowing-based model checking we further require that there exists a
finitary E-unification procedure. If a spatial action pattern δ is identified by a
one-step proof term pattern uδ (i.e., (γ |= δ) =E true iff γ is an instance of
the pattern uδ),4 and if uδ has complement patterns u1, . . . , uk (i.e., any ground
one-step proof term is an instance of exactly one term in {uδ, u1, . . . , uk}), then
δ can be defined by the equations:

uδ |= δ = true, u1 |= δ = false, . . . , uk |= δ = false.

Because the right-hand sides are all constants, these equations have the finite
variant property [5], and therefore they provide a finitary E-unification algorithm
using variant narrowing [7]. This method can also be applied for “pattern-like”
state propositions (see below).

As mentioned in the introduction, effective methods have been developed to
check when a term t has complements and to compute such complement patterns,
not only in the free case [12], but also modulo AC and modulo permutative
theories [8,9]. Therefore, for unconditional rewrite theories with axioms B such
as those used in [8,9,12], we can determine if a one-step proof term pattern uδ

of δ has complements, compute such complement patterns, and define pattern
satisfaction of δ by equations. For example, consider the spatial action pattern
wake(0) in the bakery example (which holds if the variable I in the rule is
matched to 0). The positive case can be defined by the following equation, where
SUBST is a variable of sort Substitution:

eq {’wake : ’I \ 0; SUBST} |= wake(0) = true .

For the negative cases, wake(0) does not hold when the rule label is not ’wake
or the value of ’I is not 0. Therefore, they can be defined by the complement
patterns of 0 and ’wake as follows.

eq {’wake : ’I \ s J ; SUBST} |= wake(0) = false .

eq {’crit : SUBST} |= wake(0) = false .

eq {’exit : SUBST} |= wake(0) = false .

4 Many spatial action patterns, including l and l(θ), are identified in this way [2,14].

Infinite-State Model Checking of LTLR Formulas Using Narrowing 121

The use of order-sorted signatures can greatly facilitate the existence of com-
plement patterns that may not exist in an unsorted setting. For example, the
unsorted term y + 0 + 0 for a signature with a constant 0, a unary s, and an
AC symbol + is shown not to have complements in [8], but can be easily shown
to have complements when the signature is refined to an order-sorted signature.
We illustrate this greater ease of computing complements by using the state
propositions in.crit(0) and enabled .wake(0), whose positive cases are defined by
the following equations, where PS is a variable of sort ProcSet:

eq N ; M ; [0,crit(K)] PS |= in.crit(0) = true .

eq N ; M ; [0,idle] PS |= enabled.wake(0) = true .

In order to define the negative cases we need to find the complement patterns
for [0,crit(K)] PS and [0,idle] PS. Using subsort relations, we can define
sort ModeIdleWait for idle and wait(n), ModeWaitCrit for wait and crit(n), and
ProcSet{N0Nat} for a set of processes with non-zero identifiers as follows:5

subsorts ModeIdle ModeWait < ModeIdleWait < Mode .

subsorts ModeWait ModeCrit < ModeWaitCrit < Mode .

subsorts N0Nat < Nat .

subsorts Proc{N0Nat} < ProcSet{N0Nat} Proc < ProcSet .

The negative cases for the above state propositions can then be defined by the
following equations, where the variable DIW has sort ModeIdleWait, DWC has sort
ModeWaitCrit, and NZPS has sort ProcSet{N0Nat}:

eq N ; M ; [0,DIW] NZPS |= in.crit(0) = false .

eq N ; M ; [0,DWC] NZPS |= enabled.wake(0) = false .

Narrowing-Based LKS. For a set AP = {p1, . . . , pn} of state propositions and
a set ACT = {δ1, . . . , δm} of spatial action patterns defined by the equations E,
we can also associate to a topmost rewrite theory R = (Σ,E,R) a corresponding
narrowing-based logical LKS N̄ (R)AP,ACT , where:

– each state of the LKS N̄ (R)AP,ACT is a term in which the truth of every state
proposition is decided into either true or false; and

– a transition of N̄ (R)AP,ACT is specified by a topmost narrowing step �R,
but further instantiated into possibly several transitions so that the truth bi

of each state proposition pi, 1 ≤ i ≤ n, and the truth bn+j of each spatial
action pattern δj , 1 ≤ j ≤ m, are decided into either true or false.

For the bakery example, given the logical initial state N ; N ; [0,idle], we obtain
within the logical LKS N̄ (R)AP,ACT the infinite path in Fig. 2, which captures
an infinite number of concrete paths in the concrete LKS K̄(R)AP,ACT starting
from each ground instance of N ; N ; [0,idle]. The narrowing-based logical LKS
N̄ (R)AP,ACT of a topmost rewrite theory R is formally defined as follows:

5 Generally, to define the negative cases for k ∈ N, we can define k + 2 subsorts
Nat0, . . . ,Natk,NkNat of sort Nat, where NkNat denotes a number greater than k.

122 K. Bae and J. Meseguer

Definition 5. Given a topmost rewrite theory R = (Σ,E,R), and finite sets
AP = {p1, . . . , pn} ⊆ TΣ/E,Prop and ACT = {δ1, . . . , δm} ⊆ TΣ/E,Action defined
by its equations E, the narrowing-based logical LKS is

N̄ (R)AP,ACT = (N(R)AP ,AP ,LE ,ACT ,−→N̄ (R)),

where LE([t]E) = {p ∈ AP | (t |= p) =E true}, and:

– [t]E ∈ N(R)AP iff [t]E ∈ TΣ/E(X)
State

− X , and for every state proposition
p ∈ AP, either (t |= p) =E true or (t |= p) =E false.

– [t]E A−−→N̄ (R) [t′]E iff there exist a term u, a substitution ζ, and Boolean values
b1, . . . , bn+m ∈ {true, false} such that

t �l,σ,R u ∧ t′ = ζu, ∧ A = {δ ∈ ACT | (ζ(l(σl)) |= δ) =E true} ∧
ζ ∈ CSUE

(∧

1≤i≤n(u |= pi) = bi ∧ ∧

1≤j≤m(l(σl) |= δj) = bn+j

)

Fig. 2. A path from N ; N ; [0,idle] in the LKS K̄(R)AP,ACT for the bakery protocol.

A narrowing-based LKS N̄ (R)AP,ACT captures any behavior of the related
concrete LKS K̄(R)AP,ACT , in terms of a simulation relation. In the following
definition we extend the usual notion of a simulation for Kripke structures to
one for LKSs, which also takes into account spatial action patterns.

Definition 6. Given two LKS K̄i = (Si,AP ,Li,ACT ,−→K̄i
), i = 1, 2, a binary

relation H ⊆ S1×S2 is a simulation from K̄1 to K̄2 iff: (i) if s1 H s2, thenL1(s1) =
L2(s2), and if s1 H s2 and s1

A−−→K̄ s′
1, there exists s′

2 ∈ S2 such that s′
1 H s′

2 and
s2

A−−→K̄ s′
2. A simulation H is a bisimulation iff H−1 is also a simulation, and is

total iff for any s1 ∈ S1 there exists s2 ∈ S2 such that s1 H s2.

As expected, if an LKS K̄2 simulates K̄1, then each infinite path in K̄1 has a
corresponding path in K̄2, as shown in the following lemma.

Lemma 2. Given a simulation H from an LKS K̄1 to K̄2, if s1 H s2, then for
each path (π1, α) of K̄1 beginning at s1, there exists a corresponding path (π2, α)
beginning at s2 such that π1(i)H π2(i) for each i ∈ N.

Proof. We construct π2 by induction. Let π2(0) = s2. Clearly, π1(0)H π2(0).
Next, suppose that π1(k)H π2(k) for some k ∈ N. Since π1(k)H π2(k) and
π1(k) α(k)−−−−→K̄ π1(k + 1), there exists a state s′

2 such that π1(k + 1)H s′
2 and

π2(k) α(k)−−−−→K̄ s′
2. Then, we choose π2(k + 1) = s′

2. ��

Infinite-State Model Checking of LTLR Formulas Using Narrowing 123

Suppose that s10 H s20 for a simulation H from K̄1 to K̄2. If there exists a coun-
terexample (π1, α1) in K̄1 starting from s10, then by the above lemma, there
exists a corresponding counterexample (π2, α2) in K̄2 starting from s20 such that
L1(π1(i)) = L2(π2(i)) and α1(i) = α2(i) for each i ∈ N. Therefore:

Corollary 1. Given a simulation H from an LKS K̄1 to K̄2, if s10 H s20, then
for any LTLR formula ϕ, K̄2, s

2
0 |= ϕ implies K̄1, s

1
0 |= ϕ. In particular, if H is

a bisimulation, then K̄2, s
2
0 |= ϕ iff K̄1, s

1
0 |= ϕ.

For a narrowing-based LKS N̄ (R)AP,ACT , each logical state is clearly related
to a concrete state in K̄(R)AP,ACT in terms of the E-subsumption relation. The
E-subsumption t �E t′ holds iff there exists a substitution σ with t =E σt′,
meaning that t′ is more general than t modulo E.

Lemma 3. Given a topmost rewrite theory R = (Σ,E,R) and sets AP and
ACT defined by E, �E is a total simulation from K̄(R)AP,ACT to N̄ (R)AP,ACT .

Proof. Suppose that [t]E A−−→K̄(R) [t′]E and t �E u for u ∈ N(R)AP . Given
AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}, fix b1, b2, . . . , bn+m ∈ {true, false}
such that bi =E (t′ |= pi) for 1 ≤ i ≤ n and bn+j =E (l(θ) |= δj) for 1 ≤ j ≤ m.
By definition, there is an one-step rewrite l(θ) : t −→R t′. By Lemma 1, there is
a narrowing step u �l,σ,R u′ such that t′ =E ηu′ and θ =E (η ◦ σ)|dom(θ). Thus,
there exists ζ ∈ CSUE(

∧

1≤i≤n(u′ |= pi) = bi ∧ ∧

1≤j≤m(l(σl) |= δj) = bn+j).
By definition, [u]E A−−→N̄ (R) [ζu′]E . Notice that

∧

1≤i≤nη
(

(u′ |= pi) =E bi

)

and
∧

1≤j≤mη
(

(l(σl) |= δj) =E bn+j

)

. Therefore, η �E ζ, and t′ =E ηu �E ζu′. ��

By Corollary 1, this lemma implies that any LTLR formula ϕ satisfied in a
narrowing-based LKS N̄ (R)AP,ACT from a logical state t is also satisfied in the
concrete LKS K̄(R)AP,ACT from each ground instance of t.

In general, �E is not a bisimulation between K̄(R)AP,ACT and N̄ (R)AP,ACT .
For the bakery example, although 0 ; 0 ; [I,wait(0)] �E N ; M ; PS1 holds,
there exists the transition N ; M ; PS1

{wake(0)}−−−−−−−→N̄ (R) s N ; M ; PS2 [0,wait(N)],

in N̄ (R)AP,ACT with the substitution PS1\ PS2 [0,idle], but no corresponding
transition exists from 0 ; 0 ; [I,wait(0)] in K̄(R)AP,ACT . However, any finite
path in N̄ (R)AP,ACT can be instantiated to a corresponding concrete path in
K̄(R)AP,ACT (e.g., the above transition can be instantiated as the transition
0 ; 0 ; [0,idle] {wake(0)}−−−−−−−→K̄(R) s ; 0 ; [0,wait(0)] in K̄(R)AP,ACT).

Lemma 4. For a finite path u1
A1−−→N̄ (R) · · · An−1−−−−→N̄ (R) un of N̄ (R)AP,ACT ,

there is t1
A1−−→K̄(R) · · · An−1−−−−→K̄(R) tn in K̄(R)AP,ACT with ti �E ui, 1 ≤

i ≤ n.

Proof. Since u1
A1−−→N̄ (R) u2, by definition, there are substitutions σ1 and ζ1

such that u1 �l1,σ1,R u′
2 by a topmost rule l1 : q1 → r1 ∈ R and u2 = ζ1u

′
2.

Since σu1 =E σq1 and u2 = ζ1u
′
2 = (ζ1 ◦ σ1)r1, (ζ1 ◦ σ1)u1 −→R u2. Similarly,

(ζ2 ◦ σ2)u2 −→R u3, etc. By composing them, (ζn−1 ◦ σn−1 ◦ · · · ◦ ζ2 ◦ σ2 ◦ ζ1 ◦
σ1)u1 −→R · · · −→R (ζn−1◦σn−1)un−1 −→R un. Let ρ be a ground substitution
instantiating every variable in the path. Then, (ρ◦ζn−1◦σn−1◦· · ·◦ζ2◦σ1)u1 −→R
· · · −→R (ρ ◦ ζn−1 ◦ σn−1)un−1 −→R ρun gives the desired path. ��

124 K. Bae and J. Meseguer

Recall that counterexamples of safety properties are characterized by finite
sequences [4]. Therefore, the above lemma guarantees that N̄ (R)AP,ACT does
not generate spurious counterexamples for safety properties, since any finite
counterexample in N̄ (R)AP,ACT has a corresponding real counterexample in
K̄(R)AP,ACT . Together with Corollary 1 and Lemma 3, we have:

Theorem 1. Given a topmost rewrite theory R = (Σ,E,R), and finite sets AP
and ACT defined by E, for a safety LTLR formula ϕ and a pattern t ∈ N(R)AP :
N̄ (R)AP,ACT , [t]E |= ϕ ⇐⇒ (∀θ : X → TΣ) K̄(R)AP,ACT , [θt]E |= ϕ.

4 Abstract Narrowing-Based LTLR Model Checking

A narrowing-based LKS N̄ (R)AP,ACT often has an infinite number of logical
states (e.g., Fig. 2). For narrowing-based LTL model checking, the paper [1] has
proposed two abstraction methods to reduce an infinite narrowing-based Kripke
structure, namely, folding abstractions and equational abstractions. This section
extends those abstraction techniques to narrowing-based LTLR model checking
for trying to reduce an infinite narrowing-based LKS to a finite one.

Folding Abstractions. Given a transition system A = (A,−→A) with a set
of states A and a transition relation −→A ⊆ A2, we can reduce it by collapsing
each state a into a previously seen state b, while traversing A from a set of initial
states I ⊆ A, whenever b is more general than a according to a folding relation
a � b [6]. For a set of states B ⊆ A, let PostA(B) = {a ∈ A | ∃b ∈ B. b −→A a}
(i.e., the successors of B) and Post∗

A(B) =
⋃

i∈N
(PostA)i(B).

Definition 7. Given A = (A,−→A) and a folding relation � ⊆ A2, the folding
abstraction of A from I ⊆ A is Reach�

A(I) = (Post∗
A�(I), −→Reach

�
A(I)

), where:

Post∗
A�(I) =

⋃

i∈N
Post i

A�(I) and −→Reach
�
A(I)

=
⋃

i∈N
−→�

A,i such that:

Post0A�(I) = I, −→�
A,0= ∅,

Postn+1
A� (I) = {a ∈ PostA(PostnA�(I)) | ∀l ≤ n ∀b ∈Post lA�(I). a �� b},

−→�
A,n+1 = {(a, a′) ∈ PostnA�(I) ×

⋃

0≤i≤n+1

PostiA�(I) | ∃b ∈ PostA(a). b � a′}.

For the bakery example, using theE-subsumption �E as a folding relation, we have
the finite folding abstraction Reach�E

N̄ (R)AP,ACT
({N ; N ; [0,idle][s,idle]}) of

N̄ (R)AP,ACT from the initial state N ; N ; [0,idle][s,idle] in Fig. 3.
If a folding relation � is a total simulation from A to A, then Reach�

A(I)
simulates the reachable subsystem ReachA(I) = (Post∗

A(I),−→A ∩Post∗
A(I)2)

that only contains reachable states from I (i.e., � is a total simulation from
ReachA(I) to Reach�

A(I)) [1]. Indeed, �E for a topmost rewrite theory R is
a total simulation from N̄ (R)AP,ACT to N̄ (R)AP,ACT (which can be proved
in a similar way to Lemma 3). Therefore, �E defines a total simulation from
ReachN̄ (R)AP,ACT

(I) to Reach�E

N̄ (R)AP,ACT
(I). Consequently, by Corollary 1:

Infinite-State Model Checking of LTLR Formulas Using Narrowing 125

Fig. 3. A folding abstraction for the bakery protocol using the folding relation �E ,
where a double-headed arrow denotes a “folded” transition.

Theorem 2. For an LTLR formula ϕ and a pattern t ∈ N(R)AP , we have that
Reach�E

N̄ (R)AP,ACT
({[t]E}), [t]E |= ϕ implies N̄ (R)AP,ACT , [t]E |= ϕ.

For the bakery example, the liveness property ♦in.crit(0) under the fairness
assumption ♦�enabled .wake(0) → �♦wake(0) holds in the folding abstrac-
tion Reach�E

N̄ (R)AP,ACT
({N ; N ; [0,idle][s,idle]}) of Fig. 3, because any infi-

nite paths continuously staying in the first row violate the fairness assumption.
Hence, this property is also satisfied for any related concrete system.

Equational Abstractions. In general, a folding abstraction of a narrowing-
based LKS is not finite. For the bakery example, there exists an infinite path
within the folding abstraction from N ; N ; [0,idle] IS in Fig. 4, which keeps
incrementing the number of processes with instantiations. To further reduce an
infinite logical state space, we can apply equational abstractions to eventually
obtain a finite abstract narrowing-based LKS for LTLR model checking.

Given a rewrite theory R = (Σ,E,R), by adding a set of equations G such
that true �=E∪G false, we define an equational abstraction R/G = (Σ,E ∪ G,R)
[15]. It specifies the quotient abstraction N̄ (R/G)AP ,ACT by the equivalence
relation ≡G on states, namely, [t]E ≡G [t′]E iff t =E∪G t′. Provided that a set
of state propositions AP and a set of spatial action patterns ACT are defined
by E, the condition true �=E∪G false ensures that any two states with t =E∪G t′

satisfy the same set of state propositions. Similarly, any two one-step proof terms
with l(σl) =E∪G l′(σl′) satisfy the same set of spatial action patterns.

Similar to the cases of LTL model checking [1,15], an equational abstraction
N̄ (R/G)AP,ACT simulates the narrowing-based LKS N̄ (R)AP,ACT .

Lemma 5. Given a topmost rewrite theory R = (Σ,E,R), finite sets AP and
ACT defined by E, and a set G of equations, if true �=E∪G false, then there
exists a total simulation from N̄ (R)AP,ACT to N̄ (R/G)AP,ACT .

126 K. Bae and J. Meseguer

Fig. 4. An infinite path in the folding abstraction for the bakery protocol with an
unbounded number of processes, where IS stands for a set of idle processes.

Proof. Let HG = {([t]E , [t]E∪G) | t ∈ N(R)AP}. Suppose that [t]E A−−→N̄ (R) [t′]E
and t =E∪G u. By definition, there are σ and ζ such that t �l,σ,R t′′ by a
rule l : q −→ r ∈ R and t′ = ζt′′, where σ ∈ CSUE(t = q), t′′ = σr, and
ζ ∈ CSUE(

∧

1≤i≤n(t′′ |= pi) = bi ∧ ∧

1≤j≤m(l(σl) |= δj) = bn+j) for some
b1, . . . , bn+m ∈ {true, false}, given AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}.
Since σ ∈ CSUE(t = q), ∃σ′ ∈ CSUE∪G(u = q) such that σ =E∪G σ′. Then,
u �l,σ′,R/G u′ using the same rule l : q −→ r, where u′ = σ′r =E∪G σr = t′′.
Notice that (t′′ |= pi) =E∪G (u′ |= pi) and (l(σl) |= δj) =E∪G (l(σ′

l) |= δj).
Thus, ∃ζ ′ ∈ CSUE∪G(

∧

1≤i≤n(u′ |= pi) = bi ∧ ∧

1≤j≤m(l(σ′
l) |= δj) = bn+j)

with ζ =E∪G ζ ′. Thus, [u]E∪G
A−−→N̄ (R/G) [ζ ′u′]E∪G, where ζ ′u′ =E∪G ζt′′ = t′.

Since true �=E∪G false, [t′]E and [ζ ′u′]E∪G satisfy the same state propositions.
Therefore, HG is a total simulation from N̄ (R)AP,ACT to N̄ (R/G)AP,ACT . ��
For the bakery example, by adding the following equations that collapses extra
waiting processes with non-zero identifiers, where ICPS denotes a set of idle or
crit processes, and WP3 denotes zero or at most three wait processes:

eq [NZ,D] = [D] . --remove non-zero identifiers

eq s s s N M ; M ; ICPS WP3 [wait(s N M)] [wait(s s N M)]

= s s N M ; M ; ICPS WP3 [wait(s N M)] .

we have the folded abstract narrowing-based LKS in Fig. 5, provided with the
extra spatial action pattern wake that holds if the wake rule is applied.

We can easily see that there is a counterexample of the property ♦in.crit(0)
under ♦�enabled .wake(0) → �♦wake(0) in which the wake rule is continuously
applied forever, which is impossible if there is a finite number of processes.
Assuming the extra fairness assumption �♦¬wake, the property ♦in.crit(0) is
now satisfied since any infinite paths staying in the first column forever violate
♦�enabled .wake(0) → �♦wake(0), and any paths staying in a self loop forever
violate �♦¬wake. Consequently, under the fairness assumptions, ♦in.crit(0) is
satisfied for an unbounded number of processes.

Infinite-State Model Checking of LTLR Formulas Using Narrowing 127

Fig. 5. An folded equational abstraction for the bakery protocol.

5 Related Work and Conclusions

A number of infinite-state model checking methods have been developed based
on symbolic and abstraction techniques; see [1,6] for an overview and comparison
with narrowing-based model checking. To the best of our knowledge, our work
proposes the first symbolic model checking method to verify LTLR properties
of infinite-state systems. For finite-state systems the paper [2] presents various
model checking algorithms for LTLR properties. LTLR is a sublogic of TLR∗

that generalizes the state-based logic CTL∗ (see [14] for related work). On the
topic of complement patterns, the most closely related work is [8,9,12]. We plan
to use their ideas, as well as ongoing work by Skeirik and Meseguer on the
concept of B-linear terms in order-sorted signatures, which are pattern terms
whose syntactic structure guarantees the existence of complements modulo B, to
automate the full equational definition of satisfaction of spatial action patterns.

In conclusion, this work should be understood as a contribution that increases
the expressive power of infinite-state model checking methods. Specifically, the
expressive power of narrowing-based infinite-state logical model checking has
been extended form LTL to LTLR, allowing temporal properties that can use
both state propositions and spatial action patterns. This extension is nontrivial
because of the need for building a symbolic transition system where states are
AP -instantiated and transitions are ACT -instantiated.

128 K. Bae and J. Meseguer

All the necessary theoretical foundations are now in place for embarking into
a future implementation of a narrowing-based LTLR model checker in Maude in
the spirit of the similar LTL tool described in [1]. As done in [1], for the LTLR
tool we will be able to rely on the extensive body of work on efficient LTLR
model checking algorithms described in [2]. Beyond these goals, the integration
of constraints and SMT solving within the planned narrowing-based LTLR model
checker, as well as the study of more flexible “stuttering” AP/ACT -simulations,
are also exciting possibilities.

Acknowledgments. This work has been supported in part by NSF Grant CNS 13-
19109 and AFOSR Grant FA8750-11-2-0084.

References

1. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state
systems using narrowing. In: RTA, LIPIcs, vol. 21, pp. 81–96 (2013)

2. Bae, K., Meseguer, J.: Model checking linear temporal logic of rewriting formulas
under localized fairness. Sci. Comput. Program (2014). http://dx.doi.org/10.1016/
j.scico.2014.02.006 (To appear)

3. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based
software model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2001)
5. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some

algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005)

6. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

7. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebraic Logic Program. 81, 898–928 (2012)

8. Fernández, M.: AC complement problems: satisfiability and negation elimination.
J. Symb. Comput. 22(1), 49–82 (1996)

9. Fernández, M.: Negation elimination in empty or permutative theories. J. Symb.
Comput. 26(1), 97–133 (1998)

10. Hullot, J.M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.)
5th Conference on Automated Deduction Les Arcs. LNCS. Springer, Heidelberg
(1980)

11. Jouannaud, J.P., Kirchner, C., Kirchner, H.: Incremental construction of unifi-
cation algorithms in equational theories. In: Diaz, J. (ed.) ICALP. LNCS, pp.
361–373. Springer, Heidelberg (1983)

12. Lassez, J.L., Marriott, K.: Explicit representation of terms defined by counter
examples. J. Autom. Reasoning 3(3), 301–317 (1987)

13. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

14. Meseguer, J.: The temporal logic of rewriting: a gentle introduction. In: Degano,
P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 354–382. Springer, Heidelberg (2008)

http://dx.doi.org/10.1016/j.scico.2014.02.006
http://dx.doi.org/10.1016/j.scico.2014.02.006

Infinite-State Model Checking of LTLR Formulas Using Narrowing 129

15. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theor. Com-
put. Sci. 403(2–3), 239–264 (2008)

16. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. Higher-Order Symbolic Com-
put. 20(1–2), 123–160 (2007)

Modelling and Verifying Contract-Oriented
Systems in Maude

Massimo Bartoletti1, Maurizio Murgia1, Alceste Scalas1(B),
and Roberto Zunino2

1 Università Degli Studi di Cagliari, Cagliari, Italy
{bart,alceste.scalas}@unica.it, murgia88@gmail.com

2 Università Degli Studi di Trento, Trento, Italy
roberto.zunino@unitn.it

Abstract. We address the problem of modelling and verifying contract-
oriented systems, wherein distributed agents may advertise and stipulate
contracts, but — differently from most other approaches to distributed
agents — are not assumed to always behave “honestly”. We describe an
executable specification in Maude of the semantics of CO2, a calculus
for contract-oriented systems [6]. The honesty property [5] characterises
those agents which always respect their contracts, in all possible execu-
tion contexts. Since there is an infinite number of such contexts, honesty
cannot be directly verified by model-checking the state space of an agent
(indeed, honesty is an undecidable property in general [5]). The main
contribution of this paper is a sound verification technique for honesty.
To do that, we safely over-approximate the honesty property by abstract-
ing from the actual contexts a process may be engaged with. Then, we
develop a model-checking technique for this abstraction, we describe an
implementation in Maude, and we discuss some experiments with it.

1 Introduction

Contract-oriented computing is a software design paradigm where the interaction
between clients and services is disciplined through contracts [4,6]. Contract-
oriented services start their life-cycle by advertising contracts which specify their
required and offered behaviour. When compliant contracts are found, a session is
created among the respective services, which may then start interacting to fulfil
their contracts. Differently from other design paradigms (e.g. those based on the
session types discipline [10]), services are not assumed to be honest, in that they
might not respect the promises made [5]. This may happen either unintentionally
(because of errors in the service specification), or because of malicious behaviour.

Dishonest behaviour is assumed to be automatically detected and sanctioned
by the service infrastructure. This gives rise to a new kind of attacks, that
exploit possible discrepancies between the promised and the actual behaviour. If
a service does not behave as promised, an attacker can induce it to a situation
where the service is sanctioned, while the attacker is reckoned honest. A crucial

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 130–146, 2014.
DOI: 10.1007/978-3-319-12904-4 7

Modelling and Verifying Contract-Oriented Systems in Maude 131

problem is then how to avoid that a service results definitively culpable of a
contract violation, despite of the honest intentions of its developer.

In this paper we present an executable specification in Maude [9] of CO2,
a calculus for contract-oriented computing [4]. Furthermore, we devise and imple-
ment a sound verification technique for honesty. We start in Sect. 2 by introducing
a new model for contracts. Borrowing from other approaches to behavioural con-
tracts [5,8], ours are bilateral contracts featuring internal/external choices, and
recursion. We define and implement in Maude two crucial primives on contracts,
i.e. compliance and culpability testing, and we study some relevant properties.

In Sect. 3 we present CO2 (instantiated with the contracts above), and an
executable specification of its semantics in Maude. In Sect. 4 we formalise a
weak notion of honesty, i.e. when a process P is honest in a given context, and
we implement and experiment with it through the Maude model checker.

The main technical results follow in Sect. 5, where we deal with the problem of
checking honesty in all possible contexts. To do that, we start by defining
an abstract semantics of CO2, which preserves the transitions of a participant
A[P], while abstracting those of the context wherein A[P] is run. Building upon
the abstract semantics, we then devise an abstract notion of honesty (α-honesty,
Definition 11), which neglects the execution context. Theorem 5 states that α-
honesty correctly approximates honesty, and that — under certain hypotheses —
it is also complete. We then propose a verification technique for α-honesty, and
we provide an implementation in Maude. Some experiments have then been car-
ried out; quite notably, our tool has allowed us to determine the dishonesty of a
supposedly-honest CO2 process appeared in [5] (see Example 5).

Because of space limits, we make available online the proofs of all our state-
ments, as well as the Maude implementation, and the experiments made [2].

2 Modelling Contracts

We model contracts as processes in a simple algebra, with internal/external
choice and recursion. Compliance between contracts ensures progress, until a
successful state is reached. We prove that our model enjoys some relevant prop-
erties. First, in each non-final state of a contract there is exactly one participant
who is culpable, i.e., expected to make the next move (Theorem 1). Furthermore,
a participant always recovers from culpability in at most two steps (Theorem 2).

Syntax. We assume a finite set of participant names (ranged over by A,B, . . .) and
a denumerable set of atoms (ranged over by a, b, . . .). We postulate an involution
co(a), also written as ā, extended to sets of atoms in the natural way. Definition 1
introduces the syntax of contracts. We distinguish between (unilateral) contracts
c, which model the promised behaviour of a single participant, and bilateral
contracts γ, which combine the contracts advertised by two participants.

Definition 1. Unilateral contracts are defined by the following grammar:

c, d ::=
⊕

i∈I ai ; ci

∣

∣

∑

i∈I ai . ci

∣

∣ ready a.c
∣

∣ rec X. c
∣

∣ X

132 M. Bartoletti et al.

where (i) the index set I is finite; (ii) the “ready” prefix may appear at the
top-level, only; (iii) recursion is guarded.

Bilateral contracts γ are terms of the form A says c | B says d, where
A �=B and at most one occurrence of “ready” is present. The order of unilateral
contracts in γ is immaterial, i.e. A says c | B says d ≡ B says d | A says c.

An internal sum
⊕

i∈I ai ; ci allows to choose one of the branches ai ; ci, to
perform the action ai, and then to behave according to ci. Dually, an external
sum

∑

i∈I ai . ci allows to wait for the other participant to choose one of the
branches ai . ci, then to perform the corresponding ai and behave according to
ci. Separators ; and . allow for distinguishing singleton internal sums a ; c from
singleton external sums a . c. Empty internal/external sums are denoted with 0.
We will only consider contracts without free occurrences of recursion variables X.

Example 1. An online store A has the following contract: buyers can iteratively
add items to the shopping cart (addToCart); when at least one item has been
added, the client can either cancel the order or pay; then, the store can accept
(ok) or decline (no) the payment. Such a contract may be expressed as cA below:

cpay = pay .
(

ok ; 0 ⊕ no ; 0
)

cA = addToCart . (rec Z. addToCart . Z + cpay + cancel . 0)

Instead, a buyer contract could be expressed as:

cB = rec Z.
(

addToCart ; Z ⊕ pay ; (ok . 0 + no . 0)
)

The Maude specification of the syntax of contracts is defined as follows:
sorts Atom UniContract Participant AdvContract BiContract

IGuarded EGuarded IChoice EChoice Var Id RdyContract.
subsort Id < IGuarded < IChoice < UniContract < RdyContract.
subsort Id < EGuarded < EChoice < UniContract < RdyContract.
subsort Var < UniContract.

The sorts IGuarded and EGuarded represent singleton internal/external sums,
respectively, while IChoice and EChoice are for arbitrary internal/external sums.
Id represents empty sums, and it is a subsort of internal and external sums
(either singleton or not). RdyContract if for contracts which may have a top-level
ready , while AdvContract is a unilateral contract advertised by some participant.
op -_ : Atom -> Atom [ctor].
eq - - a:Atom = a:Atom.
op 0 : -> Id [ctor].
op _._ : Atom UniContract -> EGuarded [frozen ctor].
op _;_ : Atom UniContract -> IGuarded [frozen ctor].
op _+_ : EChoice EChoice -> EChoice [frozen comm assoc id: 0 ctor].
op _(+)_ : IChoice IChoice -> IChoice [frozen comm assoc id: 0 ctor].
op ready _._ : Atom UniContract -> RdyContract [frozen ctor].
op rec _._ : Var IChoice -> UniContract [frozen ctor].
op rec _._ : Var EChoice -> UniContract [frozen ctor].
op _ says _ : Participant RdyContract -> AdvContract [ctor].
op _ | _ : AdvContract AdvContract -> BiContract [comm ctor].

The operator -models the involution on atoms, with eq - - a:Atom = a:Atom. The
other operators are rather standard, and they guarantee that each UniContract

respects the syntactic constraints imposed by Definition 1.

Modelling and Verifying Contract-Oriented Systems in Maude 133

Semantics. The evolution of bilateral contracts is modelled by
μ−→→, the smallest

relation closed under the rules in Fig. 1 and under ≡. The congruence ≡ is
the least relation including α-conversion of recursion variables, and satisfying
rec X. c ≡ c{rec X. c/X} and

⊕

i∈∅ ai ; ci ≡ ∑

i∈∅ ai . ci. The label μ = A says a
models A performing action a. Hereafter, we shall consider contracts up-to ≡.

Fig. 1. Semantics of contracts (symmetric rules for B actions omitted)

In rule [IntExt], participant A selects the branch a in an internal sum, and
B is then forced to commit to the corresponding branch ā in his external sum.
This is done by marking that branch with ready ā, while discarding all the other
branches; B will then perform his action in the subsequent step, by rule [Rdy].

In Maude, the semantics of contracts is an almost literal translation of that in
Fig. 1 (except that labels are moved to configurations). The one-step transition
relation is defined as follows:

crl [IntExt]: A says a ; c (+) c’ | B says b . d + d’
=> {A says a} A says c | B says ready b . d if a = - b.

rl [Rdy]: A says ready a.c | B says d => {A says a} A says c | B says d.

Compliance. Two contracts are compliant if, whenever a participant A wants
to choose a branch in an internal sum, then participant B always offers A the
opportunity to do it. To formalise compliance, we first define a partial function
rdy from bilateral contracts to sets of atoms. Intuitively, if the unilateral con-
tracts in γ do not agree on the first step, then rdy(γ) is undefined (i.e. equal
to ⊥). Otherwise, rdy(γ) contains the atoms which could be fired in the first
step.

Definition 2 (Compliance). Let the partial function rdy be defined as:

rdy
(

A says
⊕

i∈I
ai ; ci | B says

∑

j∈J
bj . cj

)

= {ai}i∈I
if {ai}i∈I ⊆ {b̄j}j∈J
and (I = ∅ =⇒ J = ∅)

rdy(A says ready a.c | B says d) = {a}
Then, the compliance relation �� between unilateral contracts is the largest rela-
tion such that, whenever c �� d:

134 M. Bartoletti et al.

(1) rdy(A says c | B says d) �= ⊥
(2) A says c | B says d

μ−→→ A says c′ | B says d′ =⇒ c′ �� d′

Example 2. Let γ = A says c | B says d, where c = a ; c1 ⊕ b ; c2 and d =
ā . d1 + c̄ . d2. If the participant A internally chooses to perform a, then γ will
take a transition to A says c1 | B says ready ā.d1. Suppose instead that
A chooses to perform b, which is not offered by B in his external choice. In
this case, γ � A says b−−−−−→→. We have that rdy(γ) = ⊥, which does not respect item
(1) of Definition 2. Therefore, c and d are not compliant.

We say that a contract is proper if the prefixes of each summation are pairwise
distinct. The next lemma states that each proper contract has a compliant one.

Lemma 1. For all proper contracts c, there exists d such that c �� d.

Definition 2 cannot be directly exploited as an algorithm for checking compliance.
Lemma 2 gives an alternative, model-checkable characterisation of �� .

Lemma 2. For all bilateral contracts γ = A says c | B says d:

c �� d ⇐⇒ (∀γ′. γ −→→∗ γ′ =⇒ rdy(γ′) �= ⊥)

In Maude, the compliance relation is defined as suggested by Lemma 2. The
predicate isBottom is true for a contract γ whenever rdy(γ) = ⊥. The operator
<> used below allows for the transitive closure of the transition relation. The
relation c |X| d is implemented by verifying that the contract A says c | B says d
satisfies the LTL formula �¬ isBottom. This is done through the Maude model
checker.

eq <{l} g> |= isBottom = is rdy(g) eq bottom.
op _|X|_ : UniContract UniContract -> Bool.
eq c |X| d = modelCheck(<A says c | B says d>, [] ~isBottom) == true.

Example 3. Recall the store contract cA in Example 1. Its Maude version is:
op Z : -> Var.
ops addToCart pay ok no cancel : -> Atom.
ops CA CPay CB : -> UniContract.
eq CPay = pay . (- ok ; 0 (+) - no ; 0).
eq CA = addToCart . (rec Z . addToCart . Z + CPay + cancel . 0).

Instead, the Maude implementation of the buyer contract cB in Example 1 is:
eq CB = rec Z . (- addToCart ; Z (+) - pay ; (ok . 0 + no . 0)).

We can verify with Maude that CA and CB are not compliant:
red CA |X| CB.
result Bool: false

The problem is that CB may choose to pay even when the cart is empty. We can
easily fix the buyer contract as follows, and then obtain compliance:
red CA |X| (- addToCart ; CB).
result Bool: true

Modelling and Verifying Contract-Oriented Systems in Maude 135

Culpability. We now tackle the problem of determining who is expected to make
the next step for the fulfilment of a bilateral contract. We call a participant
A culpable in γ if she is expected to perform some actions so to make γ progress.

Definition 3. A participant A is culpable in γ (A ˙�̇γ in symbols) iff γ
A says a−−−−−→→

for some a. When A is not culpable in γ we write A ˙�̇γ.

Theorem 1 below establishes that, when starting with compliant contracts, exactly
one participant is culpable in a bilateral contract. The only exception is A says 0 |
B says 0, which represents a successfully terminated interaction, where nobody is
culpable.

Theorem 1. Let γ = A says c | B says d, with c �� d. If γ −→→∗ γ′, then either
γ′ = A says 0 | B says 0, or there exists a unique culpable in γ′.

The following theorem states that a participant is always able to recover from
culpability by performing some of her duties. This requires at most two steps.

Theorem 2 (Contractual exculpation). Let γ = A says c | B says d. For
all γ′ such that γ −→→∗ γ′, we have that:

(1) γ′ �−→→ =⇒ A ˙�̇γ′ and B ˙�̇γ′

(2) A ˙�̇γ′ =⇒ ∀γ′′.γ′ −→→ γ′′ =⇒
{

A ˙�̇γ′′, or
∀γ′′′.γ′′ −→→ γ′′′ =⇒ A ˙�̇γ′′′

Item (1) of Theorem 2 says that, in a stuck contract, no participant is culpable.
Item (2) says that if A is culpable, then she can always exculpate herself in at
most two steps, i.e.: one step if A has an internal choice, or a ready followed by
an external choice; two steps if A has a ready followed by an internal choice.

We specify culpability in Maude as follows. The formula {l} g |= --A-->>
is true whenever g has been reached by some transitions of A. The participant
A is culpable in g, written A :C g, if g satisfies the LTL formula O --A-->>
(where O is the “next” operator of LTL). This is verified through the Maude
model checker.

op --_->> : Participant -> Prop.
eq {A says a} g |= -- A ->> = true.
eq {l} g |= -- A ->> = false [owise].
op _ :C _ : Participant BiContract -> Bool.
eq A :C g = modelCheck(g, O -- A ->>) == true.

3 Modelling Contracting Processes

We model agents and systems through the process calculus CO2 [3], which we
instantiate with the contracts introduced in Sect. 2. The primitives of CO2 allow
agents to advertise contracts, to open sessions between agents with compliant
contracts, to execute them by performing some actions, and to query contracts.

136 M. Bartoletti et al.

Syntax. Let V and N be disjoint sets of session variables (ranged over by x, y, . . .)
and session names (ranged over by s, t, . . .). Let u, v, . . . range over V ∪ N , and
u,v range over 2V∪N .

Definition 4. The syntax of CO2 is given as follows:

Systems S ::= 0
∣

∣ A[P]
∣

∣ s[γ]
∣

∣ S | S
∣

∣ (u)S
∣

∣ {↓u c}A
Processes P ::=

∑

i πi.Pi

∣

∣ P | P
∣

∣ (u)P
∣

∣ X(u)
Prefixes π ::= τ

∣

∣ tell ↓u c
∣

∣ dou a
∣

∣ askuφ

Systems are the parallel composition of participants A[P], delimited systems
(u)S, sessions s[γ] and latent contracts {↓u c}A. A latent contract {↓x c}A rep-
resents a contract c (advertised by A) which has not been stipulated yet; upon
stipulation, the variable x will be instantiated to a fresh session name. We assume
that, in a system of the form (u)(A[P] | B[Q]) | · · ·), A �= B. We denote with
K a special participant name (playing the role of contract broker) such that, in
each system (u)(A[P] | · · ·), A �= K. We allow for prefix-guarded finite sums of
processes, and write π1.P1+π2.P2 for

∑

i∈{1,2} πi.Pi, and 0 for
∑

∅ P . Recursion
is allowed only for processes; we stipulate that each process identifier X has a
unique defining equation X(x1, . . . , xj)

def= P such that fv(P) ⊆ {x1, . . . , xj} ⊆ V,
and each occurrence of process identifiers in P is prefix-guarded. We will some-
times omit the arguments of X(u) when they are clear from the context.

Prefixes include silent action τ , contract advertisement tell ↓u c, action exe-
cution dou a, and contract query asku φ (where φ is an LTL formula on γ). In
each prefix π �= τ , u refers to the target session involved in the execution of π.

In Maude, we translate the syntax of CO2 almost literally. Here we just show
the sorts used; see [2] for the full details.

sorts System Process Prefix SessionName SessionVariable SessionIde
GuardProc Sum IdeVec ProcIde ParamList.

subsort SessionName < SessionIde < IdeVec.
subsort Qid < SessionVariable < SessionIde < IdeVec.
subsort GuardProc < Sum < Process.
subsort SessionIde < ParamList.

The sort SessionIde is a super sort of both SessionVariable and SessionName.
Session variables can be of sort Qid; session names can not. Sort IdeVec models
sets of SessionIde (used as syntactic sugar for delimitations), while ParamList

models vectors of SessionIde (used for parameters of defining equations).

Semantics. The CO2 semantics is formalised by the relation
μ−→ in Fig. 3, where

μ ∈ {A : π | A �=K}∪{K : fuse}. We will consider processes and systems up-to the
congruence relation ≡ in Fig. 2. The axioms for ≡ are fairly standard — except
the last one: it collects garbage terms possibly arising from variable substitutions.

Rule [Tau] just fires a τ prefix. Rule [Tell] advertises a latent contract {↓x c}A.
Rule [Fuse] finds agreements among the latent contracts: it happens when there
exist {↓x c}A and {↓y d}B such that A �= B and c �� d. Once the agreement is
reached, a fresh session containing γ = A says c | B says d is created. Rule [Do]

allows a participant A to perform an action in the session s containing γ (which,

Modelling and Verifying Contract-Oriented Systems in Maude 137

Fig. 2. Structural equivalence for CO2 (Z,Z′ range over systems or processes).

Fig. 3. Reduction semantics of CO2 .

accordingly, evolves to γ′). Rule [Ask] allows A to proceed only if the contract γ
at session s satisfies the property φ. The last three rules are mostly standard. In
rule [Del] the label π fired in the premise becomes τ in the consequence, when
π contains the delimited name/variable. This transformation is defined by the
function delu(π), where the set fnv(π) contains the free names/variables in π. For
instance, (x)A[tell ↓x c.P] A: τ−−−→ (x) (A[P] | {↓x c}A). Here, it would make little
sense to have the label A : tell ↓x c, as x (being delimited) may be α-converted.

Implementing in Maude the semantics of CO2 is almost straightforward
[19]; here we show only the main rules (see [2] for the others). Rule [Do] uses
the transition relation => on bilateral contracts. Rule [Ask] exploits the Maude
model checker to verify if the bilateral contract g satisfies the LTL formula phi.
Rule [Fuse] uses the operator |X| to check compliance between the contracts
c and d, then creates the session s[A says c | B says d] (with s fresh), and

138 M. Bartoletti et al.

finally applies the substitution {s / x}{s / y} (delimitations are dealt with as
in Fig. 3).

crl [Do] : A[do s a . P + P’ | Q] | s[g] => {A : do s a} (A[P | Q] | s[g’])
if g => {A says a} g’.

crl [Ask] : A[ask s phi . P + P’ | Q] | s[g] => {A : ask s phi} A[P | Q]
if g |- phi.

crl [Fuse] : (uVec , vVec) ({x c}A | {y d}B | S) => { K : fuse}
(s , vVec) (s[A says c | B says d] | S{s / x}{s / y})
if uVec == (x , y) / c |X| d / s := fresh(0 , S).

4 Honesty

A remarkable feature of CO2 is that it allows for writing dishonest agents which
do not keep their promises. Intuitively, a participant is honest if she always
fulfils her contractual obligations, in all possible contexts. Below we formalise
the notion of honesty, by slightly adapting the one appeared in [3]. Then, we
show how we verify in Maude a weaker notion, i.e. honesty in a given context.

We start by defining the set OA
s (S) of obligations of A at s in S. Whenever

A is culpable at some session s, she has to fire one of the actions in OA
s (S).

Definition 5. We define the set of atoms OA
s (S) as:

OA
s (S) =

{

a | ∃γ, S′ . S ≡ s[γ] | S′ and γ
A says a−−−−−→→

}

We say that A is culpable at s in S iff OA
s (S) �= ∅.

The set of atoms RDA
s (S) (“Ready Do”) defined below comprises all the actions

that A can perform at s in one computation step within S (note that, by rule
[Del], if s is a bound name then RDA

s (S) = ∅). The set WRDA
s (S) (“Weak Ready

Do”) contains all the actions that A may possibly perform at s after a finite
sequence of transitions of A not involving any do at s.

Definition 6. For all S, A and s, we define the sets of atoms:

RDA
s (S) =

{

a | ∃S′ . S
A: dos a−−−−−→ S′

}

WRDA
s (S) =

{

a | ∃S′ . S
A: �=dos−−−−−→∗S′ ∧ a ∈ RDA

s (S′)
}

where we write S
A: �=dos−−−−−→ S′ if ∃π. S

A: π−−−→ S′ ∧ ∀a. π �= dos a.

A participant is ready if she can fulfil some of her obligations. To check if A is
ready in S, we consider all the sessions s in S involving A. For each of them,
we check that some obligations of A at s are exposed after some steps of A not
preceded by other dos of A. A[P] is honest in a given system S when A is ready
in all evolutions of A[P] | S. Then, A[P] is honest when she is honest in all S.

Modelling and Verifying Contract-Oriented Systems in Maude 139

Definition 7 (Honesty). We say that:

1. S is A -free iff it has no latent/stipulated contracts of A, nor processes of A
2. A is ready in S iff S ≡ (u)S′ ∧ OA

s (S′) �= ∅ =⇒ WRDA
s (S′) ∩ OA

s (S′) �= ∅
3. P is honest in S iff ∀A : (S is A -free ∧ A[P] | S −→∗ S′) =⇒ A is ready in S′

4. P is honest iff, for all S, P is honest in S

We have implemented items 2 and 3 of the above definition in Maude (item
4 is dealt with in the next section). CO2 can simulate Turing machines [5],
hence reachability in CO2 is undecidable, and consequently WRD, readiness
and honesty are undecidable as well. To recover decidability, we then restrict to
finite state processes: roughly, these are the processes with neither delimitations
nor parallel compositions under process definitions.

In Maude we verify readiness in a session s by searching if A can reach (with
her moves only), a state which allows for a dos a move, for some a.

op ready? : Participant SessionName System Module -> Bool.
eq ready?(A,s,S,M:Module) = metaSearch(M:Module, upTerm(< S > A s),

’<_>__[’S1:System , upTerm(A) , upTerm(s)],
’S1:System => ’‘_‘_[’l:SLabel,’S2:System] /\
’_:_[upTerm(A),’do__[upTerm(s),’a:Atom]] := ’l:SLabel,
’*, unbounded, 0) =/= failure.

We start the search from the term < S > A s, whose meta-representation is
obtained through the upTerm function. The search is performed according to the
A-solo semantics of CO2 (see Definition 10), which blocks all do at s. This is
done by the operator < > . Then, we look for reachable systems S1 where A can
fire a do at s. If the search succeeds, ready? returns true. Note that if A has no
obligations at s in S, ready? returns false — uncoherently with Definition 7. To
correctly check readiness, we define the function ready (see [2]), which invokes
ready? only when OA

s(S) �= ∅.
Verifying honesty in a context is done similarly. We use metaSearch to check

that A is ready in all reachable states. The operator < > gives the CO2 semantics.

op search-honest-ctx : Participant System Module -> ResultTriple?.
eq search-honest-ctx(A,S,M:Module) = metaSearch(M:Module, upTerm(< S >),

’<_>[’S:System], ’ready[upTerm(A), ’S:System,’S:System, upTerm(M:Module)]
= ’false.Bool, ’*, unbounded, 0).

op honest-ctx : Participant System Module -> Result.
ceq honest-ctx (A , S , M:Module) = true

if search-honest-ctx (A , S , M:Module) == failure.
ceq honest-ctx (A , S , M:Module) = downTerm (T:Term , < (0).System >)

if {T:Term,Ty:Type,S:Substitution} := search-honest-ctx (A,S,M:Module).

Example 4. A travel agency A queries in parallel an airline ticket broker F and a
hotel reservation service H in order to organise a trip for some user U. The agency
first requires U to pay, and then chooses either to commit the reservation or to
issue a refund (contract CU). When querying the ticket broker (contract CF), the
agency first receives a quotation, and then chooses either to commit and pay the
ticket, or to abort the transaction. The contract CH between A and H is similar.

140 M. Bartoletti et al.

eq CU = pay . (commit ; 0 (+) refund ; 0).
eq CF = ticket . (commitF ; payF ; 0 (+) abortF ; 0).
eq CH = hotel . (commitH ; payH ; 0 (+) abortH ; 0).

In addition to the contracts above, the agency should respect the following con-
straints: (a) the agency refunds U only if both the transactions with F and H

are aborted; (b) A pays the ticket and the hotel reservation only after it has
committed the transaction with U; (c) either both the transactions with F or
H are committed, or they are both aborted. A possible specification in Maude
respecting the above constraints is given by the following process P:

eq P = (xu , xf , xh) (tell xu CU . do xu pay.
((tell xf CF . PF) | (tell xh CH . PH) | PU)).

eq PF = do xf ticket . (do xh commitH . 0 + do xf abortF . 0).
eq PH = do xh hotel . (do xf commitF . 0 + do xh abortH . 0).

eq PU = ask xh ([] ~ payH) . do xu refund . 0 +
t . do xu commit . (do xf payF . 0 | do xh payH . 0).

The process P first opens a session with U, and then advertises the contracts CF

and CH, and in parallel executes PU. The process PF gets the ticket quotation, then
either commits the hotel reservation, or aborts the flight reservation. Dually, PH
gets the hotel quotation, then either commits the flight reservation, or aborts the
hotel reservation. Note that the two choices in PF and PH ensure that constraint
(c) above is satisfied: e.g., if PF fires the commitH (resp. abortF) prefix, the abortH

(resp. commitF) branch in PH is disabled, and only commitF (resp. abortH) can be
selected. The process PU checks if a refund is due to U. When the atom payH is
no longer reachable in session xh, the ask passes, and the refund is issued. This
guarantees constraint (a). In the τ -branch, PU commits the transaction with U,
and then proceeds to pay both F and H. This satisfies constraint (b). Note that
it may happen that PU chooses to commit even when CF or CH are not stipulated.
Although this behaviour is conceptually wrong, it does not affect honesty. Indeed,
honesty does not consider the domain-specific constraints among actions (e.g.
(a), (b), (c) above), but only that the advertised contracts are respected.

We have experimented the function honest-ctx by inserting P in some con-
texts S where all the other participants U, F and H are honest (see [2] for details).
The Maude model checker has correctly determined that P is honest in S.

red honest-ctx(A , S , [’TRAVEL-AGENCY-CTX]).
rewrites: 53950741 in 38062ms cpu (38058ms real) (1417429 rewrites/second)
result Bool: true

Even though we conjecture that P is honest (in all contexts), we anticipate
here that the verification technique proposed in Sect. 5 does not classify P as
honest. This is because the analysis is (correct but) not complete in the presence
of ask: indeed, the precise behaviour of an ask is lost by the analysis, because it
abstracts from the contracts of the context.

Modelling and Verifying Contract-Oriented Systems in Maude 141

5 Model Checking Honesty

We now address the problem of automatically verifying honesty. As mentioned
in Sect. 1, this is a desirable goal, because it alerts system designers before they
deploy services which could violate contracts at run-time (so possibly incurring
in sanctions). Since honesty is undecidable in general [5], our goal is a verification
technique which safely over-approximates honesty, i.e. it never classifies a process
as honest when it is not. The first issue is that Definition 7 requires readiness
to be preserved in all possible contexts, and there is an infinite number of such
contexts. To overcome this problem, we present below an abstract semantics of
CO2 which preserves the honesty property, while neglecting the actual context
where the process A[P] is executed.

The definition of the abstract semantics of CO2 is obtained in two steps.
First, we provide the projections from concrete contracts/systems to the abstract
ones. Then, we define the semantics of abstract contracts and systems, and we
relate the abstract semantics with the concrete one. The abstraction is always
parameterised in the participant A the honesty of which is under consideration.

The abstraction αA(γ) of a bilateral contract γ = A says c | B says d
(Definition 8 below) is either c, or ctx .c when d has a ready .

Definition 8. For all γ, we define the abstract contract αA(γ) as:

αA(A says c | B says d) =

{

c if d is ready-free
ctx a.c if d = ready a.d′

We now define the abstraction αA of concrete systems, which just discards all
the components not involving A, and projects the contracts involving A.

Definition 9. For all A, S we define the abstract system αA(S) as:

αA(A[P]) = A[P] αA(s[γ]) = s[αA(γ)] αA({↓x c}A) = {↓x c}A
αA(S | S′) = αA(S) | αA(S′) αA((u)S) = (u)(αA(S)) αA(S) = 0, otherwise

Abstract semantics. For all participants A, the abstract LTSs �−→→A and
μ−→A on

abstract contracts and systems, respectively, are defined by the rules in Fig. 4.
Labels 	 are atoms, with or without the special prefix ctx — which indicates
a contractual action performed by the context. Labels μ are either ctx or they
have the form A : π, where A is the participant in −→A, and π is a CO2 prefix.

Rules for abstract contracts (first row in Fig. 4) are simple: in an internal
sum, A chooses a branch; in an external sum, the choice is made by the context;
in a ready a.c the atom a is fired. The rightmost rule handles a ready in the con-
text contract. For abstract systems, some rules are similar to the concrete ones,
hence we discuss only the most relevant ones. Rule [α-Do] involves the abstract
transitions of contracts. The behaviour of abstract systems also considers context
actions, labelled with ctx . If c � φ, then the ask φ passes, indepedently from the
context (rule [α-Ask]). If c �� ¬φ, then the ask φ may pass or not, depending and

142 M. Bartoletti et al.

the context (rule [α-AskCtx]). Rule [α-Fuse] says that a latent contract of A may
always be fused (the context may choose whether this is the case or not). The
context may also decide whether to perform actions within sessions ([α-DoCtx]).
Unobservable context actions are modelled by rules [α-Ctx] and [α-DelCtx].

Fig. 4. Abstract LTSs for contracts and systems (full set of rules in [2]).

To check if A[P] is honest, we must only consider those A-free contexts not
already containing advertised/stipulated contracts of A. Such systems will always
evolve to a system which can be split in two parts: an A-solo system SA contain-
ing the process of A, the contracts advertised by A and all the sessions containing
contracts of A, and an A-free system Sctx.

Definition 10. We say that a system S is A-solo iff one of the following holds:

S ≡ 0 S ≡ A[P] S ≡ s[A says c | B says d] S ≡ {↓x c}A
S ≡ S′ | S′′ where S′ and S′′ A-solo S ≡ (u)S′ where S′ A-solo

We say that S is A-safe iff S ≡ (s)(SA | Sctx), with SA A-solo and Sctx A-free.

The following theorems establish the relations between the concrete and the
abstract semantics of CO2. Theorem 3 states that the abstraction is correct, i.e.
for each concrete computation there exists a corresponding abstract computa-
tion. Theorem 4 states that the abstraction is also complete, provided that a
process has neither ask nor non-proper contracts.

Modelling and Verifying Contract-Oriented Systems in Maude 143

Theorem 3. For all A-safe systems S, and for all concrete traces η:

S
η−→∗S′ =⇒ ∃η̃ : αA(S)

η̃−→A
∗αA(S′)

Furthermore, if η is A-solo and S is ask-free, then η = η̃.

Theorem 4. For all ask-free abstract system S̃ with proper contracts only:

S̃ −→A
∗ S̃′ =⇒ ∃S, S′ A-safe. αA(S) = S̃ ∧ S −→∗ S′ ∧ αA(S′) = S̃′

The abstract counterparts of Ready Do, Weak Ready Do, and readiness are
defined as expected, by using the abstract semantics instead of the concrete
one (see [2] for details). The notion of honesty for abstract systems, namely
α-honesty, follows the lines of that of honesty in Definition 7.

Definition 11 (α-honesty). We say that P is α-honest iff for all S̃ such that
A[P] −→A

∗ S̃, A is ready in S̃.

The main result of this paper follows. It states that α-honesty is a sound approx-
imation of honesty, and — under certain conditions — it is also complete.

Theorem 5. If P is α-honest, then P is honest. Conversely, if P is honest,
ask-free, and has proper contracts only, then P is α-honest.

In Maude, we implement abstract semantics for system and contracts for one-
step transitions. We obtain their transitive closure, discarding labels, with the
operator < >. The function ready in search-honest computes abstract readiness.

op search-honest : Process Module -> ResultTriple?.

eq search-honest(P , M:Module) = metaSearch(M:Module, upTerm(< A[P] >),

’<_>[’S:System], ’ready[’S:System,’S:System, upTerm(M:Module)]

= ’false.Bool, ’*, unbounded, 0).

op honest : Process Module -> Result.

ceq honest (P, M:Module) = true if search-honest (P,M:Module) == failure . ceq honest (P,

M:Module) = downTerm (T:Term , < (0).System >)

if {T:Term, Ty:Type, S:Substitution} := search-honest (P , M:Module).

Honesty is checked by searching for states such that A is not ready. If the
search fails, then A is honest. As in Sect. 4, this function is decidable for finite
state processes, i.e. those without delimitation/parallel under process definitions.
The following example shows a process which was erroneously classified as honest
in [5]. The Maude model checker has determined the dishonesty of that process,
and by exploiting the Maude tracing facilities we managed to fix it.

Example 5. A store A offers buyers two options: clickPay or clickVoucher. If a
buyer B chooses clickPay, A requires a payment (pay) otherwise A checks the
validity of the voucher with V, an online voucher distribution system. If V val-
idates the voucher (ok), B can use it (voucher), otherwise (no) B must pay. We
specify in Maude the contracts CB (between A and B) and CV (between A and V) as:

144 M. Bartoletti et al.

eq CB = clickPay . pay . 0 +
clickVoucher . (- reject ; pay . 0 (+) - accept ; voucher . 0).

eq CV = ok . 0 + no . 0.

We can specify in Maude a CO2 process for A as follows:

eq P = (x)(tell x CB . (do x clickPay . do x pay . 0 +
do x clickVoucher . ((y) tell y CV . Q))).

eq Q = do y ok . do x - accept . do x voucher . 0 +
do y no . do x - reject . do x pay . 0 + R.

eq R = t . (do x - reject . do x pay . 0).

Variables x and y in P correspond to two separate sessions, where A respectively
interacts with B and V. The advertisement of CV causally depends on the stip-
ulation of the contract CB, because A must fire clickVoucher before tell y CV.
In process Q the store waits for the answer of V: if V validates the voucher (first
branch), then A accepts it from B; otherwise (second branch), A requires B to pay.
The third branch R allows A to fire a τ action, and then reject the voucher. The
intuition is that τ models a timeout, to deal with the fact that CV might not be
stipulated. When we check the honesty of P with Maude, we obtain:

red honest(P , [’STORE-VOUCHER]).
rewrites: 31649 in 72ms cpu (77ms real) (439545 rewrites/second)
result TSystem: < ($ 0,$ 1)(A[do $ 0 - reject . do $ 0 pay . (0).Sum] |

$ 0[- accept ; voucher . 0(+)- reject ; pay . 0] | $ 1[ready ok . 0]) >

This means that the process P is dishonest: actually, the output provides a state
where A is not ready. There, A must do ok in session y ($1), while A is only ready
to do a -reject at session x ($0). This problem occurs when the branch R is
chosen. To recover honesty, it suffices to replace R with the following process R’:

eq R’ = t . (do x - reject . do x pay . 0 | (do y no . 0 + do y ok . 0)).
red honest(P’ , [’STORE-VOUCHER]).
rewrites: 44009 in 32ms cpu (30ms real) (1375195 rewrites/second)
result Bool: true

6 Conclusions

We have described an executable specification in Maude of a calculus for contract-
oriented systems. This has been done in two steps. First, we have specified a
model for contracts, and we have formalised in Maude their semantics, and the
crucial notions of compliance and culpability (Sect. 2). This specification has
been exploited in Sect. 3 to implement in Maude the calculus CO2 [4]. Then,
we have considered the problem of honesty [5], i.e. that of deciding when a
participant always respects the contracts she advertises, in all possible contexts
(Sect. 4). Writing honest processes is not a trivial task, especially when multiple
sessions are needed for realising a contract (see e.g. Example 4 and Example 5).
We have then devised a sound verification technique for deciding when a par-
ticipant is honest, and we have provided an implementation of this technique in
Maude (Sect. 5).

Modelling and Verifying Contract-Oriented Systems in Maude 145

Related work. Rewriting logic [12] has been successfully used for more than two
decades as a semantic framework wherein many different programming models
and logics are naturally formalised, executed and analysed. Just by restricting
to models for concurrency, there exist Maude specifications and tools for CCS
[17], the π-calculus [16], Petri nets [15], Erlang [14], Klaim [18], adaptive sys-
tems [7], etc. A more comprehensive list of calculi, programming languages, tools
and applications implemented in Maude is collected in [13].

The contract model presented in Sect. 2 is a refined version of the one in [5],
which in turn is an alternative formalisation of the one in [8]. Our version is
simpler and closer to the notion of session behaviour [1], and enjoys several
desirable properties. Theorem 1 establishes that only one participant may be
culpable in a bilateral contract, whereas in [5] both participants may be culpable,
e.g. in A says a ; c | B says ā ; d. In our model, if both participants have an
internal (or external) choice, then their contracts are not compliant, whereas e.g.
a.c and ā.d (both external choices) are compliant in [5,8] whenever c and d are
compliant. The exculpation property established by Theorem 2 is stronger than
the corresponding one in [5]. There, a participant A is guaranteed to exculpate
herself by performing (at most) two consecutive actions of A, while in our model
two any actions (of whatever participant) suffice.

As far as we know, the concept of contract-oriented computing (in the mean-
ing used in this paper) has been introduced in [6]. CO2, a contract-agnostic calcu-
lus for contract-oriented computing, has been instantiated with several contract
models — both bilateral [3,5] and multiparty [4,11]. Here we have instanti-
ated it with the contracts in Sect. 2. A minor difference w.r.t. [3,5,11] is that
here we no longer have fuse as a language primitive, but rather the creation
of fresh sessions is performed non-deterministically by the context (rule [Fuse]).
This is equivalent to assume a contract broker which collects all contracts, and
may establish sessions when compliant contracts are found. In [5], a participant
A is considered honest when, in each possible context, she can always exculpate
herself by a sequence of A-solo moves. Here we require that A is ready (i.e. some
of her obligations are in the Weak Ready Do set) in all possible contexts, as
in [3]. We conjecture that these two notions are equivalent. In [3] a type system
has been proposed to safely over-approximate honesty. The type of a process
P is a function which maps each variable to a channel type. These are behav-
ioural types (in the form of Basic Parallel Processes) which essentially preserve
the structure of P , by abstracting the actual prefixes as “non-blocking” and
“possibly blocking”. The type system relies upon checking honesty for channel
types, but no actual algorithm is given for such verification, hence type inference
remains an open issue. In contrast, here we have directly implemented in Maude
a verification algorithm for honesty, by model checking the abstract semantics
in Sect. 5.

Acknowledgments. This work has been partially supported by Aut. Region of Sar-
dinia under grants L.R.7/2007 CRP-17285 (TRICS) and P.I.A. 2010 project “Social
Glue”, and by MIUR PRIN 2010-11 project “Security Horizons”, and by EU COST
Action IC1201 “Behavioural Types for Reliable Large-Scale Software Systems”
(BETTY).

146 M. Bartoletti et al.

References

1. Barbanera, F., de’Liguoro, U.: Two notions of sub-behaviour for session-based
client/server systems. In: PPDP (2010)

2. Bartoletti, M., Murgia, M., Scalas, A., Zunino, R.: Modelling and verifying
contract-oriented systems in Maude. http://tcs.unica.it/software/co2-maude

3. Bartoletti, M., Scalas, A., Tuosto, E., Zunino, R.: Honesty by typing. In: Beyer,
D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp.
305–320. Springer, Heidelberg (2013)

4. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in Co2. Sci.
Ann. Comp. Sci. 22(1), 5–60 (2012)

5. Bartoletti, M., Tuosto, E., Zunino, R.: On the realizability of contracts in dishonest
systems. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 245–
260. Springer, Heidelberg (2012)

6. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
7. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling

and analyzing adaptive self-assembly strategies with maude. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: Specification and programming in rewriting logic. In: TCS (2001)

10. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

11. Lange, J., Scalas, A.: Choreography synthesis as contract agreement. In: ICE (2013)
12. Meseguer, J.: Rewriting as a unified model of concurrency. In: Baeten, J.C.M.,

Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 384–400. Springer,
Heidelberg (1990)

13. Meseguer, J.: Twenty years of rewriting logic. JLAP 81(7–8), 721–781 (2012)
14. Neuhäußer, M., Noll, T.: Abstraction and model checking of core Erlang programs

in Maude. ENTCS 176(4), 143–163 (2007)
15. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework

for Petri Nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN
2001. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001)

16. Thati, P., Sen, K., Mart́ı-Oliet, N.: An executable specification of asynchronous
pi-calculus semantics and may testing in Maude 2.0. In: ENTCS 71 (2002)

17. Verdejo, A., Mart́ı-Oliet, N.: Implementing CCS in Maude 2. In: ENTCS 71 (2002)
18. Wirsing, M., Eckhardt, J., Mühlbauer, T., Meseguer, J.: Design and analysis of

cloud-based architectures with KLAIM and maude. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 54–82. Springer, Heidelberg (2012)

19. Şerbănuţă, T.F., Roşu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Inf. Comput. 207(2), 305–340 (2009)

http://tcs.unica.it/software/co2-maude

Towards Static Analysis of Functional Programs
Using Tree Automata Completion

Thomas Genet(B)

INRIA/IRISA, Université de Rennes, Rennes Cedex, France
genet@irisa.fr

Abstract. This paper presents the first step of a wider research effort
to apply tree automata completion to the static analysis of functional
programs. Tree Automata Completion is a family of techniques for com-
puting or approximating the set of terms reachable by a rewriting rela-
tion. The completion algorithm we focus on is parameterized by a set E
of equations controlling the precision of the approximation and influenc-
ing its termination. For completion to be used as a static analysis, the
first step is to guarantee its termination. In this work, we thus give a
sufficient condition on E and T (F) for completion algorithm to always
terminate. In the particular setting of functional programs, this condi-
tion can be relaxed into a condition on E and T (C) (terms built on the
set of constructors) that is closer to what is done in the field of static
analysis, where abstractions are performed on data.

1 Introduction

Computing or approximating the set of terms reachable by rewriting has more
and more applications. For a Term Rewriting System (TRS) R and a set of
terms L0 ⊆ T (F), the set of reachable terms is R∗(L0) = {t ∈ T (F) | ∃s ∈
L0, s →R∗ t}. This set can be computed exactly for specific classes of R [10]
but, in general, it has to be approximated. Applications of the approximation
of R∗(L0) are ranging from cryptographic protocol verification [1], to static
analysis of various programming languages [5] or to TRS termination proofs [15].
Most of the techniques compute such approximations using tree automata as the
core formalism to represent or approximate the (possibly) infinite set of terms
R∗(L0). Most of them also rely on a Knuth-Bendix completion-like algorithm
completing a tree automaton A recognizing L0 into an automaton A∗ recognizing
exactly, or over-approximating, the set R∗(L0). As a result, these techniques can
be refered as tree automata completion techniques [4,8,9,13,19,22]. A strength
of this algorithm, and at the same time a weakness, is that its precision is
parameterized by a function [8] or a set of equations [13]. It is a strength because
tuning the approximation function (or equations) permits to adapt the precision
of completion to a specific goal to tackle. This is what made it successful for
program and protocol verification. On the other hand, this is a weakness because
it is difficult to guarantee its termination.
c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 147–161, 2014.
DOI: 10.1007/978-3-319-12904-4 8

148 T. Genet

In this paper, we define a simple sufficient condition on the set of equations
for the tree automata completion algorithm to terminate. This condition, which
is strong in general, reveals to be natural and well adapted for the approximation
of reachable terms when TRSs encode typed functional programs. We thus obtain
a way to automatically over-approximate the set of all reachable program states
of a functional program, or even restrict it to the set of all results. Thus we can
over-approximate the image of a functional program.

2 Related Work

Tree automata completion. With regards to most papers about completion [4,8,9,
13,19,22], our contribution is to give the first criterion on the approximation for
the completion to terminate. Note that it is possible to guarantee termination of
the completion by inferring an approximation adapted to the TRS under concern,
like in [20]. In this case, given a TRS, the approximation is fixed and unique.
Our solution is more flexible because it lets the user change the precision of the
approximation while keeping the termination guarantee. In [22], T. Takai have a
completion parameterized by a set of equations. He also gives a termination
proof for its completion but only for some restricted classes of TRSs. Here our
termination proof holds for any left-linear TRS provided that the set of equations
satisfy some properties.

Static analysis of functional programs. With regards to static analysis of func-
tional programs using grammars or automata, our contribution is in the scope
of data-flow analysis techniques, rather than control-flow analysis. More pre-
cisely, we are interested here in predicting the results of a function [21], rather
than predicting the control flow [18]. Those two papers, as well as many other
ones, deal with higher order functions using complex higher-order grammar for-
malisms (PMRS and HORS). Higher-order functions are not in the scope of the
solution we propose here. However, we obtained some preliminary results sug-
gesting that an extension to higher order functions is possible and gives relevant
results (see Sect. 6). Furthermore, using equations, approximations are defined
in a more declarative and flexible way than in [21], where they are defined by a
dedicated algorithm. Besides, the verification mechanisms of [21] use automatic
abstraction refinement. This can be also performed in the completion setting [3]
and adapted to the analysis of functional programs [14]. Finally, using a simpler
(first order) formalism, i.e. tree automata, makes it easier to take into account
some other aspects like: evaluation strategies and built-ins types (see Sect. 6)
that are not considered by those papers.

3 Background

In this section, we introduce some definitions and concepts that will be used
throughout the rest of the paper (see also [2,7]). Let F be a finite set of symbols,
each associated with an arity function, and let X be a countable set of variables.

Towards Static Analysis of Functional Programs 149

T (F ,X) denotes the set of terms and T (F) denotes the set of ground terms
(terms without variables). The set of variables of a term t is denoted by Var(t).
A substitution is a function σ from X into T (F ,X), which can be uniquely
extended to an endomorphism of T (F ,X). A position p for a term t is a finite
word over N. The empty sequence λ denotes the top-most position. The set
Pos(t) of positions of a term t is inductively defined by Pos(t) = {λ} if t ∈ X or
t is a constant and Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}
otherwise. If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p
denotes the term obtained by replacement of the subterm t|p at position p by
the term s.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X), l �∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear if
each variable of l occurs only once in l. A TRS R is left-linear if every rewrite
rule l → r of R is left-linear. The TRS R induces a rewriting relation →R on
terms as follows. Let s, t ∈ T (F ,X) and l → r ∈ R, s →R t denotes that
there exists a position p ∈ Pos(s) and a substitution σ such that s|p = lσ and
t = s[rσ]p. Given a TRS R, F can be split into two disjoint sets C and D. All
symbols occurring at the root position of left-hand sides of rules of R are in D.
D is the set of defined symbols of R, C is the set of constructors. Terms in T (C)
are called data-terms. The reflexive transitive closure of →R is denoted by →∗

R
and s →!

R t denotes that s →∗
R t and t is irreducible by R. The set of irreducible

terms w.r.t. a TRS R is denoted by Irr(R). The set of R-descendants of a set
of ground terms I is R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗

R t}. A TRS R is
sufficiently complete if for all s ∈ T (F), (R∗({s}) ∩ T (C)) �= ∅.

An equation set E is a set of equations l = r, where l, r ∈ T (F ,X). The
relation =E is the smallest congruence such that for all substitution σ we have
lσ =E rσ. Given a TRS R and a set of equations E, a term s ∈ T (F) is
rewritten modulo E into t ∈ T (F), denoted s →R/E t, if there exist s′ ∈ T (F)
and t′ ∈ T (F) such that s =E s′ →R t′ =E t. The reflexive transitive closure
→∗

R/E of →R/E is defined as usual except that reflexivity is extended to terms
equal modulo E, i.e. for all s, t ∈ T (F) if s =E t then s →∗

R/E t. The set of
R-descendants modulo E of a set of ground terms I is R∗

E(I) = {t ∈ T (F) | ∃s ∈
I s.t. s →∗

R/E t}.
Let Q be a countably infinite set of symbols with arity 0, called states, such

that Q ∩ F = ∅. T (F ∪ Q) is called the set of configurations. A transition is
a rewrite rule c → q, where c is a configuration and q is state. A transition is
normalized when c = f(q1, . . . , qn), f ∈ F is of arity n, and q1, . . . , qn ∈ Q.
An ε-transition is a transition of the form q → q′ where q and q′ are states. A
bottom-up non-deterministic finite tree automaton (tree automaton for short) over
the alphabet F is a tuple A = 〈F ,Q,QF ,Δ〉, where QF is a finite subset of Q,
Δ is a finite set of normalized transitions and ε-transitions. The transitive and
reflexive rewriting relation on T (F ∪ Q) induced by the set of transitions Δ (resp.
all transitions except ε-transitions) is denoted by →∗

Δ (resp. →�ε ∗
Δ). When Δ is

attached to a tree automaton A we also note those two relations →A∗ and →�ε ∗
A ,

respectively. A tree automaton A is complete if for all s ∈ T (F) there exists a

150 T. Genet

state q of A such that s →A∗ q. The language (resp. �ε-language) recognized by A
in a state q is L(A, q) = {t ∈ T (F) | t →∗

A q} (resp. L�ε(A, q) = {t ∈ T (F) | t →�ε ∗
A

q}). A state q of an automaton A is reachable (resp. �ε-reachable) if L(A, q) �= ∅
(resp. L�ε(A, q) �= ∅). We define L(A) =

⋃

q∈QF
L(A, q). A set of transitions Δ

is �ε-deterministic if there are no two normalized transitions in Δ with the same
left-hand side. A tree automaton A is �ε-deterministic if its set of transitions is �ε-
deterministic. Note that if A is �ε-deterministic then for all states q1, q2 of A such
that q1 �= q2, we have L�ε(A, q1) ∩ L�ε(A, q2) = ∅.

4 Tree Automata Completion Algorithm

Tree Automata Completion algorithms were proposed in [9,13,16,22]. They are
very similar to a Knuth-Bendix completion except that they run on two distinct
sets of rules: a TRS R and a set of transitions Δ of a tree automaton A.

Starting from a tree automaton A0 = 〈F ,Q,Qf ,Δ0〉 and a left-linear TRS
R, the algorithm computes a tree automaton A′ such that L(A′) = R∗(L(A0))
or L(A′) ⊇ R∗(L(A0)). The algorithm iteratively computes tree automata A1

R,
A2

R, . . . such that ∀i ≥ 0 : L(Ai
R) ⊆ L(Ai+1

R) until we get an automaton Ak
R

with k ∈ N and L(Ak
R) = L(Ak+1

R). For all i ∈ N, if s ∈ L(Ai
R) and s →R t, then

t ∈ L(Ai+1
R). Thus, if Ak

R is a fixpoint then it also verifies L(Ak
R) ⊇ R∗(L(A0)).

To construct Ai+1
R from Ai

R, we achieve a completion step which consists in
finding critical pairs between →R and →Ai

R
. A critical pair is a triple (l → r, σ, q)

where l → r ∈ R, σ : X �→ Q and q ∈ Q such that lσ →∗
Ai

R
q and rσ �→∗

Ai
R

q.
For rσ to be recognized by the same state and thus model the rewriting of lσ
into rσ, it is enough to add the necessary transitions to Ai

R to obtain Ai+1
R such

that rσ →∗
Ai+1

R
q. In [13,22], critical pairs are joined in the following way:

lσ R
��

Ai
R

��

rσ

Ai+1
R

��
q q′

Ai+1
R

��

From an algorithmic point of view, there remains two problems to solve: find
all the critical pairs (l → r, σ, q) and find the transitions to add to Ai

R to have
rσ →∗

Ai+1
R

q. The first problem, called matching, can be efficiently solved using

a specific algorithm [8,10]. The second problem is solved using Normalization.

4.1 Normalization

The normalization function replaces subterms either by states of Q (using tran-
sitions of Δ) or by new states. A state q of Q is used to normalize a term t

if t → �ε
Δ q. Normalizing by reusing states of Q and transitions of Δ permits to

preserve the �ε-determinism of → �ε
Δ. Indeed, → �ε

Δ can be kept deterministic during
completion though →Δ cannot.

Towards Static Analysis of Functional Programs 151

Definition 1 (New state). Given a set of transitions Δ, a new state (for Δ)
is a state of Q \ Qf not occurring in left or right-hand sides of rules of Δ1.

We here define normalization as a bottom-up process. This definition is simpler
and equivalent to top-down definitions [13]. In the recursive call, the choice of
the context C[] may be non deterministic but all the possible results are the
equivalent modulo state renaming.

Definition 2 (Normalization). Let Δ be a set of transitions defined on a set
of states Q, t ∈ T (F ∪ Q) \ Q. Let C[] be a non empty context of T (F ∪ Q) \
Q, f ∈ F of arity n, and q, q′, q1, . . . , qn ∈ Q. The normalization function is
inductively defined by:

1. NormΔ(f(q1, . . . , qn) → q) = {f(q1, . . . , qn) → q}
2. NormΔ(C[f(q1, . . . , qn)] → q) = {f(q1, . . . , qn) → q′} ∪

NormΔ∪{f(q1,...,qn)→q′}(C[q′] → q)
where either (f(q1, . . . , qn) → q′ ∈ Δ) or (q′ is a new state for Δ and
∀q′′ ∈ Q : f(q1, . . . , qn) → q′′ �∈ Δ).

In the second case of the definition, if there are several states q′ such that
f(q1, . . . , qn) → q′ ∈ Δ, we arbitrarily choose one of them. We illustrate the
above definition on the normalization of a simple transition.

Example 1. Given Δ = {b → q0}, NormΔ(f(g(a), b, g(a)) → q) = {a →
q1, g(q1) → q2, b → q0, f(q2, q0, q2) → q}.

4.2 One Step of Completion

A step of completion only consists in joining critical pairs. We first need to
formally define the substitutions under concern: state substitutions.

Definition 3 (State substitutions, Σ(Q,X)). A state substitution over an
automaton A with a set of states Q is a function σ : X �→ Q. We can extend
this definition to a morphism σ : T (F ,X) �→ T (F ,Q). We denote by Σ(Q,X)
the set of state substitutions built over Q and X .

Definition 4 (Set of critical pairs). Let a TRS R and a tree automaton
A = 〈F ,Q,Qf ,Δ〉. The set of critical pairs between R and A is CP (R,A) =
{(l → r, σ, q) | l → r ∈ R, q ∈ Q, σ ∈ Σ(Q,X), lσ →∗

A q, rσ �→∗
A q}.

Recall that the completion process builds a sequence A0
R,A1

R, . . . ,Ak
R of automata

such that if s ∈ L(Ai
R) and s →R t then t ∈ L(Ai+1

R). One step of completion, i.e.
the process computing Ai+1

R from Ai
R, is defined as follows. Again, the following

definition is a simplification of the definition of [13].

1 Since Q is a countably infinite set of states, Qf and Δ are finite, a new state can
always be found.

152 T. Genet

Definition 5 (One step of completion). Let A = 〈F ,Q,Qf ,Δ〉 be a tree
automaton, R be a left-linear TRS. The one step completed automaton is
CR(A) = 〈F ,Q,Qf , JoinCP (R,A)(Δ)〉 where JoinS(Δ) is inductively defined by:

– Join∅(Δ) = Δ
– Join{(l→r,q,σ)}∪S(Δ) = JoinS(Δ ∪ Δ′) where

Δ′ = {q′ → q} if there exists q′ ∈ Q s.t. rσ → �ε ∗
Δ q′, and otherwise

Δ′ = NormΔ(rσ → q′) ∪ {q′ → q} where q′ is a new state for Δ

Example 2. Let A be a tree automaton with Δ = {f(q1) → q0, a → q1, g(q1) →
q2}. If R = {f(x) → f(g(x))} then CP (R,A) = {(f(x) → f(g(x)), σ3, q0)}
with σ3 = {x �→ q1}, because f(x)σ3 →A∗ q0 and f(x)σ3 →R f(g(x))σ3. We

have f(g(x))σ3 = f(g(q1)) and there exists no state q such that f(g(q1)) →�ε ∗
A q.

Hence, Join{(f(x)→f(g(x)),σ3,q0)}(Δ) = Join∅(Δ∪NormΔ(f(g(q1)) → q3)∪{q3 →
q0}). Since NormΔ(f(g(q1)) → q3) = {f(q2) → q3, q(q1) → q2}, we get that
CR(A) = 〈F ,Q ∪ {q3},Qf ,Δ ∪ {f(q2) → q3, q3 → q0}〉.

4.3 Simplification of Tree Automata by Equations

In this section, we define the simplification of tree automata A w.r.t. a set of
equations E. This operation permits to over-approximate languages that cannot
be recognized exactly using tree automata completion, e.g. non regular languages.
The simplification operation consists in finding E-equivalent terms recognized
in A by different states and then by merging those states together. The merging
of states is performed using renaming of a state in a tree automaton.

Definition 6 (Renaming of a state in a tree automaton). Let Q,Q′ be set
of states, A = 〈F ,Q,Qf ,Δ〉 be a tree automaton, and α a function α : Q �→ Q′.
We denote by Aα the tree automaton where every occurrence of q is replaced by
α(q) in Q, Qf and in every left and right-hand side of every transition of Δ.

If there exists a bijection α such that A = A′α then A and A′ are said to
be equivalent modulo renaming. Now we define the simplification relation which
merges states in a tree automaton according to an equation. Note that it is not
required for equations of E to be linear.

Definition 7 (Simplification relation). Let A = 〈F ,Q,Qf ,Δ〉 be a tree
automaton and E be a set of equations. For s = t ∈ E, σ ∈ Σ(Q,X), qa, qb ∈ Q
such that sσ →�ε ∗

A qa, tσ → �ε ∗
A qb, and qa �= qb then A can be simplified into

A′ = A{qb �→ qa}, denoted by A �E A′.

Example 3. Let E = {s(s(x)) = s(x)} and A be the tree automaton with set
of transitions Δ = {a → q0, s(q0) → q1, s(q1) → q2}. We can perform a sim-
plification step using the equation s(s(x)) = s(x) because we found a substi-
tution σ = {x �→ q0} such that: s(s(x))σ →�ε ∗

A q2 and s(x)σ →�ε ∗
A q1 Hence,

A �E A′ = A{q2 �→ q1}2
2 or {q1 �→ q2}, any of q1 or q2 can be used for renaming.

Towards Static Analysis of Functional Programs 153

As stated in [13], simplification �E is a terminating relation (each step sup-
presses a state) and it enlarges the language recognized by a tree automaton,
i.e. if A �E A′ then L(A) ⊆ L(A′). Furthermore, no matter how simplification
steps are performed, the obtained automata are equivalent modulo state renam-
ing. In the following, A �!

E A′ denotes that A �∗
E A′ and A′ is irreducible by�E . We denote by SE (A) any automaton A′ such that A �!

E A′.

Theorem 1 (Simplified Tree Automata [13]). Let A,A′
1,A′

2 be tree
automata and E be a set of equations. If A �!

E A′
1 and A �!

E A′
2 then A′

1 and
A′

2 are equivalent modulo state renaming.

4.4 The Full Completion Algorithm

Definition 8 (Automaton completion). Let A be a tree automaton, R a
left-linear TRS and E a set of equations.

– A0
R,E = A

– An+1
R,E = SE

(CR(An
R,E)

)

, for n ≥ 0

If there exists k ∈ N such that Ak
R,E = Ak+1

R,E, then we denote Ak
R,E by A∗

R,E.

In practice, checking if CP (R,Ak
R,E) = ∅ is sufficient to know that Ak

R,E is a
fixpoint. However, a fixpoint cannot always be finitely reached3. To ensure ter-
mination, one can provide a set of approximating equations to overcome infinite
rewriting and completion divergence.

Example 4. Let R = {f(x, y) → f(s(x), s(y))}, E = {s(s(x)) = s(x)} and A0 be
the tree automaton with set of transitions Δ = {f(qa, qb) → q0), a → qa, b → qb},
i.e. L(A0) = {f(a, b)}. The completion ends after two completion steps on A2

R,E

which is a fixpoint. Completion steps are summed up in the following table.
To simplify the presentation, we do not repeat the common transitions: Ai

R,E

and CR(Ai) columns are supposed to contain all transitions of A0, . . . ,Ai−1
R,E .

The automaton A1
R,E is exactly CR(A0) since simplification by equations do not

apply. Simplification has been applied on CR(A1
R,E) to obtain A2

R,E .

A0 CR(A0) A1
R,E CR(A1

R,E) A2
R,E

f(qa, qb) → q0 f(q1, q2) → q3 f(q1, q2) → q3 f(q4, q5) → q6 f(q1, q2) → q6

a → qa s(qa) → q1 s(qa) → q1 s(q1) → q4 s(q1) → q1

b → qb s(qb) → q2 s(qb) → q2 s(q2) → q5 s(q2) → q2

q3 → q0 q3 → q0 q6 → q3

Now, we recall the lower and upper bound theorems. Tree automata comple-
tion of automaton A with TRS R and set of equations E is lower bounded by
R∗(L(A)) and upper bounded by R∗

E(L(A)). The lower bound theorem ensures
that the completed automaton A∗

R,E recognizes all R-reachable terms (but not
all R/E-reachable terms). The upper bound theorem guarantees that all terms
recognized by A∗

R,E are only R/E-reachable terms.

3 See [10], for classes of R for which a fixpoint always exists.

154 T. Genet

Theorem 2 (Lower bound [13]). Let R be a left-linear TRS, A be a tree
automaton and E be a set of equations. If completion terminates on A∗

R,E then
L(A∗

R,E) ⊇ R∗(L(A)).

The upper bound theorem states the precision result of completion. It is defined
using the R/E-coherence property. The intuition behind R/E-coherence is the
following: in the tree automaton ε-transitions represent rewriting steps and nor-
malized transitions recognize E-equivalence classes. More precisely, in a R/E-
coherent tree automaton, if two terms s, t are recognized into the same state q
using only normalized transitions then they belong to the same E-equivalence
class. Otherwise, if at least one ε-transition is necessary to recognize, say, t into
q then at least one step of rewriting was necessary to obtain t from s.

Theorem 3 (Upper bound [13]). Let R be a left-linear TRS, E a set of
equations and A a R/E-coherent tree automaton. For any i ∈ N: L(Ai

R,E) ⊆
R∗

E(L(A)) and Ai
R,E is R/E-coherent.

5 Termination Criterion for a Given Set of Equations

Given a set of equations E, the effect of the simplification with E on a tree
automaton is to merge two distinct states recognizing instances of the left and
right-hand side for all the equations of E. In this section, we give a sufficient
condition on E and on the completed tree automata Ai

R,E for the tree automata
completion to always terminate. The intuition behind this condition is simple:
if the set of equivalence classes for E, i.e. T (F)/=E

, is finite then so should be
the set of new states used in completion. However, this is not true in general
because simplification of an automaton with E does not necessarily merge all
E-equivalent terms.

Example 5. Let A be the tree automaton with set of transitions a → q, R =
{a → c} and let E = {a = b, b = c}. The set of transitions of CR(A) is {a →
q, c → q′, q′ → q}. We have a =E c, a ∈ L�ε(CR(A), q) and c ∈ L�ε(CR(A), q′) but
on the automaton CR(A), no simplification situation (as described by Defini-
tion 7), can be found because the term b is not recognized by CR(A). Hence, the
simplified automaton is CR(A) where a and c are recognized by different states.

There is no simple solution to have a simplification algorithm merging all states
recognizing E-equivalent terms (see Sect. 6). Having a complete automaton A
solve the above problem but leads to rough approximations (see [11]). In the next
section, we propose to give some simple restrictions on E to ensure that com-
pletion terminates. In Sect. 5.2, we will see how those restrictions can easily be
met for “functional” TRS, i.e. a typed first-order functional program translated
into a TRS.

Towards Static Analysis of Functional Programs 155

5.1 General Criterion

What Example 5 shows is that, for a simplification with E to apply, it is necessary
that both sides of the equation are recognized by the tree automaton. In the
following, we will define a set Ec of contracting equations so that this property
is true. What Example 5 does not show is that, by default, tree automata are not
E-compatible. In particular, any non �ε-deterministic automaton does not satisfy
the reflexivity of =E . For instance, if an automaton A has two transitions a → q1
and a → q2, since a =E a for all E, for A to be E-compatible we should have
q1 = q2. To enforce �ε-determinism by automata simplification, we define a set of
reflexivity equations as follows.

Definition 9 (Set of reflexivity equations Er). For a given set of symbols
F , Er = {f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈ F , and arity of f is n}, where
x1 . . . xn are pairwise distinct variables.

Note that for all set of equations E, the relation =E is trivially equivalent to
=E∪Er . Furthermore, simplification with Er transforms all automaton into an
�ε-deterministic automaton, as stated in the following lemma.

Lemma 1. For all tree automaton A and all set of equation E, if E ⊇ Er and
A �!

E A′ then A′ is �ε-deterministic.

Proof. Shown by induction on the height of terms (see [11] for details). ��
We now define sets of contracting equations. Such sets are defined for a set
of symbols K which can be a subset of F . This will be used later to restrict
contracting equations to the subset of constructor symbols of F .

Definition 10 (Sets of contracting equations for K, Ec
K). Let K ⊆ F . A

set of equations is contracting for K, denoted by Ec
K, if all equations of Ec

K are
of the form u = u|p with u ∈ T (K,X) a linear term, p �= λ, and if the set of
normal forms of T (K) w.r.t. the TRS

−→
Ec

K = {u → u|p | u = u|p ∈ Ec
K} is finite.

Contracting equations, if defined on F , define an upper bound on the number
of states of a simplified automaton.

Lemma 2. Let A be a tree automaton and Ec
F a set of contracting equations for

F . If E ⊇ Ec
F ∪ Er then the simplified automaton SE (A) is an �ε-deterministic

automaton having no more states than terms in Irr(
−→
Ec

F).

Proof. First, assume for all state q of SE (A), L�ε(SE (A) , q) ∩ Irr(
−→
Ec

F) = ∅.
Then, for all terms s such that s →�ε ∗

SE(A) q, we know that s is not in normal

form w.r.t.
−→
Ec

F . As a result, the left-hand side of an equation of Ec
F can be applied

to s. This means that there exists an equation u = u|p, a ground context C and
a substitution θ such that s = C[uθ]. Furthermore, since s →�ε ∗

SE(A) q, we know

that C[uθ] → �ε ∗
SE(A) q and that there exists a state q′ such that C[q′] → �ε ∗

SE(A) q

156 T. Genet

and uθ → �ε ∗
SE(A) q′. From uθ → �ε ∗

SE(A) q′, we know that all subterms of uθ are
recognized by at least one state in SE (A). Thus, there exists a state q′′ such
that u|pθ →�ε ∗

SE(A) q′′. We thus have a situation of application of the equation
u = u|p in the automaton. Since SE (A) is simplified, we thus know that q′ = q′′.
As mentioned above, we know that C[q′] → �ε ∗

SE(A) q. Hence C[u|pθ] →�ε ∗
SE(A)

C[q′] → �ε ∗
SE(A) q. If C[u|pθ] is not in normal form w.r.t.

−→
Ec

F then we can do the

same reasoning on C[u|pθ] →�ε ∗
SE(A) q until getting a term that is in normal form

w.r.t.
−→
Ec

F and recognized by the same state q. Thus, this contradicts the fact
that SE (A) recognizes no term of Irr(

−→
Ec

F).
Then, by definition of Ec

F , Irr(
−→
Ec

F) is finite. Let {t1, . . . , tn} be the subset of
Irr(

−→
Ec

F) recognized by SE (A). Let q1, . . . , qn be the states recognizing t1, . . . , tn
respectively. We know that there is a finite set of states recognizing t1, . . . , tn
because E ⊇ Er and Lemma 1 entails that SE (A) is �ε-deterministic. Now, for
all terms s recognized by a state q in SE (A), i.e. s →�ε ∗

SE(A) q, we can use a
reasoning similar to the one carried out above and show that q is equal to one
state of {q1, . . . , qn} recognizing normal forms of

−→
Ec

F in SE (A). Finally, there
are at most card(Irr(

−→
Ec

F)) states in SE (A). ��
Now it is possible to state the Theorem guaranteeing the termination of com-
pletion if the set of equations E contains a set of contracting equations Ec

F for
F and a set of reflexivity equations.

Theorem 4. Let A be a tree automaton, R a left linear TRS and E a set of
equations. If E ⊇ Er ∪ Ec

F , then completion of A by R and E terminates.

Proof. For completion to diverge it must produce infinitely many new states.
This is impossible if E contains Ec

F and Er (see Lemma 2). ��

5.2 Criterion for Functional TRSs

Now, we consider functional programs viewed as TRSs. We assume that such
TRSs are left-linear, which is a common assumption on TRSs obtained from
functional programs [2]. In this section, we will restrict ourselves to sufficiently
complete TRSs obtained from functional programs and will refer to them as
functional TRSs. For TRSs representing functional programs, defining contract-
ing equations of Ec

C on C rather than on F is enough to guarantee termination
of completion. This is more convenient and also closer to what is usually done in
static analysis where abstractions are usually defined on data and not on func-
tion applications. Since the TRSs we consider are sufficiently complete, any term
of T (F) can be rewritten into a data-term of T (C). As above, using equations of
Ec

C we are going to ensure that the data-terms of the computed languages will
be recognized by a bounded set of states. To lift-up this property to T (F) it is
enough to ensure that ∀s, t ∈ T (F) if s →R t then s and t are recognized by
equivalent states. This is the role of the set of equations ER.

Towards Static Analysis of Functional Programs 157

Definition 11 (ER). Let R be a TRS, the set of R-equations is ER = {l =
r | l → r ∈ R}.
Theorem 5. Let A0 be a tree automaton, R a sufficiently complete left-linear
TRS and E a set of equations. If E ⊇ Er ∪ Ec

C ∪ ER with Ec
C contracting then

completion of A0 by R and E terminates.

Proof. Firstly, to show that the number of states recognizing terms of T (C) is finite
we can do a proof similar to the one of Lemma 2. Let G ⊆ T (C) be the finite set of
normal forms of T (C) w.r.t.

−→
Ec

C . Since E ⊇ Er ∪Ec
C , like in the proof of Lemma2,

we can show that in any completed automaton, terms of T (C) are recognized by
no more states than terms in G. Secondly, since R is sufficiently complete, for all
terms s ∈ T (F) \ T (C) we know that there exists a term t ∈ T (C) such that
s →R∗ t. The fact that E ⊇ ER guarantees that s and t will be recognized by

equivalent states in the completed (and simplified) automaton. Since the number
of states necessary to recognize T (C) is finite, so is the number of states necessary
to recognize terms of T (F). ��
Finally, to exploit the types of the functional program, we now see F as a many-
sorted signature whose set of sorts is S. Each symbol f ∈ F is associated to a
profile f : S1 × . . . × Sk �→ S where S1, . . . , Sk, S ∈ S and k is the arity of f .
Well-sorted terms are inductively defined as follows: f(t1, . . . , tk) is a well-sorted
term of sort S if f : S1× . . .×Sk �→ S and t1, . . . , tk are well-sorted terms of sorts
S1, . . . , Sk, respectively. We denote by T (F ,X)S , T (F)S and T (C)S the set of
well-sorted terms, ground terms and constructor terms, respectively. Note that
we have T (F ,X)S ⊆ T (F ,X), T (F)S ⊆ T (F) and T (C)S ⊆ T (C). We assume
that R and E are sort preserving, i.e. that for all rule l → r ∈ R and all equation
u = v ∈ E, l, r, u, v ∈ T (F ,X)S , l and r have the same sort and so do u and v.
Note that well-typedness of the functional program entails the well-sortedness
of R. We still assume that the (sorted) TRS is sufficiently complete, which is
defined in a similar way except that it holds only for well-sorted terms, i.e. for
all s ∈ T (F)S there exists a term t ∈ T (C)S such that s →R∗ t. We slightly
refine the definition of contracting equations as follows. For all sort S, if S has
a unique constant symbol we note it cS .

Definition 12 (Set Ec
K,S of contracting equations for K and S). Let K ⊆

F . The set of well-sorted equations Ec
K,S is contracting (for K) if its equations

are of the form (a) u = u|p with u linear and p �= Λ, or (b) u = cS with u

of sort S, and if the set of normal forms of T (K)S w.r.t. the TRS
−−−→
Ec

K,S =
{u → v | u = v ∈ Ec

K,S ∧ (v = u|p ∨ v = cS)} is finite.

The termination theorem for completion of sorted TRSs is similar to the previous
one except that it needs R/E-coherence of A0 to ensure that terms recognized
by completed automata are well-sorted (see [11] for proof).

Theorem 6. Let A0 be a tree automaton recognizing well-sorted terms, R a
sufficiently complete sort-preserving left-linear TRS and E a sort-preserving set

158 T. Genet

of equations. If E ⊇ Er ∪ Ec
C,S ∪ ER with Ec

C,S contracting and A0 is R/E-
coherent then completion of A0 by R and E terminates.

5.3 Experiments

The objective of data-flow analysis is to predict the set of all program states
reachable from a language of initial function calls, i.e. to over-approximate
R∗(L(A)) where R represents the functional program and A the language of
initial function calls. In this setting, we automatically compute an automaton
A∗

R,E over-approximating R∗(L(A)). But we can do more. Since we are dealing
with left-linear TRS, it is possible to build AIrr(R) recognizing Irr(R). Finally,
since tree automata are closed under all boolean operations, we can compute
an approximation of all the results of the function calls by computing the tree
automaton recognizing the intersection between A∗

R,E and AIrr(R).
Here is an example of application of those theorems. Completions are per-

formed using Timbuk. All the AIrr(R) automata and intersections were performed
using Taml. Details can be found in [14].

Ops append:2 rev:1 nil:0 cons:2 a:0 b:0 Vars X Y Z U Xs

TRS R

append(nil,X)->X append(cons(X,Y),Z)->cons(X,append(Y,Z))

rev(nil)->nil rev(cons(X,Y))->append(rev(Y),cons(X,nil))

Automaton A0 States q0 qla qlb qnil qf qa qb Final States q0 Transitions
rev(qla)->q0 cons(qb,qnil)->qlb cons(qa,qla)->qla nil->qnil

cons(qa,qlb)->qla a->qa cons(qb,qlb)->qlb b->qb

Equations E Rules cons(X,cons(Y,Z))=cons(Y,Z) %%% Ec

%%% E_R %%% E^r

append(nil,X)=X rev(X)=rev(X)

append(cons(X,Y),Z)=cons(X,append(Y,Z)) cons(X,Y)=cons(X,Y)

rev(nil)=nil append(X,Y)=append(X,Y)

rev(cons(X,Y))=append(rev(Y),cons(X,nil)) a=a b=b nil=nil

In this example, the TRS R encodes the classical reverse and append func-
tions. The language recognized by automaton A0 is the set of terms of the
form rev([a, a, . . . , b, b, . . .]). Note that there are at least one a and one b in
the list. We assume that S = {T, list} and sorts for symbols are the following:
a : T , b : T , nil : list, cons : T × list �→ list, append : list × list �→ list
and rev : list �→ list. Now, to use Theorem 6, we need to prove each of its
assumptions. The set E of equations contains ER, Er and Ec

C,S . The set of
Equations Ec

C,S is contracting because the automaton A
Irr(

−−−→
Ec

C,S)
recognizes a

finite language. This automaton can be computed using Taml: it is the inter-
section between the automaton AT (C)S 4 recognising T (C)S and the automaton
AIrr({cons(X,cons(Y,Z))→cons(Y,Z)}):
4 Such an automaton has one state per sort and one transition per constructor.

For instance, on our example AT (C)S will have transitions: a → qT , b → qT ,
cons(qT, qlist) → qlist and nil → qlist.

Towards Static Analysis of Functional Programs 159

States q2 q1 q0 Final States q0 q1 q2

Transitions b->q2 a->q2 nil->q1 cons(q2,q1)->q0

The language of A0 is well-sorted and E and R are sort preserving. We can
prove sufficient completeness of R on T (F)S using, for instance, Maude [6] or
even Timbuk [9] itself. The last assumption of Theorem 6 to prove is that A0 is
R/E-coherent. This can be shown by remarking that each state q of A0 recog-
nizes at least one term and if s →�ε ∗

A0
q and t → �ε ∗

A0
q then s ≡E t. For instance

cons(b, cons(b, nil)) →�ε ∗
A0

qlb and cons(b, nil) → �ε ∗
A0

qlb and cons(b, cons(b, nil))
≡E cons(b, nil). Thus, completion is guaranteed to terminate: after 4 comple-
tion steps (7 ms) we obtain a fixpoint automaton A∗

R,E with 11 transitions. To
restrain the language to normal forms it is enough to compute the intersection
with Irr(R). Since we are dealing with sufficiently complete TRSs, we know that
Irr(R) ⊆ T (C)S . Thus, we can use again AT (C)S for the intersection that is:

States q3 q2 q1 q0 Final States q3 Transitions a->q0 nil->q1 b->q2

cons(q0,q1)->q3 cons(q0,q3)->q3 cons(q2,q1)->q3 cons(q2,q3)->q3

which recognizes any (non empty) flat list of a and b. Thus, our analysis preserved
the property that the result cannot be the empty list but lost the order of the ele-
ments in the list. This is not surprising because the equation cons(X, cons(Y, Z))

=cons(X, Z) makes cons(a, cons(b, nil)) equal to cons(a, nil). It is possible to
refine by hand Ec

C,S using the following equations: cons(a,cons(a,X))=cons(a,X),
cons(b,cons(b,X))=cons(b,X), cons(a,cons(b,cons(a,X)))=cons(a,X). This set of
equations avoids the previous problem. Again, E verifies the conditions of Theo-
rem 6 and completion is still guaranteed to terminate. The result is the automa-
ton A′∗

R,E having 19 transitions. This time, intersection with AT (C)S gives:

States q4 q3 q2 q1 q0 Final States q4 Transitions a->q1 b->q3 nil->q0

cons(q1,q0)->q2 cons(q1,q2)->q2 cons(q3,q2)->q4 cons(q3,q4)->q4

This automaton exactly recognizes lists of the form [b, b, . . . , a, a, . . .] with at
least one b and one a, as expected. Hopefully, refinement of equations can be
automatized in completion [3] and can be used here, see [14] for examples. More
examples can be found in the Timbuk 3.1 source distribution.

6 Conclusion and Further Research

In this paper we defined a criterion on the set of approximation equations to
guarantee termination of the tree automata completion. When dealing with, so
called, functional TRS this criterion is close to what is generally expected in
static analysis and abstract interpretation: a finite model for an infinite set of
data-terms. This work is a first step to use completion for static analysis of
functional programs. There remains some interesting points to address.

Dealing with higher-order functions. Higher-order functions can be encoded into
first order TRS using a simple encoding borrowed from [17]: defined symbols

160 T. Genet

become constants, constructor symbols remain the same, and an additional
application operator ‘@’ of arity 2 is introduced. On all the examples of [21],
completion and this simple encoding produces exactly the same results [14].

Dealing with evaluation strategies. The technique proposed here, as well as [21],
over-approximates the set of results for all evaluation strategies. As far as we
know, no static analysis technique for functional programs can take into account
evaluation strategies. However, it is possible to restrict the completion algorithm
to recognize only innermost descendants [14], i.e. call-by-value results. If the
approximation is precise enough, any non terminating program with call-by-
value will have an empty set of results. An open research direction is to use this
to prove non termination of functional programs by call-by-value strategy.

Dealing with built-in types. Values manipulated by real functional programs are
not always terms or trees. They can be numerals or be terms embedding numer-
als. In [12], it has been shown that completion can compute over-approximations
of reachable terms embedding built-in terms. The structural part of the term is
approximated using tree automata and the built-in part is approximated using
lattices and abstract interpretation.

Besides, there remain some interesting theoretical points to solve. In Sect. 5, we
saw that having a finite T (F)/=E

is not enough to guarantee the termination
of completion. This is due to the fact that the simplification algorithm does
not merge all states recognizing E-equivalent terms. Having a simplification
algorithm ensuring this property is not trivial. First, the theory defined by E has
to be decidable. Second, even if E is decidable, finding all the E-equivalent terms
recognized by the tree automaton is an open problem. Furthermore, proving that
T (F)/=E

is finite, is itself difficult. This question is undecidable in general [23],
but can be answered for some particular E. For instance, if E can be oriented
into a TRS R which is terminating, confluent and such that Irr(R) is finite
then T (F)/=E

is finite [23].

Acknowledgments. Many thanks to the referees for their detailed comments.

References

1. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Boichut, Y., Boyer, B., Genet, T., Legay, A.: Equational abstraction refinement
for certified tree regular model checking. In: Aoki, T., Taguchi, K. (eds.) ICFEM
2012. LNCS, vol. 7635, pp. 299–315. Springer, Heidelberg (2012)

4. Boichut, Y., Courbis, R., Héam, P.-C., Kouchnarenko, O.: Handling non left-linear
rules when completing tree automata. IJFCS 20(5), 837–849 (2009)

Towards Static Analysis of Functional Programs 161

5. Boichut, Y., Genet, T., Jensen, T., Le Roux, L.: Rewriting approximations for fast
prototyping of static analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

7. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2008). http://
tata.gforge.inria.fr

8. Feuillade, G., Genet, T., Viet Triem Tong, V.: Reachability analysis over term
rewriting systems. J. Autom. Reason. 33(3–4), 341–383 (2004)

9. Genet, T.: Decidable approximations of sets of descendants and sets of normal
forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer,
Heidelberg (1998)

10. Genet, T.: Reachability analysis of rewriting for software verification. Université
de Rennes 1 (2009). Habilitation document. http://www.irisa.fr/celtique/genet/
publications.html

11. Genet, T.: Towards static analysis of functional programs using tree automata
completion. Technical report, INRIA (2013). http://hal.archives-ouvertes.fr/
hal-00921814/PDF/main.pdf

12. Genet, T., Le Gall, T., Legay, A., Murat, V.: A completion algorithm for lattice tree
automata. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 134–145.
Springer, Heidelberg (2013)

13. Genet, T., Rusu, R.: Equational tree automata completion. J. Symb. Comput. 45,
574–597 (2010)

14. Genet, T., Salmon, Y.: Tree automata completion for static analysis of func-
tional programs. Technical report, INRIA (2013). http://hal.archives-ouvertes.fr/
hal-00780124/PDF/main.pdf

15. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify
termination of left-linear term rewriting systems. In: Giesl, J. (ed.) RTA 2005.
LNCS, vol. 3467, pp. 353–367. Springer, Heidelberg (2005)

16. Jacquemard, F.: Decidable approximations of term rewriting systems. In:
Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 362–376. Springer, Heidelberg
(1996)

17. Jones, N.D.: Flow analysis of lazy higher-order functional programs. In: Abramsky,
S., Hankin, C. (eds.) Abstract Interpretation of Declarative Languages, pp. 103–
122. Ellis Horwood, Chichester (1987)

18. Kobayashi, N.: Model checking higher-order programs. J. ACM 60(3), 20 (2013)
19. Lisitsa, A.: Finite models vs tree automata in safety verification. In: RTA’12.

LIPIcs, vol. 15, pp. 225–239 (2012)
20. Oehl, F., Cece, G., Kouchnarenko, O., Sinclair, D.: Automatic approximation

for the verification of cryptographic protocols. In: Abdallah, A.E., Ryan, P.Y.A.,
Schneider, S. (eds.) FASec 2002. LNCS, vol. 2629, pp. 33–48. Springer, Heidelberg
(2003)

21. Ong, L., Ramsay, S.: Verifying higher-order functional programs with pattern-
matching algebraic data types. In: POPL’11 (2011)

22. Takai, T.: A verification technique using term rewriting systems and abstract inter-
pretation. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 119–133.
Springer, Heidelberg (2004)

23. Tison, S.: Finiteness of the set of E-equivalence classes is undecidable (2010).
Private communication

http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
http://www.irisa.fr/celtique/genet/publications.html
http://www.irisa.fr/celtique/genet/publications.html
http://hal.archives-ouvertes.fr/hal-00921814/PDF/main.pdf
http://hal.archives-ouvertes.fr/hal-00921814/PDF/main.pdf
http://hal.archives-ouvertes.fr/hal-00780124/PDF/main.pdf
http://hal.archives-ouvertes.fr/hal-00780124/PDF/main.pdf

A Framework for Mobile Ad hoc Networks
in Real-Time Maude

Si Liu1(B), Peter Csaba Ölveczky2, and José Meseguer1

1 University of Illinois at Urbana-Champaign, Champaign, USA
siliu3@illinois.edu

2 University of Oslo, Oslo, Norway

Abstract. Mobile ad hoc networks (MANETs) are increasingly popular
and deployed in a wide range of environments. However, it is challenging
to formally analyze a MANET, both because there are few reasonably
accurate formal models of mobility, and because the large state space
caused by the movements of the nodes renders straightforward model
checking hard. In particular, the combination of wireless communication
and node movement is subtle and does not seem to have been adequately
addressed in previous formal methods work. This paper presents a for-
mal executable and parameterized modeling framework for MANETs in
Real-Time Maude that integrates several mobility models and wireless
communication. We illustrate the use of our modeling framework with the
Ad hoc On-Demand Distance Vector (AODV) routing protocol, which
allows us to analyze this protocol under different mobility models.

1 Introduction

A mobile ad hoc network (MANET) is a self-configuring network of mobile
devices (laptops, smart phones, sensors, etc.) that communicate wirelessly and
cooperate to provide the necessary network functionality. Since MANETs can
form ad hoc networks without fixed infrastructure, they are supposed to have
a wide applicability, for example for providing ad hoc networks for cooperating
“smart” cars, for emergency responders during accidents, during natural disas-
ters which may disable fixed infrastructure, in battlefield areas, and so on.

Although many such applications are safety-critical and need formal analysis
to ensure their correctness, the formal modeling and analysis of MANETs present
a number of challenges that include:

1. The need to model node movement realistically.
2. Modeling communication. There is a subtle interaction between wireless com-

munication, which typically is restricted to distances of between 10 and
100 m, and node mobility. For example, nodes may move into, or out of, the
sender’s transmission range during the communication delay; furthermore,
the sender may itself move during the communication. Modeling communi-
cation in MANETs is therefore challenging for formal languages, which are
usually based on fixed communication primitives.

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 162–177, 2014.
DOI: 10.1007/978-3-319-12904-4 9

A Framework for Mobile Ad hoc Networks in Real-Time Maude 163

3. Since the communication topology of the network depends on the locations
of the nodes, such locations must be taken into account in the model. How-
ever, this leads to very large state spaces, which makes direct model checking
analysis unfeasible: if there are m nodes and n locations, there are nm differ-
ent node/location-states. A 10×10 grid with four nodes would therefore lead
to 100 million states just to capture all nodes and their locations.

As explained in Sect. 7, we are not aware of any formal model that provides a
reasonably detailed model of both mobility and communication in MANETs.
Because of its expressiveness and flexibility to define models of communication,
Real-Time Maude [20] is a promising language for formally modeling MANETs.
In this paper we provide, to the best of our knowledge, the first reasonably
detailed formal modeling framework for MANETs. In particular, we formalize

– the most popular models for node mobility, and
– geographically bounded wireless communication, which takes into account the

interplay between communication delay and mobility,

in Real-Time Maude. Furthermore, we use object-oriented techniques to make
it easy to compose our framework with a model of a MANET protocol.

Concerning Challenge 3 above, in this paper we do not develop abstrac-
tion techniques for node mobility. Instead, to be able to perform model check-
ing analysis, our model is parametric in aspects such as the possible velocities
and directions a node can choose. However, even if a node moves slowly, it
may still cover the entire area (and hence contribute to an unmanageable state
space) given enough time. Another key feature of Real-Time Maude that makes
some meaningful model checking analysis of MANETs possible is therefore time-
bounded model checking, which allows us to analyze scenarios only up to a certain
duration (during which the nodes may not reach most locations). Abstracting the
state space caused by node mobility and the need to keep track of node locations
is the sine qua non for serious model checking of MANETs. The point is that
this paper lays the foundations for developing such abstractions by providing a
first reasonably detailed formal model of location-aware MANETs.

One of the main tasks of a MANET is to maintain an (ad hoc) network, which
means that the network must figure out how to route messages between nodes.
In this paper we illustrate the use of our MANETs framework by modeling and
analyzing the widely used Ad hoc On-Demand Distance Vector [22] (AODV)
routing protocol for MANETs developed by the IETF MANET working group.

The rest of this paper is organized as follows. Section 2 gives a background to
Real-Time Maude. Section 3 briefly introduces MANETs. Section 4 presents our
Real-Time Maude modeling framework for MANETs. Section 5 shows how our
framework can be used to model the AODV protocol, and Sect. 6 explains how
that model of AODV can be model checked using Real-Time Maude. Finally,
Sect. 7 discusses related work and Sect. 8 gives some concluding remarks.

Due to space limitations, we have to omit many details; they are all given in
our accompanying longer report [14].

164 S. Liu et al.

2 Real-Time Maude

Real-Time Maude [20] is a language and tool that extends Maude [5] to support
the formal specification and analysis of real-time systems.

Specification. A Real-Time Maude module specifies a real-time rewrite theory
(Σ,E ∪ A, IR,TR), where:

– Σ is an algebraic signature; that is, a set of declarations of sorts, subsorts,
and function symbols.

– (Σ,E∪A) is a membership equational logic theory [5], with E a set of possibly
conditional equations, and A a set of equational axioms such as associativity,
commutativity, and identity. (Σ,E ∪ A) specifies the system’s state space as
an algebraic data type, and includes a specification of a sort Time.

– IR is a set of labeled conditional rewrite rules specifying the system’s local
transitions, each of which has the form1 [l] : t −→ t′ if

∧m
j=1 cond j , where

each cond j is either an equality uj = vj or a rewrite tj −→ t′j , and l is a label.
Such a rule specifies an instantaneous transition from an instance of t to the
corresponding instance of t′, provided the condition holds.

– TR is a set of tick rules l : {t} −→ {t′} in time τ if cond that advance time
in the entire state t by τ time units.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An object of class C in a given
state is represented as a term <O : C | att1 : val1, ..., attn : valn > of sort Object,
where O, of sort Oid, is the object’s identifier, and where val1 to valn are the
current values of the attributes att1 to attn. A message is a term of sort Msg.

The state of an object-oriented specification is a term of sort Configuration,
and is a multiset of objects and messages. Multiset union is denoted by an
associative and commutative juxtaposition operator, so that rewriting is multiset
rewriting. For example, the rewrite rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’,x), z) .

defines a family of transitions in which a message m, with parameters O and w,
is read and consumed by an object O of class C, the attribute a1 of object O
is changed to x + w, and a new message dly(m’(O’,x),z) is generated; this
message will become the “ripe” message m’(O’,x) after z time units. Attributes
whose values do not change and do not affect the next state of other attributes
or messages, such as a3, need not be mentioned in a rule. Attributes that are
unchanged, such as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.
1 An equational condition ui = vi can also be a matching equation, written ui := vi,

which instantiates the variables in ui to the values that make ui = vi hold, if any.

A Framework for Mobile Ad hoc Networks in Real-Time Maude 165

Formal Analysis. In this paper, we only consider Real-Time Maude’s linear
temporal logic model checker, which analyzes whether each behavior satisfies
a temporal logic formula. State propositions are terms of sort Prop, and their
semantics is defined by equations ceq statePattern |= prop = b if cond, for
b a term of sort Bool, stating that prop evaluates to b in states that are instances
of statePattern when the condition cond holds. These equations together define
prop to hold in all states t where t |= prop evaluates to true. A temporal
logic formula is constructed by state propositions and temporal logic operators
such as True, False, ~ (negation), /\, \/, -> (implication), [] (“always”), <>
(“eventually”), and U (“until”). Real-Time Maude provides both unbounded and
time-bounded LTL model checking. The time-bounded model checking command

(mc t |=t formula in time <= timeLimit .)

checks whether the temporal logic formula formula holds in all behaviors up to
duration timeLimit starting from the initial state t.

3 Mobility and Communication Delay in MANETs

This section gives an overview of the main mobility models used by researchers
on protocol evaluations, and of the per-hop delay in wireless communication.

Fig. 1. Motion paths of a mobile node in three mobility models, where a bullet • depicts
a pause in the movement.

Mobility Models. Different mobility patterns have been proposed to model node
mobility in realistic scenarios. In this paper we focus on the following main
entity mobility models [2], also illustrated in Fig. 1, in which a node’s movement
is independent of the movements of the other nodes:

– Random Walk: Each node moves in “rounds” of fixed durations. A node moves
in the same direction and with the same speed throughout one round. At the
end of each round, the new speed and the new direction of a node are randomly
chosen, and a new moving round starts.

166 S. Liu et al.

– Random Waypoint: Each node initially pauses for a fixed duration. When a
pause ends, a node randomly chooses a new destination and a new speed, and
then travels to that destination at the chosen speed. After arriving, the node
again pauses before a new moving round starts.

– Random Direction: Each mobile node chooses a random direction, along which
it travels until reaching the border of the sensing area. When a node arrives
at the border, the node pauses for a given time, and then randomly selects a
new direction and starts to move in that direction.

Communication Delay. To understand how node movement affects wireless com-
munication, we must understand the messaging delays in wireless communica-
tion. In a typical wireless transmit/receive process, the per-hop communication
delay from a transmitter to a receiver consists of the following five phases [24]:

Delay factor Description

Sender processing delay The time elapsed on the sender side from the moment a
message timestamp is taken to the point the message is
buffered in the device

Media access delay The time for a message to stay in the radio device buffer;
e.g., in a CSMA system, this is the delay waiting for a clear
channel to transmit

Transmit delay The time for a radio device to transmit a message over a
radio link

Radio propagation delay The time for a message to propagate through the air to a
receiver

Receiver processing delay The time spent on the receiver side to pass the received
message from the device buffer to the application module

We can abstract from the radio propagation delay, since the transmission range
in MANETs typically ranges from 10 to 100 m, while the radio propagation
speed is approximately 3 × 108 m/s. The media access delay depends on the
MAC overhead, such as collisions and waiting time.

4 Formalizing MANET Mobility and Communication

This section presents a modeling framework for MANETs with nodes that com-
municate wirelessly. Section 4.2 shows how mobile nodes can be specified in
Real-Time Maude, Sect. 4.3 explains how the timed behavior of MANETs can
be defined in a way that allows us to easily compose our model with MANET
protocols, and Sect. 4.4 formalizes wireless communication for MANETs.

A Framework for Mobile Ad hoc Networks in Real-Time Maude 167

4.1 Some Basic Data Types

We assume a sort Location for the set of locations, a sort Speed for the different
velocities with which a node can move, a set Direction for the different direc-
tions that a node can choose, and sorts SpeedRange, DirRange, and DestRange
denoting sets of, respectively, Speed, Direction, and Location elements.

We also assume that nodes move in a two-dimensional square with length
areaSize. A location is therefore represented as a pair x .y of rational numbers:2

op _._ : Rat Rat ~> Location [ctor] .

cmb X . Y : Location if 0 <= X and X <= areaSize /\ 0 <= Y and Y <= areaSize .

We do not further specify the different powersets, whose elements could be
unions of dense intervals or of single points, or both. Since the nodes need to
nondeterministically select a new speed, a new next destination, and/or a new
next direction, we assume for generality’s sake that there is an operator choose
that can select any value in the respective set nondeterministically, and an oper-
ator [], so that an element e can be chosen from a set S if and only if there is
a rewrite (in zero or more steps) choose(S) => [e]. For example, if we have a
discrete set of possible next directions d1 ; d2 ; ...; dn, where the set union
operator ; is declared to be associative and commutative, we can specify that
any value from the set can be selected, by giving the following rewrite rule:

var D : Direction . var DR : DirRange .

rl [chooseDir] : choose(D ; DR) => [D] .

4.2 Modeling Mobile Nodes

We model a MANET node in an object-oriented style, where a mobile node is
modeled as an object instance of some subclass of the following base class Node:

class Node | currentLocation : Location .

The attribute currentLocation denotes the node’s current location. A station-
ary node is an object instance of the subclass StationaryNode that does not
add any attribute to Node:

class StationaryNode . subclass StationaryNode < Node .

A mobile node is modeled as an object of a subclass of the class MobileNode:

class MobileNode | speed : Speed, direction : Direction, timer : TimeInf .

subclass MobileNode < Node .

where speed and direction denote, respectively, the node’s current speed and
its current movement direction. The timer attribute is used to ensure that a
node changes its movement (or lack thereof) in a timely manner; that is, timer
denotes the time remaining until some discrete event must take place.
2 We do not show most variable declarations, but follow the Maude convention that

variables are written in capital letters.

168 S. Liu et al.

Random Walk. A node moving according to the random walk model is continu-
ously moving, in time intervals of length movingTime. At the end of an interval,
the node nondeterministically chooses a new speed and a new direction for its
next interval. Such a node is modeled by an object of the subclass RWNode:

class RWNode | speedRange : SpeedRange, dirRange : DirRange .

subclass RWNode < MobileNode .

where speedRange and dirRange denote the set of possible next speeds and
directions, respectively. The timer attribute inherited from its superclass denotes
the remaining time of its current move interval. The instantaneous behavior of
the mobility part of such a node can be modeled by the following rule. In this
rule, the node is finishing one interval (the timer attribute is 0), and must select
new speed and direction for its next round, and reset the timer:

crl [startNewMove] :

< O : RWNode | timer : 0, speedRange : SR, dirRange : DR >

=>

< O : RWNode | timer : movingTime, speed : S, direction : D >

if choose(SR) => [S] /\ choose(DR) => [D] .

The actual movement of such a node is modeled in Sect. 4.3.

Random Waypoint. In the random waypoint mobility model, a node alternates
between pausing and moving. When it starts moving, it selects a new speed and
a new destination and starts moving towards the destination. Such a node should
be modeled by an object instance of the RWPNode subclass:

class RWPNode | speedRange : SpeedRange, destRange : DestRange,

status : Status .

subclass RWPNode < MobileNode .

The status attribute is either pausing or moving, and destRange denotes the
possible next destinations.

The instantaneous behavior of this mobility model is given by the following
rewrite rules. First, if the node is pausing and the timer expires, the node must
get moving by selecting a new speed and desired next location, and resetting the
timer so that it expires when the goal location is reached:

var MOVE-TIME : Time .

crl [startMoving] :

< O : RWPNode | currentLocation : CURR-LOC, status : pausing,

timer : 0, speedRange : SR, destRange : DER >

=>

< O : RWPNode | status : moving, speed : S,

direction : D, timer : MOVE-TIME >

if choose(SR) => [S] /\ choose(DER) => [NEXT-LOC]

/\ D := direction(L, NEXT-LOC)

/\ MOVE-TIME := timeBetweenLocations(CURR-LOC, NEXT-LOC, S) .

A Framework for Mobile Ad hoc Networks in Real-Time Maude 169

where direction gives the direction from one location to another, and time-
BetweenLocations denotes the time it takes to travel between two locations at a
given speed. The selected speed cannot be zero, unless the selected next location
is also the current location, because then the last matching equation would not
hold, since the traveling time between the two locations would be the infinity
value INF, which is not a Time value.

The following rule applies when the timer of a moving node expires; then it
is time to take a rest for pauseTime time units:

rl [startPausing] :

< O : RWPNode | status : moving, timer : 0 >

=>

< O : RWPNode | status : pausing, timer : pauseTime, speed : 0 > .

Random direction nodes can be defined in the same way; see [14] for details.

4.3 Timed Behavior and Compositionality

Our model of mobile nodes must be easily composable with “application” pro-
tocols such as AODV to define a particular MANET system. The straightfor-
ward way of composing our model of mobility with a MANET protocol is to
let the nodes in the application protocol be modeled as objects of subclasses of
the classes introduced above, since a subclass “inherits” all the attributes and
rewrite rules of its superclasses; in particular, such application-specific subclasses
would inherit the rewrite rules modeling the movements of their nodes.

However, we must allow the user to define the timed behavior of her system,
and compose it with the timed behavior of mobile nodes. We therefore use the
following extension of the “standard” tick rule for object-oriented specifications:

var T : Time . var C : Configuration .

crl [tick] : {C} => {timeEffect(timeEffectMob(C, T), T)} in time T

if T <= min(mte(C), mteMob(C)) .

where timeEffectMob defines the effect of time elapse on the mobility-specific
parts of the system, and timeEffect defines how the passage of time changes the
state in the other parts of the composed system. Likewise, mteMob denotes the
maximum amount of time that may elapse from a given state until some mobility
action must be taken, and mte defines the amount of time until the application
protocol must perform a discrete action. These functions distribute over the
objects and messages in the configuration as explained in [14].

Since the speed is 0 when a node is pausing, we can easily define the timed
behavior of both stationary and mobile nodes. First of all, time does not affect
(the mobility-specific parts of) a stationary node:

eq timeEffectMob(< O : StationaryNode | >, T) = < O : StationaryNode | >.

Time affects a mobile node by moving the node and decreasing its timer value:

170 S. Liu et al.

eq timeEffectMob(< O : MobileNode | currentLocation : L, speed : S,

direction : D, timer : T1 >, T)

= < O : MobileNode | currentLocation : move(L,S,D,T),

timer : T1 monus T > .

where move(l,s,d,t) denotes the location resulting from moving a node in loca-
tion l for t time units in direction d and with speed s. This function also makes
sure that a node does not move beyond the area under consideration.

The mobility model does not restrict the time advance for stationary nodes,
whereas for mobile nodes, time can advance until the timer becomes 0:

eq mteMob(< O : StationaryNode | >) = INF .

eq mteMob(< O : MobileNode | timer : T >) = T .

4.4 Modeling Wireless Communication in Mobile Systems

Only nodes that are sufficiently close to the sender, i.e., within the sender’s
transmission range, receive a message with sufficient signal strength. However,
both the sender and the potential receivers might move (possibly out of, or into,
the sender’s transmission range) during the entire communication delay.

As mentioned in Sect. 3, the total communication “delay” can be decomposed
into five parts. If we abstract from the radio propagation delay, the per-hop delay
can be seen to consist of two parts: the delay at the sender side (including sender
processing delay, media access delay, and transmit delay) and the delay at the
receiver side (including receiver processing delay). The point is that exactly those
nodes that are within the transmission range of the sender when the sending delay
ends should receive a message.

It is also worth mentioning that our model is still somewhat abstract and
does not capture all network factors, most notably collisions.

In MANETs communication can be by broadcast, unicast, or groupcast,
depending on which kind of message a transmitter intends to send, and who
are the recipients. In our model we have three corresponding message construc-
tors for broadcast, unicast, and groupcast, respectively:

msg broadcast_from_ : MsgContent Oid -> Msg .

msg unicast_from_to_ : MsgContent Oid Oid -> Msg .

msg gpcast_from_to_ : MsgContent Oid NeighborSet -> Msg .

When a node sender wants to broadcast some message content mc, it gener-
ates a “message” broadcast mc from sender. The following equation adds the
delay on the sending side, sendDelay, to this “broadcast message:”

eq broadcast MC from O = dly(transmit MC from O, sendDelay) .

The crucial moment is when the sending delay expires and the transmit
message becomes “ripe.” All the nodes that are within the transmission range
of the sender at that moment should receive the message. This distribution is

A Framework for Mobile Ad hoc Networks in Real-Time Maude 171

performed by the function distrMsg, where distrMsg(snd, loc, mc, conf) gen-
erates a single message, with content mc, to each node in conf that is currently
within the transmission range of location loc; furthermore, this single message
has delay recDelay, modeling the delay at the receiving site:

eq {< O : Node | currentLocation : L > (transmit MC from O) C}

= {< O : Node | > distrMsg(O, L, MC, C)} .

eq distrMsg(O, L, MC, < O’ : Node | currentLocation : L’ > C)

= < O’ : Node | currentLocation : L’ > distrMsg(O, L, MC, C)

(if L withinTransRangeOf L’ then dly((MC from O to O’), recDelay)

else none fi) .

Unicast and groupcast are modeled similarly.

5 Case Study: Route Discovery in AODV

This section first gives an overview of the AODV routing protocol, and then
presents our Real-Time Maude model of AODV, focusing on the route discovery
process. The entire executable Real-Time Maude specification is available at
http://www.ifi.uio.no/RealTimeMaude/MANET/wrla2014-manets.rtmaude.

5.1 Route Discovery in AODV

AODV [22] is a widely used algorithm for routing messages between mobile nodes
which dynamically form an ad hoc network. AODV allows a source node to
initiate a route discovery process on an on-demand basis to establish a route to
a destination node.

Fig. 2. Route discovery process.

A source node S initiates a route dis-
covery process by broadcasting a route
request (RREQ) message to its neigh-
bors. An intermediate node can either
unicast a route reply (RREP) message
back to the source if a valid route to
the destination D can be found in its
local routing table, or re-broadcast the
received RREQ to its own neighbors. As
the RREQ travels from S to D, reverse
paths from all nodes back to S are auto-
matically set up. Eventually, when the
RREQ reaches D, it sends a RREP back
along the previously established reverse

path. After this process, a route between S and D is set up.

http://www.ifi.uio.no/RealTimeMaude/MANET/wrla2014-manets.rtmaude

172 S. Liu et al.

5.2 Modeling Route Discovery in Real-Time Maude

Modeling Nodes and Messages. We model an AODV node as an object of a
subclass AODVNode of class Node. The new attributes show the identification of
a node’s routing request, the sequence number of a node itself, the local routing
table, and the buffered routing requests sent since the beginning of the current
round, respectively.

class AODVNode | rreqID : Nat, sequenceNumber : Sqn,

routingTable : RouteTable, requestBuffer : RreqBuffer .

subclass AODVNode < Node .

A routing table of sort RouteTable is modeled using the predefined data type
MAP. It consists of routing table entries of the form Oid |-> Tuple3, mapping
a destination node Oid to a 3-element tuple: the next hop towards the destina-
tion, the distance to the destination, and the local destination sequence number.
A route request buffer of the sort RreqBuffer is specified as a set of requests,
each of which is of the form Oid ∼ Sqn, and uniquely identifies a route request
by the identifier of a node and its sequence number.

In the AODV route discovery process there are mainly two kinds of messages:
RREQ and RREP. They are specified in our model as rreq(...) and rrep(...)
respectively. The message content will be illustrated below.

Modeling Route Discovery. A route discovery process in AODV consists of three
parts: initiating route discovery, route request handling, and route reply han-
dling. We only illustrate part of the route request handling, and refer the reader
to our longer report [14] for more details.

The RREQ-handling rules specify all events that may happen when a route
request is received. The receiving node first checks whether a received (OIP ∼
RREQID) has already been stored locally in the request buffer. If so, the route
request is ignored and the local routing table is updated by adding a routing
table entry towards the sender; otherwise, the receiving node adds the new route
request identifier to the request buffer, and takes further actions according to
the roles played by the receiving node. In the following case, the receiving node
is an intermediate node.

When receiving the RREQ message, an intermediate node either: (a) gen-
erates a route reply to the sender, or (b) re-broadcasts the received RREQ to
its neighbors. For example, action (a), as the following rewrite rule shows, hap-
pens only when O’s local information is fresher than that in the RREQ message
(DSN <= localdsn(RT[DIP])). Then O unicasts the route reply with the fresher
destination sequence number and its distance in hops from the destination along
the route back to the source node.

crl [on-receiving-rreq-3] :

(rreq(OIP,OSN,RREQID,DIP,DSN,HOPS,SIP) from SIP to O)

< O : AODVNode | routingTable : RT, requestBuffer : RB >

=>

A Framework for Mobile Ad hoc Networks in Real-Time Maude 173

< O : AODVNode | routingTable : RT’’,

requestBuffer : (OIP ∼ RREQID, RB) >

(msg rrep(OIP,DIP,localdsn(RT’’[DIP]),hops(RT’’[DIP]),O)

from O to nexthop(RT’’[OIP]))

if RT’ := update(SIP,SIP,1,0,RT) /\

RT’’ := update(OIP,SIP,HOPS + 1,OSN,RT’) /\

not (OIP ∼ RREQID) in RB /\ inRT(RT,DIP) /\

DIP =/= O /\ DSN <= localdsn(RT[DIP]) .

6 Formal Analysis of AODV

In this section we analyze the AODV route discovery process under different
mobility models. We therefore define node objects that belong to a subclass of
both AODVNode and a class defining the desired mobility pattern. For example,
a node moving according to the random waypoint model is an object instance
of the class RWPANode, and a stationary node is an instance of the class SANode:

class RWPANode . subclass RWPANode < RWPNode AODVNode .

class SANode . subclass SANode < StationaryNode AODVNode .

The main objective of a routing protocol such as AODV is that a route
between the desired source and the desired destination is eventually estab-
lished. To analyze this property, we define a parameterized atomic proposition
route-found(SRC,DEST) to hold if we can find, in the routing table of the source
node SRC, a routing table entry towards the destination node DEST:

op route-found : Oid Oid -> Prop [ctor] .

eq {< SRC : AODVNode | routingTable : RT , (DEST |-> TP) > REST}

|= route-found(SRC, DEST) = true .

The desired property of AODV can then be formalized as the temporal logic
formula <> route-found(...). Given an initial state initConfig, the follow-
ing command returns true if our desired property holds in the first test round
(roundTime); otherwise, a trace showing a counterexample is provided.

(mc {initConfig} |=t <> route-found(src,dest) in time <= roundTime .)

Experiment Scenarios. We define the following setting for our experiments:

– The transmission range is 10m, and the test area is 100m × 100m.
– The test round is 100s. The delay at the sender and at the receiver is set to

10s and 5s, respectively.
– The range of possible velocities is the singleton set (1).
– Nodes can move right, up, left or down: the direction range is a subset of
(0,90,180,270), and the destination range is a subset of four locations in
the corresponding four directions based on a node’s current location.

174 S. Liu et al.

We have analyzed AODV in seven different scenarios; five of them are described
below and the other cases are described in our longer report [14]:

– Scenario (i), shown in Fig. 2, has five stationary nodes, where node 1, located
at (45 . 45), wants to build a route to node 5, located at (60 . 50), and nodes
2, 3 and 4 are at (50 . 50), (50 . 40), and (60 . 40), respectively.

– Scenario (i’), shown in Fig. 3 (a solid circle refers to the initial location of a
node, while a dashed circle refers to some point along the motion path of a
node), has the same topology as Scenario (i), but now node 2 is a random
waypoint node that can move up. We set its pause time to: (a) 10s, (b) 30s,
or (c) 60s. The initial state of this scenario is specified as:

eq src = 1 .
eq initConfig =

(bootstrap src)
< 1 : SANode | currentLocation : 45 . 45 , rreqID : 10, sequenceNumber : 1,

routingTable : empty, requestBuffer : empty >
< 2 : RWPANode | currentLocation : 50 . 50, speed : 0, direction : 0, timer : pauseTime,

speedRange : (1), destRange : (50 . 60), status : pausing, rreqID : 20,
sequenceNumber : 1, routingTable : empty, requestBuffer : empty >

< 3 : SANode | currentLocation : 50 . 40, ... >
< 4 : SANode | currentLocation : 60 . 40, ... >
< 5 : SANode | currentLocation : 60 . 50, ... > .

– Scenario (ii), also shown in Fig. 3, has three nodes with both nodes 2, located
at (40 . 50), and 3 (a random waypoint node located at (50 . 40)) intending
to build a route to the destination node 1 located at (50 . 50).

Fig. 3. Scenarios (i’) and (ii)

Analysis Results. The results of the model checking show that the desired prop-
erty holds in Scenarios (i), (i’)-(a), and (i’)-(c), but not in Scenarios (i’)-(b)
and (ii).

In Scenario (i’)-(b), the pause time (30s) allows node 2 to forward the RREQ
message from node 1 to node 5. However, node 2 cannot receive the RREP

A Framework for Mobile Ad hoc Networks in Real-Time Maude 175

message from node 5 due to its movement (the dash circle in this case is at
(50 . 60)). Meanwhile, since node 5 has already recorded node 1’s RREQ from
node 2, it ignores the one from node 4.

In Scenario (ii), before sending out the RREQ message, node 3 moves left
to a new location (40 . 40) within the transmission range of node 2. Thus, to
establish the route to node 1, node 3’s RREQ message needs to be forwarded
by node 2. However, the model checking counterexample shows that route dis-
covery for node 3 fails: no route can be found between nodes 3 and 1, though
obviously node 2 succeeds in building a route to node 1. This problem arises
due to the discarding of the RREP message. As stated in [22], an intermediate
node forwards a RREP message only if the RREP message serves to update its
routing table entry towards the destination. However, in this case, node 2 has
already secured an optimal route to node 1 before receiving the RREQ message
from node 3. Fehnker et al. [7] also pointed out this problem, but in a static
linear topology with three nodes.

7 Related Work

There are a number of formal specification and analysis efforts of MANETs in
general, and AODV in particular.

Bhargavan et al. [1] use the SPIN model checker to analyze AODV. They
only consider a 3-node topology with one link break, but without node move-
ment, and communication delay is not considered. Chiyangwa et al. [4] apply
the real-time model checker Uppaal to analyze AODV. They only consider a
static linear network topology. Although they take communication delay into
account, the effect of mobility on communication delay is not considered, since
the topology is fixed. Fehnker et al. [7] also use Uppaal to analyze AODV. They
also only considered static topologies, or simple dynamic topologies by adding or
removing a link, and those topologies are based on the connectivity graph with-
out concrete locations for nodes. Furthermore, no timing issues are considered.
Höfner et al. [12] apply statistical model checking to AODV. However, mobility is
simply considered by arbitrary instantaneous node jumping between zones that
split the whole test grid. Although they take into account the communication
delay, the combination of mobility and communication delay is not considered.
None of these studies has built a generic framework for MANETs. Our modeling
framework aims at the combination of wireless communication and mobility, and
allows formal modeling and analysis of protocols under realistic mobility models.

On the process algebra side, CWS [17], CBS# [19], CMAN [10], CMN [15],
the ω-calculus [23], RBPT [9,11], TCWS [16] and AWN [6], have been proposed
as process algebraic modeling languages for MANETs. These languages feature
a form of local broadcast, in which a message sent by a node could be received
by other nodes “within transmission range.” However, the connectivity is only
considered abstractly and logically, without taking into account concrete loca-
tions and transmission range for nodes. Furthermore, [17] only considers fixed
network topologies, whereas the others (except [11]) deal with arbitrary changes

176 S. Liu et al.

in topology. Godskesen et al. [11] consider realistic mobility, and propose con-
crete mobility models. However, no protocol application or automated analysis
is given, and communication delay is not taken into account. Merro et al. [16]
propose a timed calculus with time-consuming communications, and equip it
with a formal semantics to analyze communication collisions.

Generally, these studies have proposed a framework for MANETs, but they
lack of either mobility modeling or timing issues handling.

There are also a number of well known “ambient” calculi for mobility, such as
the ambient calculus [3], the π-calculus [18], and the join-calculus [8]. However,
these are very abstract models that do not take locations and geographically
bounded communication into account, and are therefore not suitable to model
MANETs at the level of abstraction considered in this paper.

Finally, Maude and Real-Time Maude have been applied to analyze wire-
less sensor networks, but the work in [13,21] does not consider node mobility
(even though [13] mentions that mobility is addressed in a technical report in
preparation; however, we cannot find that technical report).

8 Concluding Remarks

We have defined in Real-Time Maude what we believe is the first formal model of
MANETs that provides a reasonably faithful model of popular node movement
patterns and wireless communication. We have used our compositional model to
specify and formally analyze the AODV routing protocol, and have shown that
such Real-Time Maude analysis could easily find the known flaw in AODV.

We have abstracted from message collision, which should also be considered in
our model. The price to pay for having a much more realistic model of MANETs
than other formal approaches is that the state space quickly becomes too large
for model checking. We should therefore develop statistical model checking tech-
niques for MANETs. Most importantly, we should develop abstraction tech-
niques for MANETs. The formalization presented in this paper has provided the
necessary foundation for such efforts.

Acknowledgments. We thank the anonymous reviewers for helpful comments on a
previous version of this paper. This work has been partially supported by AFOSR
Contract FA8750-11-2-0084 and NSF Grant CNS 13-19109.

References

1. Bhargavan, K., Obradovic, D., Gunter, C.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002)

2. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Proceedings of POPL’98. ACM
(1998)

4. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M.,
Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer,
Heidelberg (2005)

A Framework for Mobile Ad hoc Networks in Real-Time Maude 177

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.:
A process algebra for wireless mesh networks used for modelling, verifying and
analysing AODV. Technical report, 5513. NICTA (2012)

7. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

8. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In: Proceed-
ings of POPL’96. ACM (1996)

9. Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted broadcast process theory. In:
Proceedings of SEFM ’08. IEEE (2008)

10. Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg
(2007)

11. Godskesen, J.C., Nanz, S.: Mobility models and behavioural equivalence for wire-
less networks. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009.
LNCS, vol. 5521, pp. 106–122. Springer, Heidelberg (2009)

12. Höfner, P., Kamali, M.: Quantitative analysis of AODV and its variants on dynamic
topologies using statistical model checking. In: Braberman, V., Fribourg, L. (eds.)
FORMATS 2013. LNCS, vol. 8053, pp. 121–136. Springer, Heidelberg (2013)

13. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G.,
de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer,
Heidelberg (2008)

14. Liu, S., Ölveczky, P.C., Meseguer, J.: A framework for mobile ad hoc networks
in Real-Time Maude (2014). http://www.ifi.uio.no/RealTimeMaude/MANET/
wrla14-manets-tech.pdf

15. Merro, M.: An observational theory for mobile ad hoc networks (full version). Inf.
Comput. 207(2), 194–208 (2009)

16. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. Theor.
Comput. Sci. 412(47), 6585–6611 (2011)

17. Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electron. Notes
Theor. Comput. Sci. 158, 331–353 (2006)

18. Milner, R.: Communicating and mobile systems - the Pi-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

19. Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks.
Theor. Comput. Sci. 367(1), 203–227 (2006)

20. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-order Symb. Comput. 20(1–2), 161–196 (2007)

21. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
ret. Comput. Sci. 410(2–3), 254–280 (2009)

22. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV)
routing. RFC 3561 (experimental) (2003). http://www.ietf.org/rfc/rfc3561

23. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad
hoc networks. Sci. Comput. Program. 75(6), 440–469 (2010)

24. Su, P.: Delay measurement time synchronization for wireless sensor networks. Intel
Research Berkeley Lab (2003)

http://www.ifi.uio.no/RealTimeMaude/MANET/wrla14-manets-tech.pdf
http://www.ifi.uio.no/RealTimeMaude/MANET/wrla14-manets-tech.pdf
http://www.ietf.org/rfc/rfc3561

Strong and Weak Operational Termination
of Order-Sorted Rewrite Theories

Salvador Lucas1,2(B) and José Meseguer2

1 DSIC, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

2 CS Department, University of Illinois at Urbana-Champaign, Champaign, IL, USA
meseguer@cs.uiuc.edu

Abstract. This paper presents several new results on conditional term
rewriting within the general framework of order-sorted rewrite theories
(OSRTs) which contains the more restricted framework of conditional
term rewriting systems (CTRSs) as a special case. The results uncover
some subtle issues about conditional termination. We first of all gener-
alize a previous known result characterizing the operational termination
of a CTRS by the quasi-decreasing ordering notion to a similar result
for OSRTs. Second, we point out that the notions of irreducible term
and of normal form, which coincide for unsorted rewriting are totally
different for conditional rewriting and formally characterize that differ-
ence. We then define the notion of a weakly operationally terminating (or
weakly normalizing) OSRT, give several evaluation mechanisms to com-
pute normal forms in such theories, and investigate general conditions
under which the rewriting-based operational semantics and the initial
algebra semantics of a confluent OSRT coincide thanks to a notion of
canonical term algebra. Finally, we investigate appropriate conditions
and proof methods to ensure good executability properties of an OSRT
for computing normal forms.

Keywords: Conditional term rewriting · Strong and weak operational
termination · Irreducible terms · Normalized terms · Rewriting logic ·
Maude

1 Introduction

This paper presents several new contributions to conditional term rewriting and
to the semantics of declarative, rewriting-based languages. The key notion is
that of an Order-Sorted Rewrite Theory (OSRT) R = (Σ,B,R), where (Σ,B)
is an order-sorted equational theory [10] with equational axioms B, and R is a
collection of rewrite rules with oriented conditions of the form: � → r ⇐ s1 →

Research partially supported by NSF grant CNS 13-19109. Salvador Lucas’ research
was developed during a sabbatical year at the CS Dept. of the UIUC and was also par-
tially supported by Spanish MECD grant PRX12/00214, MINECO project TIN2010-
21062-C02-02, and GV grant BEST/2014/026 and project PROMETEO/2011/052.

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 178–194, 2014.
DOI: 10.1007/978-3-319-12904-4 10

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 179

t1, . . . , sn → tn, which are applied modulo B. All the results are in particu-
lar new results for Conditional Term Rewriting Systems (CTRSs); that is, for
order-sorted rewrite theories of the form R = (Σ, ∅, R), with Σ having a single
sort. The greater generality of OSRTs is not a caprice, but an absolute neces-
sity for making formal specification and declarative programming practical and
expressive.

Our contributions consist in asking and providing detailed answers to the
following, innocent-sounding questions:

1. Can the operational termination of OSRTs be characterized in terms of
orders?

2. What is the right notion of normal form for an OSRT?
3. What is the right notion of weak operational termination for an OSRT?
4. Under what conditions can OSRTs be used as declarative programs having a

well-behaved semantics? And how can we evaluate such programs?
5. Under what conditions does an OSRT have a canonical term algebra that can

be effectively computed and that provides a complete agreement between the
operational semantics of the OSRT as a functional program, and its mathe-
matical, initial algebra semantics? How can some of these executability con-
ditions be checked in practice?

Surprisingly enough, some of these questions seem to never have been asked. At
best, the issues involved seem to have remained implicit as not well-understood,
anomalous features in the literature. Consider, for example, question (2) above,
which asks about the notion of normal form. For unconditional term rewriting
the notion is absolutely clear and unproblematic: a normal form is a term t that
is irreducible, that is, such that there is no t′ with t → t′. For an OSRT, and in
particular for a CTRS, the notion of normal form is actually highly problematic.
The big problem is that for an OSRT there can be terms t that are irreducible
in the above sense, i.e., there is no t′ with t → t′, but such that when we give
t to a rewrite engine for evaluation such an engine loops! For a trivial example,
consider the single conditional rewrite rule a → b ⇐ a → c. Since the rewrite
relation defined by this conditional rule is the empty set, the constant a is triv-
ially irreducible; but the proof tree associated to the normalization of a using the
CTRS inference system is infinite [7], and a rewrite engine that tries to evaluate
a will loop when trying to satisfy the rule’s condition.1 Therefore, calling a a
normal form is a very bad joke, since, intuitively, a term is considered to be a
normal form if it is “fully normalized,” that is, if it is the result of fully evalu-
ating some input term by rewriting. Our answer to this puzzle is to introduce
a precise distinction (fully articulated in the paper) between irreducible terms
and normal forms: every normal form is irreducible, but, as the above example
shows, not every irreducible term is a normal form. We call an OSRT nor-
mal iff every irreducible term is a normal form, and call it abnormal otherwise.
1 For this trivial example one could find ways for an engine to detect this looping; but

undecidability of termination makes a general loop-detecting engine an oxymoron.

180 S. Lucas and J. Meseguer

Abnormal theories, like the one above, are hopeless for executablity purposes
and should be viewed as monsters in the menagerie of CTRSs and OSRTs.

Termination is quite a subtle issue for OSRTs in general and CTRSs in
particular. Many notions have been proposed (see e.g., [11]), but it is by now
well-understood that the most satisfactory notion from a computational point
of view is that of operational termination [7] (more on this later). Here we ask
and answer two questions, further developing this notion. The first is question
(1) above. For the case of deterministic 3-CTRS we proved in [7] that operational
termination is equivalent to the order-based notion of quasi-decreasingness. In
Sect. 3 we generalize this result to a similar result characterizing operational
termination of OSRTs in terms of an (axiom-compatible) term ordering.

A second, related question, seemingly not previously addressed in the liter-
ature, is question (3), which could be rephrased as follows: what is the right
notion of weak termination/normalization for OSRTs? As further explained in
Sect. 4, there are in fact two possible notions, a computationally ill-behaved one
(weak termination: every term has a terminating rewrite sequence ending in
an irreducible term), and a computationally well-behaved one (weak operational
termination: every term has a normal form).

The notions of normal OSRT and of weak operational termination are closely
related to another question, namely, question (4), on executability conditions for
declarative, conditional rule-based programs, and on their evaluation methods,
i.e., their operational semantics. Interestingly enough, as we explain in Sect. 4,
there are several evaluation methods, which become increasingly efficient as we
impose further conditions on the OSRT which we use as our program.

For functional programs specified by an OSRT, the issue is not just one of
having good executability conditions, but actually of correctness. More precisely,
of semantic agreement between an abstract initial algebra semantics when the
rules are viewed as equations, and an operational semantics based on rewriting,
where the computed values —that is, the normal forms— give rise to a very intu-
itive algebra, the canonical term algebra, which under the assumptions of conflu-
ence, coherence, sort-decreasingness and operational termination is isomorphic
to the initial algebra of the specification. Question (5) above asks, essentially:
what is the non plus ultra in terms of generality to maintain this isomorphism
and keeping an exact agreement between mathematical and operational seman-
tics? That is, what are the right conditions for this semantic agreement when
we drop the operational termination condition? This is also answered in Sect. 4,
relating the answers to associated evaluation methods to compute normal forms.
Last but not least, in Sects. 4 and 5 we investigate appropriate conditions and
proof methods to ensure that a theory has good executability properties such as
being normal, and evaluation to normal form defining a total recursive function.

2 Preliminaries

Order-Sorted Algebra. We summarize here material from [4,10] on order-
sorted algebra. We start with a partially ordered set (S,≤) of sorts, where s ≤

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 181

s′ is interpreted as subsort inclusion. The connected components of (S,≤) are
the equivalence classes [s] corresponding to the least equivalence relation ≡≤
containing ≤. We also define �s� = {s′ ∈ S | s′ ≤ s}, i.e., the sorts in S which
are smaller than or equal to s. When [s] has an upper bound, we denote it
by 	[s]. An order-sorted signature (Σ,S,≤) consists of a poset of sorts (S,≤)
and a S∗ × S-indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S , which are function
symbols with a given string of argument sorts and a result sort. If f ∈ Σs1...sn,s,
then we display the function symbol f as f : s1 . . . sn −→ s. This is called a rank
declaration for symbol f . Some of these symbols f can be subsort-overloaded, i.e.,
they can have several rank declarations related in the ≤ ordering [4]. Constant
symbols, however, have only one rank declaration. To avoid ambiguous terms, we
assume that Σ is sensible, meaning that if f : s1 · · · sn → s and f : s′

1 · · · s′
n → s′

are such that [si] = [s′
i], 1 ≤ i ≤ n, then [s] = [s′]. Throughout this paper, Σ

will always be assumed sensible.
Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of vari-

ables, the set TΣ(X)s of terms of sort s is the least set such that (i) Xs ⊆ TΣ(X)s,
(ii) TΣ(X)s ⊇ TΣ(X)s′ , and (iii) for each f : s1 . . . sn −→ s and ti ∈ TΣ(X)si

,
1 ≤ i ≤ n, f(t1, . . . , tn) ∈ TΣ(X)s. The assumption that Σ is sensible ensures
that if [s] �= [s′], then TΣ(X)[s] ∩ TΣ(X)[s′] = ∅.

The set TΣ(X) of order-sorted terms is TΣ(X) = ∪s∈STΣ(X)s. The family
{TΣ(X)s}s∈S together with the operations f : (t1, . . . , tn) �→ f(t1, . . . , tn) define
an order-sorted Σ-algebra called the free algebra on X and denoted TΣ(X).
When X = ∅, TΣ = TΣ(∅) denotes the initial algebra. An element of any set
TΣ(X)s is called a well-formed term. A simple syntactic condition on (Σ,S,≤)
called preregularity [4] ensures that each well-formed term t has always a least
sort possible among all sorts in S, which is denoted LS(t). An order-sorted
substitution σ is an S-sorted mapping σ = {σ : Xs → TΣ(X)s}s∈S from variables
to terms. The application of an OS-substitution σ to t (denoted σ(t)) consists
of simultaneously replacing the variables occurring in t by a term according to
the mapping σ. A specialization ν is an injective OS-substitution that maps a
variable x of sort s to a variable x′ of sort s′ ≤ s.

Order-Sorted Rewrite Theories. An (order-sorted) rewrite rule is an ordered
pair (l, r), written l → r, with l, r ∈ TΣ(X), and LS(l) ≡≤ LS(r). An order-
sorted conditional rewrite theory (OSRT) is a triple R = (Σ,B,R), where Σ
is an order-sorted signature, B is a set of Σ-equations, and R is a collection
of conditional rewrite rules with oriented conditions of the form � → r ⇐
s1 → t1, . . . , sn → tn, where � → r and the si → ti are order-sorted rewrite
rules (with � �∈ Xs for all s ∈ S), and where the conditions si → ti are
intended to express the reachability of (instances of) ti from (instances of) si.
Throughout this paper the equations (u = v) ∈ B are assumed to be: (i) reg-
ular (i.e., Var(u) = Var(v)), (ii) linear (i.e., no repeated variables in either
u or v); (iii) there is a B-matching algorithm; and (iv) sort-preserving (i.e.,
for each substitution θ, LS(θ(u)) = LS(θ(v))). Examples of axioms B satisfying
(i)–(iii) include combinations of associativity and/or commutativity and/or iden-
tity axioms. Maude supports rewriting modulo such axioms and also checks

182 S. Lucas and J. Meseguer

Fig. 1. Inference rules for order-sorted rewrite theories

automatically property (iv) (it actually checks a somewhat weaker condition for
identity axioms that still ensures a least sort for each B-equivalence class).

Rewrite rules � → r ⇐ c in OSRTs are classified according to the distribution
of variables among �, r, and c, as follows: type 1, if Var(r) ∪ Var(c) ⊆ Var(�);
type 2, if Var(r) ⊆ Var(�); type 3, if Var(r) ⊆ Var(�) ∪ Var(c); and type 4, if
no restriction is given. An n-OSRT contains only rewrite rules of types m ≤ n.
A 3-OSRT R is called deterministic if for each rule l → r ⇐ s1 → t1, . . . , sn → tn
in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(l) ∪ ⋃i−1

j=1 Var(tj). If for all
specializations ν LS(ν(�)) ≥ LS(ν(r)) then we say that the OS-rule � → r ⇐ c
is sort-decreasing. We call an OSRT R = (Σ,B,R) sort-decreasing if all rules in
R are so.

We write t →R u (resp. t →∗
R u) iff there is a well-formed proof tree for

t → u (resp. t →∗ u) for R using the inference system in Fig. 1. As usual, →R is
the one-step rewrite relation for the OSRT R and →∗

R is the zero-or-more-steps
rewrite relation for R. We write t →0

R u if t =B u; t →1
R u if t →R u, and

t →n
R u, for some n > 1 if there is a term t′ such that t →R t′ and t′ →n−1

R u.

Operational Termination. Given a logic L (defined by its inference rules),
one has the notion of a theory or specification S in such a logic, so that L’s
inference system becomes specialized to each such specification S to derive its
provable theorems ϕ. Assume that we have an interpreter for the logic L, that
is, an inference machine that, given a theory S and a goal formula ϕ will try to
incrementally build a proof tree for ϕ. Intuitively, we will call S terminating if
for any ϕ the interpreter either finds a proof in finite time, or fails in all possible
attempts also in finite time. In the same vein, we can say that a predicate π (for
instance, → or →∗ in the inference system of Fig. 1) is operationally terminating
if for any goal ϕ such that ϕ = π(t1, . . . , tk) for terms t1, . . . , tk, ϕ is operationally

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 183

terminating. The notion of operational termination captures this fact, meaning
that, given an initial goal, an interpreter will either succeed in finite time in
producing a closed proof tree, or will fail in finite time, not being able to close
or extend further any of the possible proof trees, after exhaustively searching all
such proof trees [7]. In the following, according to the previous discussion, we
speak about operational 1-termination of a OSRT as the operational termination
of → (with respect to the inference system of Fig. 1). By operational termination
of an OSRT we then mean the operational termination of →∗. Similarly, we say
that a term t is operationally (1-)terminating if every goal t →∗ u (resp. t → u)
is operationally terminating for all terms u. We call R ground operationally (1)-
terminating iff all t ∈ TΣ are so.

One last issue important for executability purposes is (strong) B-coherence.
This means that if t →1

R u and t =B t′, then there exists a u′ such that t′ →1
R u′

and u =B u′. For axioms B such as combinations of associativity, commutativity
and identity, Maude automatically completes the user-specified rules so that they
become B-coherent. In this paper we will assume that all OSRTs are B-coherent.

3 Orderings, Quasi-Decreasingness, and (Strong)
Operational Termination

A binary relation R on a set A is terminating (or well-founded) if there is no
infinite sequence a1 R a2 R a3 · · · . Given f : Ak → A and i ∈ {1, . . . , k}, we
say that f is i-monotonic on its i-th argument (or that f is i-monotone with
respect to R) if f(x1, . . . , xi−1, x, . . . , xk) R f(x1, . . . , xi−1, y, . . . , xk) whenever
x R y, for all x, y, x1, . . . , xk ∈ A. We say that R is monotonic if, for all symbols
f , f is monotonic w.r.t. R. In [7] we have shown that operational termination of
deterministic 3-CTRSs (which are special deterministic 3-OSRTs where the set
of sorts S contains a single sort and the set of equations B is empty) is equiva-
lent to quasi-decreasingness, i.e., the existence of a well-founded partial ordering
� on terms satisfying that: (1) the one-step rewriting relation is contained in
�: →R ⊆ �, (2) the strict subterm relation is contained in �: � ⊆ �, and
(3) for every rule � → r ⇐ s1 → t1, . . . , sn → tn, substitution σ, and index i,
0 ≤ i < n, if σ(sj) →∗

R σ(tj) for every 1 ≤ j ≤ i, then σ(l) � σ(si+1). In the fol-
lowing, we generalize this result to deterministic 3-OSRTs under the assumptions
on B stated in Sect. 2. We use strong operational termination and operational
termination as synonymous. This is done to distinguish it from a notion of weak
operational termination presented later. Now we address the problem of defining
appropriate orderings for dealing with order-sorted terms and rewrite theories.

3.1 Orderings for Order-Sorted Terms

A strict ordering �s on terms of sort s is an irreflexive and transitive binary
relation on TΣ(X)s. A strict ordering �[s] on terms of sort in the connected com-
ponent [s] (of S/≡≤) is an irreflexive and transitive binary relation on TΣ(X)[s].

184 S. Lucas and J. Meseguer

Remark 1. Order-sorted rewriting proceeds by transforming terms of the same
connected component [s] ∈ S/≡≤. Therefore, orderings �[s] indexed by con-
nected components of sorts, rather than by sorts, are more appropriate for com-
patibility with the order-sorted rewrite relation. Indeed, note that →+

R= (→+
R[s])

is a well-founded S-ordering if the one-step rewrite relation is terminating, an
that it is monotonic if R is sort-decreasing. On the other hand, we can always
obtain an ordering �s on terms of sort s as follows: �s = �[s] ∩ TΣ(X)2s.

A strict S-ordering �S= {�[s]}[s]∈S/≡≤ is an S-sorted strict ordering on TΣ(X),
i.e., given terms u, v ∈ TΣ(X), u �S v if and only if u, v ∈ T (F ,X)[s] for some
[s] ∈ S/ ≡≤ and u �[s] v. An S-ordering �S is: well-founded if its components
�[s] are well-founded for all s ∈ S; stable if for all S-sorted substitution σ,
s ∈ S, and terms u, v ∈ TΣ(X)[s] u �[s] v, then σ(u) �[s] σ(v); monotonic if
for all f : s1 · · · sk → s ∈ Σ and terms ui, vi ∈ TΣ(X)[si]

for 1 ≤ i ≤ k, if
ui �[si] vi, then f(u1, . . . , ui, . . . , uk) �[s] f(u1, . . . , ui, . . . , uk). An S-ordering
�S on TΣ(X) is compatible with a set of equations B on TΣ(X) if for all terms
u, u′, v, whenever u �S v and u′ =B u, we have u′ �S v (in short: =B ◦ � ⊆ �).
The previous definitions generalize to arbitrary relations (quasi-orderings �,
equivalences ≈, etc.) on order-sorted terms.

Remark 2. S-sorted orderings cannot compare terms in different connected com-
ponents. Still, S-sorted orderings are the natural ones when comparing the left-
and right-hand sides of the rules of an order-sorted (conditional) rewrite system.

A term ordering � is a strict order on TΣ(X). An S-sorted ordering �S on TΣ(X)
defines a term ordering on TΣ(X): u � v iff ∃[s] ∈ S/ ≡≤ such that u �[s] v.
A term ordering which is not S-sorted is the subterm relation �: ∀u, v ∈ TΣ(X),
u � v if either u = v or u = f(u1, . . . , uk) for some f : s1 · · · sk → s ∈ Σ and
ui � t for some i, 1 ≤ i ≤ k. We write u � v if u � v and u �= v.

3.2 Quasi-Decreasingness and (Strong) Operational Termination
of Deterministic 3-OSRTs

After the previous discussion, we can provide a generalization to deterministic
3-OSRTs of the usual notion of quasi-decreasingness for deterministic 3-CTRSs.

Definition 1 (Quasi-decreasingness). A deterministic 3-OSRT (Σ,B,R) is
quasi-decreasing if there is a well-founded term ordering � on TΣ(X) satisfying:
(1) →R ⊆ �, (2) =B ◦ � ⊆ �, (3) � ⊆ �, and (4) for every rule l → r ⇐
u1 → v1, . . . , un → vn, S-sorted substitution σ, and index i, 0 ≤ i < n, if
σ(uj) →∗

R σ(vj) for every 1 ≤ j ≤ i, then σ(l) � σ(si+1).

Quasi-decreasingness is a sufficient condition for operational termination of
deterministic 3-OSRTs.

Theorem 1. Let R be a deterministic 3-OSRT. If R is quasi-decreasing, then
it is operationally terminating.

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 185

Quasi-decreasingness is also necessary for operational termination of order-sorted
and sort-decreasing rewrite theories. Due to our assumption that the equations
B are sort-preserving and the B-coherence assumption, sort-decreasingness is
stable under B-equivalence classes.

Remark 3. Our definition of sort-decreasing conditional rule does not impose
anything to the conditional part of the rules. In this paper, we need sort-
decreasingness to ensure monotonicity of conditional rewriting (see Proposi-
tion 1). This holds without any further restriction on the conditions of the rules.

Thanks to the stability of sort-decreasing rules under B-equality ensured by the
assumptions on B we then have:

Proposition 1. [9] Let R be a sort-decreasing OSRT, t, u, v ∈ TΣ(X) and p ∈
Pos(t). If t = t[u]p and u → v, then t[u]p → t[v]p.

Without sort-decreasingness, this important result does not hold (see [9]). This
assumption is essential in our proof of the following result.

Theorem 2. Let R be a sort-decreasing deterministic 3-OSRT. If R is opera-
tionally terminating, then it is quasi-decreasing.

Thus, quasi-decreasingness characterizes operational termination of order-sorted,
sort-decreasing rewrite theories.

Corollary 1. A sort-decreasing deterministic 3-OSRT R is operationally ter-
minating if and only if it is quasi-decreasing.

4 Computing with Normal Rewrite Theories

Definition 2 (Irreducible forms and weak termination). Let R be an
OSRT and s, t be terms. We say that t is irreducible if, for any term u, t �→R u.
Irr(R) (resp. GIrr(R)) is the set of irreducible terms (resp. ground terms) of R.

If s rewrites to an irreducible term t, we say that s has a (not necessarily
unique) irreducible form t, denoted s→→t. If every term s has an irreducible form,
i.e., s→→t for some irreducible term t, then R is called weakly terminating.

Terminating OSRTs are weakly terminating (in general, the opposite is not true).

Definition 3 (Normal form, weak normalization). A term t is called a
normal form if it is irreducible and operationally 1-terminating. Let NF(R) (resp.
GNF(R)) be the set of normal forms (resp. ground normal forms) of R.

If s→→t and t is a normal form, we then write s →! t and call t a normal
form of s. If every (ground) term s has a normal form, i.e., s →! t for some
normal form t, then R is called weakly (ground) operationally terminating (or
weakly (ground) normalizing).

Remark 4 (Notation). If R is confluent and weakly operationally terminating,
then we write t →!

R u for t→→Ru, denote such a u by u = t!R or u = canR(t),
and call it the R-canonical form of t which is unique up to B-equality.

186 S. Lucas and J. Meseguer

Note that →→R/B ⊇ →!
R/B and NF(R) ⊆ Irr(R) (this inclusion can be strict!).

Example 1. The one-step rewrite relation for a → b ⇐ a → c (a single rule
OSRT) is empty. Hence, a is irreducible. However, a is not a normal form: every
attempt to prove a reduction step on a starts an infinite proof tree.

There can also be reducible terms that are not operationally 1-terminating.

Example 2. Term f(a) is not operationally 1-terminating in the 2-CTRS R:

g(a) → c(b) (1)
b → f(a) (2)

f(x) → x ⇐ g(x) → c(y) (3)

Since g(a) → c(b), we have f(a) → a by means of a finite proof tree. However,
since the evaluation of the condition could continue beyond c(b)

g(a) → c(b) → c(f(a))

and the term f(a) can start a new (deep) proof tree, we also have an infinite
(well-formed) proof tree for the goal f(a) → u with u arbitrary.

Remark 5. Note that R in Example 2 is terminating, i.e., there is no infinite
rewrite sequence t1 →R t2 →R · · · . This is easy to see, because the underlying
TRS Ru = {� → r | � → r ⇐ c ∈ R} is clearly terminating.

Definition 4 (Normal and strongly deterministic rewrite theory).
A deterministic OSRT R is called normal (resp. ground normal) if the set
Irr(R) (resp. the set GIrr(R)) is operationally terminating, i.e., every irreducible
(ground) term is a (ground) normal form: Irr(R) = NF(R) (resp. GIrr(R) =
GNF(R)).

A normal OSRT R = (Σ,B,R) is called strongly deterministic if for each
� → r ⇐ s1 → t1, . . . , sn → tn in R, and each substitution θ such that θ(x) ∈
NF(R) for each x ∈ X , we have: θ(t1), . . . , θ(tn) ∈ NF(R).

The B-coherence assumption then gives us:

Proposition 2. If a strongly deterministic 3-OSRT R is (ground) confluent and
weakly normalizing, then R is (ground) normal.

Remark 6. Ground normality is the minimum prerequisite for executability. For
ground normal and ground confluent deterministic 3-OSRT R, each ground term
t has at most one normal form up to B-equality and the process t �→ [t!R]B
defines a recursive partial function, since R need not even be weakly terminating.

In order to prove that a strongly deterministic OSRT R = (Σ,B,R) is ground
normal, we can proceed as follows:

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 187

1. Identify a subsignature of constructors Ω with nonempty sorts such that the
rules in R decompose as a disjoint union R(Σ−Ω)∪RΩ , where the RΩ have only
Ω terms in their rules and conditions, and each � → r ⇐ s1 → t1, . . . , sn → tn
in R(Σ−Ω) has l = f(t1, . . . , tn) for some f ∈ Σ − Ω. We also assume that
the axioms B decompose as a disjoint union B(Σ−Ω) ∪ BΩ with the BΩ

involving only Ω terms, and the B(Σ−Ω) not Ω-equations. This yields an
ORST inclusion RΩ ⊆ R, with RΩ = (Ω,BΩ , RΩ).

2. Prove (by inductive theorem proving) that for all defined symbols f ∈ Σ −Ω,
say with rank f : s1 · · · sn −→ s, the following inductive property holds:

∀x1 ∈ TΩs1
, . . . , xn ∈ TΩsn

,∃yf(x1, . . . , xn) →1
R y

Then if RΩ is operationally terminating, R is ground normal and, furthermore,
GNF(R) ⊆ TΩ . That is, an inductive proof of ground reducibility w.r.t. the
constructors shows that t ∈ TΣ is a ground normal form iff:

1. t ∈ TΩ ; and
2. t ∈ GNF(RΩ).

The assumptions on B give us:

Proposition 3. Let R = (Σ,B,R) be a normal, sort-decreasing, confluent,
strongly deterministic 3-OSRT such that R is finite. If R is weakly operationally
terminating, then the function t �→ [t!R]B is total recursive and preserves sorts.

Note that, otherwise, if R is confluent but not weakly operationally terminat-
ing, then the function t �→ [u]B with t→→u may not be recursive, even if each
t has an irreducible form. Implicit in Proposition 3 is the fact that, under such
conditions plus the assumptions on B, when we interpret each � → r ⇐ s1 →
t1, . . . , sn → tn in R as a conditional equation � = r ⇐ s1 = t1, . . . , sn = tn,
normal forms define an algebra CΣ/R,B , called the canonical term algebra of R.
Specifically, for each sort s we define CΣ/R,B,s = GNF(R)/=B ∩TΣ/B , that is,
the set of B-equivalence classes of ground normal forms of sort s, and, for each f :
s1 · · · sn −→ s in Σ its interpretation in CΣ/R,B maps each tuple ([t1]B , . . . , [tn]B)
with [ti]B ∈ CΣ/R,B,si

to the B-equivalence class [f(t1, . . . , tn)!R]B , which is well-
defined and unique because of confluence, sort-decreasingness and B-coherence.
The agreement between the operational semantics of R when terms are normal-
ized by rewriting, and the mathematical semantics of R when its rules are inter-
preted as conditional equations can then be expressed for such general OSRTs
as follows:

Corollary 2. For R = (Σ,B,R) a sort-decreasing, ground confluent and weakly
ground operationally terminating strongly deterministic 3-OSRT, the canonical
term algebra CΣ/R is a computable algebra. Furthermore, TΣ/R∪B � CΣ/R,B.

Computing the normal form t!R of a term t under the assumptions of Corollary 2
is somewhat complex, and can be computationally expensive. It is therefore use-
ful to seek conditions under which we can more efficiently compute normal forms.

188 S. Lucas and J. Meseguer

We consider two such conditions, which can be executed in Maude [2] in a straight-
forward manner.

The first case is that of a strongly deterministic 3-OSRT that is sort-decreasing,
ground confluent, 1-terminating, and ground weakly terminating and has a finite
number of rewrite rules. Under such conditions, the search command in Maude
asking for the fully-reduced first result for the given input ground term will com-
pute such a normal form. This assumes that the rules in the theory are expressed
as rules in a Maude system module and not as equations in a functional module,
even though the module does indeed have a functional semantics. A simple theory
transformation, easily definable in Maude’s META-LEVEL module, can transform
the given functionalmodule into its associated systemmodule. Let us illustrate this
general method with an example. Note that in this example the set B of axioms is
empty.The functionalmodule fmod WEAK-NORM endfm expresses the rewrite rules R
as conditional equations, whereas the system module mod WEAK-NORM endm
expresses them explicitly as rewrite rules.

fmod WEAK-NORM is

protecting BOOL .

sorts Nat Nat? .

subsort Nat < Nat? .

op 0 : -> Nat . op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat . op even : Nat -> Bool .

ops f g : Nat? -> Nat? .

vars N M : Nat .

eq N + 0 = N . eq N + s(M) = s(N + M) .

eq even(0) = true . eq even(s(0)) = false .

eq even(s(s(N))) = even(N) . eq g(N) = N .

eq f(N) = N + N .

ceq f(N) = g(f(N)) if true := even(N) .

endfm

This module is sort-decreasing, weakly terminating and ground confluent.
By the technique presented in Sect. 5, we can prove it normal. Giving to Maude
the term f(0) for evaluation leads to non-terminating behavior. That is, the
usual operational semantics for evaluating operationally terminating confluent
theories cannot be relied upon to compute normal forms. This problem can be
solved by transforming the above functional module into a system module, that
is, by transforming equations into rules, and using Maude’s search command:

mod WEAK-NORM is

protecting BOOL .

sorts Nat Nat? .

subsort Nat < Nat? .

op 0 : -> Nat . op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat . op even : Nat -> Bool .

ops f g : Nat? -> Nat? .

vars N M : Nat .

rl N + 0 => N . rl N + s(M) => s(N + M) .

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 189

rl even(0) => true . rl even(s(0)) => false .

rl even(s(s(N))) => even(N) . rl g(N) => N .

rl f(N) => N + N .

crl f(N) => g(f(N)) if even(N) => true .

endm

The normal form of a term can then be obtained by searching for the first
result of a terminating computation from the given term. By confluence such a
result is unique up to B-equality, exists by weak operational termination, and
can be found by search without risk of looping thanks to 1-termination:

Maude> search [1] f(0) =>! N:Nat .

search in WEAK-NORM : f(0) =>! N .

Solution 1 (state 5)

states: 9 rewrites: 12 in 0ms cpu (0ms real) (44943 rewrites/second)

N --> 0

Maude> search [1] f(s(s(0))) =>! N:Nat .

search in WEAK-NORM : f(s(s(0))) =>! N .

Solution 1 (state 14)

states: 20 rewrites: 35 in 0ms cpu (0ms real) (55118 rewrites/second)

N --> s(s(s(s(0))))

Maude> search [1] f(s(s(s(s(0))))) =>! N:Nat .

search in WEAK-NORM : f(s(s(s(s(0))))) =>! N .

Solution 1 (state 27)

states: 35 rewrites: 70 in 1ms cpu (1ms real) (57189 rewrites/second)

N --> s(s(s(s(s(s(s(s(0))))))))

The second case where execution of a weakly operationally terminating deter-
ministic OSRT can be achieved using execution mechanisms already available
in Maude and yields again a full agreement between operational and mathe-
matical semantics is the one of context-sensitive OSRTs under some reasonable
assumptions. A context-sensitive [6] OSRT is a four-tuple R = (Σ,B,R, μ),
where (Σ,B,R) is an OSRT, and μ maps each f : s1 · · · sn −→ s in Σ to a
subset μ(f) ⊆ {1, . . . , n} of the argument positions of f under which rewriting
is allowed. The operational semantics of context-sensitive OSRTs is defined by
restricting the inference system of Fig. 1 with the single restriction that, in the
(Cong) Rule, i with 1 ≤ i ≤ k must furthermore satisfy i ∈ μ(f).

The Lemma below states the required conditions on R = (Σ,B,R, μ) yielding
the desired agreement between operational and mathematical semantics. This
result relies on the notion of μ-sufficient completeness and of the algebra Cμ

R of
term in μ-normal form (see [5]).

Lemma 1. If R is a confluent, sort decreasing and strongly deterministic
context-sensitive 3-OSRT R = (Σ,B,R, μ), which is μ-operationally terminat-
ing and μ-sufficiently complete for Ω ⊆ Σ a subsignature of free constructors
modulo B, then:

1. R is ground weakly operationally terminating.
2. Cμ

R |Ω= TΩ/B.

190 S. Lucas and J. Meseguer

3. For each t ∈ TΣ, t!R,B = t!μR,B, that is, the normal form and the μ-normal
form of t (which can be computed by Maude’s reduce command) coincide.

4. TΣ/E∪B � Cμ
E/B (agreement between operational and denotational semantics).

Under the assumptions of Lemma 1, we compute normal forms as follows: since
Maude supports the execution of confluent context-sensitive 3-OSRTs R =
(Σ,B,R, μ) specified as functional modules, we just use the reduce command
to compute normal μ-forms, which under the assumptions in Lemma1 are also
ordinary normal forms in the underlying OSRT (Σ,B,R). We can illustrate these
ideas with the following example of a context-sensitive 3-OSRT in Maude:

fmod FACTORIAL is

protecting NAT .

op monus : Nat Nat -> Nat .

op _~_ : Nat Nat -> Bool [comm] .

op [_,_,_] : Bool Nat Nat -> Nat [strat (1 0)] .

op fact : Nat -> Nat .

vars N M : Nat .

eq monus(s(N),s(M)) = monus(N,M) .

ceq monus(N,M) = N if M {:=} 0 .

ceq monus(N,M) = 0 if N {:=} 0 .

eq N ~ N = true .

eq s(N) ~ s(M) = N ~ M .

eq 0 ~ s(N) = false .

eq [true,N,M] = N .

eq [false,N,M] = M .

eq fact(N) = [(N ~ 0),s(0),N * fact(monus(N,s(0)))] .

endfm

This theory, though ground confluent, is cleary non-terminating because of
the last equation. Here, μ does not restrict any argument positions, except for
the if-then-else operator [, ,], where μ([, ,]) = {1}, as specified by the strat
attribute. It is, however, operationally μ-terminating and has 0 and s, and true,
false as free constructors. Here are some evaluations:

Maude> red fact(2) .

reduce in FACTORIAL : fact(2) .

rewrites: 15 in 0ms cpu (0ms real) (192307 rewrites/second)

result NzNat: 2

Maude> red fact(3) .

reduce in FACTORIAL : fact(3) .

rewrites: 21 in 0ms cpu (0ms real) (10500000 rewrites/second)

result NzNat: 6

Maude> red fact(4) .

reduce in FACTORIAL : fact(4) .

rewrites: 27 in 0ms cpu (0ms real) (692307 rewrites/second)

result NzNat: 24

Maude> red fact(5) .

reduce in FACTORIAL : fact(5) .

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 191

rewrites: 33 in 0ms cpu (0ms real) (358695 rewrites/second)

result NzNat: 120

We end this section with the following result that, though well-known (see,
e.g., [12]), has an easier proof with a rewrite theory with axioms B of associtivity
and identity for strings. In some sense this result shows how wild the beasts in
the general menagerie of OSRTs can be, and illustrates the need for notions such
as that of normal theory to obtain reasonable computational behaviors.

Theorem 3. There is a 2-OSRTs R and a sort s such that the set Irr(R)s ⊆
T (F ,X)s of R-irreducible terms is not recursively enumerable, so it is not even
semi-decidable if a term is R-irreducible.

5 Proving Order-Sorted Rewrite Theories Normal

1-operationally terminating rewrite theories are normal. The opposite is not true.

Example 3. The CTRS R in Example 2 is not 1-operationally terminating. How-
ever, R is normal: assume that there is a minimal irreducible term s having an
infinite well-formed proof tree whose strict subterms are normal forms. Since f
is the only symbol defined by a conditional rule, s = f(t) for some normal form
t. Since f(t) is irreducible, the evaluation of the condition in the rule cannot
succeed, i.e., g(t) must be irreducible. Since t is a normal form, g(t) cannot start
any infinite well-formed tree. Contradiction.

Remark 7. As noticed in Remark 5, R in Example 2 is terminating. Since R is
not 1-operationally terminating and a fortiori not operationally terminating, it
follows from Example 3 that neither 1-operational termination nor operational
termination of R follow from the termination and normality of R.

An interesting feature in the treatment of innermost termination problems using
the dependency pair approach [1] is that, since the variables in the right-hand
side of the dependency pairs are in normal form, the rules which can be used
to connect contiguous dependency pairs are usually a proper subset of the rules
in the TRS. This leads to the notion of usable rules [1, Definition 32] which
simplifies the proofs of innermost termination of rewriting.

In our analysis of normal rewrite theories we have a similar situation: when
an irreducible term t = f(t1, . . . , tk) is tested to see whether it is a normal form,
we know that all possible reductions derived from a proof t → x (for a fresh
variable x) cause the evaluation of the conditional part c of some conditional rule
f(�1, . . . , �k) → r ⇐ c. Therefore, if we single out those rules that can be involved
in any attempt to evaluate σ(c) for some σ such that t = σ(f(�1, . . . , �k)), we
can obtain a more precise analysis. The notion of usable rule provides an upper,
purely syntactic, approximation to the set of rules that eventually apply to a
term t during any possible rewriting on t. We keep the original flavor of the
original, unsorted notion in the following definition.

192 S. Lucas and J. Meseguer

Definition 5 (Usable rules for a rewrite theory). Let R = (Σ,B,R) be an
OSRT. Let RULES (R, t) be the set of rules defining symbols occurring in t:

RULES (R, t) = {� → r ⇐ c ∈ R | ∃p ∈ Pos(t), root(�) = root(t|p)}
Then, the set of usable rules of R for t is:

U(R, t) = RULES (R, t) ∪
⋃

l→r⇐c∈RULES(R,t)

U(R′, r) ∪
⋃

si→ti∈c

U(R′, si)

where R′= R − RULES (R, t).

That is: we consider both unconditional and conditional rules and add the rules
that could be used to evaluate the conditions in the rules. Since we are dealing
with OSRTs R = (Σ,B,R), rewriting happens modulo B. This raises the issue of
whether the above definition of usable rules is overly syntactic, that is, not stable
under B-equality. The key issue is whether in the (Repl) rule in the inference
system of Fig. 1 the top symbol of the redex u coincides with that of the lefthand
side l. This is the case by requiring the axioms B to be as follows:

B =
⋃

f :[s1]···[sn]→[s]∈Σ

Bf

where Bf is a set of equations u = v with u, v ∈ T{f}(X) − X , i.e., only symbol
f is allowed (and must) to occur in the equations belonging to Bf . Associativity
and commutativity axioms satisfy this requirement, which can even be made to
work for identity axioms by performing the semantics-preserving transformation
described in [3]. Now we can give the main result of this section. For an OSRT
R = (Σ,B,R), we say that B preserves the R-normal forms if for all R-normal
forms t, if t =B u, then u is an R-normal form. B-coherence, which is a usual
requirement for working OSRTs, implies this property. By RC we denote the
OSRT obtained as the union of U(R, s) for all lhs’s conditions in the rules of R:

RC =
⋃

�→r⇐c

⋃

s→t∈c

U(R, s)

Theorem 4. A deterministic 3-OSRT R = (Σ,B,R) is normal if B preserves
the R-normal forms and RC is operationally terminating.

Example 4. Consider the functional module WEAK-NORM in Sect. 4. Here, RC is
the unconditional subOSRT consisting of the rules defining even. Note that RC

has no conditional rule and is clearly terminating, hence operationally terminat-
ing. We conclude that, as claimed, WEAK-NORM is a normal OSRT.

Now we show that Theorem 4 does not characterize normality of OSRTs:

Example 5. Consider the following deterministic 1-CTRS:

a → b f(x) → x ⇐ c → d, a → c
b → a

Every term f(t) is irreducible and also a normal form because the unsatisfiable
condition c → d prevents the looping evaluation of the condition a → c. However,
RC = {a → b, b → a} is not (operationally) terminating.

Strong and Weak Operational Termination of Order-Sorted Rewrite Theories 193

6 Conclusions and Future Work

The results presented in this paper can be viewed from two complementary per-
spectives: one more theoretical, and another more practical. At the theoretical
level, we have investigated parts of the terra incognita of conditional term rewrit-
ing by asking and providing precise answers to innocent-sounding questions such
as: what is a normal form? How can normal forms be effectively computed? How
should the notion of weakly normalizing system be understood in the conditional
case? How can good executability properties be ensured for a theory? There is,
however, a more practical aspect to all these results. It consists in taking to heart
the idea that rewrite theories are an excellent framework for declarative program-
ming and formal specification and verification. From this second perspective, the
questions asked and answered include: what is the most general notion possible
of a conditional rule-based program for which normal forms can be computed?
What is the appropriate term normalization operational semantics? How can it
be made more efficient? What are the most general possible requirements under
which conditional functional programs can be given an initial algebra semantics
which fully agrees with their operational semantics?

Future work should further investigate proof methods and supporting tools
for all the properties discussed here. For example, although the characteriza-
tion of the operation termination of an OSRT in terms of quasi-decreasingness
offers in principle a complete proof method, we are currently investigating a far-
reaching generalization to the conditional case of the dependency pair method
that seems considerably more effective for mechanizing actual proofs. In general,
the development of intrinsic methods for proving both strong and weak opera-
tional termination of OSRTs seems both quite attractive and sorely needed.

With regard to checking normality of OSRTs, Example 5 shows that the
notion of operational termination of OSRTs is perhaps too strong to capture
normality of some OSRTs. In [8] we have introduced the weaker notion of V -
termination for CTRSs, which captures the absence of infinite computations
involving an infinite number of failed attempts to issue a single rewriting step
(which we associate to a vertical dimension of nontermination in [8]). The defi-
nition of V -termination of CTRSs is based on the Dependency Pairs for CTRSs
(2D DPs) described in [8]. The interesting feature is that V -termination can be
independently proved in the 2D DP Framework. Unfortunately, V -termination
does not yield a valid criterion to prove CTRSs normal.

Example 6. The following variant R′ of R in Example 5

a → b f(x) → x ⇐ a → c
b → a

is not normal because terms f(t) are irreducible (since a →∗ c cannot be satis-
fied), but they are not normal forms because f(t) → u starts an infinite well-
formed tree (i.e., R′ is not 1-terminating). However, by using the methods in [8]
it is easy to prove that R′ is V -terminating.

194 S. Lucas and J. Meseguer

Since 1-termination implies V -termination, the following hierarchy of properties

Operational termination ⇒ 1 -termination ⇒ V-termination
⇓

N ormal theory

suggests now the development of techniques for proving 1-termination as an
important topic for further research.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency Pairs. Theor.
Comput. Sci. 236(1–2), 133–178 (2000)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

3. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational
theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp.
246–262. Springer, Heidelberg (2009)

4. Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci.
105, 217–273 (1992)

5. Hendrix, J., Meseguer, J.: On the completeness of context-sensitive order-sorted
specifications. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 229–245.
Springer, Heidelberg (2007)

6. Lucas, S.: Context-sensitive computations in functional and functional logic pro-
grams. J. Funct. Logic Program. 1998(1), 1–61 (1998)

7. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)

8. Lucas, S., Meseguer, J.: 2D dependency Pairs for proving operational termination of
CTRSs. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 195–212. Springer,
Heidelberg (2014)

9. Lucas, S., Meseguer, J.: Order-sorted dependency Pairs. In: Proceedings of
PPDP’08, pp. 108–119. ACM Press (2008)

10. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Parisi-Presicce, Francesco (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

11. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)
12. TeReSe: Term Rewriting Systems, Cambridge University Press (2003)

2D Dependency Pairs for Proving Operational
Termination of CTRSs

Salvador Lucas1,2(B) and José Meseguer2

1 DSIC, Universitat Politècnica de València, València, Spain
2 Computer Science Department, University of Illinois at Urbana-Champaign,

Champaign, IL, USA
slucas@dsic.upv.es

Abstract. The notion of operational termination captures nontermi-
nating computations due to subsidiary processes that are necessary to
issue a single ‘main’ step but which often remain ‘hidden’ when the
main computation sequence is observed. This highlights two dimensions
of nontermination: one for the infinite sequencing of computation steps,
and the other that concerns the proof of some single steps. For condi-
tional term rewriting systems (CTRSs), we introduce a new dependency
pair framework which exploits the bidimensional nature of conditional
rewriting (rewriting steps + satisfaction of the conditions as reachabil-
ity problems) to obtain a powerful and more expressive framework for
proving operational termination of CTRSs.

Keywords: Conditional term rewriting · Dependency pairs · Program
analysis · Operational termination

1 Introduction

Assume that we have an interpreter for a logic L, i.e., an inference machine
that, given a theory S and a goal formula ϕ, will try to incrementally build a
proof tree for ϕ. Intuitively, we call S terminating if for any ϕ the interpreter
either finds a proof in finite time, or fails in all possible attempts also in finite
time. The notion of operational termination captures this idea, meaning that,
given an initial goal, an interpreter will either succeed in finite time in producing
a closed proof tree, or will fail in finite time, not being able to close or extend
further any of the possible proof trees, after exhaustively searching all such proof
trees [12]. In particular, operational termination captures a ‘vertical’ dimension
of the termination behavior which is missing in the usual definition of termina-
tion of relations as well-founded, i.e., “without infinite reduction sequences” (the
‘horizontal’ dimension).

Research partially supported by NSF grant CNS 13-19109. Salvador Lucas’ research
was developed during a sabbatical year at the CS Dept. of the UIUC and was also par-
tially supported by Spanish MECD grant PRX12/00214, MINECO project TIN2010-
21062-C02-02, and GV grant BEST/2014/026 and project PROMETEO/2011/052.

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 195–212, 2014.
DOI: 10.1007/978-3-319-12904-4 11

196 S. Lucas and J. Meseguer

Available tools for proving operational termination of conditional rewriting
(AProVE [10] or VMTL [16]) rely on transformations U that map each opera-
tional termination problem for the CTRS R into a termination problem for a
TRS U(R). Then, available methods for proving termination of U(R) are used.
However, this transformational approach has substantial limitations.

Example 1. Consider the following CTRS R [15, Example 8]

h(d) → c(a) (1)
h(d) → c(b) (2)

f(k(a), k(b), x) → f(x, x, x) (3)
g(x) → k(y) ⇐ h(x) → d, h(x) → c(y) (4)

As reported in [15, Example 8], U(R) is not terminating. However, our methods
in this paper will show that R is operationally terminating (Example 19).

Most termination tools for proving termination of (variants of) rewriting with
TRSs implement extensions or generalizations of the Dependency Pair Frame-
work [7,8]. The main idea is the following: the rules � → r that are able to
produce infinite sequences are those whose right-hand side r contains (possi-
bly recursive) function calls. The calls associated to � → r are represented as
new rules u → v, that are collected in a new TRS DP(R) of dependency pairs
(DPs); R and DP(R) determine dependency chains whose finiteness characterize
termination of R [1].

In this paper we generalize this approach to deterministic 3-CTRSs, which
are the basis of rewriting-based languages like CafeOBJ [5] or Maude [3]. In Sect. 3
we show that computations starting from minimal operationally nonterminating
terms can always follow a precise path where two sources of nontermination can
be identified: infinite sequences of rewriting steps (an horizontal dimension), and
infinitely many attempts to check the satisfaction of the conditions in the rules
(a vertical dimension). Section 4 introduces a definition of dependency pairs that
makes such a bidimensional nature of infinite computations explicit (we call them
2D DPs). The corresponding notion of chain of dependency pairs permits a com-
pletely independent treatment of both dimensions of the termination problems.
For 2-CTRSs (a subclass of 3-CTRSs), we characterize termination (i.e., the
absence of infinite rewrite sequences) in terms of the “horizontal” component of
our 2D DPs only. In Sect. 5, we adapt the Dependency Pair Framework [7,8] to
mechanize proofs of operational termination of deterministic 3-CTRSs using 2D
DPs. The framework can also be used to prove termination of 2-CTRSs which
are not operationally terminating.

Example 2. The following deterministic 2-CTRS R:

g(a) → c(b) (5)
b → f(a) (6)

f(x) → x ⇐ g(x) → c(y) (7)

2D Dependency Pairs for Proving Operational Termination of CTRSs 197

Fig. 1. Inference rules for conditional rewriting

is not operationally terminating. However, it is terminating. We can prove both
things in our framework (see Examples 13 and 15), illustrating its expressiveness.

Section 6 develops the framework by introducing a number of processors and
illustrating their use. Section 7 discusses related work and concludes.

2 Preliminaries

Recall from [14] the usual notions and notations regarding term rewriting and
CTRSs. An (oriented) CTRS R is a pair R = (F , R) where F is a signature
and R a set of rules � → r ⇐ s1 → t1, · · · , sn → tn, where the conditions si → ti
for 1 ≤ i ≤ n are intended to express the reachability of (instances of) ti from
(instances of) si. As usual, � and r are called the left- and right-hand sides of the
rule, and the sequence s1 → t1, · · · , sn → tn (often abbreviated to c) is the condi-
tional part of the rule. Rewrite rules � → r ⇐ c are classified according to the distri-
bution of variables among l, r, and c, as follows: type 1, if Var(r)∪Var(c) ⊆ Var(�);
type 2, if Var(r) ⊆ Var(�); type 3, if Var(r) ⊆ Var(�) ∪ Var(c); and type 4, if
no restriction is given. An n-CTRS contains only rewrite rules of type m ≤ n.
An oriented 3-CTRS R is called deterministic if for each rule � → r ⇐ s1 →
t1, . . . , sn → tn in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(l)∪⋃i−1

j=1 Var(tj).
Given R = (F , R), we consider F as the disjoint union F = C � D of symbols
c ∈ C (called constructors) and symbols f ∈ D (called defined functions), where
D = {root(l) | (l → r ⇐ c) ∈ R} and C = F − D. Terms t ∈ T (F ,X) such that
root(t) ∈ D are called defined terms. PosD(t) is the set of positions p of subterms
t|p such that root(t|p) ∈ D.

A conditional rewrite s →∗ t with a CTRS R exists if and only if it has a
closed proof tree using the inference system in Fig. 1. We say that a proof tree
T is closed whenever it is finite and contains no open goals; it is well-formed if

198 S. Lucas and J. Meseguer

it is either an open goal, or a closed proof tree, or a derivation tree of the form
T1 ··· Tn

G where, for each j, Tj is itself well-formed, and there is i ≤ n such
that Ti is not closed, for any j < i Tj is closed, and each of the Ti+1,. . . ,Tn is an
open goal [12]. An infinite proof tree is well-formed if it is an ascending chain
of well-formed finite proof trees. Intuitively, well-formed trees are the trees that
an interpreter would incrementally build when trying to solve one condition at
a time from left to right. We write s →R t (resp. s →∗

R t) iff there is a well-
formed proof tree for s → t (resp. s →∗ t). The CTRS R is called operationally
terminating if no infinite well-formed tree for a goal s →R t or s →∗

R t exists. The
CTRS R is called terminating if there is no infinite sequence t1 →R t2 →R · · · .

3 Minimal Operationally Nonterminating Terms
in CTRSs

Given a proof tree T , root(T) is the formula (goal) at the root of the tree, and
left(G) is the left-hand side s of goal G, where G is s → t or s →∗ t for some
terms s and t.

Definition 1 (Operationally Nonterminating Term). Let R be a CTRS.
A term t such that left(root(T)) = t for an infinite well-formed proof tree T is
called operationally nonterminating. If there is no infinite well-formed proof tree
T such that left(root(T)) = t, then we call t operationally terminating.

Definition 2 (Minimality). Let R be a CTRS. An operationally nontermi-
nating term t is called minimal if every strict subterm u of t (i.e., t � u) is
operationally terminating. Let Top-∞ be the set of minimal operationally nonter-
minating terms associated to R.

The following lemma shows that operationally nonterminating terms always con-
tain a minimal operationally nonterminating term.

Lemma 1. Let R = (F , R) be a CTRS and s ∈ T (F ,X). If s is operationally
nonterminating, then there is a subterm t of s (s � t) such that t ∈ Top-∞.

Proposition 1 below establishes that, for t ∈ Top-∞, there is a precise way for an
infinite computation to proceed. Roughly speaking, a rule � → r ⇐ ∧n

i=1 si → ti
must be used to try a root-step on a reduct of t. Then, there is a minimal
operationally nonterminating subterm which is either (1) an instance of a non-
variable subterm of the right-hand side r of the rule (so that the infinite com-
putation continues through the horizontal dimension), or (2) an instance of a
non-variable subterm of one of the left-hand sides si of a condition si → ti (the
infinite computation continues through the vertical dimension). Given a term t,
DSubterm(R, t) = {t |p | p ∈ PosD(t)} is the set of defined subterms of t with
respect to rules in R. Let DRules(R, t) be the set of (possibly conditional) rules
in R defining root(t) which depend on other defined symbols in R:

DRules(R, t) = {� → r ⇐ c ∈ R | root(�) = root(t), r /∈ T (C,X)}.

The dependency is captured as r /∈ T (C,X) in the above definition.

2D Dependency Pairs for Proving Operational Termination of CTRSs 199

Example 3. For R in Example 1, DRules(R, h(x)) = ∅ (because c(a), c(b) ∈
T (C,X)), DRules(R, g(x)) = ∅ (again k(y) ∈ T (C,X)) and DRules(R, f (x , x , x))
= {(3)}.

For each v ∈ DSubterm(R, r), DRules(R, v) contains the rules that will (even-
tually) be used in root steps σ(�) → σ(r) for some � → r ⇐ c ∈ DRules(R, v) in
the immediate continuation of the infinite computation in the horizontal dimen-
sion (starting from an instance σ(v) of v). With regard to the vertical dimension,
given a term t, the set of ‘proper’ conditional rule defining root(t) is:

RulesC (R, t) = {� → r ⇐
n
∧

i=1

si → ti ∈ R | root(�) = root(t),n > 0}.

These are the rules involved in transitions of computations to upper levels. We
let URules(R, t) = DRules(R, t) ∪ RulesC (R, t) to be the set of used rules.

Example 4. For R in Example 1, URules(R, h(x)) = DRules(R, h(x)) and
URules(R, f (x , x , x)) = DRules(R, f (x , x , x)). However URules(R, g(x)) =
DRules(R, g(x)) ∪ RulesC (R, g(x)) = {(4)}.

Proposition 1. Let R be a deterministic 3-CTRS. Then, for all t ∈ Top-∞,

there exist α : � → r ⇐ ∧n
i=1 si → ti and a substitution σ such that t

>Λ−→∗ σ(�),
and there is a term v such that � � v, σ(v) ∈ Top-∞ and either

1. α ∈ DRules(R, t), for all 1 ≤ i ≤ n, σ(si) is operationally terminating and
σ(si) →∗ σ(ti), and v ∈ DSubterm(R, r) is such that URules(R, v)
= ∅, or

2. α ∈ RulesC (R, t), there is i, 1 ≤ i ≤ n such that σ(sj) is operationally
terminating and σ(sj) →∗ σ(tj) for all j, 1 ≤ j < i, and v ∈ DSubterm(R, si)
is such that URules(R, v)
= ∅.

Remark 1. In the following we do not impose that the domain of the substitu-
tions be finite. This is usual practice in the dependency pair approach, where a
single substitution is used to instantiate an infinite number of variables coming
from renamed versions of the dependency pairs (see below).

The next result formalizes a bidimensional view of infinite computations starting
from minimal operational nonterminating terms: they can be viewed as a path
over N × N, where each bidimensional point (xi, yi) is labeled with a rule αi.

Theorem 1. Let R = (F , R) be a deterministic 3-CTRS and t ∈ Top-∞. There
is a substitution σ and an infinite sequence {(xi, yi, αi)}i∈N of triples (xi, yi, αi) ∈
N × N × R such that, for all i ≥ 0, xi+1 + yi+1 = xi + yi + 1 and

1. x0 = y0 = 0, α0 ∈ URules(R, t) and t
>Λ−→∗ σ(�0).

2. For all i ≥ 0, and αi : �i → ri ⇐
ni
∧

j=1

si
j → tij ∈ R, we have σ(�i) ∈

Top-∞; furthermore, there is a term vi such that �i � vi, σ(vi) ∈ Top-∞,

σ(vi)
>Λ−→∗ σ(�i+1), αi+1 ∈ URules(vi), and

200 S. Lucas and J. Meseguer

10

8 9 10

8

Fig. 2. Computations starting with f(a) for R in Example 5

(a) If xi+1 = xi + 1, then vi ∈ DSubterm(R, ri) and αi ∈ DRules(R, �i).
(b) If yi+1 = yi +1, then there is j, 1 ≤ j ≤ ni s.t. vi ∈ DSubterm(R, s ij) and

αi ∈ RulesC (R, �i).

Example 5. Consider the following deterministic 3-CTRS R which is obtained
from the 2-CTRS in Example 2 by a small change in rule (7) to yield (10):

g(a) → c(b) (8)
b → f(a) (9)

f(x) → y ⇐ g(x) → c(y) (10)

Figure 2 shows the representation of computation starting from f(a) ∈ Top-∞
according to Theorem 1, where the coordinates (xi, yi) have been left implicit.

Remark 2. The minimal sequence f(a) →(10) b →(9) f(a) →(10) b → · · · is also
possible for R in Example 5. This is because σ(g(x)) →∗ σ(c(y)) for rule (10) is
satisfied without any reduction on b if σ(x) = a and σ(y) = b. The implicit assump-
tion in the computation model of Proposition 1 is that only reachability conditions
σ(si) →∗ σ(ti) that are free of any infinite computation are important to decide
the application of a rule. This makes real sense in practice. And, of course, it is
harmless for the correctness or completeness of our approach.

According to our discussion, the following definition establishes the subsets of
rules that play a special role in computations starting from minimal terms.

Definition 3. The dependent usable rules for a CTRS R and t ∈ T (F ,X) are:

DU(R, t) = DRules(R, t) ∪
⋃

(l→r⇐c)∈DRules(R,t)

⋃

v∈DSubterm(R,r)

DU(R•, v)

2D Dependency Pairs for Proving Operational Termination of CTRSs 201

where R• = R − DRules(R, t). The set of minimal usable rules of R for t is:

MU(R, t) = URules(R, t) ∪
⋃

(l→r⇐c)∈DRules(R,t)

⋃

v∈DSubterm(R,r)

MU(R•, v).

Let MU(R, t) = ∅ if MU(R, t) is a TRS and MU(R, t) = MU(R, t) otherwise.

Example 6. For R in Example 1, DU(R, h(x)) = MU(R, h(x)) = ∅; DU(R, g(x))
= ∅ but MU(R, g(x)) = MU(R, g(x)) = {(4)}, and DU(R, f(x, x, x)) =
MU(R, f(x, x, x)) = {(3)}, but MU(R, f(x, x, x)) = ∅.

Example 7. For R in Example 5, DRules(R, f (a)) = ∅ (because the right-hand
side y in rule (10) defining f is a variable), DU(R, g(x)) = {(8), (9)} and
MU(R, g(x)) = MU(R, g(x)) = R.

The following result shows that an infinite computation starting from a mini-
mal operationally nonterminating term can either start an infinite (horizontal)
rewrite sequence (possibly as part of the evaluation of one of the conditions of
a rule) or else climb infinitely many ‘vertical ’ steps over the conditions in the
rules.

Corollary 1. Let R be a deterministic 3-CTRS and t ∈ Top-∞. Then, the
sequence {(xi, yi, αi)}i≥0 associated to t according to Theorem 1 satisfies one
of the following conditions. Either

1. There is k ≥ 0, �k → rk ⇐ ck ∈ R, and an infinite ‘horizontal’ sequence
{(xi, yk, αi)}i≥k such that for all i ≥ k, xi+1 = xi + 1 and αi ∈

⋃

vk∈DSubterm(R,rk)

DU(R, vk), or

2. For each i ∈ N such that yi > 0 and yi = yi−1 + 1, there is ki > i
such that yki

= yi + 1, and there is ji, 1 ≤ ji ≤ ni such that αki−1 ∈
⋃

vi∈DSubterm(R,siji)

MU(R, vi), with nki−1 > 0 conditions in the conditional

part of the rule.

In the following, we use Dependency Pairs to capture the nontermination behav-
ior of computations with CTRSs.

4 2D Dependency Pairs for CTRSs

Given a signature F and f ∈ F , we let f � (often just capitalized, e.g., F) be a
fresh symbol associated to f [1]. Let F � = {f � | f ∈ F}. For t = f(t1, . . . , tk) ∈
T (F ,X), we write t� to denote the marked term f �(t1, . . . , tk). Our Depen-
dency Pairs for CTRSs are organized into two blocks. The horizontal block con-
tains those pairs that correspond to rules issuing root steps in infinite rewrite
sequences (Proposition 1, item 1):

DPH(R) = {�� → v� ⇐ c | � → r ⇐ c ∈ R, r � v, � � v,DRules(R, v)
= ∅}

202 S. Lucas and J. Meseguer

Example 8. For R in Example 1, DPH(R) = {F (k(a), k(b), x) → F (x, x, x)}. For
R in Example 5 (and also for R in Example 2), DPH(R) = {G(a) → B}.

The vertical block contains pairs for shifting the infinite computation to the
conditions of the rules (Proposition 1, item 2):

DPV(R) = {�� → v� ⇐
k−1
∧

j=1

sj → tj | � → r ⇐
n
∧

i=1

si → ti ∈ R,

∃k, 1 ≤ k ≤ n, sk � v, � � v,URules(R, v)
= ∅}.

Example 9. For R in Example 1, DPV(R) = ∅. For R in Example 2 and R in
Example 5), DPV(R) = {F (x) → G(x)}.

The subterms in the conditions of the rules that originate the pairs in DPV(R)
are collected in the following set, which we use below:

VC(R) = {v | � → r ⇐
n∧

i=1

si → ti ∈ R, ∃k, 1 ≤ k ≤ n, sk �v, � � v,URules(R, v) �= ∅}.

Example 10. For R in Example 1, VC(R) = ∅. For R in Example 2 and R in
Example 5, VC(R) = {g(x)}.

We also have pairs to connect pairs in DPV(R) (Corollary 1, item 1):

DPVH(R) =
⋃

w∈VC(R)

{�� → v� ⇐ c | � → r ⇐ c ∈ MU(R, w),

r � v, � � v,URules(R, v)
= ∅}.

Example 11. For R in Example 1, DPVH(R) = ∅. For R in Example 2 and R in
Example 5, DPVH(R) = {G(a) → B,B → F (a)}.

Here is the definition of 2D-Dependency Pairs for a CTRS.

Definition 4 (2D-Dependency Pairs). The triple of 2D-dependency pairs
(2D DPs) for the CTRS R is DP2D(R) = (DPH(R),DPV(R),DPVH(R)).

Example 12. Consider the following 3-CTRS R in [14, Example 7.1.5]

less(x, 0) → false (11)
less(0, s(x)) → true (12)

less(s(x), s(y)) → less(x, y) (13)
minus(0, s(y)) → 0 (14)

minus(x, 0) → x (15)
minus(s(x), s(y)) → minus(x, y) (16)
quotrem(0, s(y)) → pair(0, 0) (17)

quotrem(s(x), s(y)) → pair(0, s(x)) ⇐ less(x, y) → true (18)
quotrem(s(x), s(y)) → pair(s(q), r) (19)

⇐ less(x, y) → false, quotrem(minus(x, y), s(y)) → pair(q, r)

2D Dependency Pairs for Proving Operational Termination of CTRSs 203

The set DPH(R) consists of the rules:

LESS(s(x), s(y)) → LESS(x, y) (20)
MINUS(s(x), s(y)) → MINUS(x, y) (21)

The set DPV(R) consists of the rules:

QUOTREM(s(x), s(y)) → LESS(x, y) (22)
QUOTREM(s(x), s(y)) → QUOTREM(minus(x, y), s(y)) ⇐ less(x, y) → false (23)
QUOTREM(s(x), s(y)) → MINUS(x, y) ⇐ less(x, y) → false (24)

Finally, DPVH(R) = ∅.

4.1 Characterizing Operational Termination of CTRSs Using 2D
DPs

An essential property of the dependency pair method is that it provides a charac-
terization of termination of a TRS R as the absence of infinite (minimal) chains
of dependency pairs [1,8]. As we prove below, this is also true for deterministic
3-CTRSs when 2D DPs are considered. First, we have to introduce a suitable
notion of chain that can be used with 2D DPs.

Definition 5 (Chain of Pairs - Minimal Chain). Let P,Q,R be CTRSs.
A (P,Q,R)-chain is a finite or infinite sequence of pairs ui → vi ⇐ ∧ni

j=1 sij →
tij ∈ P, together with a substitution σ satisfying that, for all i ≥ 1,

1. σ(sij) →∗
R σ(tij) for all j, 1 ≤ j ≤ ni and

2. σ(vi)(→∗
R ◦ Λ−→=

Q)∗σ(ui+1), where given a rule � → r ⇐
n
∧

j=1

sj → tj ∈ Q, we

write s
Λ−→=

Q t if either s = t or there is a substitution θ such that s = θ(�),
t = θ(r) and θ(si) →∗

R θ(ti) for all j, 1 ≤ j ≤ n (note that the satisfaction of
reachability constraints involves rewritings with R).

As usual, we assume that different occurrences of pairs do not share any vari-
able (renaming substitutions are used if necessary). A (P,Q,R)-chain is called
minimal if for all i ≥ 1, σ(vi) is R-operationally terminating.

Remark 3. Note that, if P and R are TRSs (without conditional rules) and
Q = ∅, Definition 5 specializes to the standard definition of chain of pairs in the
Dependency Pair Framework for TRSs [8, Definition 3].

We now provide a new characterization of operational termination of CTRSs.

Theorem 2 (OperationalTermination ofCTRSs).A deterministic 3-CTRS
R is operationally terminating if and only if there is no infinite (minimal)
(DPH(R), ∅,R)-chain and there is no infinite (minimal) (DPV(R),DPVH(R),R)-
chain.

204 S. Lucas and J. Meseguer

Example 13. Consider again the R in Examples 2 and 5 and DPV(R) and
DPVH(R) (that coincide for both CTRSs) as given in Examples 9 and 11. There
is an infinite (DPV(R),DPVH(R),R)-chain:

B →DPVH(R) F (a) →∗
R F (a) →DPV(R) G(a) →∗

R G(a) →DPVH(R) B

witnessing that both CTRSs are not operationally terminating.

For the sake of brevity, in the following we often call H-chains to the
(DPH(R), ∅,R)-chains. And we call V -chains to the (DPV(R),DPVH(R),R)-
chains. The following result, involving chains of a simpler type (closer to the
usual ones, where pairs are connected by rewritings with R only, see Remark 3),
also characterizes operational termination of deterministic 3-CTRSs.

Theorem 3 (Operational Termination of CTRSs II). A deterministic 3-
CTRS R is operationally terminating if and only if there is no infinite (minimal)
(DPH(R) ∪ DPV(R) ∪ DPVH(R), ∅,R)-chain.

In the following section, though, we further motivate the explicit and independent
use of the H-chains and V -chains to prove termination properties of CTRSs.

4.2 Termination of 2-CTRSs

The existence of infinite H-chains witnesses nontermination of deterministic 3-
CTRSs, i.e., the absence of infinite rewrite sequences.

Theorem 4 (Non-termination of CTRSs). Let R be a deterministic 3-
CTRS. If there is an infinite (DPH(R), ∅,R)-chain, then R is not terminating.

The CTRS R in Example 5 shows that Theorem 4 provides a sufficient but not
necessary criterion for termination of CTRSs.

Example 14. For R in Example 5, we have DPH(R) = {G(a) → B} (Example
8). There is no infinite H-chain. However, R is not terminating (see Remark 2).

However, the following result holds:

Theorem 5 (Termination of 2-CTRSs.) A 2-CTRS R is terminating if and
only if there is no infinite minimal (DPH(R), ∅,R)-chain.

Example 15. For the deterministic 2-CTRS R in Example 2, DPH(R) = {G(a) →
B} and there is no infinite H-chain. By Theorem 5, R is terminating.

Therefore, for CTRSs with extra variables in the right-hand sides of conditional
rules, the vertical and horizontal dimensions of operational termination are not
completely independent. Theorem 5 suggests the following.

Definition 6. (V -termination of CTRSs). A CTRS R is V -terminating if
there is no infinite (DPV(R),DPVH(R),R)-chain.

As a consequence of Theorems 2 and 5, we have the following.

Corollary 2. A deterministic 2-CTRS is operationally terminating if and only
if it is terminating and V -terminating.

2D Dependency Pairs for Proving Operational Termination of CTRSs 205

5 Mechanizing Proofs of Operational Termination
with 2D DPs

In the following, we speak of (P,Q,R, (ctrs, γ))-chains, for γ = a (or γ = m)
if arbitrary (resp. only minimal) chains are considered. Similarly, according to
Remark 3, we speak of (P,Q,R, (trs, γ))-chains if P and R are TRSs and Q = ∅.

Definition 7 (CTRS Problem). A CTRS problem τ is a tuple τ = (P,Q,R, e),
where P, Q and R are CTRSs, and e ∈ {ctrs, trs} × {a,m} is a flag. The CTRS
problem τ is finite if there is no infinite minimal (P,Q,R, e)-chain. The CTRS
problem τ is infinite if R is non-operationally terminating or there is an infinite
minimal (P,Q,R, e)-chain.

Definition 8 (CTRS Processor). A CTRS processor P is a mapping from
CTRS problems into sets of CTRS problems. Alternatively, it can also return
“no”. A CTRS processor P is

– sound if for all CTRS problems τ , we have that τ is finite whenever P(τ)
= no
and all CTRS problems in P(τ) are finite.

– complete if for all CTRS problems τ , we have that τ is infinite whenever
P(τ) = no or when P(τ) contains an infinite CTRS problem.

A (sound) processor transforms CTRS problems into (hopefully) simpler ones, in
such a way that the existence of an infinite chain in the original CTRS problem
implies the existence of an infinite chain in the transformed one. Here, ‘simpler’
usually means that fewer pairs are involved. Soundness is essential for proving
operational termination; completeness for proving non-operational termination.

Processors are used in a divide and conquer scheme to incrementally simplify
the original CTRS problem as much as possible, possibly decomposing it into
(a tree of) smaller pieces which are independently treated in the same way. The
trivial case comes when the set of pairs P becomes empty. Then, no infinite chain
is possible, and the CTRS problem is finite. Such positive answer is propagated
upwards in the decision tree. In some cases, a witness of an infinite chain is
obtained; then a negative answer “no” can be provided and propagated upwards.

Theorem 6 (2D DP Framework). Let R be a deterministic 3-CTRS. We
construct two trees whose nodes are labeled with CTRS problems τ or “yes” or
“no”. The roots are τH = (DPH(R), ∅,R, (ctrs, γ)) and τV = (DPV(R),DPVH(R),
R, (ctrs, γ)), respectively (for γ ∈ {a,m}). For every node which is a CTRS
problem τ , there is a sound processor P satisfying one of the following conditions:

1. P(τ) = no and the node has just one child that is labeled with “no”.
2. P(τ) = ∅ and the node has just one child that is labeled with “yes”.
3. P(τ)
= no, P(τ)
= ∅, and the children of the node are labeled with the CTRS

problems in P(τ).

206 S. Lucas and J. Meseguer

If all leaves of both trees are labeled with “yes”, then R is operationally ter-
minating. If a leaf is labeled with “no” in some of the trees and all processors
used on the path from the root to this leaf are complete, then R is operationally
nonterminating.

Remark 4. By Theorem 3, an alternative to the twofold proof starting from an
H-problem and a V -problem is to start the proof of operational termination of
R from a single CTRS problem (DPH(R) ∪ DPV(R) ∪ DPVH(R), ∅,R, (ctrs, γ)).

Remark 5. In order to prove (or disprove) termination of a deterministic CTRS
R, we would use Theorem 6 with a single problem: τH = (DPH(R), ∅,R, e). The
procedure is analogous and the conclusion of a positive analysis (i.e., “yes” in
all leaves of the tree) is termination of R (if it is a 2-CTRS). Similarly, a leaf
labeled with “no” witnesses nontermination of R (if it is a 3-CTRS).

6 Processors for the 2D DP Framework

The first processor moves rules from Q to P in CTRS problems.

Theorem 7 (Moving Q-rules). Let P, Q, and R be TRSs. Then,

PQ2P(P,Q,R, (ctrs, γ)) = {(P ∪ Q, ∅,R, (ctrs, a))}

is a sound processor.

In general, PQ2P is not complete nor preserves minimality.

Example 16. Let P = {a → b, c → a}, Q = {b → c}, and R = {c → c}. There
is an infinite (P,Q,R)-chain Γ: a → b, c → a, a → b, c → a, . . . due to b →Q c.
Note that Γ is minimal because b and a are R-terminating. However, Γ requires
the use of the (only) pair in Q to become an infinite (P ∪ Q, ∅,R)-chain

a → b, b → c, c → a, a → b, b → c, c → a, . . .

which is, however, not minimal now because c is not R-terminating.

The following processor transfers any proof of finiteness of 2D DP problems to
the DP Framework for TRSs. In this way, all existing processors for the DP
Framework are now available for the 2D DP framework.

Theorem 8 (Shift to DP-Framework). Let P and R be TRSs. Then,

PTRS (P, ∅,R, (ctrs, γ)) = {(P, ∅,R, (trs, γ))}

is a sound and complete processor.

2D Dependency Pairs for Proving Operational Termination of CTRSs 207

6.1 Graph of a CTRS Problem

Given a CTRS problem (P,Q,R, e), we provide a notion of graph that is able
to represent all infinite (minimal) chains of pairs as given in Definition 5.

Definition 9 (Graph of a CTRS Problem). Let P, Q and R be CTRSs.
The CTRS-graph G(P,Q,R, e) where e = (ctrs, γ) and γ ∈ {a,m} has P as the
set of nodes. Given α : u → v ⇐ c, α′ : u′ → v′ ⇐ c′ ∈ P, there is an arc from α
to α′ if α, α′ is a minimal (P,Q,R, e)-chain for some substitution σ.

In general, CTRS graphs are not computable due to the reachability conditions
σ(v)(→∗

R ◦ Λ−→=
Q)∗σ(u′) (for u → v ⇐ c ∈ P). Since the reachability problem

for (conditional) rewriting is undecidable, we approximate it. Following [9], we
approximate the CTRS-dependency graph as follows. Let tcapR be:

tcapR(x) = y if x is a variable, and

tcapR(f(t1, . . . , tk)) =

⎧

⎨

⎩

f([t1], . . . , [tk]) if f([t1], . . . , [tk]) does not unify
with � for any � → r ⇐ c in R

y otherwise

where y is a new, fresh variable that has not yet been used, and given a term
s, [s] = tcapR(s). We assume that � shares no variable with f([t1], . . . , [tk])
(rename if necessary). With tcapR we approximate reachability problems as
unification. According to Definitions 5 and 9, we have the following.

Definition 10 (Estimated connection). Let Q and R be CTRSs, θ be a sub-
stitution, and α : u → v ⇐ c to α′ : u′ → v′ ⇐ c′ be two conditional rules. There
is a (Q,R, θ)-connection from α to α′ if

1. tcapR(θ(v)) and u′ unify, or
2. tcapR(θ(v)) and u′′ unify with mgu θ′ for some α′′ : u′′ → v′′ ⇐ c′′ ∈ Q

and there is a (Q − {α′′},R, θ′)-connection from α′′ to α′.

Definition 11 (Estimated Graph). Let P, Q and R be CTRSs. The esti-
mated CTRS-graph EG(P,Q,R, e) has P as the set of nodes. There is an arc
from α to α′ if there is a (Q,R, ε)-connection from α to α′.

Remark 6. If Q = ∅ and P,R are TRSs, Definitions 9 and 11 specialize to the
standard ones for TRSs [8, Definition 7] (and [9, Definition 12]).

The following processor decomposes a CTRS problem (P,Q,R, e) with graph
G(P,Q,R, e) according to the strongly connected components (SCCs) of the
graph, i.e., cycles in G(P,Q,R, e) that are not contained in any other cycle.

Theorem 9 (SCC Processor). Let P, Q and R be CTRSs. Then,

PSCC (P,Q,R, e) = {(P ′,Q,R, e) | P ′ ⊆ P is an SCC inG(P,Q,R, e)}

is a sound and complete processor.

208 S. Lucas and J. Meseguer

With PSCC , we can separately work with the strongly connected components of
G(P,Q,R, e), disregarding other parts of the graph.

Example 17. For R in Example 12, τH = (DPH(R), ∅,R, e) and τV = (DPV(R),
DPVH(R),R, e); EG(τH) and EG(τV) are:

20 21EG(τH): 22 23 24EG(τV):

We have PSCC (τH) = {τH1, τH2}, where τH1 =({(20)}, ∅,R, e) and τH2 =
({(21)}, ∅,R, e). For τV we get PSCC (τV) = {τV 1}, where τV 1 =({(23)}, ∅,R, e).

6.2 Use of Orderings and Argument Filterings

A CTRS problem (P,Q,R, e) can be simplified by removing rules with a decrease
with respect to a well-founded relation �. In order to be more precise, in the
following we say that a relation S is compatible with R if S ◦R ⊆ R or R◦S ⊆ R.

Definition 12 (Removal Triple). A removal triple (�,�,�) consists of rela-
tions �,�,� on terms such that � is well-founded; for all R ∈ {�,�}, R is
compatible with �; and � ◦ � ⊆ � or � ◦ � ⊆ �.

An argument filtering π for a signature F is a mapping that assigns to each
k-ary function symbol f ∈ F an argument position i ∈ {1, . . . , k} or a (possibly
empty) list [i1, . . . , im] of argument positions 1 ≤ i1 < · · · < im ≤ k [11]. The
trivial argument filtering π
(f) = [1, . . . , k] (for each k-ary symbol f ∈ F) does
nothing. The signature Fπ of symbols with filtered arguments consists of all
function symbols f ∈ F such that π(f) = [i1, . . . , im]; the arity of f in Fπ is
m but we do not change the name. An argument filtering π induces a mapping
from T (F ,X) to T (Fπ,X), also denoted by π, which removes subterms:

π(t) =

⎧

⎨

⎩

t if t is a variable
π(ti) if t = f(t1, . . . , tk) and π(f) = i
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tk) and π(f) = [i1, . . . , im]

And if R is a relation on terms, we let π(R) = {(π(s), π(t)) | (s, t) ∈ R}. Argu-
ment filterings provide a simple way to remove parts of the syntactic structure
of a rule. In this way, we obtain simpler rules that are easier to compare. In the
following, given (possibly empty) set of rules R,S and a rule α : � → r ⇐ c, we
define the (possible) replacement of α in R by the rules S as follows:

R[S]α =
{

(R − {α}) ∪ S if α ∈ R
R otherwise

2D Dependency Pairs for Proving Operational Termination of CTRSs 209

Theorem 10 (Removal Triple Processor). Let P, Q, and R be CTRSs, π
be an argument filtering and (�,�,�) be a removal triple such that π(→∗

R) ⊆ �
and for all � → r ⇐ c ∈ P ∪ Q and substitutions σ, if for all s → t ∈ c,
σ(s) →∗

R σ(t) holds, then π(σ(�)) �� π(σ(r)) holds for some �� ∈ {�,�,�}. Let
α : u → v ⇐ c ∈ P ∪ Q be such that, for all substitutions σ, if for all s → t ∈ c,
σ(s) →∗

R σ(t) holds, then π(σ(u)) � π(σ(v)) holds. Then,

PRT (P,Q,R, e) = {(P[∅]α,Q[∅]α,R, e)}
is a sound and complete processor.

Example 18. For τH1, τH2 and τV 1 in Example 17, we apply PRT to those prob-
lems with π
 (which we do not make explicit here, as it does nothing) and using
the same removal triple (≥,≥, >) induced by the polynomial interpretation

[false] = 0 [true] = 0 [0] = 0 [s](x) = x + 1
[less](x) = 0 [minus](x, y) = x [pair](x, y) = 0 [quotrem](x, y) = 0

[LESS](x, y) = x [MINUS](x, y) = x [QUOTREM](x, y) = x

over the naturals N by s ≥ t if [s] ≥ [t] and s > t if [s] > [t]. We have:

[less(x, 0)] = 0 ≥ 0 = [false]
[less(0, s(x))] = 0 ≥ 0 = [true]

[less(s(x), s(y))] = 0 ≥ 0 = [less(x, y)]
[minus(0, s(y))] = 0 ≥ 0 = [0]

[minus(x, 0)] = x ≥ x = [x]
[minus(s(x), s(y))] = x + 1 ≥ x = [minus(x, y)]
[quotrem(0, s(y))] = 0 ≥ 0 = [pair(0, 0)]

[quotrem(s(x), s(y))] = 0 ≥ 0 = [pair(0, s(x))]
[quotrem(s(x), s(y))] = 0 ≥ 0 = [pair(s(q), r)]

[LESS(s(x), s(y))] = x + 1 > x = [LESS(x, y)]
[MINUS(s(x), s(y))] = x + 1 > x = [MINUS(x, y)]

[QUOTREM(s(x), s(y))] = x + 1 > x = [QUOTREM(minus(x, y), s(y))]

Since ≥ is monotonic, stable, reflexive and transitive, the first nine inequalities
prove →∗

R ⊆ ≥ (we do not really need to pay attention to the conditional part
of the rules). Similarly, since � is stable, the last three strict inequalities prove
σ(u) � σ(v) for all u → v ⇐ c ∈ P (in the corresponding CTRS problem) and
substitution σ, again without paying attention to the conditional part of the
rules. This proves τH1, τH2 and τV 1 finite, and R operationally terminating.

Theorem 11 (Unsatisfiable Rules). Let P, Q, and R be CTRSs, π be an
argument filtering, � and � be relations on terms such that � is compatible with
�, π(→∗

R) ⊆ �, and � is well-founded. Let α : � → r ⇐ c ∈ P ∪ Q ∪ R and
si → ti ∈ c be such that for all substitutions σ, π(σ(ti)) � π(σ(si)) holds. Then,

PUR(P,Q,R, e) = {(P[∅]α,Q[∅]α,R[∅]α, e)}
is a sound and (if α /∈ R or e = (ρ, a)) complete processor.

210 S. Lucas and J. Meseguer

Example 19. For R in Example 1, DPH(R) = {F (k(a), k(b), x) → F (x, x, x)},
and DPV(R) = DPVH(R) = ∅. For τH = (DPH(R), ∅,R, (ctrs,m)), we use

[a] = [b] = [c](x) = [g](x) = [h](x) = [k](x) = [f](x, y, z) = 0 and [d] = 1

to generate ≥ and easily show (as in Example 18) that →∗
R⊆≥. Since [h(x)] =

0 and [d] = 1, we have [d] > [h(x)]. With PUR, we remove (4) from R to
obtain τH1 = (DPH(R), ∅,R−{(4)}, (ctrs,m)) that satisfies the conditions for
a shift with PTRS to a DP problem τtrs = (DPH(R), ∅,R−{(4)}, (trs,m)) that
can then be solved by using any processor for TRSs. For instance, the forward
instantiation processor [8, Definition 28] can be used to prove finiteness of τtrs.

Theorem 12 (Unsatisfiable Rules II). Let P, Q, and R be CTRSs, π be an
argument filtering, � and � be relations on terms such that � is compatible with
�, � is well-founded, and π(→R) ⊆ �. Let α : � → r ⇐ c ∈ P ∪ Q ∪ R and
si → ti ∈ c be such that π(si) and π(ti) do not unify and for all substitutions σ,
π(σ(ti)) � π(σ(si)) holds. Then,

PUR(P,Q,R, e) = {(P[∅]α,Q[∅]α,R[∅]α, e)}

is a sound and (if α /∈ R or e = (ρ, a)) complete processor.

Example 20. Consider the following CTRS R [6, p. 46]:

a → b f(a) → b g(x) → g(a) ⇐ f(x) → x

DPH(R) consists of a single rule: G(x) → G(a) ⇐ f(x) → x and DPV(R) =
DPVH(R) = ∅. We use the relations ≥ and > generated by

[a] = 1 [b] = 0 [f](x) = [g](x) = [G(x)] = x

(over N), and PUR to remove the rule in DPH(R) from τH = (DPH(R), ∅,R, e),
thus proving operational termination of R. Note that > is monotonic, stable,
transitive, and well-founded, and we have →R⊆> (and also →+

R⊆>); the crucial
point is that no substitution σ satisfies σ(f(x)) →∗

R σ(x) for the conditional
rules: since f(x) and x do not unify, we should have σ(f(x)) →+

R σ(x) and hence
σ(f(x)) > σ(x). But [σ(f(x))] = σ(x)
> σ(x) = [σ(x)]. Thus, we do not need to
ensure that [σ(g(x))] > [σ(g(a))] holds! However, [x] = x ≥ x = [f(x)].

7 Related Work and Conclusions

To the best of our knowledge, this is the first correct and complete characteriza-
tion of operational termination of deterministic 3-CTRS which is based on the
notion of dependency pair. The notion of minimal operationally nonterminating
term and the properties explored here (Sect. 3) are also new in the literature.
Furthermore, our treatment of the problem provides a bidimensional method
that we have shown useful to simplify the analysis of operational termination

2D Dependency Pairs for Proving Operational Termination of CTRSs 211

itself and also to prove other termination properties like nontermination of 3-
CTRSs and termination of 2-CTRSs. The analysis of termination of 2-CTRSs
can also be accomplished as termination of the underlying TRS (i.e., the TRS Ru

which is obtained by just dropping the conditional part of the rules). However, in
contrast to our Theorem 5, the analysis of termination of 2-CTRSs R as termi-
nation of the underlying TRS Ru provides a sufficient condition only; it may fail
in those cases where taking into account the conditions of the rules is essential to
prove termination. For instance the one rule 2-CTRS a → a ⇐ a → b is termi-
nating but Ru is not. We prove (DPH(R), ∅,R, e) = ({A → A ⇐ a → b}, ∅,R, e)
finite (and hence R terminating) using PUR with the removal triple (≥,≥, >)
generated by the interpretation [a] = 0 and [b] = 1 to remove A → A ⇐ a → b.

The recent Conditional Dependency Pairs (CDPs) by Nakamura et al.
[13] apply to a subclass of 1-CTRSs where the conditions c in 1-rules (� → r ⇐ c)
are terms instead of sequences s1 → t1, . . . , sn → tn. An instance σ(c) of c is sat-
isfied if and only if σ(c) →∗ true. We generate a (usually strict) subset of the pairs
considered in [13, Definition 3.1]: DPH(R) ∪ DPV(R) ∪ DPVH(R) ⊆ CDP (R).
Their chains [13, Definition 3.2] are also different to ours (Definition 5).

As remarked in the introduction, existing tools for proving termination of
conditional TRSs currently use transformation techniques. We are not aware of
any implementation of direct methods. The transformation which is typically
used for this purpose is U in [14, Definition 7.2.48]. This transformation is not
complete, however. For instance, U(R) is not terminating for R in Examples
1 and 20, but we proved them operationally terminating in Examples 19 and
20. Furthermore, when U(R) is terminating, tools may fail to find a proof. This
is often due to the loss of information introduced by transformations, and also
to the presence of new symbols and rules that prevent the search process from
finding a proof. The techniques presented in this paper have been incorporated
in the latest version of the tool mu-term1 [2]. The first benchmarks of existing
examples in the literature are very positive and show that the 2D DP framework
permits simple and fast proofs like the ones in the examples of this paper. This
makes these techniques available to tools like MTT [4], which use mu-term as a
backend for achieving proofs of operational termination of more general theories
like membership equational programs or order-sorted rewrite theories. Direct
termination methods for these wider logics will require extending the techniques
presented here to the case of order-sorted conditional rewrite theories with types
and subtypes, and where rewriting is context-sensitive and can take place modulo
axioms B. This is envisaged as an interesting subject for future work.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236(1–2), 133–178 (2000)

2. Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination
properties with MU-TERM. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010.
LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)

1 We thank Raúl Gutiérrez for the implementation of the 2D DP Framework.

212 S. Lucas and J. Meseguer

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

4. Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system
description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008)

5. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific,
Singapore (1998)

6. Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Appl.
Algebra Eng. Commun. Comput. 12, 39–72 (2001)

7. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005)

8. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)

9. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol.
3717, pp. 216–231. Springer, Heidelberg (2005)

10. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination
proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

11. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg
(1999)

12. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)

13. Nakamura, M., Ogata, K., Futatsugi, K.: On proving operational termination incre-
mentally with modular conditional dependency pairs. Int. J. Comput. Sci. 40, 2
(2013)

14. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)
15. Schernhammer, F., Gramlich, B.: Characterizing and proving operational termina-

tion of deterministic conditional term rewriting systems. J. Logic Algebr. Program.
79, 659–688 (2010)

16. Schernhammer, F., Gramlich, B.: VMTL–a modular termination laboratory. In:
Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 285–294. Springer, Heidelberg
(2009)

FunKons: Component-Based Semantics in K

Peter D. Mosses and Ferdinand Vesely(B)

Swansea University, Swansea SA2 8PP, UK
{p.d.mosses,csfvesely}@swansea.ac.uk

Abstract. Modularity has been recognised as a problematic issue of
programming language semantics, and various semantic frameworks have
been designed with it in mind. Reusability is another desirable feature
which, although not the same as modularity, can be enabled by it. The
K Framework, based on Rewriting Logic, has good modularity support,
but reuse of specifications is not as well developed.

The PLanCompS project is developing a framework providing an
open-ended collection of reusable components for semantic specification.
Each component specifies a single fundamental programming construct,
or ‘funcon’. The semantics of concrete programming language constructs
is given by translating them to combinations of funcons. In this paper, we
show how this component-based approach can be seamlessly integrated
with the K Framework. We give a component-based definition of CinK
(a small subset of C++), using K to define its translation to funcons as
well as the (dynamic) semantics of the funcons themselves.

1 Introduction

Even very different programming languages often share similar constructs. Con-
sider OCaml’s conditional ‘if E1 then E2 else E3’ and the conditional operator
‘E1 ? E2 : E3’ in C. These constructs have different concrete syntax but similar
semantics, with some variation in details. We would like to exploit this similar-
ity when defining formal semantics for both languages by reusing commonali-
ties between the OCaml and C specifications. With traditional approaches to
semantics, reuse through ‘copy-paste-and-edit’ is usually the only option that is
available to us. By default, this is also the case with the K Framework [9,13].
This style of specification reuse is not systematic, and prone to error.

The semantic framework currently being developed by the PLanCompS
project1 provides fundamental constructs (funcons) that address the issues of
reusability in a systematic manner. Funcons are small semantic entities which
express essential concepts of programming languages. These formally specified
components can be composed to capture the semantics of concrete program-
ming language constructs. A specification of Caml Light has been developed as
an initial case study [3] and a case study on C# is in progress.
1 http://www.plancomps.org/

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 213–229, 2014.
DOI: 10.1007/978-3-319-12904-4_12

http://www.plancomps.org/

214 P.D. Mosses and F. Vesely

For example, the funcon if-true can be used to specify OCaml’s conditional
expression. Semantics is given by defining a translation from the concrete con-
struct to the corresponding funcon term:

�if E1 then E2 else E3� = if-true(�E1�, �E2�, �E3�)

Since the conditional operator in C uses integer valued expressions as the
condition, its translation will reflect this:

�E1 ? E2 : E3� = if-true(not(equal(�E1�, 0)), �E2�, �E3�)

We could also define an if-non-zero funcon that would match the
C-conditional semantics exactly. However, the translation using if-true is so
simple that there wouldn’t be much advantage in doing so. We can reuse the
if-true funcon, and with it, its semantic definition. This way, we also make the
difference between the OCaml and C conditional construct explicit. Section 2
provides more information on funcons.

PLanCompS uses MSOS [10], a modular variant of structural operational
semantics [11], to formally define individual funcons. However, the funcon app-
roach can be seamlessly integrated with other sufficiently modular specification
frameworks. We have tested the use of funcons with the K Framework by giving
a specification of CinK [8,9], a pedagogical subset of C++. We have defined both
the translation of CinK to funcons and the semantics of the funcons using K’s
rewrite rules. The complete prototyped specification is available online, together
with the CinK test programs which we have used to test our specification.2
Interested readers may run these programs themselves using the K tool.

In this paper, we present our specification of the CinK translation (Sect. 3)
and illustrate the definition of the semantics of funcons involved in it (Sect. 4).
Section 5 offers an overview of related work and alternative approaches. We con-
clude and suggest directions of future work in Sect. 6.

2 Fundamental Constructs

As mentioned in the Introduction, the PLanCompS project is developing an
open-ended collection of fundamental programming constructs, or ‘funcons’.
Many funcons correspond closely to simplified programming language constructs.
However, each funcon has fixed syntax and semantics. For example, the funcon
written assign(E1,E2) has the effect of evaluating E1 to a variable, E2 to a value
(in any order), then assigning the value to the variable; it is well-typed only if E1
is of type variables(T) and E2 is of type T. In contrast, the language construct
written ‘E1 = E2’ may be interpreted as an assignment or as an equality test
(and its well-typedness changes accordingly) depending on the language.

The syntax or signature of a funcon determines its name, how many argu-
ments it takes (if any), the sort of each argument, and the sort of the result.
The following computation sorts reflect fundamental conceptual and semantic
distinctions in programming languages.
2 http://cs.swan.ac.uk/~csfvesely/wrla2014/

http://cs.swan.ac.uk/~csfvesely/wrla2014/

FunKons: Component-Based Semantics in K 215

• The sort Comm (commands) is for funcons (such as assign(E1,E2)) that are
executed only for their effects; on normal termination, a command computes
the fixed value skip.

• The sort Expr (expressions) is for funcons (such as stored-value(E) and
bound-value(I)) that compute values of sort Values.

• The sort Decl (declarations) is for funcons (such as bind-value(I,E)) that
compute values of sort Environments, which represent sets of bindings between
identifiers and values.

All computation sorts include their sorts of computed values as subsorts: a value
takes no steps at all to compute itself.

One of the aims of the PLanCompS project is to establish an online repository
of funcons (and data types) for anybody to use ‘off-the-shelf’ as components of
language specifications. The project is currently testing the reusability of existing
funcons and developing new ones in connection with some major case studies
(including Caml Light, C#, and Java). Because individual funcons are meant
to represent fundamental concepts in programming languages, many funcons
(expressing, e.g., sequencing, conditionals, variable lookup and dereferencing)
have a high potential for reuse. In fact, many funcons used in the Caml Light
case study appear in the semantics of CinK presented in the following section.

The nomenclature and notation for the existing funcons are still evolving,
and they will be finalised only when the case studies have been completed, in
connection with the publication of the repository. Observant readers are likely
to notice some (minor) differences between the funcon names used in this paper
and in previous papers (e.g. [3]).

Regardless of the details of funcon notation, funcons can be algebraically
composed to form funcon terms, according to their argument and result sorts
(strictly lifted to corresponding computation sorts). Well-formedness of funcon
terms is context-free: assign(E1,E2) is a well-formed funcon term whenever E1
and E2 are well-formed funcon terms of sort Expr. In contrast, well-typedness
of funcon terms is generally context-sensitive. For example, the funcon term
assign(bound-value(I),42) is well-typed only in the scope of a declaration that
binds I to an integer variable. Dynamic semantics is defined for all well-formed
terms; execution of ill-typed terms may fail.

The composability of funcons does not depend on features such as whether
they might have side effects, terminate abruptly, diverge, spawn processes, inter-
act, etc. This is crucial for the reusability of the funcons. The semantics of each
funcon has to be specified without regard to the context in which it might be
used, which requires a highly modular specification framework. Funcon specifi-
cations have previously been given in MSOS, Rewriting Logic, ASF + SDF, and
action notation. Here, we explore specifying funcons in K, following Roșu.3

A component-based semantics of a programming language is specified by a
context-free grammar for an abstract syntax for the language, together with
a family of inductively specified functions translating abstract syntax trees to
3 k/examples/funcons in the stable K distribution at http://www.kframework.org.

http://www.kframework.org

216 P.D. Mosses and F. Vesely

funcon terms. The static and dynamic semantics of a program is given by that of
the resulting funcon term. As mentioned above, funcons have fixed syntax and
semantics. Thus, evolution of a language is expressed as changes to translation
functions. If the syntax or semantics of the programming language changes, the
definition of the translation function has to be updated to reflect this.

Tool support for translating programs to funcon terms, and for executing the
static and dynamic semantics of such terms, has previously been developed in
Prolog [2], Maude [1] and ASF + SDF. We now present our experiment with K,
focusing on dynamic semantics.

3 A Funcon Specification of CinK

This section presents an overview of our CinK specification using funcons. We
include examples from the K sources of the specification. A selection of definitions
of funcons involved in the specification can be found in Sect. 4.

CinK is a pedagogical subset of C++ [8,9] used for experimentation with the K
Framework. The original report [8] presents the language in seven iterations. The
first specifies a basic imperative language; subsequent iterations extend it with
threads, model-checking, references, pointers, and uni-dimensional and multi-
dimensional arrays. Our specification starts with only an expression language
which we extend with declarations, statements, functions, threads, references,
pointers, and arrays. The extensions follow the order of the CinK iterations;
however, we omit support for model-checking.

The grammar which we have used for our specification is a simplified gram-
mar matching CinK derived from the C++ grammar found in the standard
[7, Appendix A].

We invite the reader to compare our specification by translation to funcons
with the original K specification of CinK in [8]. Our hope is that our trans-
lation functions, together with the suggestive naming of funcons, give a rough
understanding of the semantics of language constructs, even before looking at
the semantics of funcons themselves.

3.1 Simple Expressions

To give semantics for expressions we use the translation function
evaluate�_�: Expression → Expr. It produces a funcon term (of sort Expr)
which, when executed, evaluates the argument expression.

Definitions for arithmetic expressions in CinK can be given very straightfor-
wardly using data operations, which all extend to strict funcons on Expr. For
example, semantics of the multiplication operator is expressed as the application
of the operation int-times to translations of operand expressions (numeric types
in CinK are limited to integers with some common operations):

rule evaluate� E1:Expression * E2:Expression� ⇒
int-times(evaluate� E1�, evaluate� E2�)

FunKons: Component-Based Semantics in K 217

The ‘short-circuit and’ operator can be readily expressed using a conditional
funcon, which is strict only in its first argument. The (obvious) K definition for
if-true can be found in Sect. 4.

rule evaluate� E1:Expression && E2:Expression� ⇒
if-true(evaluate� E1�, evaluate� E2�, false)

We will use the generic if-true funcon later in this section to define the condi-
tional statement.

3.2 Variables, Blocks and Scope

Bindings and Variables. Semantics of declarations are given using the trans-
lation function elaborate�_� : DeclarationSeq → Decl. The bind-value(I,V)

funcon binds the identifier I to the value V, producing a ‘small’ environment
containing only the newly created binding. To allocate a new variable of a spec-
ified type we use allocate. In Caml Light, bind-value was used for individual
name-value bindings in let-expressions, and allocate for reference data types
(e.g. ‘ref int’).

rule elaborate� T:TypeSpecifier I:Id ;� ⇒
bind-value(I, allocate(variables(type� T�)))

In relation to variables, CinK (following C++) distinguishes between two
general categories of expressions: lvalue- and rvalue-expressions. We express this
distinction by having different translation functions for expressions in lvalue and
rvalue contexts: in addition to evaluate�_�, we define evaluate-lval�_� and
evaluate-rval�_�. The default function evaluate�_� produces terms evaluat-
ing lvalue and rvalue expressions according to their category. When an expres-
sion is expected to evaluate to an lvalue, we use evaluate-lval�_�. When an
rvalue is expected, we use evaluate-rval�_� which produces terms evaluating
all expressions into rvalues. For lvalue expressions it returns the corresponding
stored value, i.e., it serves as an lvalue-to-rvalue conversion.

The addition of variables also affects our translations of simple expressions
and we need to update them. For example, numeric operations expect an rvalue
and thus the operands are now translated using evaluate-rval�_�.

To obtain the variable bound to an identifier in the current environment we
use bound-value. A variable is dereferenced using stored-value. The semantics
for an identifier appearing in an lvalue or rvalue context is thus:

rule evaluate-lval� I:Id� ⇒ bound-value(I)
rule evaluate-rval� I:Id� ⇒ stored-value(evaluate-lval� I�)

Blocks and Controlling Scope. We distinguish between declaration state-
ments and other statements within a block using funcons scope and seq. The
funcon scope(D,X) evaluates X in the current environment overridden with the
environment computed by D. A declaration statement within a block produces
a new environment that is valid until the end of the block:

218 P.D. Mosses and F. Vesely

rule execute� BD:BlockDeclaration SS:StatementSeq� ⇒
scope(elaborate� BD�, execute� SS�)

The function execute�_� : StatementSeq → Comm translates statements to fun-
con commands.

For all other kinds of statements in a block we use the simple sequencing
funcon seq(C,X) which executes the command C for side effects, then executes X.

rule execute� BS:BlockStatement SS:StatementSeq� ⇒
seq(execute� BS�, execute� SS�)

To accumulate multiple declarations into one environment we use the accum

funcon. The funcon accum(D1,D2) is similar to scope, except its result is the envi-
ronment produced by elaborating declaration D2 and overriding the environment
computed by D1 with it. This matches the semantics of a multi-variable decla-
ration:

rule elaborate� T:TypeSpecifier ID:InitDeclarator ,
IDL:InitDeclaratorList ;� ⇒

accum(elaborate� T ID ;�, elaborate� T IDL ;�)

Note that accum is strict only in its first argument, so the correct order of eval-
uation is enforced.

Although Caml Light and CinK are quite different languages, all the funcons
we needed here so far for CinK are reused from [3].

3.3 Assignment and Control Statements

The basic construct for updating variables in CinK/C++ is the assignment expres-
sion ‘E1 = E2’, where the expression E1 is expected to evaluate to an lvalue, to
which the rvalue of E2 will be assigned. The value of the whole expression is the
lvalue of E1. Semantics of assignment is a rather simple translation using the
assign-giving-variable funcon (defined in Sect. 4.4):

rule evaluate-lval� E1:Expression = E2:Expression� ⇒
assign-giving-variable(evaluate-lval� E1�, evaluate-rval� E2�)

The funcon assign-giving-variable is strict in both arguments but not
sequentially, so the arguments are evaluated in an unspecified order. The funcon
assigns the value given as its second argument to the variable given as its first
argument and returns this variable as result.

CinK has boolean-valued conditions and the translations of while- and if-
statements are trivial:

rule execute�while (E:Expression) S:Statement� ⇒
while-true(evaluate-rval� E�, execute� S�)

rule execute� if (E:Expression) S:Statement� ⇒
execute� if (E) S else { }�

rule execute� if (E:Expression) S1:Statement else S2:Statement� ⇒
if-true(evaluate-rval� E�, execute� S1�, execute� S2�)

FunKons: Component-Based Semantics in K 219

3.4 Function Definition and Calling

We represent functions as abstraction values which wrap any computation as a
value. An abstraction can be passed as a parameter, bound to an identifier, or
stored like any other value. To turn a funcon term into an abstraction, we use
the abstraction value constructor. The funcon apply applies an abstraction to
a value and the abstraction may refer to the passed value using given. Multiple
parameters can be passed as a tuple constructed using tuple value constructors.

A function call expression simply applies the abstraction to translated
arguments:

rule evaluate-rval� E1:Expression (E2:Expression)� ⇒
apply(evaluate-rval� E1�, evaluate-params�tuple(E2)�)

At this stage the language only supports call-by-value semantics and so each
parameter is evaluated to an rvalue before being passed to a function. The trans-
lation function evaluate-params�_� (defined in terms of evaluate-rval�_�)
recurses through the parameter expressions and constructs a tuple.

rule evaluate-params�tuple(E1:Expression , E2:Expression)� ⇒
tuple-prefix(evaluate-rval� E1�, evaluate-params�tuple(E2)�)

rule evaluate-params�tuple(E:Expression)� ⇒
tuple-prefix(evaluate-rval� E�, tuple(.))

We have introduced the auxiliary abstract syntax tuple(E) to ensure that para-
meters separated by commas are not interpreted as a comma-operator expression.

We use patterns as translations of function parameters. Patterns themselves
are abstractions which compute an environment when applied to a matching
value. The pattern for passing a single parameter by value allocates a variable of
the corresponding type and binds it to an identifier; then it assigns the parameter
value to the variable and returns the resulting environment.

rule pattern� T:TypeSpecifier I:Id� ⇒
abstraction(

accum(bind-value(I, allocate(variables(type� T�))),
decl-effect(assign(bound-value(I), given))))

Here we use the funcon decl-effect(C), which allows using a command C as a
declaration. It is an abbreviation for seq(C,bindings(.)).

Roughly, the semantics of a function definition is to allocate storage for an
abstraction of the corresponding type, bind it to the function name, and use it
to store an abstraction of the function body. Looking closer, the definition has
to deal with some more details:

rule elaborate� T:TypeSpecifier I:Id (PDL:ParameterDeclarationList)
CS:CompoundStatement� ⇒

decl-effect(assign(bound-value(I),
close(abstraction(

scope(match-compound(pattern-tuple�PDL�, given),
catch(seq(execute� CS�, throw(variant(returned, null))),

abstraction(original(returned, given))))))))

220 P.D. Mosses and F. Vesely

Within the abstraction we use match-compound to match the passed value against
the pattern tuple constructed from individual parameter patterns. The transla-
tion of the function body is evaluated in the environment produced by this
matching (scope). Since a return statement abruptly terminates a function
returning a value, we represent return statements as exceptions containing a
value tagged with the atom ‘returned’ and wrap the function body in a handler.
The catch funcon catches the exception and the handling abstraction retrieves
the value tagged with ‘returned’, making it the return value of the whole func-
tion. In case there was no return statement in the body of the function, we throw
a ‘returned’ with null. Using close we form a closure of the abstraction with
respect to the definition-time environment, to ensure static scopes for bindings.

As mentioned above, an explicit return statement translates to throwing a
value tagged with ‘returned’. A parameterless return throws a null.

rule execute�return E:Expression;� ⇒
throw(variant(returned, evaluate-rval� E�))

rule execute�return ;� ⇒ throw(variant(returned, null))

As a simple way of allowing self- and mutually recursive function definitions,
we pre-allocate function variables and bind all function names declared at the
top-level in a global environment using evaluate-forwards�_�. Then we com-
bine this environment with the elaboration of full function definitions and other
declarations. The main function is called in the scope of the global environment.

rule translate� DS:DeclarationSeq� ⇒
scope(accum(elaborate-forwards� DS�, elaborate� DS�),

effect(apply(evaluate-rval�main�, tuple(.))))

Because function identifiers are already bound when the full function defi-
nition is elaborated, the full definition only assigns the abstraction to the pre-
allocated variable.

3.5 Threads

The second iteration in the original CinK report adds very basic thread support
to the language. Spawning a thread in CinK mimics the syntax of using the
std::thread class from the C++ standard library. However, instead of referring
to the standard library, semantics is given to the construct directly.

rule elaborate�std::thread I1:Id (I2:Id , E:Expression) ;� ⇒
decl-effect(effect(spawn(close(abstraction(evaluate� I2 (E)�)))))

The funcon spawn(A) creates a new thread in which the abstraction A will
be applied. In our case the abstraction contains a function call corresponding to
the parameters given to the thread constructor.

3.6 References

A reference in C++ is an alias for a variable, i.e., it introduces a new name for
an already existing variable.

FunKons: Component-Based Semantics in K 221

rule elaborate� T:TypeSpecifier & I:Id = E:Expression� ⇒
bind-value(I, evaluate-lval� E�)

The expression E is expected to compute an lvalue and we bind the resulting
variable to identifier I. We are assuming that the input program is statically
correct and thus the variable will have the right type.

A reference parameter pattern simply binds I to the given variable.

rule pattern� T:TypeSpecifier & I:Id� ⇒
abstraction(bind-value(I, given))

Before introducing references, we evaluated function parameters to an
rvalue. Now the function evaluate-param�_� has to be redefined in terms of
evaluate�_� instead of evaluate-rval�_�. Dereferencing is handled condition-
ally inside the parameter pattern.

rule pattern� T:TypeSpecifier I:Id� ⇒
abstraction(

accum(bind-value(I, allocate(variables(type� T�))),
decl-effect(assign(bound-value(I), current-value(given)))))

The funcon current-value dereferences its argument if it is a variable (lvalue),
otherwise it returns the parameter itself.

3.7 Pointers

Pointer variables either hold a reference to another variable or are null otherwise.
In this iteration we introduce auxiliary syntax for types, which we use to extract
type information from declarations. Our type syntax is not part of the original
language. It mostly resembles the original C++ syntax, except for function types
which are expressed using a functional (arrow) notation. Here we extract types
from a pointer declaration and a function declaration:

rule type� FT:FunType (* D:Declarator)� ⇒ type� (FT *) D�
rule type� FT:FunType (D:Declarator

(PDL:ParameterDeclarationList))� ⇒
type� ((PDL) --> FT) D�

We translate these intermediate types into funcon types (just as we do with
simple types). The funcon type pointers(T) is the type of pointers to variables
of type T:

rule type� (FT:FunType *):FunType� ⇒ pointers(type� FT�)

To illustrate, consider the pointer declaration int **ppi; which declares ppi

to be a pointer to a pointer to an integer variable. The type of this variable in
our auxiliary syntax is ((int *) *) and the analysed type is pointers(pointers(

variables(integers))).
Pointer variables are allocated in the same manner as other variables: we

simply pass the type of the pointer variable as the argument to the allocate

funcon.

222 P.D. Mosses and F. Vesely

Explicit dereferencing of a pointer variable in an expression amounts to
retrieving the value stored in the pointer. This value is the location to which
the pointer is pointing. This is expressed in our translation:

rule evaluate-lval� * E:Expression� ⇒ evaluate-rval� E�

If the pointer is null, dereferencing it or assigning to it will result in a stuck
computation.

3.8 Arrays

This extension adds uni-dimensional and multi-dimensional array declarations
and expressions to the specification. We analyse CinK arrays, which are indexed
from zero, in terms of vectors. Similarly to pointers, we use auxiliary syntax for
array types.

rule type� FT:FunType (D:Declarator [E:Expression])� ⇒
type� ([E] FT) D�

rule type� ([E:Expression] FT:FunType):FunType� ⇒
vectors(evaluate� E�, type� FT�)

The arguments of the type constructor vectors are the length of the vector
and the type of its elements. To allocate an array of a given type, we use the
allocate-vector funcon:

rule elaborate� ([E:Expression] FT:FunType) I:Id ;� ⇒
bind-value(I, allocate-vector(type� ([E] FT)�))

Vectors allocated in this way are composed of the appropriate number of indi-
vidual variables. These are read from and assigned to separately.

The semantics of accessing an array element via its index is given using the
vector-select funcon. An array access expression in an lvalue position has the
following semantics:

rule evaluate-lval� E1:Expression [E2:Expression]� ⇒
vector-select(evaluate-lval� E1�, evaluate-rval� E2�)

In CinK, multi-dimensional arrays are specified as vectors of vectors. As
an illustration of translating array types, consider the declaration statement
int x[2][3]; in C++. Expressing the type of x using our auxiliary syntax gives
us ([2] ([3] int)). The translated type is vectors(2, vectors(3, variables(

integers))). The construct allocate-vector properly allocates variables for
such multi-dimensional vectors and returns a compound value of the appropriate
type.

A Note on Reuse. The complete funcon definition of CinK available online uses
27 funcons. Of these, 19 have been previously used in the specification of Caml
Light and only 8 were introduced in the present work, 3 of which are just abbre-
viations for longer funcon terms. It is thus possible to conclude that the degree
of reuse of funcons between the Caml Light and CinK specifications is high, even
if the languages are quite different.

FunKons: Component-Based Semantics in K 223

3.9 Configuration

The configuration of the final iteration of our specification is as follows:

It appears that this configuration could be generated from the K rules defining
the funcons used in our specification of CinK. It is unclear to us whether inference
of K configurations from arbitrary K rules is possible, and whether it would be
consistent with the K configuration abstraction algorithm.

3.10 Sequencing of Side Effects

Following the C++ standard [7], CinK decouples side effects of some constructs
to allow delaying memory writes to after an expression value has been returned.
This gives compilers more freedom for performing optimisations and during code
generation. The newest C++ standard uses a relation sequenced before to define
how side effects are to be ordered with respect to each other and to value eval-
uation. The original CinK specification in K [8] uses auxiliary constructs for
side effects and uses a bag to collect side effects. An auxiliary sequence point
construct forces finalisation of side effects in the bag.

We have experimented with funcons to express decoupled side effects and
have developed a preliminary K specification of the relevant funcons. Our solu-
tion is based on a pair of funcons. The first funcon encapsulates an expres-
sion, which can potentially request to defer side effects. It also maintains a set
of deferred side effects which are computed interleaved with the encapsulated
expression. Finally, it ensures that all side effect computations have finished
before returning the value of the original expression. The other funcon serves to
defer a side effect: it signals to the encapsulating funcon that a computation is
to be interleaved with the evaluation of the original expression.

224 P.D. Mosses and F. Vesely

4 Funcons in K

We now illustrate our K specification of the syntax and semantics of the funcons
and value types used in our component-based analysis of CinK. We specify each
funcon and value type in a separate module, to facilitate selective reuse. Since
modularity is a significant feature of our specifications, we show some of the
specified imports. The complete specifications are available online, together with
the K specification of the translation of CinK programs to funcons.

4.1 Expressions

Expressions compute values:

Our specifications of value types lift the usual value operations to expression
funcons, each of which is strict in all its arguments:

In contrast, the conditional expression funcon is strict only
in E1, and its rules involve unevaluated expression arguments:

We specify a corresponding funcon for conditional commands separately, since it
appears that K modules cannot have parametric sorts (although the rules above
could be generalised to arbitrary K arguments).

4.2 Declarations

Bindings are values corresponding to environments (mapping identifiers to val-
ues), and come equipped with some operations that can be used to compose
declarations:

FunKons: Component-Based Semantics in K 225

We could have included the funcon bind-value(I,E) as an operation in the above
module, since it is strict in its only expression argument:

In contrast, the following funcons involve inspecting or (temporarily) changing
the current environment, which is assumed to be in an accompanying cell:

The auxiliary operation preserves the result of K when resetting
the current environment to M:

The K argument could be of sort Expr, Decl or Comm. Since we do not use
directly in the translation of CinK to funcons, the fact that is
(semantically) of the same sort as K is irrelevant.

4.3 Commands

In contrast to the usual style in K specifications, commands compute the unique
value on normal termination, rather than dissolving. However, this
difference does not affect the translation of programs to funcons.

As with if-true, the funcon seq(C,X) is essentially generic in X, but its syn-
tax needs to be specified separately for each sort of X. In contrast, the sort of

is independent of the sort of X, and we can specify it generically:

226 P.D. Mosses and F. Vesely

The specification of illustrates reuse between funcon specifications:

4.4 Variables

Variables are themselves treated as values:

The specifications of the funcons for allocating, assigning to, and inspect-
ing the values stored in variables are much as usual. For example, the fun-
con assign-giving-variable assigns a value to a variable and then returns the
variable:

4.5 Vector Allocation

The funcon allocate-vector serves to allocate a vector of variables. It uses the
allocate funcon for allocation of element variables.

FunKons: Component-Based Semantics in K 227

4.6 Functions

The operation constructs a value from an unevaluated expres-
sion E. It can then be closed to obtain static bindings for identifiers in E (the K
specification of the funcon is unsurprising, and omitted here).

The funcon makes the value of E1 available as ‘given’ in the
evaluation of E2:

The specifications of the funcons throw and catch assume that all cells used
to represent the current context of a computation are grouped under a unique
context cell. This gives improved modularity: the specification remains the same
when further contextual cells are required. In other respects, the specification
follows the usual style in the K literature, using a stack of exception handlers:

Funcons throw and catch have the most complicated definitions of all, yet
they are still modest in size and complexity.

5 Related Work

The work in this paper was inspired by a basic specification of the IMP exam-
ple language in funcons using K by Roșu. IMP contains arithmetic and boolean

228 P.D. Mosses and F. Vesely

expressions, variables, if- and while-statements, and blocks. The translation to
funcons is specified directly using K rewrite rules without defining sorted trans-
lation functions. The example can be found in the stable K distribution.4

CinK, the sublanguage of C++ that we use as a case study in this paper, is
taken from a technical report by Lucanu and Șerbănuţă [8]. We have limited
ourselves to the same subset of C++.

SIMPLE [12] is another K example language which is fairly similar to CinK.
The language is presented in two variants: an untyped and a typed one. The
definition of typed SIMPLE uses a different syntax and only specifies static
semantics. With the component-based approach, we specify a single translation
of language constructs to funcons. The MSOS of the funcons defines separate
relations for typing and evaluation; in K, it seems we would need to provide a
separate static semantics module for each funcon, since the strictness annotations
and the computation rules differ.

K specifications scale up to real-world languages, as illustrated by Ellison’s
semantics of C [4]. The PLanCompS project is currently carrying out major case
studies (C#, Java) to examine how the funcon-based approach scales up to large
languages, and to test the reusability of the funcon specifications.

Specification of individual language constructs in separate K modules was
proposed by Hills and Roșu [6] and further developed by Hills [5, Chap. 5]. They
obtained reusable rules by inferring the transformations needed for the rules to
match the overall K configuration. The reusability of their modules was limited
by their dependence on language syntax, and by the fact that the semantics
of individual language constructs is generally more complicated than that of
individual funcons.

6 Conclusion

We have given a component-based specification of CinK, using K to define the
translation of CinK to funcons as well as the (dynamic) semantics of the funcons
themselves. This experiment confirms the feasibility of integrating component-
based semantics with the K Framework.

The K specification of each funcon is an independent module. Funcons are
significantly simpler than constructs of languages such as CinK, and it was pleas-
antly straightforward to specify their K rules. However, we would have preferred
the K configurations for combination of funcons to be generated automatically.

Many of the funcons used here for CinK were introduced in the component-
based specification of Caml Light [3], demonstrating their reusability. The names
of the funcons are suggestive of their intended interpretation, so the translation
specification alone should convey a first impression of the CinK semantics. Read-
ers are invited to browse the complete K specifications of our funcons online, then
compare our translation of CinK to funcons with its direct specification in K [8].

In the future, we are aiming to define the static semantics of funcons in K,
so our translation would induce a static semantics for CinK.
4 http://www.kframework.org

http://www.kframework.org

FunKons: Component-Based Semantics in K 229

References

1. Chalub, F., Braga, C.: Maude MSOS tool. In: WRLA 2006, ENTCS, vol. 176, pp.
133–146. Elsevier (2007)

2. Churchill, M., Mosses, P.D.: Modular bisimulation theory for computations and
values. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp.
97–112. Springer, Heidelberg (2013)

3. Churchill, M., Mosses, P.D., Torrini, P.: Reusable components of semantic spec-
ifications. In: Proceedings of the 13th International Conference on Modularity,
MODULARITY ’14, pp. 145–156. ACM, New York (2014)

4. Ellison, C., Roșu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’12, pp. 533–544. ACM, New York (2012)

5. Hills, M.: A Modular Rewriting Approach to Language Design, Evolution and
Analysis. Ph.D. thesis, University of Illinois at Urbana-Champaign (2009)

6. Hills, M., Roșu, G.: Towards a module system for K. In: Corradini, A., Montanari,
U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 187–205. Springer, Heidelberg (2009)

7. ISO International Standard ISO/IEC 14882:2011(E) – Programming Language
C++ (2011). http://isocpp.org/std/the-standard

8. Lucanu, D., Șerbănuţă, T.F.: CinK – an exercise on how to think in K. Techni-
cal report TR 12-03 (v2), Faculty of Computer Science, A. I. Cuza University,
December 2013. https://fmse.info.uaic.ro/publications/181/

9. Lucanu, D., Șerbănuţă, T.F., Roșu, G.: K framework distilled. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)

10. Mosses, P.D.: Modular structural operational semantics. J. Log. Algebr. Program.
60–61, 195–228 (2004)

11. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60–61, 17–139 (2004)

12. Roșu, G., Șerbănuţă, T.F.: K overview and SIMPLE case study. In: Proceedings
of the Second International Workshop on the K Framework and Its Applications
(K 2011), ENTCS, vol. 304, pp. 3–56. Elsevier (2014)

13. Șerbănuţă, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Roșu, G.: The
K primer (v3.3). In: Proceedings of the Second International Workshop on the K
Framework and its Applications (K 2011), ENTCS, vol. 304, pp. 57–80. Elsevier
(2014)

http://isocpp.org/std/the-standard
https://fmse.info.uaic.ro/publications/181/

An Integration of CafeOBJ into Full Maude

Adrián Riesco(B)

Facultad de Informática, Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

Abstract. We present in this paper an integration of CafeOBJ into
Full Maude. We have developed a grammar to parse any CafeOBJ spec-
ification, an intermediate language to store it, and a translation from
this representation into Maude specifications. This integration enhances
CafeOBJ functionality in many ways: our intermediate representation
has been developed mirroring Maude metalevel, and hence it allows
CafeOBJ users to analyze, modify, and execute them; CafeOBJ specifica-
tions can use Maude commands, including the LTL model checker; other
Full Maude tools can be straightforwardly combined with this extension;
and we provide an alternative implementation for CafeOBJ that can
be easily modified and extended. We present here the ideas for parsing
and translating CafeOBJ specifications, and illustrate with examples the
features listed above.

Keywords: CafeOBJ · Full Maude · Integration · Metalevel

1 Introduction

CafeOBJ [9] is a language for writing formal specifications of models for wide
varieties of software and systems, and verifying properties of them. CafeOBJ
implements equational logic by rewriting and can be used as a powerful inter-
active theorem proving system. Specifiers can write proof scores [10] also in
CafeOBJ and perform proofs by executing these proof scores. CafeOBJ provides
several features to ease the specification of systems. These features include a flex-
ible mix-fix syntax, powerful and clear typing system with ordered sorts, parame-
terized modules and views for instantiating the parameters, module expressions,
operators for defining terms, and equations for defining the (possibly conditional)
equalities between terms and (possibly conditional) transitions for specifying how
a system evolves, among others. However, only a subset of the CafeOBJ speci-
fications, the equational part, is executable, where the operational semantics is
given by a conditional order-sorted term rewriting system.

Maude modules are executable rewriting logic specifications. Maude func-
tional modules [1, Chap. 4] are executable membership equational specifications

Research partially supported by Japanese project Kakenhi 23220002, MICINN Span-
ish project StrongSoft (TIN2012-39391-C04-04), and Comunidad de Madrid program
PROMETIDOS (S2009/TIC1465).

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 230–246, 2014.
DOI: 10.1007/978-3-319-12904-4 13

An Integration of CafeOBJ into Full Maude 231

that allow the definition of sorts; subsort relations between sorts; operators for
building values of these sorts, giving the sorts of their arguments and result,
and which may have attributes such as being associative or commutative, for
example; memberships asserting that a term has a sort; and equations identify-
ing terms. Both memberships and equations can be conditional. Maude system
modules [1, Chap. 6] are executable rewrite theories. A system module can con-
tain all the declarations of a functional module and, in addition, declarations
for rules and conditional rules. An important feature of rewriting logic is that it
is reflective, that is, it can be faithfully interpreted in terms of itself. This fea-
ture is efficiently implemented in Maude by means of the META-LEVEL module
[1, Chapt. 14], which allows us to use Maude modules and terms as usual data.

Full Maude [1, Part II] is an extension of Maude written in Maude itself.
Full Maude provides an even more powerful module algebra than the one avail-
able in Core Maude, features for parsing and printing Maude modules, and an
explicit module database. This database, combined with the meta-level features
explained above, allows us to introduce, remove, modify, and analyze the mod-
ules introduced by the user. Moreover, it is also possible to change the syntax
of existing features and add new kinds of modules and commands. Full Maude
is built on top of the Loop Mode [1, Chapt. 17], which provides a mechanism to
read the modules and commands introduced by the user enclosed in parentheses,
and to show him the results generated by these commands. For these reasons,
Full Maude has been traditionally used as a basis for further extensions, either
for extra syntactic constructs, like the support for Real-Time modules [14], or
for new commands, like the narrowing search currently available for symbolic
execution [2, Chap. 16].

We present in this paper an extension of Full Maude to parse CafeOBJ mod-
ules. The advantages obtained by using this tool, publicly available at http://
maude.sip.ucm.es/cafe/, are:

– Maude modules can be imported by CafeOBJ modules, and vice versa. The
former is specially useful because Maude provides the predefined modules
SATISFACTION, LTL-SIMPLIFIER, and MODEL-CHECKER [1, Chapt. 12], which
allow the user to define and prove LTL properties on CafeOBJ specifications.
We can also use the Loop Mode [1, Chapt. 17] to develop interactive tools.
Moreover, we have defined an intermediate representation of CafeOBJ specifi-
cations that mirrors Maude metalevel, and have included functions to execute
terms using these modules. That is, CafeOBJ modules can use CafeOBJ mod-
ules and terms as standard data, just as several Maude applications have been
designed during the last years.

– Maude commands can be used on CafeOBJ specifications. This allows the user
to use, among others, the rew command to apply transitions (and normaliza-
tion via equations) to CafeOBJ terms (which cannot be done in the current
release of CafeOBJ) [1, Chapt. 6]; the search command to perform searches
to check invariants [1, Chapt. 12]; or the narrowing command for symbolic
execution [2, Chapt. 16].

http://maude.sip.ucm.es/cafe/
http://maude.sip.ucm.es/cafe/

232 A. Riesco

– It provides a new implementation of CafeOBJ. Our interface parses any
CafeOBJ module and accepts open-close environments, required to execute
proof scores. We also process behavioral specifications, although the current
version of the tool does not distinguish between behavioral and non-behavioral
statements in the translation.

Moreover, this new implementation is more powerful in the sense that
any CafeOBJ programmer can add new syntax and commands. Although this
extension would require modifying the Maude code used by the interface, it
is so similar to CafeOBJ code that it can be easily understood. Actually, the
code has been designed with this feature in mind, so the syntax and parsing
modules are carefully distinguished and documented.

As an example of the syntax that can be added to CafeOBJ specifications,
our parser allows the user to use matching and rewrite conditions, as well
as using the nonexec and metadata attributes in equations and transitions.
Some of these features are available in the latest release of CafeOBJ, while
others are only supported by our implementation.

– It allows an easy integration of CafeOBJ specifications with any tool
implemented on top of Full Maude. We have currently integrated the Maude
Declarative Debugger and Test-case Generator [16] and the Constructor-based
Inductive Theorem Prover [11]. Our goal when integrating these tools was to
provide a minimum framework where CafeOBJ functions can be tested, fixed
when a wrong behavior is found, and proved correct with respect to some
properties, once we have confidence in the soundness of the implementation.
However, many other interesting tools can be integrated using our approach.

– Finally, we provide a script to connect CafeOBJ with Full Maude in a trans-
parent way. We have implemented a Java class that transforms the source
code to meet the format required by Full Maude, which includes enclosing
the modules in parentheses, adding the ‘ to escape characters such as [,],
or ,, and removing CafeOBJ comments, among others. In this way, it is not
necessary to modify the original CafeOBJ specifications to use the interface.

The rest of the paper is organized as follows: Sect. 2 briefly introduces the
related work, while Sect. 3 presents the basic notions used throughout the paper.
Section 4 describes the parsing and translation process. Section 5 illustrates how
to use the tool. Finally, Sect. 6 presents the concluding remarks and outlines
some lines of future work.

2 Related Work

The most similar examples to the present work are Full Maude itself [1, Part II],
Real-Time Maude [14], and the Maude Strategy Language [7]. The former defines
a complete syntax for Maude, extends it with support for object-oriented mod-
ules, and provides commands to execute them. Similarly, Real-Time Maude
defines real-time modules and timed commands to execute them, while the Strat-
egy Language extends Maude modules with syntax for defining execution strate-
gies, as well as rewrite commands using these strategies. Our work follows the

An Integration of CafeOBJ into Full Maude 233

same steps: it requires to define the syntax of our modules and commands, parse
them, translate them into Maude (in Full Maude this is only the case for object-
oriented modules, since standard modules do not require translation), and exe-
cute the commands. Nonetheless, we take advantage of many features developed
for Full Maude and reused later [5], which greatly ease the parsing task.

Besides these tools, Maude has been used as a semantical framework to spec-
ify the semantics of several languages, such as LOTOS [17], CCS [17], or C [8].
These researches, as well as several other efforts to describe a methodology to
represent the semantics of programming languages in Maude, led to the rewrit-
ing logic semantics project [12], which presents a comprehensive compilation of
these works.

Another translation from CafeOBJ to Maude can be found in [18]. There,
the authors translate a subset of CafeOBJ specifications (more specifically, spec-
ifications of state machines standing for asynchronous distributed systems) into
Maude to perform model checking. Although they follow an approach similar to
the one in the current paper, it is focused in just one kind of specification, and
hence it lacks scalability.

3 Preliminaries

We present in this section some basic notions required throughout the rest of the
paper. First, we describe CafeOBJ and Maude by means of an example. Then,
we give some details about the Maude metalevel and Full Maude.

3.1 CafeOBJ and Maude

CafeOBJ (on the lefthand side) can define modules with loose semantics by using
the syntax mod*. For example, we can define a module ELT requiring the existence
of a sort Elt and an element of this sort, called mt, which is a constructor. This
kind of behavior is specified in Maude (on the righthand side) as a theory:

mod* ELT { fth ELT is
[Elt] sort Elt .
op mt : -> Elt {constr} op mt : -> Elt [ctor] .

} endfth

We can use this module to define a parameterized module with tight seman-
tics, with syntax mod!. The module LIST below indicates that it receives a para-
meter X fulfilling the requirements stated by ELT. This module first defines the
sort List for lists. Similarly, we define a parameterized system module LIST in
Maude with syntax mod:

mod! LIST(X :: ELT) { mod LIST{X :: ELT} is
[List] sort List .

234 A. Riesco

The constructors are defined, as shown above, with the keyword op and the
constr attribute. In this case the constructors are nil for empty lists and the
juxtaposition operator for placing an element of sort Elt in front of a list.
Note the different syntax for the sort Elt, qualified by the parameter X:

op nil : -> List {constr} op nil : -> List [ctor] .

op __ : Elt.X List -> List {constr} op __ : X$Elt List -> List [ctor] .

We can also define functions for lists. For example, composition of lists is
defined by distinguishing constructors on the first argument. Note that both
CafeOBJ and Maude follow the same syntax, although CafeOBJ allows some
extra syntactic sugar, including just-once on-the-fly declaration of variables:

var E : Elt.X var L : List var E : X$Elt . var L : List .

op _@_ : List List -> List op _@_ : List List -> List .

eq [c1] : nil @ L = L . eq [c1] : nil @ L = L .

eq [c2] : (E L) @ L’:List = eq [c2] : (E L) @ L’:List =

E (L @ L’) . E (L @ L’:List) .

Similarly, we can define the reverse function. This function uses the constant
mt from module ELT as the reverse of the empty list,1 while the reverse for bigger
lists is defined as usual by using the composition above:

op reverse : List -> List op reverse : List -> List .

eq [r1] : reverse(nil) = mt nil . eq [r1] : reverse(nil) = mt nil .

eq [r2] : reverse(E L) = eq [r2] : reverse(E L) =

reverse(L) @ (E nil) . reverse(L) @ (E nil) .

We can also define non-deterministic transitions. For example, we can com-
bine two lists by using the commutative operator mix and two transitions to
indicate that the next element is the first one of any of the lists (thanks to the
matching modulo commutativity):

op mix : List List -> List {comm} op mix : List List -> List [comm] .

trans [m1] : mix(nil, L) => L . rl [m1] : mix(nil, L) => L .

trans [m2] : mix(E L, L’) rl [m2] : mix(E L, L’)

=> E mix(L, L’) . => E mix(L, L’) .

} endm

Finally, in CafeOBJ we can use an on-the-fly view to instantiate LIST with
natural numbers:

mod! NAT-LIST {
pr(LIST(view to NAT {sort Elt -> Nat, op mt -> 0}))

}

On the other hand, we need to define an explicit view in Maude, and then
use this view to instantiate the module:
1 This is a wrong definition that will be detected and fixed in Sect. 5.3.

An Integration of CafeOBJ into Full Maude 235

view Nat from Elt to NAT is
sort Elt to Nat .
op mt to 0 .

endv

mod NAT-LIST is
pr LIST{Nat} .

endm

3.2 Maude Metalevel and Full Maude

Exploiting the fact that rewriting logic is reflective [3], an important feature
of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [1, Chapt. 14], a characteristic that allows many advanced
metaprogramming and metalanguage applications. In this work, we take advan-
tage of this feature to parse, store, transform, and execute CafeOBJ modules.

Full Maude [1, Part II] is an extension of Maude written in Maude itself.
Full Maude is built on top of the LOOP-MODE module [1, Chapt. 17]. This module
allows input/output interaction by means of the [, ,] operator, which builds
terms of sort System and where the first argument corresponds to the input
introduced by the user, which must be enclosed in parentheses to be recognized;
the second one is a term of sort State that can be defined by the user for each
application; and the third one the output shown to the user.

In Full Maude this State is defined by using a class Database, which has
an attribute db standing for the Full Maude database. It also has attributes
for the current input, the output not processed yet, and the default mod-
ule. Essentially, the Loop Mode transforms the data introduced by the user
into a list of quoted identifiers; this list is then meta-parsed by Full Maude by
using the GRAMMAR module, which includes the syntax for modules and com-
mands. If this parsing is successful, then the term thus obtained is placed in the
input attribute. Different inputs are treated by using rules: modules and views
are processed to check whether they fulfill the semantic constraints required by
Maude, and then introduced into the database, while commands are executed
by using this database. The results must be placed in the output attribute; a
rule will move this data to the third component of the system.

Hence, our aims in this paper are to extend GRAMMAR to include CafeOBJ
syntax, process the new terms obtained from the parsing, and define commands
(and the appropriate rules) to deal with these new features.

4 Introducing CafeOBJ Modules into the Full Maude
Database

We present in this section the basic ideas to introduce CafeOBJ modules into
the Full Maude database. First, we describe how CafeOBJ modules are parsed.
Then we show how the obtained modules can be translated into Maude and used
by other tools implemented in Full Maude.

236 A. Riesco

4.1 Parsing CafeOBJ Modules and Commands

As explained in the previous section, in order to parse CafeOBJ modules we have
to define its syntax, which will be used by Full Maude to create a term that will
be processed to obtain the actual module. We use the metarepresentation of
this module to extend the GRAMMAR metamodule from Full Maude, providing the
metamodule CafeGRAMMAR. It can be used to parse both Maude and CafeOBJ
modules and commands.

Basically, the syntax follows the CafeOBJ grammar in [13], although we
have extended it with some features that will be available in the next release of
CafeOBJ, such as the nonexec attribute or matching conditions. Following the
standard approach, we define a sort for each syntactic category in the grammar,
and operator declarations for each production rule. In this way, we specify a mod-
ule CafeMETA-SIGN where this information is contained. For example, the sort
@CafeTransDecl@2 stands for the definition of transitions in CafeOBJ syntax:

op trans_=>_. : @CafeBubble@ @CafeBubble@ -> @CafeEqDecl@ [ctor] .

op ctrans_=>_if_. : @CafeBubble@ @CafeBubble@ @CafeBubble@

-> @CafeTransDecl@ [ctor] .

op ctrns_=>_if_. : @CafeBubble@ @CafeBubble@ @CafeBubble@

-> @CafeTransDecl@ [ctor] .

Note that we use a special sort @CafeBubble@ to encapsulate terms that can
take any form. Basically, a bubble is any list of quoted identifiers, which must
be later parsed to obtain a valid term in the current module.

These declarations, as well as the rest of declarations for the statements
available in a CafeOBJ module, are defined as a subsort of a @CafeDeclList@,
which are composed by means of a juxtaposition operator:

subsorts @CafeImportDecl@ ... @CafeTransDecl@ < @CafeDeclList@ .

op __ : @CafeDeclList@ @CafeDeclList@ -> @CafeDeclList@ [assoc] .

For example, the transition m1 from Sect. 3 would be parsed as:

’trans_=>_.[’CafeBubble[’__[’‘[.Qid, ’’m1.Qid, ’‘], ’:, ’’mix.Qid,

’‘(.Qid, ’’nil.Qid, ’‘,, ’’L.Qid, ’‘).Qid]], ’CafeBubble[’’L.Qid]]

Note that the label is included in the bubble for the lefthand side; it must be
extracted before processing this side (analogously, attributes might appear in
the bubble for the righthand side). This term must be now parsed again in order
to check whether it fulfills the semantics constraints, e.g., the terms only use
variables previously defined, they are bound either in the lefthand side or in a
matching condition, and terms are built using existing operators. This second
phase returns, when the module is correct, a term of sort CafeModule:

op mod*_{__[_]____} : CafeHeader CafeImportList HiddenSortDecl SortSet

CafeSubsortDeclSet CafeOpDeclSet CafeEqSet

CafeTransSet -> CafeModule [ctor] .

2 We follow the Full Maude convention and enclose sorts for parsing in @.

An Integration of CafeOBJ into Full Maude 237

Our definition of CafeOBJ modules uses the sorts Qid, Term, and Condition
from Maude metalevel to define the sorts used here. For example, transitions are
declared as follows:

op trans_=>_{_}. : Term Term CafeAttrSet -> CafeTrans [ctor] .

op ctrans_=>_if_{_}. : Term Term Condition CafeAttrSet -> CafeTrans [ctor] .

In this way, the transition m1 is represented as:

trans ’mix[’nil.List, ’L:List] => ’L:List {label:(’m1)} .

Once the final module has been obtained, it is stored in a database, which is
just a partial function from quoted identifiers (of sort Qid) to CafeModule. This
modules can be retrieved, modified, executed, and stored again, as we will see in
Sect. 5. Note that the current version of the tool does not support metasyntax
for views; they are just introduced as Maude views.

Regarding commands, we provide the syntax for open...close environ-
ments, which combine operator declarations (mainly constants) and equation
definitions with red commands to define proof scores [10], and specific com-
mands for dealing with CafeOBJ modules. In this case we create an on-the-fly
module where the reductions take place.

4.2 Translating the Modules

Taking advantage of the similarities between the syntax and the semantics of
CafeOBJ and Maude, most of the transformations performed by our tool are
straightforward. Both languages have modules with loose semantics (called the-
ories in Maude), modules with tight semantics, parameterized modules, views to
instantiate these modules, equations, and transitions (rules in Maude) as main
features. From the Maude point of view there are some features that cannot
be translated into CafeOBJ, being the main one the membership axioms stat-
ing the members of a sort, because Maude implements membership equational
logic while the CafeOBJ type system is based on order sorted algebra. However,
the differences in this case are not important because we are interested in the
translation from CafeOBJ to Maude.

There are two important features in CafeOBJ that cannot be translated into
Maude. Both of them are related to the importation of modules with loose seman-
tics: (i) these modules can be imported by any module, while in Maude they can
only be imported by other theories, and (ii) these modules can be imported in
any mode (being the modes protecting, indicating that no junk and no confu-
sion is added to the sorts; extending, denoting that no confusion is allowed; and
including, indicating that there are no restrictions, see [1, Chapt. 8] for details),
while Maude theories can only be imported in including mode. We have dealt
with these restrictions in a conservative way. First, we translate these modules,
that should be Maude theories, as modules (i.e., they have tight semantics), and
a warning message is shown. This change is harmless if our aim is to execute
them or to use any of the tools currently integrated (the declarative debugger

238 A. Riesco

and the CITP), but has two disadvantages: (a) it might fail later, if this module
is used as the target of a view, and (b) other tools, not integrated yet, might
distinguish between the different kinds of modules. Similarly, we always trans-
late the importation modes for these modules as including, which is also fine in
our case (the tools integrated thus far use flattened modules) but might produce
problems with other tools. The user can force the tool to translate the modules
without modifications with the (strict translation on.) command.

There are also some other complex features that require a non-straightforward
translation. More specifically, the CafeOBJ syntax for views is much more flexible
than the one used by Maude: they can be defined on-the-fly and can be used in an
order different from the one specified in the parameterized module by using the
parameter name. The former is solved by creating explicit views with fresh view
identifiers, while the latter requires to manipulate the parameterized module from
the database to reorder the views.

Basically, our implementation defines a function cafe2maude, which takes a
CafeModule and returns a Maude Module:

op cafe2maude : CafeModule -> Module .

It uses auxiliary functions to translate each element in a CafeOBJ module. For
instance, transitions are translated into rules as follows:

op cafe2maude : CafeTrans -> Rule .
eq cafe2maude(trans T => T’ {AtS} .) = rl T => T’ [cafe2maude*(AtS)] . .
eq cafe2maude(ctrans T => T’ if C {AtS} .) = crl T => T’

if C [cafe2maude*(AtS)] . .

where cafe2maude* is an auxiliary function that translates the attributes.
As explained in Sect. 3.2, the connection between the Loop Mode and the

behavior of the tool is implemented by rules. We have defined a new class
CafeDatabase, subclass of Database, to take care of the translation and the new
commands:

sort CafeDatabaseClass .
subsort CafeDatabaseClass < DatabaseClass .
op CafeDatabase : -> CafeDatabaseClass [ctor] .

This class defines two new attributes: strict, which indicates whether the
translation is strict or not, and cafeDB, which contains the CafeOBJ database:

op strict :_ : Bool -> Attribute [ctor] .
op cafeDB :_ : CafeDB -> Attribute [ctor] .

4.3 Combining CafeOBJ and Other Full Maude Tools

Using the modules described in the previous sections, it is easy to modify any
tool built in Full Maude for Maude specifications and make it work with CafeOBJ
modules, given that they follow two standard principles:3

3 Note that these changes will allow us to execute the tools. However, some theoretical
considerations may be required to prove that this execution is correct.

An Integration of CafeOBJ into Full Maude 239

– They use a module extending GRAMMAR to parse their modules/commands. In
this case, it is enough to extend CafeGRAMMAR instead, and CafeOBJ modules
will be parsed.

– They define a subclass of Database to process their modules/commands. We
have to modify this definition to extend CafeDatabase. It is also required to
initialize the attributes strict and cafeDB, so they can be used later.

To test the benefits of this approach we have already worked with the Maude
declarative debugger and test-case generator [16] and the Constructor-based
Inductive Theorem Prover (CITP) [11]. Note that a potential problem of any inte-
gration is that the output provided by the tool refers to the transformed Maude
code. Although this might be fine in some cases (e.g. the debugger refers to the
label of the wrong statement, so it is safe to use it, see Sect. 5.3 for details), in some
others it is interesting to refer to the original CafeOBJ module or just use com-
mands which are specifically defined for CafeOBJ users. In this case, some extra
changes are required, as shown in the next section for the CITP.

5 Connecting CafeOBJ andMaude

We present in this section how to use the most important features of our imple-
mentation. We first show how to use the metalevel representation of CafeOBJ.
Then, we describe the basic commands provided in the interface and how to use
the Maude Declarative Debugger and the Constructor-based Inductive Theorem
Prover. All the modules, scripts, and examples shown here are available at http://
maude.sip.ucm.es/cafe/.

5.1 Metaprogramming in CafeOBJ

We provide in the META-CAFE-SYNTAXmodule the syntax for CafeOBJ modules. It
follows the syntax in the predefined module META-LEVEL for Maude modules, but
uses specific syntax to follow CafeOBJ conventions. These modules are retrieved
from and inserted into the database with the functions getTopModule and
setTopModule. Note that, since these modules are stored in a specific attribute
of the CafeDatabase class, specifications using the database are not completely
transparent from Maude syntax:

op getTopModule : CafeDB Qid ~> CafeModule .
op setTopModule : CafeDB Qid CafeModule -> CafeDB .

Finally, these modules can be modified and executed by using the functions in
CAFE-META-LEVEL. It includes functions for accessing the different components of
a module, update them, and for executing terms in a given module. The current
version of the tool provides the functions metaReduce, for applying equations until
a normal form is reached; metaRewrite, for applying transitions given a bound
in the number of transitions applied; and metaFrewrite, for fair application of
transitions given a bound in the number of transitions applied and the maximum
number of rewrites at each entitled position on each traversal of a subject term
(see [1, Chapt. 14] for details):

http://maude.sip.ucm.es/cafe/
http://maude.sip.ucm.es/cafe/

240 A. Riesco

op metaReduce : Qid Term CafeDB Database -> ResultPair .
op metaRewrite : Qid Term Bound CafeDB Database -> ResultPair .
op metaFrewrite : Qid Term Bound Nat CafeDB Database -> ResultPair .

Note that these functions require the Maude database, since they might import
some Maude modules. They are implemented by building the corresponding flat
Maude module and then using the appropriate built-in Maude functions.

For example, we could define a function getCommOps extracting the commuta-
tive operators from a CafeOBJ module by using an auxiliary function
filterCommOps that keeps the commutative operators from a set:

op getCommOps : CafeModule -> CafeOpDeclSet
eq getCommOps(CM) = filterCommOps(getOps(CM)) .
op filterCommOps : CafeOpDeclSet -> CafeOpDeclSet
eq filterCommOps(none) = none .
eq filterCommOps(COD CODS) = if isComm?(COD) then COD

else none fi filterCommOps(CODS) .

where isComm? is an auxiliary function that checks whether an operator is com-
mutative. Note that we allow operators with both the op definition and the pred
keyword. This function uses another auxiliary function containsComm?which just
traverses the attributes looking for comm:

pred isComm? : CafeOpDecl
eq isComm?(op Q : TyL -> Ty {AtS}) = containsComm?(AtS) .
eq isComm?(pred Q : TyL {AtS}) = containsComm?(AtS) .
pred containsComm? : CafeAttrSet
eq containsComm?(none) = false .
eq containsComm?(A AtS) = A == comm or containsComm?(AtS) .

5.2 Basic Commands

Once the files in the webpage have been downloaded and the paths have been con-
figured, and assuming the modules above are saved in a file called wrla.cafe, we
can start the tool by typing:

$./cafe2maude wrla.cafe

The cafe2maude script creates a temporary file generated by a Java appli-
cation. This file contains the original CafeOBJ modules modified in order to be
accepted by Full Maude (e.g. adding the parentheses enclosing modules and views,
removing CafeOBJ comments, and adding the ‘ character to the escape characters
such as { or }). Once the script is executed, the modules are introduced into the
Full Maude database and we can use any Maude command on them. For example,
the rew command uses transitions to evaluate terms. Note that this command, as
well as the one below, is not available in CafeOBJ:

An Integration of CafeOBJ into Full Maude 241

Maude> (rew mix(1 3 nil, 2 4 nil) .)
result List : 1 2 3 4 nil

We can also use symbolic search to start with terms with variables and look
for substitutions that fulfill the conditions imposed by the search. For example,
we can look for the term required in the mix operator to obtain the result from
the rew command:

Maude> (search [1] mix(L:List, 2 4 nil) ~>! 1 2 3 4 nil .)
Solution 1
L:List --> 1 3 nil
No more solutions.

where the ! option indicates that we are looking for final terms and >! distin-
guishes the symbolic search from the standard one, performed with =>!. In this
case we obtain the substitution L:List --> 1 3 nil, indicating that we needed
this list to obtain the result.

Besides using Maude commands, we can also work with CafeOBJ specifica-
tions. For example, we can see the original module and execute proof scores. Basi-
cally, proof scores are scripts defining an inductive proof, where constants can be
declared by means of operators and hypothesis by using equations. The base and
the inductive steps are proved by using the red command. For example, we can
prove the associativity of the + function as follows:

open NAT + BOOL
ops i j k : -> Nat
red (0 + j) + k == 0 + (j + k) . -- base step
eq (i + j) + k = i + (j + k) . -- induction hypothesis
red (s(i) + j) + k == s(i) + (j + k) . -- inductive step
close

Once we load the file with this open-close environment, Maude executes the
red commands and provides the following result:

Processing open-close environment:
reduce(0 + j)+ k == 0 + j + k .
Result: true : Bool
reduce(s i + j)+ k == s i + j + k .
Result: true : Bool

5.3 Using the Declarative Debugger and Test-Case Generator

To start this tool it is enough to download the script cdd, configure the paths,
and execute it with the files we want to test and debug. Then, we can use all the
commands described in http://maude.sip.ucm.es/debugging/ to test and debug
our CafeOBJ modules. For example, we can test the reverse function by using
the so called function coverage criterium, which generates ground test cases that
must use all the equations defined for reverse (r1 and r2) in all the calls (the
single call to this function is located in r2). This is done by using:

http://maude.sip.ucm.es/debugging/

242 A. Riesco

Maude> (function coverage .)
Function Coverage selected
Maude> (test in NAT-LIST : reverse .)
1 test cases have to be checked by the user:

1. The term reverse(0 0 nil) has been reduced to 0 0 0 nil
All calls were covered.

That is, the call reverse(0 0 nil) uses both r1 and r2 for the recursive call
(r2 for the first call and r1 for the second one). Note that the result of this call is
unexpected, because it should also be 0 0 nil. Hence, this function is buggy and
must be debugged. We can do it by typing:

Maude> (invoke debugger with user test case 1 .)
Declarative debugging of wrong answers started.

This command starts the declarative debugger. Declarative debuggers find
bugs in programs by asking questions to the user, that must answer yes or no
(check the webpage above for more possible answers) until the bug is found. Hence,
the debugger presents the following question:

Is this reduction (associated with the equation r2) correct?
reverse(0 nil) -> 0 0 nil
Maude> (no .)

This result is erroneous for the same reasons explained above, so the user
answers no and the debugging session continues with the following questions:

Is this reduction (associated with the equation com2) correct?
(0 nil) @ 0 nil -> 0 0 nil
Maude> (yes .)
Is this reduction (associated with the equation r1) correct?
reverse(nil) -> 0 nil
Maude> (no .)

We answer yes for a correct composition but no for another application of
reverse. With this information the debugger is able to find the bug:

The buggy node is: reverse(nil) -> 0 nil
with the associated equation: r1

In fact, the equation r1 should return just nil. The questions asked during the
session correspond to the nodes of a tree representing the wrong computation.
This tree, which might be useful to the user to check the relations between the
calls, can also be shown.

Finally, it is also possible to use a property and a correct module to test
the functions. For example, we can define in the module PROP-LIST the property
prop stating that applying reverse twice returns the same list, while in
CORRECT-PROP-LIST we state that this property must be always true:

An Integration of CafeOBJ into Full Maude 243

mod! PROP-LIST { mod!CORRECT-PROP-LIST {
pr(NAT-LIST) pr(NAT-LIST)
op prop : List -> Bool op prop : List -> Bool .
eq [p1] : prop(L:List) = eq prop(L) = true .

reverse(reverse(L:List)) == L:List .
} }

Now we can set the correct module and generate test cases:

Maude> (correct test module CORRECT-PROP-LIST .)
CORRECT-PROP-LIST selected as correct module for testing.
Maude> (test in PROP-LIST : prop .)
10 test cases are incorrect with respect to the correct module.

Once the test cases have been generated, they can be displayed and debugged
as shown above.

5.4 Using the Constructor-Based Inductive Theorem Prover

We have extended the CITP to work with CafeOBJ-like commands, hence obtain-
ing a tool fully customized for CafeOBJ. This has been done by adding an extra
attribute language to the tool, which allows us to distinguish between interfaces,
while the underlying modules dealing with proofs are left unmodified.

The CITP allows the user to prove properties on CafeOBJ specifications. It is
started by the citp script. Since we want to prove properties on CafeOBJ specifi-
cations, we have to indicate it with a specific command, which sets the language
attribute explained above to cafeOBJ, hence modifying the syntax and the display
options to work with CafeOBJ specifications:

Maude> (cafeOBJ language .)
CafeOBJ selected as current specification language.

Now we can introduce goals, which are depicted as equations or transitions.
For example, we can prove the associativity of list composition, using on-the-fly
declaration of variables from CafeOBJ, by typing:

Maude> (goal NAT-LIST |- eq L1:List @ (L2:List @ L3:List) =
(L1 @ L2) @ L3 ;)

============================ GOAL 1-1 ============================
< Module NAT-LIST is concealed ... end,
eq L1:List @(L2:List @ L3:List) = (L1:List @ L2:List)@ L3:List . >

unproved
INFO: an initial goal generated!

This goal can be easily proved by using induction on L1 and then applying the
default tactic with the auto command:

244 A. Riesco

Maude> (set ind on L1:List .)
INFO: Induction will be conducted on L1:List
Maude> (auto .)
INFO: Goal 1-1 was successfully proved by applying tactic: SI CA CS TC IP
INFO: PROOF COMPLETED

It is also possible to state goals involving transitions. For example, we can
define the following trivial goal, which just uses the commutativity attribute:

Maude> (goal NAT-LIST |- trans mix(L:List, nil) => L ;)
============================ GOAL 1-1 ============================
< Module NAT-LIST is concealed ... end,
trans mix(L:List,nil) => L:List . >

unproved
INFO: an initial goal generated!

Note that CafeOBJ syntax is used for both the goal and the displayed infor-
mation. This simple goal can be discarded by just using auto:

Maude> (auto .)
INFO: Goal 1-1 was successfully proved by applying tactic: SI CA CS TC IP
INFO: PROOF COMPLETED

Much more information on the CITP, including several other commands, all
of them now customized for CafeOBJ specifications, is described at http://www.
jaist.ac.jp/∼danielmg/citp.html.

6 Concluding Remarks and OngoingWork

We have presented in this paper a tool to introduce CafeOBJ specifications into
the Full Maude database. This tool allows us to use Maude modules and com-
mands with CafeOBJ specifications, provides an implementation of a CafeOBJ
metalevel, and eases the task of connecting CafeOBJ specifications with tools
implemented on top of Full Maude. Using this feature we provide an environ-
ment where CafeOBJ specifications can be tested, debugged, and proved correct
by integrating the Maude Declarative Debugger and Test-case Generator and the
Constructor-based Inductive Theorem Prover.

We want to improve the implementation of the metalevel in two different ways:
first, we want to define the syntax for representing views, in such a way that they
can also be analyzed and modified. On the other hand, we are interested in defin-
ing more execution commands: currently only metaReduce, metaRewrite, and
metaFrewrite are available, but several others can be implemented using our
translation for CafeOBJ specifications and the built-in commands in Maude met-
alevel. Another interesting topic would be distinguish between behavioral and
non-behavioral specifications when translating and executing the modules.

http://www.jaist.ac.jp/~danielmg/citp.html
http://www.jaist.ac.jp/~danielmg/citp.html

An Integration of CafeOBJ into Full Maude 245

We are currently working to extend our framework with the Maude Formal
Environment (MFE) [6]. This environment allows to check properties such as ter-
mination, confluence, and coherence on Maude specifications. It also includes the
Inductive Theorem Prover [4], a tool to prove inductive properties on equational
Maude specifications. Integrating this environment with CafeOBJ specifications
would allow us to check that the executability requirements hold.

We are also interested in integrating Real-Time Maude [14] in our framework.
This integration would be specially interesting for CafeOBJ users, since several
protocols, such as [15], has already been specified in CafeOBJ. However, this inte-
gration is not straightforward, since it requires to extend the syntax of CafeOBJ
specifications with timed transitions, as originally implemented for Maude.

Besides connecting more tools, we are also interested in extending the com-
mands for CafeOBJ. More specifically, we are interested in the t1 =(m,n)=> t2
predicate, which indicates that the term t2 is reachable from t1, with m the num-
ber of searched terms and n the depth of the search (both numbers can be set to
* to indicate that it is unbounded). This predicate, that is not documented and
allows several extra conditions to constrain the states, is similar to the search
command in Maude. It is interesting to implement this predicate, since it would
increment the amount of CafeOBJ commands supported by our interface while
providing a documented version in terms of Maude.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: A hierarchy of data types: from trees to sets. In: Clavel, M., Durán, F., Eker,
S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott, C. (eds.) All About Maude -
A High-Performance Logical Framework. LNCS, vol. 4350, pp. 119–129. Springer,
Heidelberg (2007)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.
Talcott, C.: Maude Manual (Version 2.6), January 2011. http://maude.cs.uiuc.edu/
maude2-manual

3. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, Horn logic with equality, and rewriting logic. Theor.
Comput. Sci. 373(1–2), 70–91 (2007)

4. Clavel, M., Palomino, M., Riesco, A.: Introducing the ITP tool: a tutorial. J. Univ.
Comput. Sci. 12(11), 1618–1650 (2006). Programming and Languages. Special Issue
with Extended Versions of Selected Papers from PROLE 2005: The 5th Spanish
Conference on Programming and Languages

5. Durán, F., Ölveczky, P.C.: A guide to extending full maude illustrated with the
implementation of real-time Maude. In: Roşu, G. (ed), Proceedings of the 7th Inter-
national Workshop on Rewriting Logic and its Applications, WRLA 2008, vol.
238(3), Electronic Notes in Theoretical Computer Science, pp. 83–102. Elsevier
(2009)

6. Durán, F., Rocha, C., Álvarez, J.M.: Towards a Maude formal environment. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011)

http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual

246 A. Riesco

7. Eker, S., Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and
rewriting. In: Archer, M., de la Tour, T.B., Muñoz, C.A. (eds.) Proceedings of
the 6th International Workshop on Strategies in Automated Deduction (STRATE-
GIES 2006), vol. 174, Electronic Notes in Theoretical Computer Science, pp. 3–25.
Elsevier (2007)

8. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th Symposium on Principles of Programming Languages,
POPL 2012, pp. 533–544. ACM (2012)

9. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific, AMAST Series
(1998)

10. Futatsugi, K., Gâinâ, D., Ogata, K.: Principles of proof scores in CafeOBJ. Theor.
Comput. Sci. 464, 90–112 (2012)

11. Găină, D., Zhang, M., Chiba, Y., Arimoto, Y.: Constructor-based inductive theorem
prover. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 328–333.
Springer, Heidelberg (2013)

12. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007)

13. Nakagawa, A.T., Sawada, T., Futatsugi, K.: CafeOBJ User’s Manual (version 1.4.8),
July 2010. http://www.comp.dit.ie/pbrowne/compfund2/manual.pdf

14. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude. High.
Order Symbolic Comput. 20, 161–196 (2007)

15. Ouranos, I., Ogata, K., Stefaneas, P.: Formal analysis of TESLA protocol in the
timed OTS/CafeOBJ method. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
II. LNCS, vol. 7610, pp. 126–142. Springer, Heidelberg (2012)

16. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. J. Logic Algebraic Program. 81(7–8), 851–897 (2012)

17. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in Maude.
J. Logic Algebraic Program. 67, 226–293 (2006)

18. Zhang, M., Ogata, K.: Modular implementation of a translator from behavioral
specifications to rewrite theory specifications. In: Choi, B. (ed.) Proceedings of the
9th International Conference on Quality Software, QSIC 2009, pp. 406–411. IEEE
Computer Society (2009)

http://www.comp.dit.ie/pbrowne/compfund2/manual.pdf

Rewriting Modulo SMT and Open System
Analysis

Camilo Rocha1(B), José Meseguer2, and César Muñoz3

1 Escuela Colombiana de Ingenieŕıa, Bogotá, Colombia
camilo.rocha@escuelaing.edu.co

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
3 NASA Langley Research Center, Hampton, VA, USA

Abstract. This paper proposes rewriting modulo SMT, a new tech-
nique that combines the power of SMT solving, rewriting modulo the-
ories, and model checking. Rewriting modulo SMT is ideally suited to
model and analyze infinite-state open systems, i.e., systems that inter-
act with a non-deterministic environment. Such systems exhibit both
internal non-determinism, which is proper to the system, and external
non-determinism, which is due to the environment. In a reflective for-
malism, such as rewriting logic, rewriting modulo SMT can be reduced
to standard rewriting. Hence, rewriting modulo SMT naturally extends
rewriting-based reachability analysis techniques, which are available for
closed systems, to open systems. The proposed technique is illustrated
with the formal analysis of a real-time system that is beyond the scope
of timed-automata methods.

1 Introduction

Symbolic techniques can be used to represent possibly infinite sets of states
by means of symbolic constraints. These techniques have been developed and
adapted to many other verification methods such as SAT solving, Satisfiability
Modulo Theories (SMT), rewriting, and model checking. A key open research
issue of current symbolic techniques is extensibility. Techniques that combine
different methods have been proposed, e.g., decision procedures [28,29], unifica-
tions algorithms [7,11], theorem provers with decision procedures [1,10,32], and
SMT solvers in model checkers [3,18,27,36,38]. However, there is still a lack of
general extensibility techniques for symbolic analysis that simultaneously com-
bine the power of SMT solving, rewriting- and narrowing-based analysis, and
model checking.

This paper proposes a new symbolic technique that seamlessly combines
rewriting modulo theories, SMT solving, and model checking. For brevity, this
technique is called rewriting modulo SMT, although it could more precisely be
called rewriting modulo SMT+B , where B is an equational theory having a

The rights of this work are transferred to the extent transferable according to title
17 § 105 U.S.C.

c© Springer International Publishing Switzerland 2014 (outside the US)
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 247–262, 2014.
DOI: 10.1007/978-3-319-12904-4 14

248 C. Rocha et al.

matching algorithm. It complements another symbolic technique combining nar-
rowing modulo theories and model checking, namely narrowing-based reachabil-
ity analysis [8,26]. Neither of these two techniques subsumes the other.

Rewriting modulo SMT can be applied to increase the power of equational
reasoning, e.g., [16,17,21], but its full power, including its model checking
capabilities, is better exploited when applied to concurrent open systems.
Deterministic systems can be naturally specified by equational theories, but
specification of concurrent, non-deterministic systems requires rewrite theories
[24], i.e., triples R = (Σ,E,R) with (Σ,E) an equational theory describing sys-
tem states as elements of the initial algebra TΣ/E , and R rewrite rules describing
the system’s local concurrent transitions. An open system is a concurrent sys-
tem that interacts with an external, non-deterministic environment. When such
a system is specified by a rewrite theory R = (Σ,E,R), it has two sources of
non-determinism, one internal and the other external. Internal non-determinism
comes from the fact that in a given system state different instances of rules in R
may be enabled. The local transitions thus enabled may lead to completely dif-
ferent states. What is peculiar about an open system is that it also has external,
and often infinitely-branching, non-determinism due to the environment. That
is, the state of an open system must include the state changes due to the environ-
ment. Technically, this means that, while a system transition in a closed system
can be described by a rewrite rule t→t′ with vars(t′) ⊆ vars(t), a transition in an
open system is instead modeled by a rule of the form t(−→x) → t′(−→x ,−→y), where−→y are fresh new variables. Therefore, a substitution for the variables −→x �−→y
decomposes into two substitutions, one, say θ, for the variables −→x under the
control of the system and another, say ρ, for the variables −→y under the control
of the environment. In rewriting modulo SMT, such open systems are described
by conditional rewrite rules of the form t(−→x) → t′(−→x ,−→y) if φ, where φ is a
constraint solvable by an SMT solver. This constraint φ may still allow the envi-
ronment to choose an infinite number of substitutions ρ for −→y , but can exclude
choices that the environment will never make.

The non-trivial challenges of modeling and analyzing open systems can now
be better explained. They include: (1) the enormous and possibly infinitary non-
determinism due to the environment, which typically renders finite-state model
checking impossible or unfeasible; (2) the impossibility of executing the rewrite
theory R = (Σ,E,R) in the standard sense, due to the non-deterministic choice
of ρ; and (3) the, in general, undecidable challenge of checking the rule’s condi-
tion φ, since without knowing ρ, the condition φθ is non-ground, so that its E-
satisfiability may be undecidable. As further explained in the paper, challenges
(1)–(3) are all met successfully by rewriting modulo SMT because: (1) states are
represented not as concrete states, i.e., ground terms, but as symbolic constrained
terms 〈t;ϕ〉 with t a term with variables ranging in the domains handled by the
SMT solver and ϕ an SMT-solvable formula, so that the choice of ρ is avoided;
(2) rewriting modulo SMT can symbolically rewrite such pairs 〈t;ϕ〉 (describing
possibly infinite sets of concrete states) to other pairs 〈t′;ϕ′〉; and (3) decidability
of φθ (more precisely of ϕ ∧ φθ) can be settled by invoking an SMT solver.

Rewriting modulo SMT can be integrated with model-checking by exploiting
the fact that rewriting logic is reflective [15]. Hence, rewriting modulo SMT can

Rewriting Modulo SMT and Open System Analysis 249

be reduced to standard rewriting. In particular, all the techniques, algorithms,
and tools available for model checking of closed systems specified as rewrite
theories, such as Maude’s search-based reachability analysis [14], become directly
available to perform symbolic reachability analysis on systems that are now
infinite-state.

The technique proposed in this paper is illustrated with the formal analysis
of the CASH scheduling protocol [13]. This protocol specifies a real-time system
whose formal analysis is beyond the scope of timed-automata [2].

2 Preliminaries

Notation on terms, term algebras, and equational theories is used as in [6,19].
An order-sorted signature Σ is a tuple Σ = (S,≤, F) with a finite poset of

sorts (S,≤) and set of function symbols F . The binary relation ≡≤ denotes the
equivalence relation generated by ≤ on S and its point-wise extension to strings
in S∗. The function symbols in F can be subsort-overloaded and satisfy the
condition that, for w,w′ ∈ S∗ and s, s′ ∈ S, if f : w −→ s and f : w′ −→ s′ are
in F , then w ≡≤ w′ implies s ≡≤ s′. A top sort in Σ is a sort s ∈ S such that if
s′ ∈ S and s ≡≤ s′, then s′ ≤ s. For any sort s ∈ S, the expression [s] denotes
the connected component of s, that is, [s] = [s]≡≤ .

The symbol X denotes an S-indexed family X = {Xs}s∈S of disjoint vari-
able sets with each Xs countably infinite. Expressions TΣ(X)s and TΣ,s denote,
respectively, the set of terms of sort s and the set of ground terms of sort s;
accordingly, TΣ(X) and TΣ denote the corresponding order-sorted Σ-term alge-
bras. All order-sorted signatures are assumed preregular [19], i.e., each Σ-term
t has a least sort ls(t) ∈ S s.t. t ∈ TΣ(X)ls(t). For S′ ⊆ S, a term is called
S′-linear if no variable with sort in S′ occurs in it twice. The set of variables of
t is written vars(t).

A substitution is an S-indexed mapping θ : X −→ TΣ(X) that is different
from the identity only for a finite subset of X. The identity substitution is
denoted by id and θ|Y denotes the restriction of θ to a family of variables Y ⊆ X.
Expression dom(θ) denotes the domain of θ, i.e., the subfamily of X for which
θ(x) �= x, and ran(θ) denotes the family of variables introduced by θ(x), for
x ∈ dom(θ). Substitutions extend homomorphically to terms in the natural way.
A substitution θ is called ground iff ran(θ) = ∅. The application of a substitution
θ to a term t is denoted by tθ and the composition of two substitutions θ1 and θ2
is denoted by θ1θ2. A context C is a λ-term of the form C = λx1, . . . , xn.c with
c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c); it can be viewed as an n-ary function
C(t1, . . . , tn) = cθ, where θ(xi) = ti for 1 ≤ i ≤ n and θ(x) = x otherwise.

A Σ-equation is an unoriented pair t = u with t ∈ TΣ(X)st
, u ∈ TΣ(X)su

,
and st ≡≤ su. A conditional Σ-equation is a triple t = u if γ, with t = u a
Σ-equation and γ a finite conjunction of Σ-equations; it is called unconditional
if γ is the empty conjunction. An equational theory is a tuple (Σ,E), with Σ
an order-sorted signature and E a finite collection of (possibly conditional) Σ-
equations. It is assumed that TΣ,s �= ∅ for each s ∈ S. An equational theory

250 C. Rocha et al.

E = (Σ,E) induces the congruence relation =E on TΣ(X) defined for t, u ∈
TΣ(X) by t =E u iff E t = u by the deduction rules for order-sorted equational
logic in [25]. Similarly, =1

E denotes provable E-equality in one step of deduction.
The E-subsumption ordering �E is the binary relation on TΣ(X) defined for any
t, u ∈ TΣ(X) by t �E u iff there is a substitution θ : X −→ TΣ(X) such that
t =E uθ. A set of equations E is called collapse-free for a subset of sorts S′ ⊆ S
iff for any t = u ∈ E and for any substitution θ : X −→ TΣ(X) neither tθ nor
uθ map to a variable for some sort s ∈ S′. The expressions TE(X) and TE (also
written TΣ/E(X) and TΣ/E) denote the quotient algebras induced by =E on the
term algebras TΣ(X) and TΣ , respectively; TΣ/E is called the initial algebra of
(Σ,E). A theory inclusion (Σ,E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called
protecting iff the unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct
of the initial algebra TΣ′/E′ is a Σ-isomorphism, written TΣ/E � TΣ′/E′ |Σ .
A set of equations E is called regular iff vars(t) = vars(u) for any equation
(t = u if γ) ∈ E.

Appropriate requirements are needed to make an equational theory E admis-
sible, i.e., executable in rewriting languages such as Maude [14]. In this paper,
it is assumed that the equations of E can be decomposed into a disjoint union
E � B, with B a collection of structural axioms (such as associativity, and/or
commutativity, and/or identity) for which there exists a matching algorithm
modulo B producing a finite number of B-matching solutions, or failing other-
wise. Furthermore, it is assumed that the equations E can be oriented into a set
of (possibly conditional) sort-decreasing, operationally terminating, and conflu-
ent conditional rewrite rules

−→
E modulo B. The conditional rewrite system

−→
E

is sort decreasing modulo B iff for each (t → u if γ) ∈ −→
E and substitution θ,

ls(tθ) ≥ ls(uθ) if (Σ,B,
−→
E) γθ. The system

−→
E is operationally terminating

modulo B iff there is no infinite well-formed proof tree in (Σ,B,
−→
E). Further-

more,
−→
E is confluent modulo B iff for all t, t1, t2 ∈ TΣ(X), if t →∗

E/B t1 and
t →∗

E/B t2, then there is u ∈ TΣ(X) such that t1 →∗
E/B u and t2 →∗

E/B u.
The term t ↓E/B∈ TΣ(X) denotes the E-canonical form of t modulo B so that
t →∗

E/B t↓E/B and t↓E/B cannot be further reduced by →E/B. Under the above
assumptions t↓E/B is unique up to B-equality.

A Σ-rule is a triple l → r if φ, with l, r ∈ TΣ(X)s, for some sort s ∈ S,
and φ =

∧

i∈I ti = ui a finite conjunction of Σ-equations. A rewrite theory is
a tuple R = (Σ,E,R) with (Σ,E) an order-sorted equational theory and R
a finite set of Σ-rules. The rewrite theory R induces a rewrite relation →R
on TΣ(X) defined for every t, u ∈ TΣ(X) by t →R u iff there is a rule (l →
r if φ) ∈ R and a substitution θ : X −→ TΣ(X) satisfying t =E lθ, u =E rθ,
and E φθ. The relation →R is undecidable in general, unless conditions such
as coherence [37] are given. A key point of this paper is to make such a relation
decidable when E decomposes as E0 �B1, where E0 is a built-in theory for which
formula satisfiability is decidable and B1 has a matching algorithm. A topmost
rewrite theory is a rewrite theory R = (Σ,E,R), such that for some top sort
State, no operator in Σ has State as argument sort and each rule l → r if φ ∈ R
satisfies l, r ∈ TΣ(X)State and l /∈ X.

Rewriting Modulo SMT and Open System Analysis 251

3 Rewriting Modulo a Built-In Subtheory

This section introduces the concept of rewriting modulo a built-in equational
subtheory and presents its main properties. Detailed proofs can be found in
[33,34].

Definition 1 (Signature with Built-ins). An order-sorted signature Σ =
(S,≤, F) is a signature with built-in subsignature Σ0 ⊆ Σ iff Σ0 = (S0, F0) is
many-sorted, S0 is a set of minimal elements in (S,≤), and if f : w −→ s ∈ F1,
then s /∈ S0 and f has no other typing in F0, where F1 = F\F0.

The notion of built-in subsignature in an order-sorted signature Σ is modeled by
a many-sorted signature Σ0 defining the built-in terms TΣ0(X0). The restriction
imposed on the sorts and the function symbols in Σ w.r.t. Σ0 provides a clear
syntactic distinction between built-in terms (the only ones with built-in sorts)
and all other terms.

If Σ ⊇ Σ0 is a signature with built-ins, then an abstraction of built-ins for t
is a context λx1 · · · xn.t◦ such that t◦ ∈ TΣ1(X) and {x1, . . . , xn} = vars(t◦) ∩
X0, where Σ1 = (S,≤, F1) and X0 = {Xs}s∈S0 . Lemma 1 shows that such an
abstraction can be chosen so as to provide a canonical decomposition of t with
useful properties.

Lemma 1. Let Σ be a signature with built-in subsignature Σ0 = (S0, F0). For
each t ∈ TΣ(X), there exist an abstraction of built-ins λx1 · · · xn.t◦ for t and
a substitution θ◦ : X0 −→ TΣ0(X0) such that (i) t = t◦θ◦ and (ii) dom(θ◦) =
{x1, . . . , xn} are pairwise distinct and disjoint from vars(t); moreover, (iii) t◦

can always be selected to be S0-linear and with {x1, . . . , xn} disjoint from an
arbitrarily chosen finite subset Y of X0.

In the rest of the paper, for any t ∈ TΣ(X) and Y ⊆ X0 finite, the expression
abstractΣ1(t, Y) denotes the choice of a triple 〈λx1 · · · xn.t◦ ; θ◦ ;φ◦〉 such that
the context λx1 · · · xn.t◦ and the substitution θ◦ satisfy the properties (i)–(iii)
in Lemma 1 and φ◦ =

∧n
i=1 (xi = θ◦(xi)).

Under certain restrictions on axioms, matching a Σ-term t to a Σ-term u can
be decomposed modularly into Σ1-matching of the corresponding λ-abstraction
and Σ0-matching of the built-in subterms. This is described in Lemma 2.

Lemma 2. Let Σ = (S,≤, F) be a signature with built-in subsignature Σ0 =
(S0, F0). Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and
B1 regular, linear, collapse free for any sort in S0, and sort-preserving, if t ∈
TΣ1(X0) is linear with vars(t) = {x1, . . . , xn}, then for each θ : X0 −→ TΣ0(X0):

(a) if tθ =1
B0

t′, then there exist x ∈ {x1, . . . , xn} and w ∈ TΣ0(X0) such that
θ(x) =1

B0
w and t′ = tθ′, with θ′(x) = w and θ′(y) = θ(y) otherwise;

(b) if tθ =1
B1

t′, then there exists v ∈ TΣ1(X0) such that t =1
B1

v and t′ = vθ;
and

(c) if tθ =B0	B1 t′, then there exist v ∈ TΣ1(X0) and θ′ : X0 −→ TΣ0(X0) such
that t′ = vθ′, t =B1 v, and θ =B0 θ′ (i.e., θ(x) =B0 θ′(x) for each x ∈ X0).

252 C. Rocha et al.

Definition 2 introduces the notion of rewriting modulo a built-in subtheory.

Definition 2 (Rewriting Modulo a Built-in Subtheory). A rewrite theory
modulo the built-in subtheory E0 is a topmost rewrite theory R = (Σ,E,R) with:

(a) Σ=(S,≤, F) a signature with built-in subsignature Σ0=(S0, F0) and top sort
State∈S;

(b) E = E0 � B0 � B1, where E0 is a set of Σ0-equations, B0 (resp., B1) are
Σ0-axioms (resp., Σ1-axioms) satisfying the conditions in Lemma 2, E0 =
(Σ0, E0�B0) and E = (Σ,E) are admissible, and the theory inclusion E0 ⊆ E
is protecting;

(c) R is a set of rewrite rules of the form l(−→x1,
−→y) → r(−→x2,

−→y) if φ(−→x3) such that
l, r ∈ TΣ(X)State, l is (S \ S0)-linear, −→xi :−→si with −→si ∈ S∗

0 , for i ∈ {1, 2, 3},−→y :−→s with −→s ∈ (S \ S0)∗, and φ ∈ QFΣ0
(X0), where QFΣ0

(X0) denotes the
set of quantifier-free Σ0-formulas with variables in X0.

Note that no assumption is made on the relationship between the built-in vari-
ables x1 in the left-hand side, x2 in the right-hand side, and x3 in the condition
φ of a rewrite rule. This freedom is key for specifying open systems with a
rewrite theory because, for instance, x2 can have more variables than x1. On
the other hand, due to the presence of conditions φ in the rules of R that are
general quantifier-free formulas, as opposed to a conjunction of atoms, properly
speaking R is more general than a standard rewrite theory as defined in Sect. 2.

The binary rewrite relation induced by a rewrite theory R modulo E0 on
TΣ,State is called the ground rewrite relation of R.

Definition 3 (Ground Rewrite Relation). Let R = (Σ,E,R) be a rewrite
theory modulo E0. The relation →R induced by R on TΣ,State is defined for
t, u ∈ TΣ,State by t →R u iff there is a rule l → r if φ in R and a ground
substitution σ : X −→ TΣ such that (a) t =E lσ, u =E rσ, and (b) TE0 |= φσ.

The ground rewrite relation →R is the topmost rewrite relation induced by
R modulo E on TΣ,State. This relation is defined even when a rule in R has
extra variables in its right-hand side: the rule is then non-deterministic and such
extra variables can be arbitrarily instantiated, provided that the corresponding
instantiation of φ holds. Also, note that non-built-in variables can occur in l, but
φσ is a variable-free formula in QFΣ0

(∅), so that either TE0 |= φσ or TE0 �|= φσ.
A rewrite theory R modulo E0 always has a canonical representation in which

all left-hand sides of rules are S0-linear Σ1-terms.

Definition 4 (Normal Form of a Rewrite Theory Modulo E0). Let R =
(Σ,E,R) be a rewrite theory modulo E0. Its normal form R◦ = (Σ,E,R◦) has
rules:

R◦ = {l◦ → r if φ ∧ φ◦ | (∃l → r if φ ∈ R)〈λ−→x .l◦ ; θ◦ ;φ◦〉 = abstractΣ(l, vars({l, r, φ}))}.

Lemma 3 (Invariance of Ground Rewriting under Normalization). Let
R = (Σ,E,R) be a rewrite theory modulo E0. Then →R = →R◦ .

Rewriting Modulo SMT and Open System Analysis 253

By the properties of the axioms in a rewrite theory modulo built-ins R = (Σ,E0�
B0 � B1) (see Definition 2), B1-matching a term t ∈ TΣ(X0) to a left-hand side
l◦ of a rule in R◦ provides a complete unifiability algorithm for ground B1-
unification of t and l◦.

Lemma 4 (Matching Lemma). Let R = (Σ,E0 � B0 � B1, R) be a rewrite
theory modulo E0. For t ∈ TΣ(X0)State and l◦ a left-hand side of a rule in
R◦ with vars(t) ∩ vars(l◦) = ∅, t �B1 l◦ iff GUB1(t = l◦) �= ∅ holds, where
GUB1(t = l◦) = {σ : X −→ TΣ | tσ =B1 l◦σ}.

4 Symbolic Rewriting Modulo a Built-In Subtheory

This section explains how a rewrite theory R modulo E0 defines a symbolic
rewrite relation on terms in TΣ0(X0)State constrained by formulas in QFΣ0

(X0).
The key idea is that, when E0 is a decidable theory, transitions on the symbolic
terms can be performed by rewriting modulo B1, and satisfiability of the for-
mulas can be handled by an SMT decision procedure. This approach provides
an efficiently executable symbolic method called rewriting modulo SMT that is
sound and complete with respect to the ground rewrite relation of Definition 3
and yields a complete symbolic reachability analysis method. Detailed proofs of
the theorems presented in this section can be found in [34].

Definition 5 (Constrained Terms and their Denotation). Let R = (Σ,E,
R) be a rewrite theory modulo E0. A constrained term is a pair 〈t;ϕ〉 in TΣ

(X0)State × QFΣ0
(X0). Its denotation [[t]]ϕ is defined as [[t]]ϕ = {t′∈TΣ,State |

(∃σ : X0−→TΣ0) t′=tσ ∧ TE0 |= ϕσ}.
The domain of σ in Definition 5 ranges over all built-in variables X0 and con-
sequently [[t]]ϕ ⊆ TΣ,State for any t ∈ TΣ(X0)State, even if vars(t) �⊆ vars(ϕ).
Intuitively, [[t]]ϕ denotes the set of all ground states that are instances of t and
satisfy ϕ.

Before introducing the symbolic rewrite relation on constrained terms induced
by a rewrite theory R modulo E0, auxiliary notation for variable renaming is
required. In the rest of the paper, the expression fresh-vars(Y), for Y ⊆ X
finite, represents the choice of a variable renaming ζ : X −→ X satisfying
Y ∩ ran(ζ) = ∅.

Definition 6 (Symbolic Rewrite Relation). Let R = (Σ,E,R) be a rewrite
theory modulo built-ins E0. The symbolic rewrite relation �R induced by R on
TΣ(X0)State×QFΣ0

(X0) is defined for t, u ∈ TΣ(X0)State and ϕ,ϕ′ ∈ QFΣ0
(X0)

by 〈t;ϕ〉 �R 〈u;ϕ′〉 iff there is a rule l → r if φ in R and a substitution
θ : X −→ TΣ(X) such that (a) t =E lζθ and u = rζθ, (b) E0 (ϕ′ ⇔ ϕ ∧ φζθ),
and (c) ϕ′ is TE0-satisfiable, where ζ = fresh-vars(vars(t, ϕ)).

The symbolic relation �R on constrained terms is defined as a topmost rewrite
relation induced by R modulo E on TΣ(X0) with extra bookkeeping of con-
straints. Note that ϕ′ in 〈t;ϕ〉 �R 〈u;ϕ′〉, when witnessed by l → r if φ and

254 C. Rocha et al.

θ, is semantically equivalent to ϕ ∧ φζθ, in contrast to being syntactically equal.
This extra freedom allows for simplification of constraints if desired. Also, such
a constraint ϕ′ is satisfiable in TE0 , implying that ϕ and φθ are both satisfiable
in TE0 , and therefore [[t]]ϕ �= ∅ �=[[u]]ϕ′ . Note that, up to the choice of the seman-
tically equivalent ϕ′ for which a fixed strategy is assumed, the symbolic relation
�R is deterministic because the renaming of variables in the rules is fixed by
fresh-vars. This is key when executing �R, as explained in Sect. 5.

The important question to ask is whether this symbolic relation soundly and
completely simulates its ground counterpart. The rest of this section affirmatively
answers this question in the case of normalized rewrite theories modulo built-
ins. Thanks to Lemma 3, the conclusion is therefore that �R◦ soundly and
completely simulates →R for any rewrite theory R modulo built-ins E0.

The soundness of �R◦ w.r.t. →R◦ is stated in Theorem 1.

Theorem 1 (Soundness). Let R = (Σ,E,R) be a rewrite theory modulo built-
ins E0, t, u ∈ TΣ(X0)State, and ϕ,ϕ′ ∈ QFΣ0

(X0). If 〈t;ϕ〉 �R◦ 〈u;ϕ′〉, then
tρ →R◦ uρ for all ρ : X0 −→ TΣ0 satisfying TE0 |= ϕ′ρ.

The completeness of �R◦ w.r.t. →R◦ is stated in Theorem 2. Intuitively, com-
pleteness states that a symbolic relation yields an over-approximation of its
ground rewriting counterpart.

Theorem 2 (Completeness). Let R = (Σ,E,R) be a rewrite theory modulo
built-ins E0, t ∈ TΣ(X0)State, u′ ∈ TΣ,State, and ϕ ∈ QFΣ0

(X0). For any ρ :
X0 −→ TΣ0 such that tρ ∈ [[t]]ϕ and tρ →R◦ u′, there exist u ∈ TΣ(X0)State and
ϕ′ ∈ QFΣ0

(X0) such that 〈t;ϕ〉 �R◦ 〈u;ϕ′〉 and u′ ∈ [[u]]ϕ′ .

Although the above soundness and completeness theorems, plus Lemma 3, show
that →R is characterized symbolically by �R◦ , for any rewrite theory R mod-
ulo E0, because of Condition (c) in Definition 6, the relation �R◦ is in general
undecidable. However, �R◦ becomes decidable for built-in theories E0 that can
be extended to a decidable theory E+

0 (typically by adding some inductive con-
sequences) such that

(∀φ ∈ QFΣ0
(X0)) φ is E+

0 -satisfiable ⇐⇒ (∃σ : X0 −→ TΣ0) TE0 |= φσ. (1)

Many decidable theories E+
0 of interest are supported by SMT solvers satis-

fying this requirement. For example, E0 can be the equational theory of natural
number addition and E+

0 Pressburger arithmetic. That is, TE0 is the standard
model of both E0 and E+

0 , and E+
0 -satisfiability coincides with satisfiability in

such a standard model. Under such conditions, satisfiability of ϕ ∧ φζθ (and
therefore of ϕ′) in a step 〈t;ϕ〉 �R◦ 〈u;ϕ′〉 becomes decidable by invoking an
SMT-solver for E0, so that �R◦ can be naturally described as symbolic rewriting
modulo SMT (and modulo B1).

The symbolic reachability problems considered for a rewrite theory R modulo
E0 in this paper, are existential formulas of the form (∃−→z) t →∗ u ∧ ϕ, with −→z
the variables appearing in t, u, and ϕ, t ∈ TΣ(X0)State, u ∈ TΣ(X)State, and
ϕ ∈ QFΣ0

(X0). By abstracting the Σ0-subterms of u, the ground solutions of

Rewriting Modulo SMT and Open System Analysis 255

such a reachability problem are those witnessing the model-theoretic satisfaction
relation

TR |= (∃−→x � −→y) t(−→x) →∗ u◦(−→y) ∧ ϕ1(−→x) ∧ ϕ2(−→x ,−→y), (2)

where TR = (TΣ/E ,→∗
R) is the initial reachability model of R [12], t ∈ TΣ(X0)

and u◦ ∈ TΣ1(X) are S0-linear, vars(t) ⊆ −→x ⊆ X0, and −→y ⊆ X. Thanks to the
soundness and completeness results, Theorem 1, and Theorem 2, the solvability
of Condition (b) for →R can be achieved by reachability analysis with �R◦ , as
stated in Theorem 3.

Theorem 3 (Symbolic Reachability Analysis). Let R = (Σ,E,R) be a
rewrite theory modulo built-ins E0. The model-theoretic satisfaction relation in (2)
has a solution iff there exist a term v ∈ TΣ(X)State, a constraint ϕ′ ∈ QFΣ0

(X0),
and a substitution θ : X −→ TΣ(X), with dom(θ) ⊆ −→y , such that (a) 〈t;ϕ1〉 �∗

R◦

〈v;ϕ′〉, (b) v =B1 u◦θ, and (c) ϕ′ ∧ ϕ2θ is TE0-satisfiable.

In Theorem 3, since dom(θ) ⊆ −→y , and −→x and −→y are disjoint, the variables
of −→x in ϕ2θ are left unchanged. Therefore, ϕ2θ links the requirements for the
variables −→x in the initial state and −→y in the final state according to both ϕ1

and ϕ2. Also note that the inclusion of formula ϕ1 as a conjunct in the formula
in Condition (c) of Theorem 3 is superfluous because 〈t;ϕ1〉 �R◦ 〈v;ϕ′〉 implies
that ϕ1 is a semantic consequence of ϕ′.

5 Reflective Implementation of �R◦

This section discusses the design and implementation of a prototype that offers
support for symbolic rewriting modulo SMT in the Maude system. The prototype
relies on Maude’s meta-level features, that implement rewriting logic’s reflective
capabilities, and on SMT solving for E+

0 integrated in Maude as CVC3’s decision
procedures. The extension of Maude with CVC3 is available from the Matching
Logic Project [35]. In the rest of this section, R = (Σ,E0 � B0 � B1, R) is a
rewrite theory modulo built-ins E0, where E0 satisfies Condition (1) in Sect. 4.
The theory mapping R �→ u(R) removes the constraints from the rules in R.

In Maude, reflection is efficiently supported by its META-LEVEL mod-
ule [14], which provides key functionality for rewriting logic’s universal the-
ory U [15]. In particular, rewrite theories R are meta-represented in U as terms
R of sort Module, and a term t in R is meta-represented in U as a term t of
sort Term. The key idea of the reflective implementation is to reduce symbolic
rewriting with �R◦ to standard rewriting in an associated reflective rewrite the-
ory extending the universal theory U . This is specially important for formal
analysis purposes, because it makes available to �R◦ some formal analysis fea-
tures provided by Maude for rewrite theories such as reachability analysis by
search. This is illustrated by the case study in Sect. 6.

The prototype defines a parametrized functional module SAT(Σ0, E0�B0) of
quantifier-free formulas with Σ0-equations as atoms. In particular, this module
extends (Σ0, E0 � B0) with new sorts Atom and QFFormula, and new constants

256 C. Rocha et al.

var(X0) identifying the variables X0. It has, among other functions, a function
sat : QFFormula −→ Bool such that for φ, sat(φ) = � if φ is E+

0 -satisfiable, and
sat(φ) = ⊥ otherwise.

The process of computing the one-step rewrites of a given constrained term
〈t;ϕ〉 under �R◦ is decomposed into two conceptual steps using Maude’s met-
alevel. First, all possible triples 〈u ; θ ;φ〉 such that t →u(R◦) u is witnessed by
a matching substitution θ and a rule with constraint φ are computed1. Second,
these triples are filtered out by keeping only those for which the quantifier-free
formula ϕ ∧ φθ is E+

0 -satisfiable.
The first step in the process is mechanized by function next, available from

the parametrized module NEXT(R,State,QFFormula) where R, State, and
QFFormula are the metalevel representations, respectively, of the rewrite theory
module R, the state sort State, and the quantifier-free formula sort QFFormula.
Function next uses Maude’s meta-match function and the auxiliary function
new-vars for computing fresh variables (see Sect. 4). In particular, the call next
(((S,≤, F � var(X0)), E0 � B0 � B1, R◦), t, ϕ) computes all possible triples
〈u ; θ′ ;φ′〉 such that t �R◦ u is witnessed by a substitution θ′ and a rule
with constraint φ′. More precisely, such a call first computes a renaming ζ =
fresh-vars(vars(t, ϕ)) and then, for each rule(l◦ → r if φ), it uses the function
meta-match to obtain a substitution θ ∈ meta-match(((S, ≤, F � var(X0)), B0 � B1),

t↓E0/B0�B1 , l◦ζ), and returns 〈u ; θ′ ;φ′〉 with u = rζθ, θ′ = ζθ, and φ′ = φζθ.
Note that by having a deterministic choice of fresh variables (including those in
the constraint), function next is actually a deterministic function.

Using the above-mentioned infrastructure, the parametrized module NEXT
implements the symbolic rewrite relation �R◦ as a standard rewrite relation in
the theory NEXT, extending META-LEVEL, by means of the following condi-
tional rewrite rule:

ceq 〈X:State;ϕ:QFFormula〉 → 〈Y :State;ϕ′:QFFormula〉
if 〈Y ; θ ;φ〉 S := next(R•,X, ϕ) ∧ sat(ϕ ∧ φ) = � ∧ ϕ′ := ϕ ∧ φ

where R• = ((S,≤, F � var(X0)), B,R◦). Therefore, a call to an external SMT
solver is just an invocation of the function sat in SAT(Σ0, E0 � B0) in order to
achieve the above functionality more efficiently and in a built-in way.

Given that the symbolic rewrite relation �R◦ is encoded as a standard
rewrite relation, symbolic search can be directly implemented in Maude by its
search command. In particular, for terms t, u◦, constraints ϕ1, ϕ2, F a variable
of sort QFFormula, the following invocation solves the inductive reachability
problem in Condition (2):

search 〈t;ϕ1〉 →∗ 〈u◦;F 〉 such that sat(F ∧ ϕ2).

1 Note that in u(R◦) variables in X0 are interpreted as constants. Therefore, the
number of matching substitutions θ thus obtained is finite.

Rewriting Modulo SMT and Open System Analysis 257

6 Analysis of the CASH Algorithm

This section presents an example, developed jointly with Kyungmin Bae, of
a real-time system that can be symbolically analyzed in the prototype tool
described in Sect. 5. The analysis applies model checking based on rewriting
modulo SMT. Some details are omitted. Full details and the prototype tool can
be found in [9].

The example involves the symbolic analysis of the CASH scheduling algo-
rithm [13], which attempts to maximize system performance while guaranteeing
that critical tasks are executed in a timely manner. This is achieved by main-
taining a queue of unused execution budgets that can be reused by other jobs to
maximize processor utilization. CASH poses non-trivial modeling and analysis
challenges because it contains an unbounded queue. Unbounded data types can-
not be modeled in timed-automata formalisms, such as those of UPPAAL [22]
or Kronos [39], which assume a finite discrete state.

The CASH algorithm was specified and analyzed in Real-Time Maude by
explicit-state model checking in an earlier paper by Ölveczky and Caccamo [30],
which showed that, under certain variations on both the assumptions and the
design of the protocol, it could miss deadlines. Explicit-state model checking has
intrinsic limitations which the new analysis by rewriting modulo SMT presented
below overcomes. The CASH algorithm is parametrized by: (i) the number N of
servers in the system, and (ii) the values of a maximum budget bi and period pi,
for each server 1 ≤ i ≤ N . Even if N is fixed, there are infinitely many initial
states for N servers, since the maximum budgets bi and periods pi range over
the natural numbers. Therefore, explicit state model checking cannot perform
a full analysis. If a counterexample for N servers exists, it may be found by
explicit-state model checking for some chosen initial states, as done in [31], but
it could be missed if the wrong initial states are chosen.

Rewriting modulo SMT is useful for symbolically analyzing infinite-state sys-
tems like CASH. Infinite sets of states are symbolically described by terms which
may involve user-definable data structures such as queues, but whose only vari-
ables range over decidable types for which an SMT solving procedure is available.
For the CASH algorithm, the built-in data types used are the Booleans (sort
iBool) and the integers (sort iInt). Integer built-in terms are used to model
discrete time. Boolean built-in terms are used to impose constraints on integers.

A symbolic state is a pair {iB,Cnf} of sort Sys consisting of a Boolean con-
straint iB, with and denoted ^, and a multiset configuration of objects Cnf,
with multiset union denoted by juxtaposition, where each object is a record like-
structure with an object identifier, a class name, and a set of attribute-value
pairs. In each object configuration there is a global object (of class global) that
models the time of the system (with attribute name time), the priority queue
(with attribute name cq), the availability (with attribute name available),
and a deadline missed flag (with attribute name deadline-miss). A configu-
ration can also contain any number of server objects (of class server). Each
server object models the maximum budget (the maximum time within which
a given job will be finished, with attribute name maxBudget), period (with

258 C. Rocha et al.

attribute name period), internal state (with attribute name state), time exe-
cuted (with attribute name timeExecuted), budget time used (with attribute
name usedOfBudget), and time to deadline (with attribute name timeTo
Deadline). The symbolic transitions of CASH are specified by 14 conditional
rewrite rules whose conditions specify constraints solvable by the SMT decision
procedure. For example, rule [deadlineMiss] below models the detection of a
deadline miss for a server with non-zero maximum budget.

That is, the protocol misses a deadline for server S whenever the value
of attribute maxBudget exceeds the addition of values for usedOfBudget and
timeToDeadline (i.e., iNZT > iT + iT’), so that the allocated execution time
cannot be exhausted before the server’s deadline.

The goal is to verify symbolically the existence of missed deadlines of the
CASH algorithm for the infinite set of initial configurations containing two server
objects s0 and s1 with maximum budgets b0 and b1 and periods p0 and p1 as
unspecified natural numbers, and such that each server’s maximum budget is
strictly smaller than its period (i.e., 0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1). This infinite set
of initial states is specified symbolically by the equational definition (not shown)
of term symbinit. Maude’s search command can then be used to symbolically
check if there is a reachable state for any ground instance of symbinit that
misses the deadline:

A counterexample is found at (modeling) time two, after exploring 233 sym-
bolic states in less than 3 seconds. By using a satisfiability witness of the con-
straint iB computed by the search command, a concrete counterexample is found
by exploring only 54 ground states. This result compares favorably, in both
time and computational resources, with the ground counterexample found by
explicit-state model checking in [30], where more that 52,000 concrete states
were explored before finding a counterexample.

Rewriting Modulo SMT and Open System Analysis 259

7 Related Work and Concluding Remarks

The idea of combining term rewriting/narrowing techniques and constrained
data structures is an active area of research, specially since the advent of modern
theorem provers with highly efficient decision procedures in the form of SMT
solvers. The overall aim of these techniques is to advance applicability of methods
in symbolic verification where the constraints are expressed in some logic that
has an efficient decision procedure. In particular, the work presented here has
strong similarities with the narrowing-based symbolic analysis of rewrite theories
initiated in [26] and extended in [8]. The main difference is the replacement of
narrowing by SMT solving and the decidability advantages of SMT for constraint
solving.

M. Ayala-Rincón [5] investigates, in the setting of many-sorted equational
logic, the expressiveness of conditional equational systems whose conditions may
use built-in predicates. This class of equational theories is important because the
combination of equational and built-in premises yield a type of clauses which is
more expressive than purely conditional equations. Rewriting notions like con-
fluence, termination, and critical pairs are also investigated. S. Falke and D.
Kapur [16] studied the problem of termination of rewriting with constrained
built-ins. In particular, they extended the dependency pairs framework to han-
dle termination of equational specifications with semantic data structures and
evaluation strategies in the Maude functional sublanguage. The same authors
used the idea of combining rewriting induction and linear arithmetic over con-
strained terms [17]. Their aim is to obtain equational decision procedures that
can handle semantic data types represented by the constrained built-ins. H.
Kirchner and C. Ringeissen proposed the notion of constrained rewriting and
have used it by combining symbolic constraint solvers [20]. The main differ-
ence between their work and rewriting modulo SMT presented in this paper
is that the former uses narrowing for symbolic execution, both at the sym-
bolic ‘pattern matching’ and the constraint solving levels. In contrast, rewriting
modulo SMT solves the symbolic pattern matching task by rewriting while con-
straint solving is delegated to an SMT decision procedure. More recently, C.
Kop and N. Nishida [21] have proposed a way to unify the ideas regarding equa-
tional rewriting with logical constraints. More generally, while the approaches
in [5,16,17,20,21] address symbolic reasoning for equational theorem proving
purposes, none of them addresses the kind of non-deterministic rewrite rules,
which are needed for open system modeling. More recently, A. Arusoaie et al. [4]
have proposed a language-independent symbolic execution framework, within the
K framework [23], for languages endowed with a formal operational semantics
based on term rewriting. There, the built-in subtheories are the datatypes of a
programming language and symbolic analysis is performed on constrained terms
(called “patterns”); unification is also implemented by matching for a restricted
class of rewrite rules and uses SMT solvers to check constraints.

This paper has presented rewrite theories modulo built-ins and has shown
how they can be used for symbolically modeling and analyzing concurrent open
systems, where non-deterministic values from the environment can be represented

260 C. Rocha et al.

by built-in terms [33,34]. In particular, the main contributions of this paper can
be summarized as follows: (1) it presents rewriting modulo SMT as a new sym-
bolic technique combining the powers of rewriting, SMT solving, and model
checking; (2) this combined power can be applied to model and analyze sys-
tems outside the scope of each individual technique; (3) in particular, it is ide-
ally suited to model and analyze the challenging case of open systems; and
(4) because of its reflective reduction to standard rewriting, current algorithms
and tools for model checking closed systems can be reused in this new symbolic
setting without requiring any changes to their implementation.

Under reasonable assumptions, including decidability of E+
0 , a rewrite theory

modulo is executable by term rewriting modulo SMT. This feature makes it
possible to use, for symbolic analysis, state-of-the-art tools already available for
Maude, such as its space search commands, with no change whatsoever required
to use such tools. We have proved that the symbolic rewrite relation is sound
and complete with respect to its ground counterpart, have presented an overview
of the prototype that offers support for rewriting modulo SMT in Maude, and
have presented a case study on the symbolic analysis of the CASH scheduling
algorithm illustrating the use of these techniques.

Future work on a mature implementation and on extending the idea of rewrit-
ing modulo SMT with other symbolic constraint solving techniques such as nar-
rowing modulo should be pursued. Also, the extension to symbolic LTL model
checking, together with state space reduction techniques, should be investigated.
The ideas presented here extend results in [33] and have been successfully applied
to the symbolic analysis of NASA’s PLEXIL language to program open cyber-
physical systems [33]. Future applications to PLEXIL and other languages should
also be pursued.

Acknowledgments. The authors would like to thank the anonymous referees for
their comments that helped to improve the paper. This work was partially supported
by NSF Grant CNS 13-19109. The first author would like to thank the National Insti-
tute of Aerospace for a short visit supported by the Assurance of Flight Critical Sys-
tem’s project of NASA’s Aviation Safety Program at Langley Research Center under
Research Cooperative Agreement No. NNL09AA00A.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 84–99. Springer, Heidelberg (2009)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

4. Arusoaie, A., Lucanu, D., Rusu, V.: A generic framework for symbolic execution.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
281–301. Springer, Heidelberg (2013)

Rewriting Modulo SMT and Open System Analysis 261

5. Ayala-Rincón, M.: Expressiveness of conditional equational systems with built-in
predicates. Ph.D. thesis, Universität Kaiserslauten (1993)

6. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

7. Baader, F., Schulz, K.: Unification in the union of disjoint equational theories:
combining decision procedures. J. Symb. Comput. 21, 211–243 (1996)

8. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state
systems using narrowing. In: van Raamsdonk, F. (ed.) RTA. LIPIcs, vol. 21, pp.
81–96. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Wadern (2013)

9. Bae, K., Rocha, C.: A note on symbolic reachability analysis modulo integer con-
straints for the CASH algorithm (2012). http://maude.cs.uiuc.edu/cases/scash

10. Bonacina, M.P., Lynch, C., de Moura, L.M.: On deciding satisfiability by theorem
proving with speculative inferences. J. Autom. Reason. 47(2), 161–189 (2011)

11. Boudet, A.: Combining unification algorithms. J. Symb. Comp. 16(6), 597–626
(1993)

12. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

13. Caccamo, M., Buttazzo, G.C., Sha, L.: Capacity sharing for overrun control.
In: IEEE Real-Time Systems Symposium, pp. 295–304. IEEE Computer Society
(2000)

14. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

15. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, horn logic with equality, and rewriting logic. Theor.
Comput. Sci. 373(1–2), 70–91 (2007)

16. Falke, S., Kapur, D.: Operational termination of conditional rewriting with built-in
numbers and semantic data structures. ENTCS 237, 75–90 (2009)

17. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
241–255. Springer, Heidelberg (2012)

18. Ganai, M., Gupta, A.: Accelerating high-level bounded model checking. In: ICCAD,
pp. 794–801. ACM (2006)

19. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992)

20. Kirchner, H., Ringeissen, C.: Combining symbolic constraint solvers on algebraic
domains. J. Symb. Comput. 18(2), 113–155 (1994)

21. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 343–358.
Springer, Heidelberg (2013)

22. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1–2), 134–152
(1997)

23. Lucanu, D., Şerbănuţă, T.F., Roşu, G.: K framework distilled. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)

24. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

25. Meseguer, J.: Membership algebra as a logical framework for equational speci-
fication. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

http://maude.cs.uiuc.edu/cases/scash

262 C. Rocha et al.

26. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. High.-Order Symb. Comput.
20(1–2), 123–160 (2007)

27. Milicevic, A., Kugler, H.: Model checking using SMT and theory of lists. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 282–297. Springer, Heidelberg (2011)

28. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

29. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(t). J.
ACM 53(6), 937–977 (2006)

30. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in real-time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006.
LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006)

31. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude. High.-
Order Symb. Comput. 20(1–2), 161–196 (2007)

32. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) 11th International Conference on Automated Deduction (CADE).
LNCS (LNAI), vol. 607, pp. 748–752. Springer, Saratoga, NY (1992)

33. Rocha, C.: Symbolic reachability analysis for rewrite theories. Ph.D. thesis, Uni-
versity of Illinois at Urbana-Champaign (2012)

34. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT. Technical Memoran-
dum NASA/TM-2013-218033, NASA, Langley Research Center, Hampton, VA,
23681–2199, USA, August 2013

35. Roşu, G., Ştefănescu, A.: Matching logic: a new program verification approach
(NIER Track). In: ICSE’11: Proceedings of the 30th International Conference on
Software Engineering, pp. 868–871. ACM (2011)

36. Veanes, M., Bjørner, N.S., Raschke, A.: An SMT approach to bounded reachability
analysis of model programs. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih,
K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 53–68. Springer, Heidelberg (2008)

37. Viry, P.: Equational rules for rewriting logic. TCS 285, 487–517 (2002)
38. Walter, D., Little, S., Myers, C.J.: Bounded model checking of analog and mixed-

signal circuits using an SMT solver. In: Namjoshi, K.S., Yoneda, T., Higashino, T.,
Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 66–81. Springer, Heidelberg
(2007)

39. Yovine, S.: Kronos: a verification tool for real-time systems. STTT 1(1–2), 123–133
(1997)

Formal Specification of Button-Related
Fault-Tolerance Micropatterns

Mu Sun(B) and José Meseguer

University of Illinois at Urbana-Champaign, Champaign, IL, USA
{musun,meseguer}@illinois.edu

Abstract. Fault tolerance has been a major concern in the design of
computing platforms. However, currently, fault tolerance has been done
mostly with just heuristics, high level probabilistic analysis and extensive
testing. In this work, we explore how we can use formal patterns to
achieve fault-tolerance designs and methods. In particular, we look at
faults that occur in mechanical button interfaces such as button bounce,
button stuck, and phantom button faults. Our primary goal is the safety
of such interfaces for medical devices [7], but the methods are more widely
applicable. We formally describe corresponding patterns to address these
faults including button debouncing, button stuck detection, and phantom
press filtering. We prove stuttering-bisimulation results for some patterns
showing their fault-masking capabilities. Furthermore, for patterns where
fault-masking is not possible, we prove fault-detection properties. We also
instantiate these patterns to a simple instance of a button-press counter
and perform execution and model checking as further validation.

1 Introduction

Idealized abstractions of computing systems allow us to build more complex
applications and for more complex scenarios. One can think in terms of binary
values instead of continuous voltages, and in terms of objects and messages
instead of assembly-level instructions. Given the complexities of the real world,
it is remarkable how accurate these abstractions can be. However, sometimes the
real world behavior violates the expectation of idealized models and we refer to
this type of behavior as faults.

In order to maintain the behavior of ideal models in the presence of faults,
fault tolerance techniques are essential. We would like faults to be completely
contained within the lower levels of design and never be exposed to the upper
layers; this is the notion of fault masking. However, there are many cases where
fault masking is impossible. In these cases, faults will inevitably be exposed to
the upper layers, either by explicit fault detection or as behavioral anomalies
such as extra delays and nondeterminism.

In this paper, we explore fault-tolerance micropatterns for button related
faults including button bounce, phantom button presses, and stuck buttons.

Research partially supported by NSF Grant 13-19109.

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 263–279, 2014.
DOI: 10.1007/978-3-319-12904-4 15

264 M. Sun and J. Meseguer

These micropatterns provide specific levels of safety for medical device interfaces
in the presence of faults [7], and can be likewise applied to devices in other areas.
All of these faults and fault-tolerance patterns are quite well known, but our
contribution is in the formalization of these fault-tolerance models including:

(1) defining a model for button interfaces;
(2) modeling faults as a relation from ideal environments to faulty environments;
(3) describing fault tolerance methods as a design transformation pattern using

parameterized modules;
(4) proving fault-tolerance results about our models using appropriate bisimu-

lation relations; and
(5) validating of our models with execution and model checking.

Since we are dealing with faults on the interface, we mainly focus on faults
in the environment. There are also other classes of faults such as internal faults
(e.g. bit flips, memory corruption, computation errors). However, environmental
faults and internal faults are generally handled orthogonally in the design of a
system, so we focus only on environmental faults. The fault tolerance patterns
that we describe in this paper all have a similar structure that is captured in
Fig. 1. All fault tolerance designs have a goal, an ideal abstraction that it is trying
to provide (left-hand side of Fig. 1). An ideal environment, and the ideal design
will give the correct behavior of the system. However, the challenge comes when
we have a faulty environment (right-hand side of Fig. 1). Just using an ideal
design with a faulty environment will most likely lead to undesirable deviations
in the behavior of the system. The goal then is to provide a design transformation
for the system along with the fault model that will have behavior similar to the
ideal. The notion of correspondence in behavior is an important one. In this
paper, this correspondence is expressed as a bisimulation.

Fig. 1. Fault Modeling

The rest of the paper is organized as follows. Section 2 covers the basics of
rewriting logic and the subset of Maude that we use to describe our models.

Formal Specification of Button-Related Fault-Tolerance Micropatterns 265

Section 3 describes how we model buttons in order to describe button-related
faults. Sections 4, 5, and 6 describe in detail our patterns to handel button
bounce, phantom button presses, and stuck buttons respectively. We conclude
in Sect. 7 with a summary and a discussion of potential future work.

2 Background on Parameterized Formal Specifications
and Real-Time Maude

We use the Maude rewriting logic language [2] to define formal specifications for
our fault-tolerance wrappers for medical systems. We present some of the basic
concepts behind rewriting logic, its real-time extensions, and parametrization.

2.1 Membership Equational Logic and Rewriting Logic

Membership equational logic (MEL) [5] describes the most general form of the
equational components of a Maude rewrite theory. These are called functional
modules in Maude [2].

A MEL signature is a tuple (K,F, S) where S is a set of sorts (i.e. types),
K is a set of kinds (i.e. super types or error types for data), and F is a set of
typed function symbols (and constants). A MEL theory is a pair (Σ, E) where
Σ is a MEL signature, and E a set of sentences (equations and memberships)
expressing (possibly conditional) membership or equality constraints. If an MEL
theory is convergent (satisfies properties of confluence, termination, and sort-
decreasingness), Maude provides efficient execution of its initial model semantics.

Rewriting logic [1] describes the most general form of modules defined in
Maude. A rewrite theory in Maude is defined in the form of a tuple: (Σ, E, φ,R),
where (Σ, E) is an underlying MEL theory, φ defines the frozen positions of oper-
ators (positions where no rewrites are allowed to occur below), and R is a set of
rewrite sentences (possibly conditional on equality and membership sentences).
If a rewrite theory satisfies the properties of coherence, and the underlying MEL
theory of a rewrite theory is convergent, then Maude provides efficient execu-
tion of the initial model semantics for the rewrite theory. This includes efficient
execution for simulation, searching and LTL model checking.

2.2 Full Maude and Real-Time Maude

Full Maude [3] is a Maude interpreter written in Maude, which in addition to
the Core Maude constructs provides syntactic constructs such as object oriented
modules. Object oriented modules implicitly add in sorts Object and Msg. Fur-
thermore, OO-modules add a sort called Configuration which consists of a
multiset of terms of sort Object or Msg. Objects are represented as records:

< objectID : classID | Attribute 1 : Value 1, ... Attribute n : Value n >

266 M. Sun and J. Meseguer

Rewriting logic rules are then used to describe state transitions of objects
based on consumption of messages. For example, the following rule expresses
the fact that a surgical-laser object consumes a message to set the power to 50
Watts:

Real-time Maude [6] is a real-time extension for Maude developed on top
of Full Maude. It adds syntactic constructs for defining timed modules. Timed
modules automatically import the TIME module, which defines the sort Time
(which can be instantiated as discrete or continuous) along with various arith-
metic and comparison operations on Time. Timed modules also provide a sort
System which encapsulates a Configuration and implicitly associates with it
a time stamp of sort Time. After defining a time-advancing strategy, Real-time
Maude provides timed execution (trew), timed search (tsearch), which per-
forms search on a term of sort System based on the time advancement strategy,
and timed and untimed LTL model checking commands.

Real-time Maude provides useful constructs for specifying real-time systems,
including basic semantics of time and time advancement. We use the model of
linear time provided by Real-Time Maude. For time advancement, we have used
the conventional best practice where only one timed rewrite rule is used and is
fully determined by the operators tick and mte [6].

The tick operator advances time over a configuration by some time duration.
For example, with timer (and time units being seconds): tick(timer(10), 3) =
timer(7). That is, a timer with 10 sec remaining ticked by 3 sec will become a
timer with 7 sec remaining.

The mte operator computes the maximum time that can elapse in a system
before an interesting event occurs. Interesting events include all state transi-
tions in which messages are generated in a configuration. Again, with the timer
example, we assume that components only react when the timers expire, so the
maximum time elapsable for a timer would be the time it takes the timer to
expire: mte(timer(10)) = 10.

Real-Time Maude also includes models of time that have infinity, INF, as
a possible time value. Although, INF will never be used to advance time in
any system, it is useful to have INF to describe unbounded time. For example,
mte(stableSys) = INF.

2.3 Parameterized Modules

Modules in Maude have an initial model semantics. Maude also supports theories
which have a loose semantics (that is, not just the initial mode, but all the models
of the theory are allowed). Theories can be instantiated by views (i.e., theory
interpretations) to other theories or modules. In particular, a theory can be
instantiated by a view to any module whose initial model satisfies all equational,
membership, and rewrite sentences of the theory.

Formal Specification of Button-Related Fault-Tolerance Micropatterns 267

Parametrized modules [2] are modules which take theories as input parame-
ters and define operations (parametrically) in terms of the input theory. Para-
metrized modules are instantiated by providing views to concrete modules for
the corresponding input theories. Once instantiated, the parametrized module
is given the free extension semantics for the initial models of the targets of the
input views. Core Maude, Full Maude, and Real-Time Maude all support para-
meterized modules. For our pattern, we will exploit in particular the Real-Time
Maude parameterization mechanisms.

3 Modeling Buttons

Before we describe specific patterns, we should describe the problem domain
that we are addressing. Many cyber-physical systems, including many medical
devices, use buttons as an input interface. We need a general abstraction that
can capture the important details of any button interaction with the system.
This abstraction must be detailed enough to model faulty button behavior.

For the cases that we are considering, it is sufficient to use a 2-state but-
ton abstraction. A button model can be in one of two states, either pressed
or not pressed, at any instant in time. Button behavior is then a function
buttonstate : Time → {on, off }. Here, Time is some ideal continuous physi-
cal time, which can be represented by the positive real numbers R≥0. Time
can also be reasoned about from the perspective of a system clock that ticks
(advances time) in discrete intervals, in which case we can model it using the
natural numbers N. It is desirable to prove results about our system using con-
tinuous time as it is more general. However, some of our proved results later use
a discrete time model as it allows for cleaner proofs using induction and is still
general enough to cover the behaviors of systems running on a system clock.

Realistic button press behaviors will have additional constraints such as but-
tons cannot toggle faster than a certain frequency, and we can also make some
mathematical simplifications such as making all the button press intervals left-
closed [7]. With these assumptions, we can model continuous button behavior
with a discrete timed model, since in each finite interval of time, given a but-
ton function, b, there are only a finite number of press and release events in
b. For example, if the button behavior is b(t) = on for t ∈ [0, 1) ∪ [2, 5) and
b(t) = off otherwise. This can be represented discretely without any loss of
information as a list of pairs describing when a button gets pressed and released,
e.g., (press, 0).(release, 1).(press, 2).(release, 5). We can easily specify this type
of list structure in Maude with its expressive typing system [7].

3.1 Button Behavior Semantics in a System

The behavior of a button we have just defined is a purely mathematical one. By
itself, it has no behavior semantics. To capture the behavior of the list of button
press events over time, we simply convert the list of press and release events over
time into a set of delayed messages:

268 M. Sun and J. Meseguer

op to-msgs : PressReleaseList Oid -> Configuration .
msgs press release : Oid -> Msg .

The to-msgs operator homomorphically maps each element of the list to a
message.

eq to-msgs(nil, O) = none .
eq to-msgs(L press(T), O) = to-msgs(L,O) delay(press(O), t(T)) .
eq to-msgs(L release(T), O) = to-msgs(L,O) delay(release(O), t(T)) .

The object reacting to this button press event will then receive each button-
related message at the appropriate time according to the semantics of the delay
operator.

4 A Pattern to Address Button Bounce Faults

With our current model of the environment (button presses as delayed messages),
we are now ready to discuss how to model faults. Faults essentially add additional
behavior to the environment or system. In general, we would like to capture a
fault in full generality in order to check all cases, but we also need to make
enough assumptions to restrict in a realistic way the faulty behavior. Otherwise,
it may become impossible to correctly design a fault-tolerant system.

4.1 Button Bounce

When a button is pressed, the button may “bounce.” A button bounce is a
mechanical phenomenon that occurs due to oscillations when a button is pressed.
The contact voltages of the button may oscillate between high and low thresholds
multiple times before stabilizing. This results in multiple erroneous button press
events for only one intended button press event. Since oscillatory phenomena are
usually dampened pretty quickly, there is a short time window, Tmax

bounce, within
which a button may bounce after it is pressed.

Of course, the basic model of button bouncing behavior can be described in
the continuous time model as a relation Fbounce ⊆ Ivalid×Ivalid (implicitly para-
meterized by a maximum bounce time Tmax

bounce) where (b, bf) ∈ Fbounce means
that given an ideal input b, the faulty input bf could result from the button
bouncing fault [7]. However, with proper assumptions on the spacing of events
to avoid zeno behavior, we can use Fbounce to define a corresponding relation
on the discrete list-like representation of button press and release events. This
is represented as the binary predicate bounce-fault. The first argument is the
ideal input, and the second argument is the nonideal faulty input. The predi-
cate returns true iff the faulty model is a possible result of button bounce faults
applied to the ideal model.

op bounce-fault : Input Input -> Bool .
eq bounce-fault(nil,nil) = true .

If the last press events match, then we can remove it and look for earlier
faults.

Formal Specification of Button-Related Fault-Tolerance Micropatterns 269

eq bounce-fault(I press(T), I’ press(T)) = bounce-fault(I,I’) .

If a press event occurs in the faulty model, which is later than the corre-
sponding press event in the ideal model, then it is possibly a bounce event if it
is within the Tmax

bounce duration, bounce-duration. We can remove this event and
analyze the earlier times for more faults.

ceq bounce-fault(I press(T), I’ press(T’))
= bounce-fault(I press(T), I’)
if T’ le (T plus bounce-duration) /\ T’ gt T .

Release events should match the ideal ones, but there might be extraneous
release events generated by the bounce fault, which we can just remove and
reason about the corresponding press event earlier (using the equations above).
Anything that does not match the patterns described above could not have been
generated by a bounce fault.

eq bounce-fault(I release(T),I’ release(T)) = bounce-fault(I,I’) .
ceq bounce-fault(I press(T), I’ release(T’)) = bounce-fault(I
press(T),I’)
if T lt T’ .
eq bounce-fault(I,I’) = false [owise] .

The current fault model is purely declarative. It is a binary relation that
can be used to check whether one button input is a faulty version of another.
However, this gives no means for generating a faulty model directly from a
nonfaulty one. In order to have some degree of completeness in model checking
analysis later, we need to have a more executable fault model; one that specifies
faults as transitions and not just by a predicate. Of course, if we choose Time
to be the real numbers, we have no hope of obtaining a set of possible faults
manageable for execution purposes as there are uncountably many. However, for
most practical purposes, we can obtain a fairly complete analysis just by using
discrete time, mostly because systems operate based on discrete clocks anyway.
Assuming a natural number model of time, a more executable fault model can
be defined [7].

4.2 A Button Debouncer Pattern

Finally, we come to the most important part of our specification, namely, a
formal pattern for correctly handling faulty button bounce behavior. Figure 2
shows the intuitive structure of the button debouncer. Essentially, all button
inputs are filtered through a wrapper, and by properly timing button press
events, we can ignore exactly the faulty bounced button press events (assuming
proper spacing between normal button press events).

We must first describe the input theory oth DEBOUNCED that is required for
a button debouncer. This includes the original class that the button debouncer
will modify, and also parameters of the system and of the fault in order to
adjust the pattern’s behavioral parameters accordingly. The parameters of the
theory DEBOUNCED can be intuitively described as follows. The class Wrapped is

270 M. Sun and J. Meseguer

Fig. 2. The Button Debouncer Pattern

the class for the internal object that is wrapped by the button debouncer. An
operator |dest| needs to be provided in order to know whether a message should
be forwarded outside of the wrapped configuration. The constant |t-bounce|
should be mapped to an appropriately measured constant Tmax

bounce. Furthermore,
another constant t-space is required to define the minimal time spacing between
two intentional button presses. The message press is of course the special button
press message that we want to debounce. We also add an equation in the theory
specifying that time should not be allowed to advance when a press message has
not yet been handled.

class |Wrapped| .
op |dest| : Msg -> Oid .
op |t-bounce| : -> Time .
op |t-space| : -> Time .
eq |t-bounce| lt |t-space| = true .
msg |press| : Oid -> Msg .
eq mte(|press|(O:Oid)) = zero .

Now, the actual pattern itself is quite straightforward. The debouncer pattern
is a wrapper enclosing an object that modifies its behavior by filtering messages.
Besides the internal configuration, it also adds a timer attribute, which is needed
to filter the debouncing actions correctly. Note that we use parameter |O| as
the parameter label of the theory DEBOUNCED.

(tomod DEBOUNCER{|O| :: DEBOUNCED} is
pr RT-COMP .
pr DELAY-MSG .

class !Debouncer{|O|} |
inside : NEConfiguration,
timer : Timer .

The tick and mte equations are the intuitive ones, where we must tick the
internal configuration according to its defined semantics as well as the timer
stored in the wrapper object.

eq tick(< O : !Debouncer{|O|} | inside : C, timer : TM >, T)
= < O : !Debouncer{|O|} | inside : tick(C, T), timer : tick(TM, T) > .

eq mte(< O : !Debouncer{|O|} | inside : C, timer : TM >)
= minimum(mte(C), mte(TM)) .

Finally, we have the behavioral rules for the object. For receiving messages,
all messages that are not a button press message are forwarded to the internal

Formal Specification of Button-Related Fault-Tolerance Micropatterns 271

configuration. Also, all messages output from the internal object are forwarded
to the external wrapper:

crl [forward-in] : IM < O : !Debouncer{|O|} | inside : C >
=> < O : !Debouncer{|O|} | inside : IM C >
if |dest|(IM) == O /\ IM =/= |press|(O) .

crl [forward-out] : < O : !Debouncer{|O|} | inside : OM C >
=> < O : !Debouncer{|O|} | inside : C > OM
if |dest|(OM) =/= O .

When a button press message is received, the behavior will differ based on
the timer. If the timer is not set, then we have an initial button press event,
which is immediately forwarded to the internal configuration. Furthermore, the
timer is set for the maximum bounce duration.

rl [set-timer] : |press|(O) < O : !Debouncer{|O|} | timer : no-timer, inside : C >
=> < O : !Debouncer{|O|} | timer : t(|t-space|), inside : |press|(O) C > .

If the timer is set, then the system is within a bounce duration, and the
incoming button press event is ignored.

crl [ignore-press] : |press|(O) < O : !Debouncer{|O|} | timer : TM, inside : C >
=> < O : !Debouncer{|O|} | inside : C >
if TM =/= timer0 /\ TM =/= no-timer .

Finally, when the timer expires, the timer is removed. This is a model-specific
construct that allows the time to advance.

crl [reset-timer] : < O : !Debouncer{|O|} | timer : TM >
=> < O : !Debouncer{|O|} | timer : no-timer >
if TM == timer0 .

endtom)

4.3 Proof of Correctness of the Debouncer Pattern

The button debouncer should essentially mitigate button bounce faults, but we
must make clear this notion and what it means. We essentially need to define
a correspondence between ideal behavior and the debounce pattern behavior
under a faulty input. We must define the two transition systems of interest and
express their correspondence. First, we define appropriate projection operations.
We need a message filter and a wrapper remover. πnf only projects the nonfaulty
messages. πw projects the object on the inside of the wrapper. In Maude, they
can be defined as follows:

vars C C’ : NEConfiguration .
eq pi-nf(C) = pi-nonpress(C) pi-press(C, get-time(C)) .

eq pi-w(< I:Oid : PressDebouncer | inside : C >) = C .
eq pi-w(C C’) = pi-w(C) pi-w(C’) .
eq pi-w(C) = C [owise] .

Here all these operators are frozen. pi-nonpress projects all the components
of the configuration that are not press messages, and pi-press filters all press
messages that are not faulty using the defined times T-bounce and T-space,
and also the timer set on the debounce wrapper to filter initial times.

272 M. Sun and J. Meseguer

Definition 1. States of the transition system Sideal are system configurations
with a single instance of a wrapped object, and such that the input button press
messages are spaced by at least the assumed minimal time spacing.

States of the transition system Swrapped are system configurations with a
single instance of a wrapped object in a wrapper object, and such that input
button press messages are related to an ideal button press configuration by the
button press fault Fbounce.

We define a relation H ⊆ Sideal × Swrapped by the equivalence siHsf iff
πnf (πw((sf))) = si and time(sf) = time(si).

We now come to the theorem that shows that H defines a bisimulation between
an ideal system and a faulty system with our pattern applied. Since H preserves
all the states of the object, this theorem essentially states that our pattern fully
masks button bounce faults for our model of input (with proper spacing between
successive button presses). The full proof of the theorem can be found in [7].

Theorem 1. The relation H is a well-founded bisimulation, and thus H defines
a stuttering bisimulation between Sideal and Swrapped when considering natural
number time.

Note that if we do not have natural number time, then it is not guaranteed
that we have a bisimulation. A simple counter-example would be one where a
button bounces an infinite number of times in a finite time period. Of course,
this is due to Zeno behavior. In order to remove Zeno behavior, we can make
the assumption that all events are spaced at least Δt apart. This means that if
we convert all times t into the natural number �t/Δt�, then the relation is still
well founded, and the bisimulation result would still hold.

Notice that any atomic proposition AP defined on a state si can be lifted to
a property of sf by labelling sf according to πnf (πw((sf))).

In addition to proving these theorems, we have also performed some model
checking for simple instantiations of this pattern as an extra level of valida-
tion [7].

5 A Pattern to Address Phantom Faults

5.1 Phantom Faults

Slight disturbances in the environment (e.g. EMI, moving parts, etc.) can lead
to a button being unintentionally pressed for a very short time.

The domain model is exactly the same as that for button bounce. We consider
button inputs that we model as discrete messages, and an object that reacts to
button inputs by consuming these messages.

A phantom button fault is a relation Fphantom ⊆ Ivalid × Ivalid (implic-
itly parameterized by a phantom press duration Tphantom) where faulty button
presses of very short durations may occur. More precisely, (b, bf) ∈ Fphantom iff

Formal Specification of Button-Related Fault-Tolerance Micropatterns 273

1. b(t) = 1 =⇒ bf (t) = 1 (an intentional button press is always registered)
2. if bf (t) = 1 and b(t) = 0, then t − init(bf , t) < Tphantom (the duration of all

phantom presses are bounded by Tphantom)

We can similarly construct the discrete definition of the Fphantom relation and
also the executable fault generation definitions when we are working in discrete
time.

5.2 Dephantom Pattern

Thepattern for handling phantombutton events first requires describing the neces-
sary parameters to fully define its behavior in the parameter theory PHANTOMABLE.

Like the button debouncer pattern, the dephantomizer pattern is parame-
terized, in this case by the PHANTOMABLE input theory that describes the nature
of the phantom button press fault and the object which will be wrapped by the
pattern. This includes a class |Wrapped| which specifies which object is sub-
ject to the phantom press fault. The |dest| operator which is again used to
find which messages to forward to the outside configuration. The |press| and
|release| messages which describe the actual button press events subject to
phantom press faults.

(oth PHANTOMABLE is pr TICK-MTE-SEM .

class |Wrapped| .
op |dest| : Msg -> Oid .
op |t-phantom| : -> Time .

msg |press| : Oid -> Msg .
msg |release| : Oid -> Msg .

var O : Oid .
eq mte(|press|(O)) = zero .

endoth)

The dephatomizer pattern takes a PHANTOMABLE theory as input and describes
a wrapper pattern to mitigate phantom button press faults. The wrapper struc-
ture is very similar to the button debouncer, except for the logic of handling
button presses, which is of course necessary since the fault behavior is different
for the pattern.

(tomod DEPHANTOMIZER{|O| :: PHANTOMABLE} is
pr RT-COMP .
pr DELAY-MSG .

class !PhantomIgnore{|O|} |
inside : NEConfiguration,
timer : Timer .

op init-timer : -> Timer .
eq init-timer = no-timer .

vars T : Time .
var O : Oid .
var TM : Timer .
var C : Configuration .

274 M. Sun and J. Meseguer

The equations below define the wrapper class and the time advancement
semantics. This is exactly the same as in the button debouncer case. However,
here the timer is used slightly differently to eliminate a different set of faults.
The logic for the timer will be shown later.

eq tick(< O : !PhantomIgnore{|O|} | inside : C, timer : TM >, T)
= < O : !PhantomIgnore{|O|} | inside : tick(C, T), timer : tick(TM, T) > .

eq mte(< O : !PhantomIgnore{|O|} | inside : C, timer : TM >)
= minimum(mte(C), mte(TM)) .

The rule set-timer below sets the timer whenever a button press event is
received. The timer is then used to make sure that the button is pressed for
sufficiently long before it is actually recognized as an intentional button press
event. The rule non-phantom-release decides the behavior when the system
receives a release after sufficient time has elapsed, and hence the timer is dis-
abled to no-timer. The rule phantom-release is applied when a release message
is received before the timer expires. This means that insufficient time has elapsed
before a button is released and it is considered a phantom event. Thus, the but-
ton press and the release events are hidden from the internal object. Further-
more, the timer is reset. The last rule reset-timer is specified when the timer
expires. This means that the button press duration has just passed the threshold
to be registered as a valid press. The press event is forwarded to the internal
configuration.

The last two rules for forwarding messages in and out from the internal con-
figuration are similar to the forwarding rules for the debouncer pattern. Indeed,
any wrapper that selectively filters certain messages will have forward rules of
this form.

var IM OM : Msg .
crl [forward-in] : IM < O : !PhantomIgnore{|O|} | inside : C >

=> < O : !PhantomIgnore{|O|} | inside : IM C >
if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !PhantomIgnore{|O|} | inside : OM C >
=> < O : !PhantomIgnore{|O|} | inside : C > OM
if |dest|(OM) =/= O .

endtom)

Formal Specification of Button-Related Fault-Tolerance Micropatterns 275

5.3 Proof of Correctness of the Dephantomizer Pattern

As with the button debouncer, we would like to establish a correspondence
between the execution of an ideal system and that of a system with input faults
but with the pattern applied. Again, the key is to define a projection relation
between the two systems. However, in this case, in addition to the projection
operations, we also need to define a time translation on button press messages
to capture the delays of the pattern.

The first transformation operation of interest is the delay-press, which
delays all press messages by a time duration T. This is useful as the dephantom
pattern introduces delays in processing the press messages. Because of this, a
delay transformation is required to show an equivalent execution between an
ideal system and a delayed system. The projection πphantom from a phantom
input system with a wrapper to an ideal input system with no wrapper would
be the composition remove-small ; remove-wrapper ; delay-press. Where
remove-small is applied first and removes all messages whose durations are too
small; remove-wrapper removes the pattern wrapper and exposes the internal
object; and delay-press shifts the time of all button press events by a specific
duration. Full details about each of these operator definitions can be found in [7].

Again, we use the same definitions as with the button bounce case defining
the states of systems Sideal and Swrapped, but this time using the phantom fault
Fphantom to provide faulty button inputs.

Definition 2. Define a relation H ⊆ Sideal × Swrapped such that siHsf iff
πphantom(sf) = si and time(sf) = time(si).

We again have a bisimulation result, for which the full proof can be found in [7].

Theorem 2. The relation H is a well-founded bisimulation, and thus H defines
a stuttering bisimulation between Sideal and Swrapped when considering natural
number time.

Notice that in this case, H still preserves all the attributes of objects but only
by making the button press delivery times later in the ideal model. This means
that H adds a delay into the system, which is to be expected as detecting for
faulty short button presses requires the system to wait before registering the
button press event.

6 A Pattern to Address Stuck Faults

6.1 Stuck Faults

When a button is pressed, it may become stuck. This may be caused by deteriora-
tion in the spring or sudden increase in friction due to deformation or adhesives.
This results in a persistent logical 1 signal, even though the button was already
released.

276 M. Sun and J. Meseguer

We again have another device-button interaction, and the model is entirely
similar to the button bounce and phantom press cases.

A button stuck fault is a relation Fstuck ⊆ Ivalid × Ivalid such that a faulty
button may be held down for longer durations than intended, or more precisely,
(b, bf) ∈ Fstuck iff:

1. b(t) = 1 =⇒ bf (t) = 1 (a button appears pressed when it is physically
pressed, regardless of being stuck)

2. If bf (t) = 1 and b(t) = 0, then there is a t′ < t s.t. b(t′) = 1 and bf (t′′) = 1
for all t′′ ∈ [t′, t] (a button can only become stuck after it has been pressed,
and stays stuck for a continuous time interval).

6.2 Stuck Detection Pattern

Like the button debouncer pattern, the stuck detector pattern takes an input
theory that describes the nature of the stuck button press fault. This includes a
class Wrapped which specifies which object is subject to the stuck button press
fault. The dest operator is again used to find which messages to forward to
the outside configuration. The press and release messages describe the actual
button press events subject to stuck button press faults. Furthermore, we have
t-stuck to describe the minimal time that the button will remain stuck. The
input theory for the stuck detector pattern is given as follows.

(oth STUCKABLE is
pr TICK-MTE-SEM .

class |Wrapped| .
op |dest| : Msg -> Oid .
op |t-stuck| : -> Time .

msg |press| : Oid -> Msg .
msg |release| : Oid -> Msg .

var O : Oid .
eq mte(|press|(O)) = zero .

endoth)

The stuck detector pattern is defined in the STUCK-DETECT module below. It
takes a STUCKABLE theory as input and describes a wrapper pattern to detect
stuck button press faults. The wrapper structure is again very similar to the
button debouncer wrapper.

(tomod STUCK-DETECT{|O| :: STUCKABLE} is
pr RT-COMP .
pr DELAY-MSG .

class !StuckDetect{|O|} |
inside : NEConfiguration,
timer : Timer,
stuck-err : Bool .

op init-timer : -> Timer .
eq init-timer = no-timer .
op init-stuck-err : -> Bool .
eq init-stuck-err = false .

Formal Specification of Button-Related Fault-Tolerance Micropatterns 277

We first define the necessary attributes of the wrapper object. Besides the
internal configuration, we have a timer for keeping track of when the button has
been pressed passed its stuck duration. The stuck-err bit, when set to true
represents detection of the error. The other constants define initialization values
for each of the attributes.

The tick and mte rules are again similar to those for the other patterns and
work by propagating the operations homomorphically to the internal configura-
tion and timers. Their behavior on objects are defined by the equations below.

eq tick(< O : !StuckDetect{|O|} | inside : C, timer : TM >, T)
= < O : !StuckDetect{|O|} | inside : tick(C, T), timer : tick(TM, T) > .

eq mte(< O : !StuckDetect{|O|} | inside : C, timer : TM >)
= minimum(mte(C), mte(TM)) .

The rules for the behavior under button press events is just forwarding all
button press and release messages normally, but setting and resetting the timers
appropriately. The last rule, stuck-event, is applied whenever a button press
event is not followed by a release within t-stuck time units. When this happens,
the stuck-err is set to true to indicate detection.

The forward in and out rules are again similar to the previous two patterns.

var IM OM : Msg .
crl [forward-in] : IM < O : !StuckDetect{|O|} | inside : C >

=> < O : !StuckDetect{|O|} | inside : IM C >
if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !StuckDetect{|O|} | inside : OM C >
=> < O : !StuckDetect{|O|} | inside : C > OM
if |dest|(OM) =/= O .

endtom)

6.3 Proof of Correctness of the Stuck Detection Pattern

The stuck fault is inherently lossy, so the correctness of the pattern is shown in
two parts. First, if no stuck faults occur then we show that the behavior with
the pattern is bisimilar to the ideal system. Second, if a stuck fault occurs, we
can no longer guarantee any correspondence in behavior to the ideal case, but
we can guarantee detection of the fault within a certain time bound.

The projection πstuck from a wrapped system for stuck detection to an ideal
input system with no wrapper is just simply a function remove-wrapper, which
removes the pattern wrapper and exposes the internal object to the external
configuration.

Again, we use definitions analogous to those for the button bounce case for
states of Sideal and Swrapped. Although stuck faults will ruin any possibility of

278 M. Sun and J. Meseguer

behavioral correspondence (since the system becomes unresponsive), we can still
show that without faults our pattern does not alter the behavior of the system.

Definition 3. Define a relation H ⊆ Sideal × Swrapped such that siHsf iff
πstuck(sf) = si and time(sf) = time(si).

We can show that under a strict relation H that does not allow for differences in
the faulty model (i.e. no stuck faults occur), then the behavior of the wrapped
system in a faulty environment is bisimilar to that of the ideal system, that is,
the added wrapper does not essentially change to the behavior of the system.
Proof in [7].

Theorem 3. The relation H is a well-founded bisimulation, and thus H defines
a stuttering bisimulation between Sideal and Swrapped when considering natural
number time.

However when a button does become stuck, we can no longer give any guarantees
about correct behavior, but we can still detect a fault. The following theorem
proves that any stuck faults will be detected by our pattern. Proof in [7].

Theorem 4. Consider a system in Swrapped. If we have a stuck fault such that
there exist two consecutive press and release events on the input delay(press, t)
delay(release, t′) such that t′−t > Tstuck then the wrapper attribute stuck-err
will be set after t + Tstuck time units.

7 Conclusion and Future Work

The goal of this work has been to define formal patterns, as parameterized real-
time rewrite theories, that provide provably correct guarantees of fault tolerance
for commonly occuring faults in button interfaces of manually-operated devices,
including medical equipment. The general technique of well-founded bisimula-
tions [4] has been used to obtain the desired guarantees for each pattern. Since
the formal specifications are executable, formal analysis by model checking has
also been performed.

For future work, an important next step is to analyze the compositional
behavior of multiple patterns together. Although each of the patterns have
bisimulation results which is by itself composable, some of the bisimulations
are conditional (such as introducing delays or adding additional fault-detection
messages). In these cases the order of pattern composition can result in different
system behaviors. This highly nontrivial problem of pattern composition is one
of the major challenges that must be addressed before these patterns can be
used for larger scale systems.

Formal Specification of Button-Related Fault-Tolerance Micropatterns 279

References

1. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1), 386–414 (2006)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS. Springer,
Heidelberg (2007)

3. Durán, F., Meseguer, J.: The Maude specification of Full Maude. Technical report,
SRI International (1999)

4. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. J. Log. Algebr.
Program 79(2), 103–143 (2010)

5. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Parisi-Presicce, Francesco (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61.
Springer, Heidelberg (1998)

6. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order Symbolic Comput. 20(1–2), 161–196 (2007)

7. Sun, M.: Formal patterns for medical device safety. Doctoral Dissertation, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign (2013).
https://dl.dropboxusercontent.com/u/54321762/mu-thesis.pdf

https://dl.dropboxusercontent.com/u/54321762/mu-thesis.pdf

A Formal Semantics of the OSEK/VDX
Standard in K Framework and Its Applications

Min Zhang1(B), Yunja Choi2, and Kazuhiro Ogata1

1 Research Center for Software Verification, Japan Advanced Institute of Science
and Technology (JAIST), Nomi, Japan

{zhangmin,ogata}@jaist.ac.jp
2 School of Computer Science and Engineering, Kyungpook National University,

Daegu, South Korea
yuchoi76@knu.ac.kr

Abstract. The OSEK/VDX is an international standard of automobile
operating systems. Such systems are safety-critical and require exten-
sive safety analysis and verification. Formal methods have been shown
useful and effective to verify the safety of both the OSEK/VDX-based
operating systems and applications. Using formal methods requires for-
mal semantics of the OSEK/VDX standard. In this paper, we present a
formal semantics of the standard using K, a rewrite-based formal seman-
tics framework. With the formal semantics, we can (1) verify user-defined
applications by model checking, and (2) automatically generate test cases
for testing of the OSEK/VDX-based operating systems. Features of the
formal semantics are its executability and flexibility. Compared with
existing formal semantics of the standard, the formal semantics defined
in K is more flexible and generic. This work also shows that K is not
only used for formalizing the semantics of programming languages, but
also for automobile operating systems.

1 Introduction

The OSEK/VDX is an international standard of developing automobile oper-
ating systems [1]. An automobile operating system is a piece of safety-critical
software to manage resources and applications which run on the system to control
electrical devices in automobiles. Its safety should be extensively analyzed and
verified. To implement an OSEK/VDX-based operating system, the traditional
approach is to develop both the kernel and applications following the standard,
and compile them together to generate an executable system. The system must
be tested extensively for safety [2]. This approach is effort-consuming and prone
to errors in that modification to source code usually requires recompilation and
testing requires complete suite of test cases, which usually are difficult to build.

This research was supported by Kakenhi 23220002, Japan, and by the MSIP(Ministry
of Science, ICT and Future Planning), Korea, under the ITRC(Information Tech-
nology Research Center) support program (NIPA-2013-H0301-13-5004) supervised
by the NIPA(National IT Industry Promotion Agency).

c© Springer International Publishing Switzerland 2014
S. Escobar (Ed.): WRLA 2014, LNCS 8663, pp. 280–296, 2014.
DOI: 10.1007/978-3-319-12904-4 16

A Formal Semantics of the OSEK/VDX Standard 281

Our previous work [3] and the work [4] have shown that using formal methods
is an effective approach to both safety verification of OSEK/VDX systems and
applications, which is complementary to the traditional testing-based approach.
Using formal methods requires formal semantics of the OSEK/VDX standard.
In this paper, we present an executable formal semantics of the standard, which
is defined in K, a rewrite-based formal framework [5]. We choose K for its exe-
cutability, flexibility, simplicity and tool-support. K allows user-defined data
types and supports formalization of infinite-state systems. Especially, K pro-
vides tool-support to automatically generate interpreter and state-space explorer
based on the defined semantics. Another advantage of using K is that it does
not require extra effort to transform user-defined applications into correspond-
ing formal definition in K in order to use the formal semantics. In this sense,
the formal semantics of the standard in K is more flexible and generic than
those formalized in Promela [6] and NuSMV [4], which have restriction on the
number of tasks, resources, events in OSEK/VDX-based operating systems, and
also need extra effort to instantiate the semantics with user-defined applications,
though the number of tasks, resources and events must be fixed when the formal
semantics is used for model checking.

The benefit from this formal semantics is multifold. Firstly, it can be used
to model check user-defined OSEK/VDX applications with a fixed number of
tasks, resources and events by integrating the formal semantics with the seman-
tics of the language in which the applications are implemented. Secondly, it can
be used to generate test cases for the testing of OSEK/VDX-based operating
systems. This work shows that K is also well suited to the formalization of auto-
mobile operating systems besides the formalization of semantics of programming
languages [7–9].

Organization of the paper: Sect. 2 introduces the background and our overall
approach. Sections 3 and 4 describe the OSEK/VDX standard and K. Section 5
shows the formalization of OSEK/VDX in K. Section 6 demonstrates two appli-
cations of the formal semantics, i.e., model checking and test case generation.
Sections 7 and 8 mention some related work and conclude the paper.

2 Background and Overall Approach

The OSEK/VDX standard is a generic description which is mandatory for any
implementation of an OSEK/VDX operating system. It concerns the general
description of the strategy and functionality, standardized application program-
ming interface (API), resource management, event mechanism, etc. Figure 1
depicts the traditional process of implementing OSEK/VDX-based operating
systems [10]. An OSEK/VDX-based operating system is built out of a kernel
which includes basic functionality described in the standard such as scheduler,
APIs, etc., and a group of applications which interact with the kernel through
APIs. An application includes a configuration of resources, tasks, and events that
are defined in OIL (OSEK Implementation Language) and source code for each
task of the application. They are compiled together and an executable operating

282 M. Zhang et al.

Fig. 1. Traditional approach to the implementation of OSEK/VDX operating systems

Fig. 2. The framework of our formal approach

system is developed. The system is then extensively tested for safety. There are
two major problems with the traditional approach. One is that the whole system
must be re-compiled and re-tested due to every change to either the kernel or
applications. It is costly in terms of both effort and time. Another problem is
that it is prone to errors due to the ambiguity of the standard which in written
in natural language and the lack of test cases. A suite of comprehensive test
cases are necessary to detect potential errors in a system, but it is not an easy
task to build such a suite of test cases.

Using formal methods is an effective means of developing reliable OSEK/
VDX-based operating systems, complementary to the traditional one. Figure 2
shows the overview of our formal approach to the verification of OSEK/VDX-
based applications and automatic generation of test cases for the testing of
OSEK/VDX-based operating systems. The OSEK/VDX standard, including fea-
tures such as task scheduling, resource management, or event mechanism is for-
malized. To verify user-defined applications, the semantics of the programming
language in which tasks are implemented should also be formalized. User-defined
applications can be model checked with the integration of the two formal seman-
tics. By model checking, we can detect potential errors such as deadlock in appli-
cations. For test case generation, users only need to provide a configuration of
tasks, resources and events, and the constraints that generated test cases should

A Formal Semantics of the OSEK/VDX Standard 283

satisfy, such as the number of APIs for each task. Test cases are automatically
generated based on the formal semantics of the kernel. Generated test cases
can be used for conformance checking of OSEK/VDX-based operating systems
by checking whether the result obtained by running each test case on practical
system is the same as the expected one.

3 The OSEK/VDX Standard and OIL

As mentioned earlier, the OSEK/VDX standard generically describes all manda-
tory requirements of an OSEK/VDX-based operating system. In our current
formalization we only consider some fundamental parts in the standard such as
task scheduling, resource management, event mechanism, error handling, and
leave others such as interruption and real-time feature as future work.

Task and Task Scheduling. Task is the basic building block of an OSEK/VDX
application. Multitask is one of the basic requirements of OSEK/VDX-based
operating systems. The OSEK/VDX standard specifies two kinds of tasks, i.e.,
basic task and extended task. Figure 3 shows the state transitions of basic tasks
and extended tasks. A basic task has three states, i.e., ready, running and sus-
pended, while an extended task has a waiting state besides the three. The dif-
ference between them is that the extended tasks can wait for events during
execution by using the system call WaitEvent, while the basic tasks cannot.
Calling WaitEvent may result in a waiting state, and the release of the proces-
sor. The processor can be reassigned to a lower-priority task without the need
to terminate the running extended task.

Tasks are controlled by the scheduler. The scheduler decides on the basis of
the task priority which is the next of the ready tasks to be transferred into the
running state. The OSEK/VDX standard provides two scheduling policies, i.e.,
full preemptive and non-preemptive scheduling. By full preemptive scheduling, a
running task may be rescheduled at any instruction by the occurrence of trigger
conditions pre-set by the operating system, such as successful termination of a
task, and activating a task. The running task is put into the ready state, as soon
as a higher priority task gets ready.

ready

suspended

running

preemptstart

terminate

activate

ready

suspended

running

preemptstart

terminate

activate

waiting

release

wait

Fig. 3. The state model of basic task (left) and extended task (right)

284 M. Zhang et al.

Resource Management and Priority Ceiling Protocol. Resource manage-
ment is used to co-ordinate concurrent accesses of several tasks with different
priorities to shared resources. It ensures that two tasks can never occupy the
same resource at the same time, deadlocks will never occur by use of these
resources, and access to resources never results in a waiting state.

There are some restrictions when using resources. When occupying a resource,
the task should not call some APIs such as TerminateTask, which may cause
rescheduling after they are called. If a task is occupying multiple resources,
these resources must be released in LIFO order.

However, under these restrictions it is possible that a lower-priority task may
delay the execution of higher-priority task, which is called priority inversion.
An example about it can be found in [1]. To avoid priority inversion, OSEK
prescribes the OSEK Priority Ceiling Protocol (PCP). The protocol requires
that each resource has a ceiling priority which is statically assigned at the system
generation. Basically, the priority shall be set at least to the highest priority of
all tasks that can access that resource. If a task requires a resource, and its
current priority is lower than the ceiling priority of the resource, the priority of
the task is dynamically raised to the ceiling priority of the resource. If the task
releases a resource, the priority of the task is reset to the one before it requires
that resource.

Event Mechanism. Tasks in OSEK/VDX-based operating systems are syn-
chronized by events. Events are the criteria for the transition of extended tasks
from the waiting state to the ready state (see Fig. 3). Events are not independent
objects, but assigned to extended tasks. An event can be assigned to multiple
extended tasks, and each extended task has a definite number of events. It should
be statically declared that which events can be assigned to an extended task in
OSEK/VDX applications.

When activating an extended task from the suspended state, its events are
cleared by the system. An extended task goes into waiting state when it is
running and the events that it is waiting for are not set. The task keeps in the
waiting state and goes into ready state until any event is set by another task.
All tasks can set any event of any non-suspended extended task, but only the
owner can clear its events. Details about event mechanism can be referred to [1].

OSEK Implementation Language (OIL). OIL is used to configure tasks,
resources, events and their relations in an OSEK/VDX-based operating system
[10]. Figure 4 shows an example of how to declare resources, events and tasks in
OIL. It says that in the corresponding application there is a resource named r1,
an event named e1, and a task named t1. Resource r1 is declared as a standard
resource. Event e1 is declared with a mask as AUTO. Event mask is an integer
number. If a mask is set AUTO, one bit is assigned to it. The statements in the
configuration of task t1 say that the task should be automatically started (put
into ready state) after the initialization of operation system. The priority of the
task is 3, and it is preemptable (indicated by FULL). The last two statements in
t1 mean that task t1 can access resource r1, and it has the event e1.

A Formal Semantics of the OSEK/VDX Standard 285

RESOURCE r1 {
RESOURCEPROPERTY = STANDARD;

};

EVENT e1 {
MASK = AUTO;

};

TASK t1{
AUTOSTART = true;
PRIORITY = 3;
SCHEDULE = FULL;
RESOURCE = r1;
EVENT = e1;

};

Fig. 4. An example of OSEK/VDX application configuration in OIL

4 The K Framework

K is a rewrite-based semantics definitional framework, in which programming
languages, calculi, as well as type systems or formal analysis tools can be defined
or formalized [5]. A K definition of a semantics is automatically translated into
Maude [11] rewrite theories, which are efficiently executable and can be used
for state-exploration by exhaustive behavior analysis such as model checking
[11]. The K framework has been used to formalize some practical programming
languages such as C [7], Scheme [9], Python [8]. Some analysis tools have also
been defined in K for type checking and type inference [5].

Semantics is defined in K by using labeled and potentially nested cell struc-
tures and K (rewrite) rules. The cell structure is called a configuration, which
is used to represent system or program state. In this paper, we call it K con-
figuration to differ from the configuration of OSEK/VDX-based applications.
There are two types of K rules: computational rules, which count as computa-
tional steps, and structural rules, which do not count as computational steps.
The role of structural rules is to rearrange the configuration so that computa-
tional rules can match and apply. They correspond to the equations and rewrite
rules respectively in rewriting logic [12].

The formal definition of a programming language in K can automatically
yield an interpreter for the language, and program analysis tools such as a state-
space explorer by model checking, with which we can verify programs in that
language by exhaustively explore all possible results under the condition that
the state space is finite and reasonably small.

5 Formalizing the OSEK/VDX Standard in K

In this section, we explain our approach to formalizing the OSEK/VDX standard
in the K framework1.

5.1 K Configuration of the OSEK/VDX

The K configuration of a running OSEK/VDX-based operating system consists
of over 40 nested cells. Figure 5 shows part of them. Each cell has a label. The
1 Some details are omitted due to the limitation of space. The complete formalization,
K source code and the examples mentioned in Sect. 6 are available at the webpage
http://www.jaist.ac.jp/∼zhangmin/osek-formal.html.

http://www.jaist.ac.jp/~zhangmin/osek-formal.html

286 M. Zhang et al.

〈List〉readyTasks 〈Signal〉signal 〈Map〉types 〈Error〉errorCell 〈Bool〉tcgMode

〈Map〉env 〈Id〉runningTask . . .

〈Stmt〉k 〈Stmt〉apiData 〈TaskState〉state 〈Id〉tid 〈Nat〉tPriority 〈Bool〉ext
〈List〉historyK 〈List〉waitEvents 〈Map〉taskEvents 〈List〉taskResources

〈Id〉rid 〈Nat〉rPriority 〈Id〉rTid 〈Nat〉tPri 〈List〉rOwner . . .
resource* resources

task*
tasks

global

OSEK
〈Id〉eid 〈List〉eOwner . . . event* events

〈Bool〉auto 〈List〉accRes〈Bool〉schedule . . .

Fig. 5. K configuration of the OSEK/VDX standard

label ended with ∗ indicates that there can be multiple such cells. A cell that
does not have nested cells is a unit cell, storing a term which represents a piece
of information of a state. In the brackets is the type of the terms in Fig. 5.

We take the task cell for example. There is both static and dynamic infor-
mation of a task represented by the nested cells in task. Static information is
that configured by users such as task ID in cell tid, priority in cell tPriority, its
source code in cell apiData, whether the task is an extended one in cell ext, etc.
Dynamic information is that which changes during the execution of operating
system such as the next statement to be executed in cell k, the list of events
which the task is waiting for in cell waitEvents, the events owned by the task
and their status (set or clear) in cell taskEvents, etc. We do not explain all the
cells due to the space limitation. Some will be explained later when needed.

5.2 Formalization of the Scheduler

In our formalization, we only consider full preemptive scheduling. As mentioned
earlier, the occurrence of trigger conditions such as termination of a task will
cause operating system to reschedule tasks. We define a type Signal and a
constant schedule of it. We use a cell with label signal to store the occurrence
of such trigger conditions. When there is a signal schedule in the signal cell, it
indicates that some trigger condition has just occurred. Operating system must
first handle it before executing any task. We define a set of K rules to specify
the scheduler. The main one is as follows:
rule <signal > schedule => .</signal > <runningTask > I’ => I </runningTask >

<readyTasks > (< I,N >, L) => add2Head(I’,N’,L) </readyTasks >
<task > <schedule > FULL </schedule > <state > running => ready </state >

<tid > I’ </tid > <tPriority > N’ </tPriority > ... </task >
<task > <tid > I </tid > <state > ready => running </state > ... </task >

when N >Int N’ [transition]

The rule specifies how a K configuration changes before and after scheduling.
Before scheduling, there is a signal schedule in cell signal. In cell readyTasks
there is the list of ready tasks in a descend order by their priority. If there are

A Formal Semantics of the OSEK/VDX Standard 287

two or more ready tasks with the same priority, they are ordered by the time
when they get ready. However, the task which is preempted from running is
considered as the oldest one among the ready tasks of the same priority [1].
In the cell readyTasks, < I, N >, L represents that task I is the oldest one with
the highest priority N among the ready tasks. The cells nested in the first task
represent that task I’ is the present running task with priority N’ and it is
preemptable, indicated by the value FULL in the cell schedule. If task I has a
higher priority than task I’, i.e., N >Int N’, I’ is preempted, and I becomes
running. After being preempted, I’ is changed into ready state. It is added to
the head of the sub-list of the ready tasks which have the same priority as I in
the list of ready tasks by function add2Head.

5.3 Formalization of Resource Management

As depicted in Fig. 5, each resource is represented as a cell with label resource,
which consists of unit cells for the resource identifier, ceiling priority, and a list
of tasks that can access the resource. It also contains two unit cells which are
dynamically created when the resource is allocated to a task. The two unit cells
are used to store the identifier of the task to which the resource is allocated, and
the priority of the task before it gets the resource.

Tasks access resources by two APIs, i.e., GetResource and ReleaseResource.
As mentioned earlier, there are restrictions when accessing resources. Such
restrictions together with the Priority Ceiling Protocol should be reflected by
the formal semantics of the two APIs. For instance, the main rule defined for
GetResource is as follows:

rule <signal > schedule => .</signal > <runningTask > I’ => I </runningTask >
<readyTasks > (< I,N >, L) => add2Head(I’,N’,L) </readyTasks >
<task > <schedule > FULL </schedule > <state > running => ready </state >

<tid > I’ </tid > <tPriority > N’ </tPriority > ... </task >
<task > <tid > I </tid > <state > ready => running </state > ... </task >

when N >Int N’ [transition]

In the cell k, there is a list of APIs to be executed by task I. The API to be
executed next in the list is GetResource(R), where R is a resource ID. The cell
tPriority stores the present priority of task I, and the cell accRes stores the
list L of resources which task I is accessing. Resource R has a ceiling priority N2.
L’ in the cell rOwner represents the list of tasks that can access resource R. The
condition (following the keyword when) is true when task I can access but is not
accessing resource R. When the condition is true, R is allocated to I. According
to the Priority Ceiling Protocol, if the present priority of task I is lower than
the resource’s ceiling priority, it is raised to the ceiling priority, as defined in
the cell tPriority. R is added to the head of the list of resources being accessed
by I. In the cell resource for R, two cells rTid and tPri are created, storing the
task’s ID and present priority, i.e., I and N’, respectively. The present priority
should be stored because when task I releases the resource by ReleaseResource,
its priority should be reset to the one before it gets the resource. The semantics
of ReleaseResource can be defined likewise. We omit the details of it in the paper.

288 M. Zhang et al.

5.4 Formalization of Event Mechanism

Each event is represented by an event cell as shown in Fig. 5. An event cell only
consists of two sub-cells, storing the static information of the event, i.e., the event
name in cell labeled by eid, and a list of owners (tasks) to which the event can be
accessed in cell labeled by eOwner. Because event is not an independent object,
but is assigned to extended tasks. We declare a new cell with label taskEvents
for each extended task, storing the status of events that are assigned to the task.
The status of an event is either set or clear, indicating that the event is set or
cleared respectively. We declare a type EventStatus and two constants SET and
CLEAR of it to represent the two corresponding status.

There are four APIs associated to events, i.e., GetEvent, SetEvent, WaitEvent
and ClearEvent, with which tasks can get, set, wait and clear specific events. We
take SetEvent for example to show how to define its semantics in K. SetEvent
takes a task ID and an event name. The state of the task specified in the API is
transferred to ready state, if the event specified in the API is one of the events
which the task was waiting for. This can be formalized by the following K rule:

rule <task > <state > running </state > <k> SetEvent(I,E); =></k>
...</task > <task > <tid > I </tid > <state > waiting => ready </state >
<waitEvents > L => . </waitEvents > <tPriority > N </tPriority >
<taskEvents >... (E |-> (CLEAR => SET)) ...</ taskEvents > ...</task >
<readyTasks > L’ => add2Tail(I,N,L’) </readyTasks >
<signal > . => schedule </signal > when (E in L) [transition]

The rule says that SetEvent(I,E); is the next API to be executed by a running
task, where I is a task ID and E is an event name. Task I is in the waiting state,
and is waiting for a list L of events. If E is in the list, task is transferred to ready
state, and it does not wait for any events. Thus, the list L is changed into an
empty one, represented by L => . in the cell waitEvents. The status of event E is
changed into SET in the cell taskEvents. Task I is added to the tail of the sub-list
of ready tasks which have the same priority as I in the list of ready tasks by
function add2Tail. At the same time, the schedule signal is fired to invoke the
scheduler.

If task I is not waiting for the event E, the event is simply set after the API is
called. We omit the formal definition of it and those of other three event-related
APIs in the paper.

5.5 Formalization of Error Handling

There are pre-defined errors in the OSEK/VDX standard. Such errors should
be handled correctly when an operating system is implemented. For instance,
an error will occur when a task tries to terminate itself while occupying some
resources, which is strictly forbidden. If an error is raised, a specific error code
should be returned. However, the standard does not specify how to handle such
errors, and it is up to system developers.

We formalize errors by a specific function called Error, which takes four
arguments, i.e., an error code, the identifier of the task which causes the error,

A Formal Semantics of the OSEK/VDX Standard 289

the API that causes the error, and a string to provide detailed information of the
error. When an error occurs, an error cell errorCell as shown in Fig. 5 is created
with a term constructed by the Error function in it. At the same time, an error
signal is inspired and put in the signal cell. The following rule shows an example
of the formalization of the error which is caused when a task tries to terminate
while still occupying resources.

rule <task > <state > running </state > <k> TerminateTask (); </k>
<tid > I </tid > <accRes > ListItem(R) ... </accRes > ... </task >
<signal > . => stop </signal >
(.Bag => <errorCell > Error(E_OS_RESOURCE , I, TerminateTask ();,
"Task cannot terminate when occupying resources!") </errorCell >)

[transition]

The term in cell accRes is the list of resources that are currently occupied by the
task. In the above rule the list is not empty when the API TerminateTask(); is
to be executed in the next step. In the cell errorCell, E OS RESOURCE is an error
code which is pre-defined in the standard.

5.6 Formalization of OIL

We formalize OIL in K in order to support user-defined configurations. K is well
suited to formalize programming languages. OIL can also be naturally formalized
in K like other languages such as C. One difference is that the semantics of OIL
is formalized as structural rules, instead of computational rules. That is because
OIL is a configuration language, which is used for configuring resources, tasks,
events, etc. in a system, but not for computation or execution. Thus, we declare
a set of structural rules which are used to construct an initial K configuration
according to an input OIL program.

Given an OIL program, a K configuration is instantiated based on the dec-
larations of resources, tasks, and events in the program. For instance, for each
resource which is declared as shown in Fig. 4, a resource cell is created, which
consists of four unit cells for resource identifier, its ceiling priority (0 at initial),
the resource property, and the list of tasks that can access it (empty at initial).
The following rule specifies the creation of a resource cell according to a decla-
ration of a resource. The condition means that I is not used as an identifier for
other tasks, events and resources.
rule <k> (RESOURCE I:Id { RESOURCEPROPERTY = RP; } ; => .) ... </k>

<resources >(. => <resource > <rid > I </rid > <rPriority > 0 </rPriority >
<rProperty > RP </rProperty > <rOwner > .List </rOwner > </resource >)
... </resources > <types > M:Map => (I |-> resource) M </types >

<signal > . </signal > when notBool $hasMapping(M,I) [structural]

The ceiling priority of the resource and the list of tasks are calculated when
tasks are initialized. If a task is declared to own a resource as shown in Fig. 4,
it is added to the list. If the current ceiling priority (initially 0) is less than the
priority of the task, it is raised to the priority of the task. The corresponding
structural rules can be defined likewise. We omit the details in the paper.

290 M. Zhang et al.

6 Applications of the Formal Semantics

In this section, we demonstrate two applications of the formal semantics of the
OSEK/VDX standard, i.e., to verify the properties of OSEK/VDX applications
by model checking, and to generate test cases for the testing of OSEK/VDX
operating systems.

6.1 Verification of OSEK/VDX Applications by Model Checking

There may be multiple tasks running in an OSEK/VDX application. It is nec-
essary to verify that tasks can correctly synchronize and deadlock should never
happen. Suppose that there are only two tasks t1, t2 in an application and two
events e1, e2. Task t1 is waiting for e1 in order to set event e2, while t2 is waiting
for e2 in order to set event e1. Both the two tasks are in waiting state, leading
to deadlock.

An OSEK/VDX application consists of two parts: one is application config-
uration which describes the basic information of resources, tasks, events, etc.,
in the application, and implementation of each task. Application configurations
are defined by OIL, and tasks are implemented in some programming language
such as C. Thus, it requires formalizing the semantics of a specific programming
language in which tasks are implemented, as shown in Fig. 2. As mentioned in
Sect. 4, K can be easily used to define the operational semantics of programming
languages. In this paper, we use a simple C-like imperative programming lan-
guage whose semantics has been formally defined in K [13], to demonstrate the
feasibility of verifying OSEK/VDX-based applications. We integrate the seman-
tics of the language and the semantics of the OSEK/VDX standard. With the
integrated semantics, we verify the OSEK/VDX applications that are imple-
mented in the simplified language.

Figure 6 shows a simplified application which is used to monitor tire pressure
[14]. There are four tasks with different priorities. Task MT is used to repeatedly
activate task RT (line 34), which collects data from tire sensor and then activates
task ST. Task ST puts the collected data into buffer (line 47) and activate task
PT to process the data (line 49). The synchronization between task RT and ST is
achieved by an event evt. Task ST has to wait for the event until the event is
set by RT (line 45, 41).

The application is supposed to run repeatedly. We verify if the application
is free of deadlock by searching all possible execution results of the application
using the formal semantics of the standard and the simplified programming lan-
guage. The command is as follows:

krun tire -app.osek --search -final

krun is a K command, used to run a program with the formal semantics which
is predefined in K for the language in which the program is implemented. In
this example, the program is saved as a file named tire-app.osek. The option
search-final means that krun will return all possible final states of the pro-
gram. With the command, krun returns a final state, which means that the

A Formal Semantics of the OSEK/VDX Standard 291

a. Configuration b. Implementation of tasks

1 EVENT evt {
2 MASK = AUTO;
3 };
4 RESOURCE BUFF{
5 RESOURCEPROPERTY = STANDARD;
6 };
7 TASK MT {
8 PRIORITY = 4;
9 AUTOSTART = true;

10 SCHEDULE = FULL;
11 };
12 TASK RT{
13 PRIORITY = 6;
14 AUTOSTART = false;
15 SCHEDULE = FULL;
16 };
17 TASK ST{
18 PRIORITY = 8;
19 AUTOSTART = false;
20 SCHEDULE = FULL;
21 EVENT = evt;
22 RESOURCE = BUFF;
23 };
24 TASK PT{
25 PRIORITY = 10;
26 AUTOSTART = false;
27 SCHEDULE = FULL;
28 RESOURCE = BUFF;
29 };

30 int data;
31 int buff;
32
33 TASK MT{
34 while(true){ActivateTask(RT);}
35 };
36 // Terminate

37 TASK RT{
38 // get data from tire sensor

39 ActivateTask(ST);
40 if(data !=0)
41 {SetEvent(ST ,evt); }
42 TerminateTask ();
43 };
44 TASK ST{
45 WaitEvent(evt);
46 GetResource(BUFF);
47 buff=data;
48 ReleaseResource(BUFF);
49 ChainTask(PT);
50 };
51 TASK PT{
52 // Read data from buff

53 GetResource(BUFF);
54 // process data

55 buff =0;
56 ReleaseResource(BUFF);
57 TerminateTask ();
58 };

Fig. 6. The configuration and source code of an OSEK/VDX application

program cannot proceed from that state. The returned state shows that all the
four tasks cannot be executed. In the state, task RT is in running state, and the
statement it executes next is ActivateTask(ST) (line 39). However, task ST is in
waiting state. According to the OSEK/VDX standard, there is a maximum num-
ber of task activation. If the number of activation times exceeds the maximum
number, an error occurs. In our experiment, we assume the maximal number
is 1. In this case, an error occurs because it violates the maximum activation
count.

We found the reason why the running task called the waiting task in the
application by checking the execution path from the initial state to the returned
state. 4 The execution path shows that after RT activates ST (line 39), ST starts
to run because it has a higher priority than RT. However, ST goes to waiting
state because evt is not set (line 45). The scheduler selects RT to run because
among the ready tasks, i.e., RT and MT, RT’s priority is the highest. However, RT
does not set the event because evt data is 0 (line 40). It just terminates itself
(line 42). MT is the only ready task, which is selected to run by the scheduler. It
activates RT (line 34), and RT tries to activate ST (line 39). However, ST is in the
waiting state, leading to the deadlock. The problem is caused by the code at line
40 and 41 because evt cannot be always set after ST is activated. We can fix it by
moving ActivateTask(ST); to the block of if condition. We execute the revised
application by searching with the same command. No solution is found, which

292 M. Zhang et al.

means that there is no deadlock state from which the system cannot proceed
further. Namely, the program is free of deadlock.

OSEK/VDX-based applications are implemented usually in C. The semantics
of C has been formalized in K [7]. We believe that by integrating the seman-
tics of C and the standard we can verify more complicated OSEK/VDX-based
applications implemented in C, which is one piece of our future work.

6.2 Using the Formal Semantics for Test Case Generation

In this section, we show that the formal semantics of the standard in K can be
used to generate test cases for the conformance checking of OSEK/VDX-based
operating systems. Testing is still the main approach to conformance checking
of OSEK/VDX-based operating systems. For example, an automobile operating
system must pass a set suite distributed by a certification agency in order to
get a certificate for the compliance of the system with the OSEK/VDX stan-
dard. However, it is practically impossible to test all possible combinations of
APIs. One solution is to analyze the constraints among APIs and to generate
automatically test cases that satisfy these constraints [4,6]. Given some con-
straints and a configuration of tasks, resources, and events, we would like to
generate a sequence of APIs for each task and the generated sequence of APIs
satisfies the specified constraints. Specifically, we provide an initial state where
an OSEK/VDX application is configured, i.e., events, resources and tasks are
defined. Tasks are not implemented, that is, there are no statements defined for
tasks. We specify the target states which the operating system can reach from
the given initial state by executing the application with a sequence of APIs for
each task. Test case generation problem is to generate such API sequence for
each task.

The formal semantics of the OSEK/VDX standard in K can also be used for
generating such test cases. The basic idea is as follows. The input is the configu-
ration part of an OSEK/VDX application. After the configuration is loaded by
the K tool, a task cell is instantiated for each task according to their correspond-
ing setting in the configuration and the task is in the suspended state. Only the
task whose AUTOSTART property is true becomes ready and then is scheduled to
run. In the initial state, all the tasks do not have any API to execute. We define
a set of K rules which randomly generate an API for the currently running task
based on the state of the task. The generated API is then executed based on its
formal semantics that is predefined, and the state of the running task is changed
correspondingly.

Generated APIs must satisfy some built-in constraints. These constraints are
also specified in K rules. For instance, we define a rule which generates the API
ReleaseResource with a resource R where R is predefined in the configuration of
an application. Namely, the statement to be generated is ReleaseResource(R);.
For the task that is go to execute the generated statement, the resource R must
be the latest one that is allocated to the task, i.e., the resource R must be at the
head of the list of resources in the cell taskResources. The corresponding K rule
is defined as follows:

A Formal Semantics of the OSEK/VDX Standard 293

rule <task > <tid > I </tid > <state > running </state > <apiData > . </apiData >
<k> . => ReleaseResource(R); </k> <taskRes > ListItem(R) ... </taskRes >
... </task > <tcgMode > true </tcgMode > <signal > . </signal > [transition]

The rule also represents three conditions when API can be generated, i.e., the
system is running in the test case generation mode as indicated by the cell
tcgMode, the running task is undefined as indicated by an empty cell apiData,
and no signal is waiting for handling as indicated by the empty cell signal.

If the randomly generated API is TerminateTask or ChainTask, a sequence
of APIs are completed for the running task. That is because there is a constraint
that TerminateTask and ChainTask must be the last API in a task. After the
API is executed, the task is terminated and the scheduler selects another task to
run according to the scheduling policy. After each task has a generated sequence
of APIs, a test case is generated.

As an example, we explain how to generate test cases with the configuration
defined in Fig. 6. Each test case consists of four sequences of APIs for the tasks
in the configuration. We feed the configuration into the K tool and a pattern
to which expected results should match. The pattern specifies the constraints
to the target states such as the number of APIs for each task. There are two
optional parameters specifying the maximal searching depth and the number of
test cases. The following command is an example used for test case generation.
krun tire -conf.osek -c TCG=true --search --pattern="<task > <historyK > I1:

ListItem I2:ListItem </historyK > <done > true </done > BG1:Bag </task >
<task > <historyK > J1:ListItem J2:ListItem </historyK > <done > true </done >
BG2:Bag </task > <task > <done > true </done > BG3:Bag </task > <task > <done >
true </done > BG4:Bag </task >" --depth =30 --bound =100

It takes the configuration of the tire monitor application as input. TCG is an
argument which is used to initialize the cell tcgMode as true so that the rules
defined for test case generation can be executed. The pattern in the command
specifies that in the target states there are at least two tasks which have exactly
two APIs. The last two optional arguments means that the maximal searching
depth is 30 and the bound of solutions is 100. By the above command, the K

tool returns a set of K configurations that match the specified pattern. In each
configuration, every task is assigned with a sequence of APIs. All the tasks with
assigned sequences of APIs constitute a test case.

Table 1. Experimental result of generating two classes of test cases with pattern A
(the left table) and B (the right table).

Depth Solution Test case Time (sec)
16 0 0 6
17 92 23 10
20 1024 132 30
21 1468 163 43
22 1748∗ 200∗ 65

Depth Solution Test cases Time (sec)
20 0 0 16
21 176 44 23
25 1320 186 76
26 1572 209 97
27 1736∗ 234∗ 146

294 M. Zhang et al.

The number of test cases may be infinite, leading to the non-termination of
generation. For instance, a task can infinitely repeat the process of getting and
releasing a resource, making the process of test case generation non-terminating.
We can solve this problem by setting upper bounds to the number of generated
test cases and the number of APIs in each task respectively. In the experiment,
we defined two patterns denoted by A and B, specifying that in each generated
test case there must be at least two tasks which have exactly two and three
APIs, respectively. The experimental result is shown in Table 1. Solutions are
the configurations returned by K, and they match the specified pattern. We
extract the generated APIs in cell apiData from the configurations returned by
the K tool, and obtain a number of test cases. The numbers with ∗ mean that
they are the upper bound at the corresponding depth. The K tool runs out of
memory once the upper bound exceeds that numbers.

7 Related Work

There is some formalization in different formal languages of the OSEK/VDX
standard. In [15], the semantics of APIs in the standard is formalized using
Hoare-logic. The purpose is to verify the correctness of the APIs that are imple-
mented in concrete OSEK/VDX-based operating systems, which is different
from ours. The semantics of the standard is formalized using Promela in [6]
and NuSMV in [4], with the purpose of test case generation. Compared with
their formalization, our formal semantics in K is more flexible and generic in
that they have to assume that the list of ready tasks in system is finite because
the languages requires the system specified must be of finite-state, while in our
formalization we do not have that restriction. Their formalization also requires
extra effort to be instantiated according to concrete user-defined applications,
while our formalization directly accepts user-defined applications as input with-
out any transformation. Their approaches to test case generation are different
from the one described in this paper. For instance, in [4] they use automata to
control what is the next possible API to call based on user-given constraints.
This can improve the efficiency by avoiding unnecessary trial of those APIs
that violate the constraints if they are called. We have tried implementing the
automata-based approach in Maude and evaluated that Maude can be used as
an efficient test case generator [3]. Since Maude is the underlying rewrite engine
of K, we believe that this approach can also be implemented in K based on our
formal semantics of the OSEK/VDX standard. As a piece of future work, we
also consider integrating the automata-based approach into our formalization to
improve the efficiency of test case generation.

The OSEK/VDX standard is also formalized in CafeOBJ [16] with the pur-
pose of defining a formal specification of the standard so that we can verify
the conformance of an automobile operating system to the standard by verify-
ing whether it conforms to the formal standard. However, it is still a challeng-
ing problem to check the formal specification contains no contradiction as the
authors mentioned [16]. The standard is also formalized using Event-B in [17].

A Formal Semantics of the OSEK/VDX Standard 295

However, in their work they do not explain how to use their formalization for
verification. The common problem with the two existing formalization is how
they can be used for formal verification. Our work shows that the formaliza-
tion of the standard in K can be effectively used for the verification of concrete
OSEK/VDX-based applications and operating systems.

8 Conclusion and Future Work

We have presented a formal semantics of the OSEK/VDX standard, which is
defined in the K framework. We demonstrated two applications of using the
formal semantics, i.e., verification of OSEK/VDX-based applications by model
checking and generation of test cases for the testing of OSEK/VDX-based oper-
ating system. Compared with the existing formalization of the standard, the
formal semantics in K is more flexible and generic in that there is no restric-
tion to the number of tasks, resources and events in the formalization, and it
does not need extra effort to instantiate the formal semantics with user-defined
applications. Another advantage of the formal semantics is that it can be inte-
grated with the semantics of other prevalent programming languages such as C in
order to verify OSEK/VDX-based applications which are implemented in those
languages. This work also shows that K is not only a semantics framework for
the definition and formalization of programming languages, but for automobile
operating systems such as OSEK/VDX-based operating systems.

In our current formalization, we do not consider some functionality in the
standard such as interruption and real-time feature, which are also equally
important to task scheduling, etc. As one piece of our future work, we will for-
malize them based on the current work and develop a tool for the formal analysis
of OSEK/VDX applications with interruption and real-time features. Another
piece of future work is to improve the efficiency of test case generation by inte-
grating the automata-based approach proposed in [3] into our formalization and
to support user-defined constraints for test case generation by formalizing the
OSEK constraints specification language defined in [4]. We also consider inte-
grating the formal semantics of C in K with the formal semantics of the standard
for the verification of more complicated OSEK/VDX-based applications that are
developed in C.

References

1. OSEK Group, et al.: OSEK/VDX Operating System Specification (2009)
2. John, D.: OSEK/VDX conformance testing-MODISTARC. In: Proceedings of

OSEK/VDX Open Systems in Automotive Networks, IET (1998)
3. Choi, Y., Zhang, M., Ogata, K.: Evaluation of Maude as a test generation engine

for automotive operating systems, pp. 1–15 (2013) (Manuscript)
4. Choi, Yunja: Constraint specification and test generation for OSEK/VDX-based

operating systems. In: Hierons, Robert M., Merayo, Mercedes G., Bravetti, Mario
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 305–319. Springer, Heidelberg (2013)

296 M. Zhang et al.

5. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. J. Log.
Algebr. Program. 79(6), 397–434 (2010)

6. Yatake, Kenro, Aoki, Toshiaki: Automatic generation of model checking scripts
based on environment modeling. In: van de Pol, Jaco, Weber, Michael (eds.) Model
Checking Software. LNCS, vol. 6349, pp. 58–75. Springer, Heidelberg (2010)

7. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th POPL, pp. 533–544. ACM (2012)

8. Guth, D.: A formal semantics of Python 3.3, Master thesis (2013)
9. Meredith, P., Hills, M., Roşu, G.: An executable rewriting logic semantics of K-

Scheme. In: Workshop on Scheme and Functional Programming, vol. 1 (2007)
10. Zahir, A.: OIL-OSEK implementation language. In: OSEK/VDX Open Systems in

Automotive Networks (Ref. No. 1998/523), IEE Seminar, IET, pp. 1–8 (1998)
11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007)

12. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8),
721–781 (2012)

13. Roşu, G., Şerbănută, T.F.: K overview and simple case study. In: Proceedings of
International K Workshop (K’11), ENTCS. Elsevier (2013) (to appear)

14. Zhang, H., Aoki, T., Yatake, K., Zhang, M., Lin, H.H.: An approach for checking
OSEK/VDX applications. In: Proceedings of the 13th QSIC, IEEE CSP, pp. 113–
116 (2013)

15. Huang, Y., Zhao, Y., Zhu, L., Li, Q., Zhu, H., Shi, J.: Modeling and verifying the
code-level osek/vdx operating system with csp. In: Proceedings of the 5th TASE,
IEEE CSP, pp. 142–149 (2011)

16. Yatsu, H., Ando, T., Kong, W., Hisazumi, K., Fukuda, A., Aoki, T., Futatsugi,
K.: Towards formal description of standards for automotive operating systems. In:
Proceedings of 6th ICSTW, IEEE CSP, pp. 13–14 (2013)

17. Vu, D.H., Aoki, T.: Faithfully formalizing OSEK/VDX operating system specifi-
cation. In: Proceedings of the 3rd SoICT, pp. 13–20. ACM (2012)

Author Index

Abd Alrahman, Yehia 21
Aguirre, Luis 80
Andric, Marina 21
Arusoaie, Andrei 97
Asavoae, Irina Mariuca 113

Bae, Kyungmin 113
Bartoletti, Massimo 130
Beggiato, Alessandro 21

Choi, Yunja 280

Durán, Francisco 1

Genet, Thomas 147

Liu, Si 162
Lluch Lafuente, Alberto 21
Lucanu, Dorel 97
Lucas, Salvador 178, 195

Martí-Oliet, Narciso 80
Meseguer, José 113, 162, 178, 195, 247, 263

Mosses, Peter D. 213
Muñoz, César 247
Murgia, Maurizio 130

Ogata, Kazuhiro 280
Ölveczky, Peter Csaba 42, 162

Palomino, Miguel 80
Pita, Isabel 80

Riesco, Adrián 230
Rocha, Camilo 247
Roşu, Grigore 97
Rusu, Vlad 97

Scalas, Alceste 130
Şerbănuţă, Traian-Florin 97
Ştefănescu, Andrei 97
Sun, Mu 263

Vesely, Ferdinand 213

Zhang, Min 280
Zunino, Roberto 130

	Preface
	Organization
	Contents
	Composition of Graph-Transformation-Based DSL Definitions by Amalgamation
	1 Introduction
	2 Graph Transformation and GTS Amalgamations
	2.1 Rules, Rule Morphisms, and Rule Amalgamations
	2.2 Typed Graph Transformation Systems
	2.3 GTS Amalgamations and Preservation of Behavior

	3 Non-functional Properties as Parameterized Domain Specific Languages
	3.1 The Palladio DSL
	3.2 The e-Motions System
	3.3 An e-Motions Re-implementation of Palladio
	3.4 Parameterized DSL for NFP Observation
	3.5 Adding Observers to System Specifications

	4 Related Work
	5 Conclusions
	References

	Can We Efficiently Check Concurrent Programs Under Relaxed Memory Models in Maude?
	1 Introduction
	2 Relaxed Memory Models
	3 A Simple Language with Relaxed Concurrency
	4 Tackling the State Space Explosion
	4.1 Preliminaries
	4.2 Approximations
	4.3 Partial-Order Reduction
	4.4 Search Strategies

	5 Related Works
	6 Conclusion
	References

	Real-Time Maude and Its Applications
	1 Introduction
	2 Specification in Real-Time Maude
	2.1 Object-Oriented Specifications

	3 Formal Analysis
	3.1 Time Sampling Strategies
	3.2 Analysis Commands
	3.3 Implementation

	4 Sound and Complete Real-Time Maude Analysis
	4.1 Sound and Complete Reachability Analysis and LTL Model Checking in Real-Time Maude
	4.2 Sound and Complete TCTL Model Checking

	5 Some Real-Time Maude Applications
	5.1 Some Concrete Applications
	5.2 Formalizing Formal Patterns
	5.3 Semantics and Formal Analysis of Modeling Languages
	5.4 Analysis of Distributed Maude Programs

	6 Extensions of Real-Time Maude
	6.1 HI-Maude: Object-Oriented Modeling and Formal Analysis of Continuously Interacting Hybrid Systems

	7 Concluding Remarks
	References

	Conditional Narrowing Modulo in Rewriting Logic and Maude
	1 Introduction
	2 Preliminaries
	2.1 Tower of Hanoi Example
	2.2 Membership Equational Logic
	2.3 Rewriting Logic
	2.4 Executable Rewrite Theories
	2.5 Unification
	2.6 Reachability Goals
	2.7 Narrowing
	2.8 Associated Rewrite Theory

	3 Conditional Narrowing Modulo Unification
	3.1 Calculus Rules for Unification

	4 Reachability by Conditional Narrowing
	4.1 Calculus Rules for Reachability

	5 Example
	6 Related Work, Conclusions and Future Work
	References

	Language Definitions as Rewrite Theories
	1 Introduction
	2 Running Example
	3 Background
	3.1 The Ingredients of a Language Definition
	3.2 Symbolic Execution
	3.3 Rewrite Theories

	4 Translating Language Definitions into Rewrite Theories
	5 Implementing the K Framework in Maude
	6 Conclusion and Related Work
	References

	Infinite-State Model Checking of LTLR Formulas Using Narrowing
	1 Introduction
	2 Preliminaries
	3 Narrowing-Based LTLR Model Checking
	4 Abstract Narrowing-Based LTLR Model Checking
	5 Related Work and Conclusions
	References

	Modelling and Verifying Contract-Oriented Systems in Maude
	1 Introduction
	2 Modelling Contracts
	3 Modelling Contracting Processes
	4 Honesty
	5 Model Checking Honesty
	6 Conclusions
	References

	Towards Static Analysis of Functional Programs Using Tree Automata Completion
	1 Introduction
	2 Related Work
	3 Background
	4 Tree Automata Completion Algorithm
	4.1 Normalization
	4.2 One Step of Completion
	4.3 Simplification of Tree Automata by Equations
	4.4 The Full Completion Algorithm

	5 Termination Criterion for a Given Set of Equations
	5.1 General Criterion
	5.2 Criterion for Functional TRSs
	5.3 Experiments

	6 Conclusion and Further Research
	References

	A Framework for Mobile Ad hoc Networks in Real-Time Maude
	1 Introduction
	2 Real-Time Maude
	3 Mobility and Communication Delay in MANETs
	4 Formalizing MANET Mobility and Communication
	4.1 Some Basic Data Types
	4.2 Modeling Mobile Nodes
	4.3 Timed Behavior and Compositionality
	4.4 Modeling Wireless Communication in Mobile Systems

	5 Case Study: Route Discovery in AODV
	5.1 Route Discovery in AODV
	5.2 Modeling Route Discovery in Real-Time Maude

	6 Formal Analysis of AODV
	7 Related Work
	8 Concluding Remarks
	References

	Strong and Weak Operational Termination of Order-Sorted Rewrite Theories
	1 Introduction
	2 Preliminaries
	3 Orderings, Quasi-Decreasingness, and (Strong) Operational Termination
	3.1 Orderings for Order-Sorted Terms
	3.2 Quasi-Decreasingness and (Strong) Operational Termination of Deterministic 3-OSRTs

	4 Computing with Normal Rewrite Theories
	5 Proving Order-Sorted Rewrite Theories Normal
	6 Conclusions and Future Work
	References

	2D Dependency Pairs for Proving Operational Termination of CTRSs
	1 Introduction
	2 Preliminaries
	3 Minimal Operationally Nonterminating Terms in CTRSs
	4 2D Dependency Pairs for CTRSs
	4.1 Characterizing Operational Termination of CTRSs Using 2D DPs
	4.2 Termination of 2-CTRSs

	5 Mechanizing Proofs of Operational Termination with 2D DPs
	6 Processors for the 2D DP Framework
	6.1 Graph of a CTRS Problem
	6.2 Use of Orderings and Argument Filterings

	7 Related Work and Conclusions
	References

	FunKons: Component-Based Semantics in K
	1 Introduction
	2 Fundamental Constructs
	3 A Funcon Specification of CinK
	3.1 Simple Expressions
	3.2 Variables, Blocks and Scope
	3.3 Assignment and Control Statements
	3.4 Function Definition and Calling
	3.5 Threads
	3.6 References
	3.7 Pointers
	3.8 Arrays
	3.9 Configuration
	3.10 Sequencing of Side Effects

	4 Funcons in K
	4.1 Expressions
	4.2 Declarations
	4.3 Commands
	4.4 Variables
	4.5 Vector Allocation
	4.6 Functions

	5 Related Work
	6 Conclusion
	References

	An Integration of CafeOBJ into Full Maude
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 CafeOBJ and Maude
	3.2 Maude Metalevel and Full Maude

	4 Introducing CafeOBJ Modules into the Full Maude Database
	4.1 Parsing CafeOBJ Modules and Commands
	4.2 Translating the Modules
	4.3 Combining CafeOBJ and Other Full Maude Tools

	5 Connecting CafeOBJ and Maude
	5.1 Metaprogramming in CafeOBJ
	5.2 Basic Commands
	5.3 Using the Declarative Debugger and Test-Case Generator
	5.4 Using the Constructor-Based Inductive Theorem Prover

	6 Concluding Remarks and Ongoing Work
	References

	Rewriting Modulo SMT and Open System Analysis
	1 Introduction
	2 Preliminaries
	3 Rewriting Modulo a Built-In Subtheory
	4 Symbolic Rewriting Modulo a Built-In Subtheory
	5 Reflective Implementation of R
	6 Analysis of the CASH Algorithm
	7 Related Work and Concluding Remarks
	References

	Formal Specification of Button-Related Fault-Tolerance Micropatterns
	1 Introduction
	2 Background on Parameterized Formal Specifications and Real-Time Maude
	2.1 Membership Equational Logic and Rewriting Logic
	2.2 Full Maude and Real-Time Maude
	2.3 Parameterized Modules

	3 Modeling Buttons
	3.1 Button Behavior Semantics in a System

	4 A Pattern to Address Button Bounce Faults
	4.1 Button Bounce
	4.2 A Button Debouncer Pattern
	4.3 Proof of Correctness of the Debouncer Pattern

	5 A Pattern to Address Phantom Faults
	5.1 Phantom Faults
	5.2 Dephantom Pattern
	5.3 Proof of Correctness of the Dephantomizer Pattern

	6 A Pattern to Address Stuck Faults
	6.1 Stuck Faults
	6.2 Stuck Detection Pattern
	6.3 Proof of Correctness of the Stuck Detection Pattern

	7 Conclusion and Future Work
	References

	A Formal Semantics of the OSEK/VDX Standard in K Framework and Its Applications
	1 Introduction
	2 Background and Overall Approach
	3 The OSEK/VDX Standard and OIL
	4 The K Framework
	5 Formalizing the OSEK/VDX Standard in K
	5.1 K Configuration of the OSEK/VDX
	5.2 Formalization of the Scheduler
	5.3 Formalization of Resource Management
	5.4 Formalization of Event Mechanism
	5.5 Formalization of Error Handling
	5.6 Formalization of OIL

	6 Applications of the Formal Semantics
	6.1 Verification of OSEK/VDX Applications by Model Checking
	6.2 Using the Formal Semantics for Test Case Generation

	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

