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Abstract. In this article, the results of aeroacoustic cases obtained by
high-order methods are presented. One internal and one external case are
considered. The internal case is a transonic cavity. It has been computed
by three parters, namely FOI-LiU (Linköping University), University of
Stuttgart (USTUTT) and Dassault Aviation (DASSAV). FOI-LiU has
computed with their higher order accurate finite difference solver us-
ing a block structured grid. Comparisons are made to reference calcula-
tions using an unstructured grid with Edge. USTUTT uses a high order
discontinuous Galerkin spectral element code for the final high-order
computations and a mixed modal/nodal DG code for the baseline com-
putations. Dassault Aviation uses their in-house stabilized finite element
code Aether, both for the reference and the higher-order computations.
In both instances unstructured tetrehedral grids are used. The external
case is a quasi-two dimensional generic wing and flap configuration de-
fined in the VALIANT FP7 project. Two institutions were involved in the
high-order simulation of this low-Mach number test case, M = 0.15, Cen-
tral Institute of Aero- and Hydrodynamics, TsAGI, and the von Karman
Institute, VKI. In the following, the acoustic predictions corresponding
to the two test cases will be described.
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1 Introduction

Flows over an open cavity may arise over the under-carriage wheel well and over
an embedded weapon bay during the store release operation of a military air-
craft. The acoustic tones for open cavity flows are interpreted as a consequence
of the interaction between the shear layer that bridges the cavity and the aft
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cavity wall on which the shear layer impinges. A better understanding and pre-
diction capability of this type of flow is of practical importance to improve the
design methodology and to avoid possible flow-induced operation problems in
aeronautic applications. Three partners consider the test case with turbulent
flow over a rectangular cavity. FOI and USTUTT are performing hybrid RAN-
S/LES calculations without a subgrid-scale model. Dassault Aviation is using a
zonal DES (ZDES) approach.

During aircraft approach and landing, a significant portion of noise is gen-
erated by the high-lift devices. Reducing the noise during landing is very im-
portant for the comfort of the residents living nearby an airport. The airframe
noise during take-off maneuver is less important, since the slope of the take-off
is much steeper, and the engines are in full trust, louder than any other compo-
nent. Among the various noise sources during approach and landing, the landing
gear, leading-edge slat and the side edges of the flap where identified as the
main airframe noise sources. The current test case considering a generic wing
and flap, more precisely the noise propagation around such geometry. Two part-
ners, namely TsAGI and VKI were contributiong to this industrial demonstrator
test case. VKI used the Large-Eddy Simulation performed within the VALIANT
project as noise sources while TsAGI injected stochastic perturbations in order
to represent the effect of the turbulent flow.

2 Transonic Cavity Case

The test case is denoted Test Case A15 within IDIHOM and is a test case
with transonic flow over a rectangular cavity; it is also known as M219 in the
literature. This test case is suitable for LES or hybrid RANS/LES calculations
due to the turbulent fluctuations over the cavity. Experimental, time dependent
data exist on the cavity walls and ceiling and are available for IDIHOM. This test
case has been measured and computed in the past with many references available,
e.g. [1]– [3]. Several different cavity geometries exist; the one used in IDIHOM
is the cavity with 5:1:1 length-to-depth-to-width relation. The geometry as well
as the locations of the pressure probes are reproduced here in Figure 1.

The free stream values are

M∞ = 0.85; Re = 6.8× 106 (1)

where the Reynolds number is based on the cavity length (20 inches).

2.1 Computational Domains and Grids

FOI-LiU. For the higher order calculations with the finite difference solver Es-
sense, calculations were carried out on a flat plate where the cavity is embedded
on the flat plate. A two block structured grid was created for these calculations
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Fig. 1. Cavity geometry, experimental setup and location of the pressure probes record-
ing unsteady pressure fluctuations

where one block is located inside the cavity. To have a single boundary condition
per block side, the block on top of the cavity block was split up resulting in 10
blocks all together. For the reference calculations with Edge [4], FOI-LiU has
computed on two different grids, one hybrid unstructured grid that has been
generated by EADS and contains a grid over the cavity, the device on which the
cavity is integrated and the entire test section of the wind tunnel. The other grid
is a structured grid generated by FOI-LiU over the cavity and a limited domain
of the flat plate outside of the cavity, very similar to the structured grid. The
structured grid is displayed in Figure 2 and the main data are summarized in
Table 1.

Table 1. Details of FOI-LiU computational grids for A15 Cavity

Grid Solver # vol. nodes # boundary # volume Near wall
nodes in cavity nodes in cavity distance

Structured Essense 2.6× 106 41× 103 0.73× 106 1.2× 10−5 m
EADS grid Edge 6.2× 106 77× 103 2.0× 106 4.0× 10−6 m
FOI grid Edge 1.2× 106 16× 103 0.5× 106 4.0× 10−6 m

USTUTT. The mesh used for the cavity computations by the University of
Stuttgart is a modified version of the mesh provided by FOI. The mesh contains
about 62, 000 elements, of which about 50% are placed either inside the cavity or
at a distance of less then 0.2D to the cavity. In the flat plate region the effective
y+, (y+ = y+1 /(P+1)) has been chosen to be 10, considering the schemes sub cell
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Fig. 2. Mesh of the cavity test case by FOI-LiU using Essense

resolution. Here y+1 denotes the height of the first grid cell and P the polynomial
degree. The magnitude of y+ could be confirmed by the computations. The mesh
is displayed in Figure 3.

Fig. 3. Cavity mesh used by USTUTT, cut at plane through the right wall

DASSAV. Contrary to the other two contributors, Dassault Aviation has com-
puted the M219 cavity in a configuration close to its original experimental setup,
as can be seen in Figure 4. The Reference linear mesh used by Dassault Aviation
is an unstructured tetrahedral mesh build on top of a triangular surface mesh
with a characteristic edge size of 2 mm. In the boundary layer, the mesh is con-
structed with a first layer of elements of 10 μm height and a growing ratio of
1.25. In the mixing layer, an unstructured block of tetrahedra with edge lengths
od 2 mm in the x and y directions and 2.5 mm in the z direction is inserted. The
grid contains slightly less than 3.4 million grid points. Higher order grids are
generated by adding degrees of freedom to a coarse P1 grid. The difficulty is to
build a “skeleton” grid which is coarse enough to yield higher-order grids with a
controlled number of grid points and still preserve the qualities in geometric rep-
resentation, point density, and element distorsion of the original reference grid.
Fortunately for this test case, all surfaces of the model are flat which alleviates
the issue of curving the elements in the volume. A discussion about this aspect
of higher-order grid generation can be found in the A04 Generic Falcon Test
Case in the External Aerodynamic Test Case section [5] and also in Chapter II.2
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in the section dedicated to the numerical method developed by DASSAV [6].
With these constraints, the skeleton P1 mesh built on a different surface grid
with a characteristic edge size of 4 mm could not be made coarser than about
450,000 grid points; consequently the corresponding P2 grid (and the matching
P1 grid) contains 3.5 million grid points. Coarsening techniques developed later
on for the A04 Falcon test case could probably have been similarly applied to
the cavity to produce yet coarser higher-order grids [5].

Fig. 4. Configuration and surface view of the P2 mesh used by DASSAV

2.2 Numerical Methods, Reference and Higher-Order Solutions

FOI-LiU. For the higher order accurate calculations FOI-LiU use the finite
difference solver Essense that has been further developed and validated within
IDIHOM. The higher order code is based on Summation By Parts (SBP) com-
bined with Simultaneous Approximation Term (SAT) approach with penalty
terms that guarantee accuracy and stability [7], [8]. The code is able to handle
arbitrary order of spatial accuracy, currently limited to 5th order. The code uses
explicit time stepping with a 4th order accurate additive Runge-Kutta scheme.

The unsteady calculations were initiated from poorly converged steady state
calculation with local time steps. The intention was to use the same hybrid
RANS/LES model as in Edge. For this purpose this algebraic model has been
implemented in Essense. In the calculations, however, the model imposed a se-
vere restriction on the time step due to small cells away from the wall caused by
the H-topology of the employed mesh. This model was therefore abandoned and
the calculations presented here have been computed without a model. Only one
calculation was completed during IDIHOM. This calculations employs a scheme
that is 4th order accurate in the interior, 2nd order accurate at the boundaries
making it globally 3rd order accurate. Adiabatic weak wall boundary conditions
were used inside the cavity and on the flat plate. Far field characteristic bound-
ary conditions were used elsewhere. The higher order calculation progress for
about 60 through flows, the solutions from last 40 through flow are used for the
statistics.

The reference calculations for this test cases were carried out some time ago
and have been repeated for IDIHOM. The 2nd order backward difference implicit
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method is used in time which is A-stable, i.e. stable for all sizes of physical
time step. In dual time multigrid with 3 levels accelerate the convergence. The
calculations progress for about 120 through flows, i.e. L/U∞, where L is the
cavity length and U∞ is the free stream velocity. Some computational parameters
are given in Table 2.

Table 2. Sizes of time steps and number of inner iterations for the reference cavity
calculations

Grid Solver Δt Δt per T N inner iterations
Structured Essense 1.0× 10−8 182× 103 1
EADS grid Edge 2.0× 10−5 91 32
FOI grid Edge 1.0× 10−5 182 40

In Figure 5 the overall the sound pressure level (SPL) and the overall sound
pressure level (OASPL) are displayed and compared to experimental values. The
higher order results compare reasonably well to the experimental values of SPL.
The main tonal peaks are captured. The higher order results have a tendency to
have somewhat larger amplitudes of the oscillations compared to the reference
results. This may be due to the lack of RANS/LES model for the higher order
calculations or possibly a too short and coarse sampling interval. The OASPL
is obtained by integrating SPL for all frequencies. The computed OASPL from
the higher order scheme and from the reference calculations with the EADS
grid agree best with the experimental values, the over prediction of OASPL is
common.

(a) SPL at kulits k21, x/L = 15% (b) OASPL

Fig. 5. Local and Overall Sound Pressure Level by FOI-LiU

USTUTT. USTUTT computed baseline higher order computations for the
cavity testcase within the ADIGMA project [9] computed with USTUTTs mixed
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modal/nodal hp-adaptive DG code HALO. The calculations were carried out for
a different Reynolds number (Re=2× 105) and have hence been left out here.

The cavity computations have been performed using the high order discontin-
uous Galerkin spectral element code Flexi developed by the Numerical Research
Group (NRG) at the University of Stuttgart [10]. A polynomial degree of P = 4
has been chosen for the computations. For the computation a model-free ap-
proach has been chosen, however an incomplete polynomial de-aliasing has been
applied using over integration. The de-aliasing reduces unphysical oscillations of
the solution and thus provides ’clean numerics’ and in our case also significantly
reduces destabilizing effects caused by the high Reynolds and Mach number. For
the overintegration a polynomial degree of POver = 6 has been chosen, which was
regarded as a good compromise between speed and accuracy, where full overinte-
gration would require POver = 9. During the computation occasionally occurring
shocklets have been observed, therefore a low amount of artificial viscosity has
been used to provide additional stability. The amount of artificial viscosity has
been controlled by a Persson-type modal pressure indicator. Compared to the
baseline results, only 20% of the amount of artificial viscosity was sufficient for
this computation.

For the time discretization USTUTT has employed a 4th order explicit Runge-
Kutta scheme. The average time step of the simulation was typically in the range
between Δt = 1.4 × 10−7 − 1.6 × 10−7. The data at the Kulites was collected
every 4th time step, resulting in a very high sampling rate of about 1.6 Mhz.
From t = 0.0s−0.035s the polynomial degree has been gradually increased from
P = 2 with an increased amount of artificial viscosity to the final simulation
setup with P = 4. The collection of the data started at t=0.05s, which equals to
27 through-flows. The total averaging time was 0.11s being about 60 through-
flows.

The domain has been chosen to be periodic in spanwise direction. For the
flat plate and the cavity itself adiabatic no-slip boundary conditions have been
applied. At the inflow and the top characteristic conditions have been used,
producing a boundary layer thickness of 0.1D at the cavity leading edge, to have
comparable results to the which is identical to the results by Chen et al. [1]. At
the outflow characteristic non-reflecting boundary conditions have been applied.

The overall computation contains 7.7×106 DOFs, with an additional 13.4×106

DOFs used for the de-aliasing. The simulation has been carried out on the Cray
XE6 cluster Hermit at HLRS in Stuttgart with on 4096 cores. The number
of DOFs/core was about twice the number of which the code reaches its peak
efficiency (2000-3000 DOFs/core), more cores could not be used for availability
reasons on the cluster.

For the evaluation of our computations we compare the sound pressure level
spectra and the overall sound pressure level along the Kulites K20-K29 placed
equidistantly in streamwise direction on the cavity ceiling, the results on one of
the Kulites is displayed in Figure 6.

The plots of the sound pressure level reveal that all cavity modes are predicted
slightly too high in frequency, while the amplitude prediction differs somewhat
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Fig. 6. Local and Overall Sound Pressure Level by USTUTT

between the Kulites. It is clearly visible, that the 3rd and 4th mode are predicted
best by the LES computation, with respect to both frequency and amplitude.
Even some of the higher modes are well resolved, which can be best seen at
Kulite 23. The predictions for the first mode suffer from the relatively short av-
eraging time compared to the experiment. To fully capture this mode a largely
longer averaging time would be required. Nevertheless both amplitude and fre-
quency prediction are in an acceptable region. The SPL for the 2nd mode can
be regarded too low for some Kulites, for others the 2nd mode is nearly missing.
While the reason for this behaviour is unknown, many simulations from litera-
ture suffer from the same problem e.g. [2]. The SPL prediction at Kulites 20-23
at the beginning of the cavity matches the experimental results somewhat bet-
ter, compared to the Kulites at the end. In an overall view the mode prediction
is satisfying, with exception of the 2nd mode.

Table 3. Modal frequency and amplitude at K29, results from USTUTT

Mode 1 2 3 4 5
Rossiter 159 Hz 371 Hz 582 Hz 794 Hz 1005 Hz

Experiment 150 Hz 350 Hz 590 Hz 810 Hz 991 Hz
142 dB 153 dB 146 dB 135 dB 129 dB

LES-N4 190 Hz 380 Hz 623 Hz 840 Hz 1010 Hz
140 dB 140 dB 145 dB 137 dB 127 dB

Regarding the overall sound pressure level the computations do in general
match the experimental results very well as displayed in Figure 6. Especially in
the first 3rd of the cavity the OASPL is nearly identical to the measured results.
In the region near x/L = 0.4 where the pressure oscillations caused by the shear
layer reach their maximum the results start to slightly diverge up to a maximum
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difference of 3 dB, which then decreases again to 1-2 dB difference till the end
of the cavity.

DASSAV. For all computations, Dassault Aviation used its industrial stabi-
lized finite element code Aether. It relies on continuous isoparametric Lagrange
polynomials of any order computed on unstructured grids as finite element shape
and trial function spaces (solutions are C0 continuous and the same degree of
interpolation is used for both the solution variables and the space coordinates).
So far, only tetrahedral elements have been implemented in 3-D up to P3. More
details about the numerical method and its higher-order implementation can be
found in [6].

Fig. 7. Turbulent structures in the QinetiQ M219 cavity computed by DASSAV: stan-
dard 2nd-order linear P1 elements (left) vs. 3rd-order quadratic P2 elements (right).

For unsteady calculations fully implicit time integration with dual time step-
ping is performed based on the standard second-order Gear’s scheme. The same
time step of 1.5× 10−5 s (that is 121 time steps per through flow over the cavity
length) is used for all computations whatever the order of the space integration.
Third order calculation may suffer from a time integration which is only second
order accurate. Our experience with DES calculations and in particular with this
test case tells that time accuracy should be sufficient with such a time step. The
effect of a time step reduction is shown in section [6]. Nevertheless, keeping ev-
erything equal, including the time integration scheme, enables a fair comparison
between 2nd and 3rd order spatial accuracy.

For all simulations, the flowfield is initialized with a steady RANS computa-
tions using the Spalart-Allmaras turbulence model. The computation is pursued
in a unsteady mode with a Zonal DES approach [11]. After a settling time of
195 ms, unsteady data is acquired for another 225 ms, which accounts for a total
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simuation time of 420 ms (i.e., 230 through flows). 186 ms are post-processed
to produce the energy spectra and the OASPL curves. For a better comparison,
especially at low frequencies, the experimental pressure history is post-processed
over the same time interval. All calculations were performed on 1024 cores of an
IBM BlueGene/P.

In Figure 7, isovalues of the Q-criterion colored by the Mach number are
presented for the 2nd-order linear P1 and the 3rd-order quadratic P2 solutions
computed on nested grids and thus containing the same number of degrees of
freedom. The higher-order simulation transitions sooner to full 3-D turbulence
and contains much finer turbulent structures.

(a) SPL at Kulite K21, x/L = 15%
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Fig. 8. Local and Overall Sound Pressure Level by DASSAV

A typical SPL frequency spectrum corresponding to Kulite #21 is displayed in
Figure 8a. It shows a reasonable agreement between the experiment (in red) and
the different simulations both in terms of Rossiter peak locations and amplitude.
One must note that the higher-order solution (in blue) exhibits more energy in
the higher part of the spectrum.

In Figure 8b, OASPL plots corresponding to different realizations of the sim-
ulation are presented. The red and green curves represent respectively the Ref-
erence solution and the P1 solution computed with the same degrees of freedom
as the higher-order solutions. Both solutions are quite similar and are in good
agreement with the experiment shown in black (a few tenth of a dB on the av-
erage, see Table 4). Note that the Reference solution corresponds to a longer
simulation time of 350 ms. This confirms that the statistics are converged for
the newer computations which account for simulations times of 225 ms. The P2
third-order solution is plotted in blue. It shows a drop in OASPL 1 to 2 dB
below the experiment. We believe that the more precise P2 computation reveals
some of the limitations of the underlying Smagorinsky subgrid scale model in
the DES. A finer P1 simulation, shown in a green dashed line, exhibits the same
tendency of decreased OASPL’s; the corresponding mesh is the same as the P1
and P2 meshes, except in the cavity region where the typical grid size has been
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(a) Band 1: 75–175 Hz
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(b) Band 2: 300–400 Hz
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(c) Band 3: 550–650 Hz
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Fig. 9. Band-integrated Sound Pressure Levels by DASSAV

reduced from 2 to 1 mm; this mesh contains close to 3.9 million grid points.
A more detailed discussion about the effects of mesh refinement, subgrid scale
model, time step and scheme order can be found in [6].

Finally, two additional curves are presented in Figure 8b. For the sake of
simplicity, earlier higher-order computations were carried out with the same
sampling routine as P1 computations, that is the pressure signal was linearly
interpolated at the location of the experimental Kulites. The effect of the actual
higher-order interpolation is shown in the pink curve. Depending on the pressure
tap, an increase of up to 1 dB is observed in OASPL, bringing the higher-
order P2 results very close to the refined mesh P1 results. This stresses the
importance of postprocessing higher-order solutions with adapted higher-order
techniques. This remark is also valid for line and contour plots. The orange curve
in Figure 8b represents the effect of the second order Navier-Stokes derivatives
in the SUPG/GLS stabilization term of DASSAV residual-based stabilized finite
element code. This term is zero for 2nd-order linear solutions and was dropped
so-far for higher-order computations. The effet is not so sensitive on OASPL’s but
is more significant at certain frequencies as can be seen in the band-integrated
SPL’s in Figure 9. Frequency bands are defined for this test case according to
the analysis of Larchevêque [12]. Again, the difference in SPL with respect to
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the orginal P2 solution is significant, and the experimental level can even be
retrieved for the higher frequency band. Unfortunately, the combination of both
higher-order interpolation for pressure probes and of the higher-order term in
the stabilization could not be tested during the duration of the project.

The band-integrated sound pressure levels (SPL’s) in Figure 9, plotted in
the same colors as the OASPL’s, show that the main physics is captured in
all simulations over the complete range of frequencies. As could be anticipated,
higher frequencies are better captured on P1 refined meshes and higher-order
solutions with the best numerical ingredients. More on that aspect can be found
in [6].

2.3 Assessment of High-Order Solutions

In an attempt to quantify the deviation from the experimental OASPL and
to make a cross comparison between partners results we define the normalized
deviation D as

D =
‖ OCFD −Oexp − δO ‖2

Oexp

=

√
1
N

N∑
i=1

(Oi,CFD −Oi,exp − δO)2

Oexp

(2)

δO =
1

N

N∑

i=1

(Oi,CFD −Oi,exp) (3)

and where Oexp = 159.2dB;N = 10. The intention with the derived formula
for the deviation is to define a measure that gives a zero value if the shape of
OASPL is identical to the shape of the experimental OASPL. It allows for a shift
in absolute level though.

In Figure 10 the OASPL by FOI-LiU, USTUTT, and DASSAV using HOM are
displayed. In Table 4 below we give the deviation for the different calculations.
The deviation obtained by FOI-LiU between the higher order and reference re-
sults is very similar indicating that the two solutions follow experimental OASPL
equally well. The slightly higher deviation obtained by USTUTT is due to the

Table 4. Computed deviation to experimental values

Partner Solution D δO (dB)
FOI-LiU Reference EADS grid, 2nd order 3.0× 10−3 2.480
FOI-LiU HOM, 3rd order 3.0× 10−3 2.077
USTUTT Flexi, 5th order 5.4× 10−3 -1.027
DASSAV Aether, Reference, 2nd order 3.1× 10−3 0.200
DASSAV Aether, 2nd order 3.0× 10−3 -0.074
DASSAV Aether, 3rd order 2.7× 10−3 -1.936
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fact that their shape deviates somewhat more from the shape of the experimen-
tal results although there is a very good experimental match upstream in the
cavity. In the case of DASSAV, both 2nd-order solutions present similar devia-
tions; the 3rd-order simulation produces however a slightly lower deviation, but
at the price of a larger shift (-2 dB), as previously mentioned.
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Fig. 10. Overall Sound Pressure Level (OASPL) using higher order methods (HO) by
FOI-LiU, USTUTT, and DASSAV on the cavity ceiling (Kulites k20 - k29)

Next is a summary of the computational resources required to obtain the
considered solutions. The reference calculation on the FOI grid has been left out.
It should be noted that the simulation time is different for the calculations. The
higher order simulation by FOI-LiU is obviously more than an order of magnitude
more expensive than the FOI-LiU reference calculation. This is mainly due to
small time steps and the lack of convergence acceleration in ESSENSE. The
higher order calculation by USTUTT is more efficient and comparable to the
reference solution by FOI. It is to be noted, that while the effective NDOF

is 7.7 × 106, the overall NDOF including overintegration is about three times
higher. DASSAV 3rd-order P2 simulations last about 2.5 times as long as a
standard 2nd-order P1 simulation (6 days compared to 2.5 days on 1024 cores
of an IBM BlueGene/P). Higher-order computations use 10 integration points
per tetrahedron, whereas a single point is used for 2nd-order runs. It is quite
possible that on this configuration where all elements have uncurved edges, a
four-point integration rule would suffice, further reducing the cost of the higher-
order simulation.

3 VALIANT Flap Case

The VALIANT flap testcase represents a wing+flap configuration in approach
condition. This case is a generic geometry defined in the FP7 VALIANT project.
The flap is placed under the wing with a bit of overlap. This configuration was
installed in the anechoic wind tunnel of Ecole Central de Lyon and both flow and
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Table 5. Computational information about the cavity test case

Partner/ Simulation NDOF NCPU Twall Tbench Twall ×NCPU/
case time (Tbench ×NDOF )

FOI-LIU HO 0.080 s 2.6× 106 300 7.70× 106s 16.0 s 56.00
FOI-LIU Ref. 0.200 s 6.2× 106 64 2.44× 106s 16.0 s 1.60
USTUTT HO 0.110 s 7.7× 106 4096 1.75× 105s 15.1 s 6.10
DASSAV Ref. 0.225 s 3.5× 106 1024 2.12× 105s 131.5 s 0.47
DASSAV HO 0.225 s 3.5× 106 1024 5.48× 105s 131.5 s 1.20

acoustic measurements were performed in the framework of VALIANT (VAL-
idation and Improvement of Airframe Noise prediction Tools) FP-7 European
project [13]. The main characteristics defining the flow are the free-stream ve-
locity Uinf = 51m/s , which corresponds to approach condition with Ma = 0.15.
The resulting Reynolds number, Re = 1.36× 106, is approximately one order of
magnitude less than the Reynolds numbers corresponds to a real aircraft wing
during approach. Roughness elements (sandpaper ISO P150) were placed on both
sides of the wing in order to trigger an established incoming turbulent bound-
ary layer. The experimental database obtained by ECL includes the following
data: time-dependent microphone signals, time-dependent wall pressure signals,
time-dependent series of the velocities acquired from hot wire measurements [14].

3.1 Computational Domains and Grids

As a first step towards the characterization of the noise propagation from this
generic wing flap configuration, the computational domain of the LES simulation
was extended for the LEE simulation. Acoustic measurement data are available
2 meters above the wing trailing edge, so this point was considered in the LEE
domain to be resolved. The boundary of the computational domain, therefore,
was truncated a bit further above this measurement point in order to limit
the reflections arising due to this artificial domain restriction. The computa-
tional domain can be seen in Figure 11. This 2D mesh consists of 36k triangular
elements, heavily clustered in the noise production region in order to have a
good representation of the reconstructed source terms transferred from the LES
simulation.

The maximum mesh size was determined based on the maximum frequency
resolution we intended to achieve. Previous investigations showed that with P1
representation, the LDA scheme needs 10 points per wavelength. The maximum
frequency resolution we can have from the LES source data can be computed as:

f = 1/ΔtLES = 1/10−6 = 103kHz (4)

Due to the space-time discretization, we need ten points in time, as well,
to resolve the waves in time, giving the maximum assessable frequency of
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(a) Computational domain of VKI (b) Measurement setup

Fig. 11. Quasi-2D wing and flap configuration

fmax = 102kHz. This frequency is still far above the maximum frequency of
the measurements ( 20kHz), so we decided to limit the maximum frequency
resolution to this value, giving the maximum cell size:

Δx =
λ

100
= 0.1

c

f
= 2mm (5)

TsAGI performed calculations of this test as well in 2D (flat) formulation. 2D
basis functions were used in DG method. Initially, RANS calculation has been
performed on appropriate grid with detailed resolution of turbulent boundary
layer (for uniform inflow). The converged flowfield, obtained in RANS calcula-
tion, have been used as basic (aerodynamic) flowfield.

Fig. 12. Geometry of computational domain and position of control points for test
A14 by TsAGI

Acoustic calculations have been performed using DG method K = 3 for four
quasi-uniform grids with quasi-quadratic cells, with 4, 6, 9 and 14 cells per the
shortest wavelength in the incoming sound. TsAGI used a smaller domain in
order to be able to perform parametric studies and grid convergence.
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3.2 Numerical Methods and Baseline Solutions

The von Karman Institute used their second- and third-order Residual Distribu-
tion solver to deal with this noise propagation problem. The Residual Distribu-
tion or Fluctuation Splitting Method is somewhere between the Finite Element
and Finite Volume Methods. The idea was introduced in 1982 by P.L. Roe and
later extended for the solution of conservation laws on unstructured meshes. In
the last decades several multidimensional upwind schemes have been developed,
and proved to be accurate and robust. A new strategy in the computation of
the residuals has been designed involving contour integrations and leading to
conservative discretization even for problems where it is not possible to linearize
the system of equations. Thanks to this improvement the application of RDS to
high order discretisation was possible. In our case, since we want to distribute
to the downwind nodes it is necessary to split the high order elements in linear
elements where we know how to use a multidimensional upwind distribution.
Several methods have been developed to solve unsteady problems. In this work
we used the space-time method, where the time is considered as a third di-
mension yielding a space-time element and was first presented by Ricchiuto et
al. [15]

In the present work we consider the Linearized Euler Equations (LEE) in
two spatial directions, as derived by Bailly et al. for inhomogeneous mean flow,
written in conservative variables. At the boundaries non-reflective boundary con-
ditions are used. This boundary treatment relies on the characteristic theory. It
is well known that the number of physical conditions which has to be prescribed
at the boundary depends on the sign of the eigenvalues of the characteristic
system. Only the information coming from outside has to be imposed, all the
others are provided naturally by the inner domain. In case of acoustic problems
the first difficulty arising is to know what kind of conditions should be fixed. In
the present Linearized Euler Equations, the solution variables are the fluctua-
tions of density, velocity and pressure. At an inflow boundary condition three
of them should be given, for an outflow just one. But none of the conservative
variables are known, in general. It is much easier acting on the waves themselves.

In order to perform noise propagation simulation with the help of Linearized
Euler Equations, the background flow (time-averaged) needs to be provided to
the solver. VKI was using the time-averaged mean flow provided by the LES, ex-
trapolated to the regions, what the LES domain do not cover. The non-uniform
mean flow expected to effect the noise propagation, therefore its correct repre-
sentation is an important step of the current procedure. The noise production
calculation of the generic wing and flap configuration was set up and validated
within the FP7 VALIANT project. This simulation was continued to collect
equivalent noise sources for the LEE solver used for noise propagation simula-
tion. The noise sources produced by the open source OpenFOAM solver were
collected for a time span of T = 0.04s and saved to be able to transfer them
to our in house code COOLFluiD. In order to reduce the data amount of these
volumetric sources, only the mid-span averaged data was extracted in every
time-step.
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Based on the incompressible flow quantities, equivalent acoustic sources were
reconstructed as:

S =

⎡

⎢⎣
0

Si − S̄i

0

⎤

⎥⎦ (6)

where Si = −∂ρ0u
′
iu

′
j

∂xj
. These source terms were directly used as volumetric source

terms, but the source domain was truncated to a disk of 10cm around the wing
trailing edge, where the dominant source terms are located, in order to reduce
the numerical noise due to interpolation of the sources from the fine LES mesh
to the coarser LEE mesh.

In the previously discussed manner the reconstructed sources from the LES
simulation were introduced in the LEE simulation. A total simulation time of
T = 0.04s was covered by the propagation simulation limiting the statistically
converged low frequency resolution to f = 6kHz. The effect of the non uniform
flow is clearly visible in Figure 13, where the instantaneous divergence of velocity
is plotted.

Fig. 13. Contours of divergence of velocity indicating the noise propagation pattern

In the present simulation, only spanwise averaged data were stored and a 2D
propagation simulation was performed. According to Manoha et al. [16] only the
zeroth spanwise wavenumber of the spanwise, Fourier-transformed source needs
to be considered. Based on this observation Ewert et al. [17] used a reduced 2D
source in a pure 2D acoustic simulation to correct the sound pressure levels from
2D to 3D. In the present case the method suggested by Ewert et al. is followed.

The integral length scale of the acoustic source in the spanwise direction is
small compared to the acoustic wavelength for low Mach numbers, so the source
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is compact in this direction. Therefore, an acoustic simulation with a spanwise
extension Lz and periodic boundary conditions is equivalent to a 2D acoustic
simulation with a spanwise averaged acoustic source [17]:

ŝx =
1

Lz

∫ Lz/2

−Lz/2

sxdz (7)

If these averaged source terms are used in a 2D acoustic simulation, the sound-
pressure correction form 2D to 3D becomes:

p̂(0, R, θ, ω) � p̂(R, θ, ω)
1− ı

2

√
kΔ2

πR
(8)

where p̂(0, R, θ, ω) denotes the 3D, p̂(R, θ, ω) the 2D , frequency-related Fourier
transform of the sound pressure, ω is the angular frequency and k = ω/c0 is
the wavenumber. This correction affects the final SPL distribution, but has no
impact on the θ-dependent directivity. The SPL correction based on Equation 8
is:

SPL3D,Lz = SPL2D + 10log

(
fΔ2

Rc0

)
(9)

So, the 2D sound-pressure spectrum is shifted 3 dB/octave towards the higher
frequencies by the correction. The SPL3D,Lz is the sound radiated by the slice
of airfoil simulated by LES. For a finite spanwise extension Lspan an additional
correction is needed:

SPL3D,Lspan = SPL3D,Lz + 10log

(
Lspan

Δ

)
(10)

This correction is based on the assumption that all slices of Lz along the
wingspan are uncorrelated, whereas the spanwise extension is small compared
to the distance between the source and the listener (R).

There are several approaches for solving acoustic tasks. The approach, which
was considered by TsAGI, is known as “perturbation method” [18]. It requires
relatively not much computational costs and consists of three general steps.
At the first step a basic aerodynamic flowfield is calculated independently using
Reynolds averaged Navier-Stokes equations. Then near acoustic field is simulated
directly as generation and propagation of small acoustic perturbations over the
aerodynamic field. This direct numerical simulation of sound is performed on
the basis of linearized Euler equations. And finally far acoustic field is estimated
using special methods (Kirchhoff or Ffowcs-Williams Hawkings methods), which
consider radiation of sound by control surface over practically uniform aerody-
namic field. Acoustic characteristics of the control surface are taken from the
calculation of near acoustic field. TsAGI work within IDIHOM project was con-
centrated on direct simulation of sound propagation in near acoustic field. Theo-
retically, it is possible to neglect the influence of viscosity on sound propagation
and to consider this process as adiabatic. To minimize essentially the quantity of
arithmetic operations, it was decided to calculate sound propagation on the basis
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of Isentropic Linearized Euler Equations (ILEE). This equation system may be
obtained from full linearized Euler equations, if we replace the last differential
equation (for energy) by isentropic relation p′ = c2aρ

′, where c is speed of sound
and index a corresponds to basic (aerodynamic) flow.

ILEE equation system may be represented in the following form:

∂U ′

∂t
+
∂F ′

i (U
′, Ua)

∂xi
= 0,

where

U ′ =

⎛

⎜
⎜
⎜
⎝

U ′
0

U ′
1

U ′
2

U ′
3

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

ρ′

ρau
′ + ρ′ua

ρav
′ + ρ′va

ρaw
′ + ρ′wa

⎞

⎟
⎟
⎟
⎠

, F ′
i

(
U ′, Ua

)
=

⎛

⎜
⎜
⎜
⎝

U ′
i

U ′
1uia + ρauau

′
i + c2aU

′
0δi1

U ′
2uia + ρavau

′
i + c2aU

′
0δi2

U ′
3uia + ρawau

′
i + c2aU

′
0δi3

⎞

⎟
⎟
⎟
⎠

.

Here Cartesian coordinates x1 = x, x2 = y, x3 = z; velocity components of
basic (aerodynamic) flow u1a = ua, u2a = va, u3a = wa; velocity perturbations
u′1 = u′, u′2 = v′, u′3 = w′.

To construct DG method, the vector of primitive variablesQ′ = [ρ′;u′; v′;w′]
T

in each cell of computational grid is represented as a linear combination of local
polynomial basis functions ϕj(x):

Q′ =

Kf∑

j=1

qj(t)ϕj(x),

Polynomial basis functions with maximal degree K provide (theoretically) the
accuracy order K + 1 in space.

Coefficients of this expansion, qj(t), are the main unknown values in DG
method. Equation system for the determination of qj(t) may be represented as
follows:

Kf∑

j=1

⎛

⎝
∫

Ω

Γϕi(x)ϕj(x)dΩ

⎞

⎠ dqj
dt

+

∮

Σ

F ′
knkϕi(x)dΣ =

∫

Ω

F ′
k
∂ϕi

∂xk
dΩ, i = 1, . . . ,Kf .

Here Ω is volume of computational grid, Σ is its surface, n = [n1;n2;n3]
T is

unit outer normal vector to the surface element dΣ, Γ = ∂U ′/∂Q′. This set of
ordinary differential equations is solved using explicit four-stage Runge-Kutta
method that can be described by Butcher tableau

Fluxes at the cell faces F ′
k are calculated using Roe linearized solution of

Riemann problem about the decay of discontinuity between two flows adjoining
to current point of cell surface. Approximate Roe matrix is used; it coincides
with Jacobian of ILEE, computed using arithmetic averages of aerodynamic
flows from two sides of the cell face.

Numerical experiments with 1D propagation of sine wave show that DG
method with K = 3 allows to calculate propagation of sound waves on grids
with only 3 cells per wavelength.
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3.3 Assessment of High-Order Solutions

The final comparison with the measurements in the measurement location 2m
above the wing trailing edge can be seen in Figure 4. Both P1 and P2 results
are represented in this graph. The comparison shows a good agreement both for
P1 and P2 discretization. In our RDS code the P2 discretozation was not giving
significant improvement, but increased the simulation time. Thanks to the good
performance of the P1 element (10 point/wavelength) the P2 discretization do
not have a lot of room of improvement. Though, it must be stressed, that the
P2 discretization can catch the wave propagation speed a bit better, since it
introduces less dispersion error, than the P1 element.

Fig. 14. LEE simulation compared with experimental data

In the main series of calculations by TsAGI, stochastic perturbations were con-
tinuously introduced from the inflow boundary. Stochastic perturbations with
nearly uniform flat distribution (in 1/3rd octave presentation) within the fre-
quency range 100-12000 Hz were used. Instant field of pressure perturbations in
the time moment t = 0.00615s is shown in Figure 15. One may see that incoming
sound waves propagate (practically without damping) along the computational
domain. Their diffraction and reflection from the flap tip may be seen.
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Fig. 15. Instant field of pressure fluctuations in the case of stochastic perturbations at
the inflow

After that, an attempt has been made to estimate the convergence order using
the same procedure as in test with 1D propagation of a sine wave. Dependen-
cies were registered in six control points that are shown in Figure 12. RMS
value of pressure perturbations was determined. Using sequences of for 3 grids,
convergence order has been estimated. But this attempt has appeared to be
unsuccessful. In some points the convergence order was undetermined, in other
points it was far from the expected values, and in different points these values
were very different.

To understand this result, additional series of calculation have been per-
formed. Now the flat sine waves of maximal frequency (12000 Hz) were intro-
duced continuously through the left boundary. Maximal frequency was chosen
to have the maximal approximation errors and to avoid the influence of trunca-
tion errors on the results of Richardson extrapolation. Instant field of pressure
perturbations in the same time moment is shown in Figure 16. Attempt to es-
timate the convergence order has been performed again. And it appeared to be
unsuccessful, too. Analysis of Figure 6 allows to assume that the reason of the
unsuccess in the convergence order determination is the interference of the main
flat waves (propagating to the left) with the waves, reflected from the flap tip
and from the upper or lower boundaries of computational domain. Even if all

Fig. 16. Instant field of pressure fluctuations in the case of monochrome sinusoidal
perturbations at the inflow
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these waves have the same frequency, the behavior of signal in control points
depends not only upon the grid resolution but also upon the phase shift between
the interfering waves. It is important to note that in a test with 1D propagation
of the same sine wave on comparable grids the convergence order is determined
successfully; it appears to be close to the expected value −4.

4 Conclusion

For the cavity test case higher order accurate solutions over the cavity have been
provided by FOI-LIU, USTUTT, and DASSAV. The quality of the solutions is
good in terms of SPL and OASPL with similar quality as obtained by a reference
solution with about the same number of degrees of freedom. The flow physics
are well captured in both the reference and higher order accurate solutions. The
computational costs for the higher order results are somewhat higher than those
of the reference solution. Further calculations and comparisons on somewhat
coarser grids would be needed to judge if the higher order computations pay off
compared to a reference solution.

The baseline simulation of the VALIANT testcase showed the potential of hy-
brid LES/LEE method for noise propagation. The procedure starts with a high
fidelity Large-Eddy Simulation in the noise propagation region. After statisti-
cal convergence is reached, instantaneous volumetric/spanwise averaged noise
sources can be extracted. These sources then introduced to the Linearized Euler
Equation solver in order to simulate noise propagation for larger distances. With
a high fidelity computation this would be impossible due to the associated high
computational cost.

The bottleneck of the procedure is the data transfer between the two solvers.
This requires a huge amount of data to be written by the LES solver and read
by the LEE solver. Even in the case of the 3D LES to 2D LEE it meant several
Gb storage and file I/O. In order to overcome this limitation, it is recommended
that the two set of equations are solved simultaneously and the source terms are
transferred directly between the solvers.

It was shown that in case of our Residual Distribution solver, the P1 and
P2 discretization gave the same quality in terms of noise prediction. For this
study two meshes with approximately the same degree of freedom was generated.
Though, the P2 simulation took 6 times longer than the P1 (48 CPU hour /
0.001s simulation time for the P1). As a onclusion, the higher order method we
are using clearly has higher accuracy for academic cases, but is not justifiable
for industrial usage.

Explicit high-order Discontinuous Galerkin method (K=2-3) is implemented
for solution of unsteady Isentropic Linearized Euler equations for solution of
aeroacoustical tasks by TsAGI. Method with K=3 allows to calculate propaga-
tion of sound waves on grids with only 3 cells per wavelength. Grid convergence
order of the method is close to the expected value , if tasks without interference
of waves with different frequency and phase shift are considered. In task with
interference of waves, standard approach to determination of the convergence
order seems to be inapplicable.
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