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Abstract This chapter addresses the problem of clustering based procedure for the
identification of PieceWise Auto-Regressive eXogenous (PWARX) models. In
order to overcome the main drawbacks of the existing methods such as their sen-
sitivity to poor initializations and the existence of outliers, we propose the use of the
Chiu’s clustering algorithm and the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm. A comparative study of the two proposed
approaches with the k-means method is achieved in simulation. The results of
experimental validation are also presented to illustrate the effectiveness of the
proposed methods.
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1 Introduction

Hybrid systems are heterogeneous dynamical systems that arise out of the inter-
action of continuous and discrete dynamics. The continuous behavior is the fact of
the natural evolution of the physical process whereas the discrete behavior can be
due to the presence of switches, operating phases, transitions, computer program
codes, etc. These hybrid dynamics characterize the behavior of a broad class of
physical systems, for example, the real-time control systems where physical pro-
cesses are controlled by embedded controllers. The notion of hybrid system can
also be used to represent complex nonlinear continuous systems. In fact, the
operating range of a nonlinear system can be decomposed into a group of operating
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point. For each operation point, we associate a simple sub-model (linear or affine)
with it. Indeed, a complex system can be modeled as a hybrid system switching
between simple sub-models.

This chapter addresses the problem of identification of hybrid systems repre-
sented by piecewise autoregressive models with exogenous input (PWARX). This
problem consists in building mathematical models of hybrid systems from observed
input-output data. The PWARX models have attracted a considerable attention in
recent years, since they provide an efficient solution for modeling a wide range of
engineering applications (Roll et al. 2004; Nakada et al. 2005; Wen et al. 2007; Xu
et al. 2012). In addition, these models are able to approximate any nonlinear system
with arbitrary accuracy (Lin and Unbehauen 1992). Moreover, the PWA model can
be considered as a generic representation for other hybrid models such as jump
linear models (JL models) (Vidal et al. 2002), Markov jump linear models (MJL
models) (Doucet et al. 2001), mixed logic dynamical models (MLD models)
(Bemporad et al. 2000), max-min-plus-scaling systems (MMPS models)
(De Schutter and Van den Boom 2000), linear complementarity models (LC
models) (Vander-Schaft and Schumacher 1998), extended linear complementarity
models (ELC models) (De Schutter and De Moor 1999). In fact, the transfer of the
results of PWARX models to other classes of hybrid systems is insured thanks to
the properties of equivalence of PWARX models (Heemels et al. 2001). The
PWARX models are obtained by decomposing the regression domain into a finite
number of non-overlapping convex polyhedral regions and by associating a simple
linear model with each region. Consequently, two main problems must be con-
sidered for the identification of PWARX models: one is the estimation of the
parameters of the sub-models and two is the determination of the hyperplanes
defining the partitions of the state-input regression. Consequently, the identification
of PWARX models is one of the most difficult problems that represent an area of
research where considerable work has been done in the last decade. In fact,
numerous solutions have been proposed in the literature for the identification of the
PWARX models such as the clustering-based solution (Ferrari-Trecate et al. 2003),
the Bayesian solution (Juloski et al. 2005), the bounded-error solution (Bemporad
et al. 2005), the greeting solution (Bemporad et al. 2003), the sparse optimization
solution (Bako 2011; Bako and Lecoeuche 2013), and so on. The sparse solutions
do not smooth out the effect of the measurement noise. Then, they often fail in real
time applications since the measurement data are usually contaminated by an
unknown additional noise. The greedy algorithms are very time consuming since
they involve the solution of NP-hard problems. In addition, it can cause a loss of
information because it sometimes fails to associate data to the appropriate regres-
sors. The Bayesian approach assumes that the probability density functions of the
unknown parameters of the system are known a priori. Otherwise, it requires an
additional sequential processing to improve the identification results. The clustering
solution is based on a simple and instructive procedure. It does not require a priori
knowledge of the system. Therefore, only the clustering approach is considered in
this chapter. This solution consists of three main steps, which are data classification,
parameter estimation and region reconstruction. It is easy to remark that the
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performance of this approach depends on the efficiency of the used classification
algorithm (Lassoued and Abderrahim 2013a, b, c, d, 2014a, b). The early methods
have favored the simplicity of implementation. In fact, they present several draw-
backs, which can be summarized as follows:

• Most of them are based on the optimization of nonlinear criteria. Consequently,
they may converge to local minima in the case of poor initializations.

• Their performances degrade in the case of the presence of outliers in the data to
be classified.

• Most of them assume that the number of sub-models is a priori known.

To overcome these problems, we have proposed the use of other clustering
algorithms such as Chiu’s method (Chiu 1997) and Density Based Spatial Clus-
tering of Applications with Noise (DBSCAN) method (Chaitali 2012; Sander et al.
1998). This choice is justified by the fact that these algorithms automatically
generate the number of models. In addition, they are characterized by their
robustness to the classification of noisy measurements that containing also outliers.

This chapter is organized as follows. Section 2 presents the assumptions for
PWARX model identification. In Sect. 3, we recall the main steps of the identifi-
cation of PWARX systems based on clustering algorithm and its main drawbacks.
Section 4 proposes two solutions to overcome the main problems of the existing
methods. In Sect. 5, we present three simulation examples in order to illustrate the
performance of the proposed solutions and to compare their efficiency with the
modified k-means method. Section 6 proposes an application of the developed
approach to an olive oil esterification reactor.

2 Piecewise Affine System Identification

Consider a discrete-time PieceWise Auto-Regressive eXogenous model (PWARX)
with input uðkÞ 2 R, output yðkÞ 2 R defined in the bounded polyhedron regressor
space H � R

d (d ¼ na þ nb þ 1). The system is decomposed in s different modes
Hif gsi¼1, in each one an ARX model is associated:

yðkÞ ¼ f ðuðkÞÞ þ eðkÞ: ð1Þ

f is a piecewise affine function defined by:

f ðuÞ ¼
hT1 �u if u 2 H1

..

.

hTs �u if u 2 Hs

8><
>: ð2Þ
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where

u ¼ uT 1
� �T

: ð3Þ

e(k) is the additive noise and uðkÞ is the regressor vector, containing past input and
output observations, defined as:

uðkÞ ¼ yðk � 1Þ. . .yðk � naÞ uðk � 1Þ. . .uðk � nbÞ½ �T : ð4Þ

hi 2 Rdþ1 is the parameter vector, valid in Hi, defined as follows:

hTi ¼ a1 a2 . . . ana b1 b2 . . . bnb g½ � ð5Þ

where ai and bi are the coefficients of the model related respectively to the output
and the input data, while na and nb are the model orders. g is the independent affine
coefficient.

Problem statement
Given input-output data generated by a PWARX system, we are interested simul-
taneously in identifying the number of submodels s, the parameter vectors hif gsi¼1
and the partitions Hif gsi¼1 taking into account the following assumptions:

• The orders na and nb of the system are known.
• The noise e(k) is assumed to be a Gaussian process independent and identically

distributed with zero mean and finite variance r2.
• The regions Hif gsi¼1 are the polyhedral partitions of a bounded domain H � R

d

such that:

Ss
i¼1 Hi ¼ H

Hi
T
Hj ¼ ; 8 i 6¼ j

�
ð6Þ

3 Clustering Based PWARX Identification

The main steps of the clustering-based approach for the identification of PWARX
models can be summarized as follows: constructing small data set from the initial
data set, estimating a parameter vector for each small data set, classifying the
parameter vectors in s clusters, classifying the initial data set and estimating the
s sub-models with their partitions.

1. Form uðkÞ; yðkÞf gNk¼1 from the given dataset S ¼ ðuðkÞ; yðkÞÞ; k ¼ 1; . . .;N
2. Create local datasets Ck and identify the local parameter vectors hk
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(a) Choose nq, the cardinality of data points to be contained in Ck, randomly.
(b) For each datasetuðkÞ; yðkÞ, buildCk containing uðkÞ; yðkÞf g and its ðnq � 1Þ

nearest neighbors satisfying:

uðkÞ � u
^

��� ���2 � uðkÞ � ûk k2; 8 ðû; ŷÞ 62 Ck: ð7Þ

(c) Determine hk for each data in Ck; k ¼ 1; . . .;N using the least square
method.

hk ¼ ð/T
k/kÞ�1/T

k Yk: ð8Þ

where

/k ¼ u ðt1kÞ. . .u ðtnqk Þ� �T
;

Yk ¼ y ðt1kÞ. . .y ðtnqk Þ� �T
:

and (t1k ; . . .; t
nq
k ) are the indexes of the elements belonging in Ck

3. Cluster the local parameter vectors (hk; k ¼ 1; . . .;N) into s disjoint clusters
while determining the value of s by using a suitable classification technique.

4. Identify the final models hif gsi¼1:

5. Estimate the polyhedral partitions Hif gsi¼1 i.e. estimate the hyperplanes sepa-
rating Hi from Hj, i 6¼ j. This is a standard pattern recognition/classification
problem that can be solved by several established techniques. The most com-
mon technique is the Support Vector Machines (SVM) (Wang 2005; Duda et al.
2001).

The classification of data represents the main step for PWARX system identi-
fication because a successful identification of models’ parameters and hyperplanes
depends on the correct data classification. For the sake of simplicity, the early
approaches use classical clustering algorithms for the data classification such as
k-means algorithms.

However, these algorithms present several drawbacks. In fact, they may con-
verge to local minima in the case of poor initializations because they are based on
the minimization of non linear criterion. Furthermore, their performances degrade in
the case of the presence of outliers in the data to be classified. In addition, most of
them assume that the number of sub-models is a priori known.

4 The Proposed Clustering Techniques

In order to improve the identification results we propose the use of other classifi-
cation algorithms such as Chiu’s alogorithm and DBSCAN algorithm.
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4.1 The Chiu’s Clustering Technique

The Chiu’s clustering method is a modified form of the Mountain method for
cluster estimation (Chiu 1994). Each data point is considered as a potential cluster
center instead of considering it as a grid point. This method is very advantageous
compared with the Mountain method:

• The number of points to be evaluated is equal to the number of data points.
• It does not need to specify a grid solution which trades off between the accuracy

and the computational complexity.
• It improves the computational efficiency and robustness of the original method.

Chiu’s classification method consists in computing a potential value for each point
of the data set based on its distances to the other data points and consider each data
point as a potential cluster center. The point having the highest potential value is
chosen as the first cluster center. The key idea in this method is that once the first
cluster center is chosen, the potential of all other points is reduced according to their
distance from the cluster center. All the points which are close to the first cluster
center will have greatly reduced potentials. The next cluster center take then the
highest remaining potential value. The procedure for determining a new center and
updating other potentials is executed until a predefined condition is reached. This
condition depends on the minimum value of the potentials or the required number
of clusters which are reached.

This method consists in computing a potential value for each point
(hi; i ¼ 1; . . .;N), based on its distances to the other data points and consider each
data point as a potential cluster center. The potential is computed using the fol-
lowing expression:

Pi ¼
XN
j¼1

e
� 4

r2a
hi�hjk k2

: ð9Þ

The potential of each local parameter is a function of the distance from this
parameter to all the other local parameters. Thus, a local parameter with many
neighboring local parameters will have the highest potential value. The constant ra
is the radius defining the neighborhood which can be determined by the following
expression:

ra ¼ a
N

XN
i¼1

1
nq

Xnq
j¼1

hi � hj
�� ��: ð10Þ

where a can be chosen as follows 0\a\1.
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Equation (9) can be exploited to eliminate the outliers. As this equation attribute
to the outliers a low potential, we can fix a threshold c under which the local
parameters are not accepted and then removed from the data set. This threshold is
described by the following equation:

c ¼ minðPÞ þ b maxðPÞ �minðPÞð Þ: ð11Þ

where P is the vector containing the potentials Pi such that P ¼ P1; . . .;PN½ � and b
is a parameter chosen as 0\b\1.

The elimination of outliers reduces the parameter vectors to (hi; i ¼ 1; . . .;N 0)
(N 0\N). Then, from this new data set, we select the data point with the highest
potential value as the first cluster center.

Let h�1 be this first center and P�
1 be its potential. The other potentials Pj, ðj ¼

1; . . .;N 0Þ are then updated using this expression:

Pi ( Pi � P�
1e

� 4
r2
b

hi�h�1k k2

: ð12Þ

Expression (13) allows to associate lower potentials to the local parameters close
to the first center. Consequently, this choice guaranties that these parameters are not
selected as cluster centers in the next step. The parameter rb is a positive constant
that must be chosen larger than ra to avoid obtaining cluster centers which are too
close to each other. The constant rb is computed using this formula:

rb ¼ a
N

XN
i¼1

max
j¼1 : nq

hi � hj
�� ��� �

: ð13Þ

In general after obtaining the kth cluster center, the potential of every local
parameter is updated by the following formula:

Pi ( Pi � P�
ke

� 4
r2
b

hi�h�kk k2

: ð14Þ

where P�
k and h�k are respectively the potential and the center of the kth local

parameter.
The number of sub-models s is a parameter that we would like to determine.

Therefore, we have developed some criteria for accepting or rejecting the cluster
centers as it is explained in the algorithm of the next section.

To search the elements belonging to each cluster, we compute the distance
between the estimated output and the real one and classify uðkÞ within the cluster
which has the minimum distance.

arg min hTi uk � yk
� �

; i ¼ 1; . . .; s: ð15Þ
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The Chiu’s clustering technique can be summarized by the following algorithm:

Algorithm 1: Identification algorithm
Data: Dispose of {θi}N

i=1 from a given data set (ϕi, yi)
Main steps:
- Compute Pi for every {θi}N

i=1 according to (9)
- Determine the filtered local parameters {θi}N

i=1, (N < N)
- Compute the first cluster center θ∗

1 from (9)
repeat

Compute the other cluster centers according to the updated potential
formula (14)
if P ∗

k > γ then
Compute V (c) such as:

V (c) = θ∗
k − θ∗

c , c = 1, ..., k − 1. (16)

where θk
∗ is the current cluster center and θ∗

c , c = 1, ..., k − 1 are the
last selected ones.
if V (c) > ε, c = 1, ..., k − 1 then

accept θk
∗ as a cluster center and continue

else
reject θk

∗ and compute a new potential
end

else
reject θk

∗ and break
end

until V (c) ≤ ε, c = 1, ...k − 1;
Result: Determination of the number of clusters s and the parameters {θi}s

i=1

While e is a small parameter characterizing the minimum distance between the
new cluster center and the existing ones.

4.2 The DBSCAN Clustering Technique

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm is a pioneer algorithm of density-based clustering (Chaitali 2012; Sander
et al. 1998). This algorithm is based on the concepts of density-reachability and
density-connectivity. These concepts depend on two input parameters: epsilon (e)
and (MinPts).

• e: is the radius around an object that defines its e-neighborhood.
• MinPts: is the minimum number of points.

For a given object q, when the number of objects within the e-neighborhood is at
least MinPts, then q is defined as a core object. All objects within its e-neighbor-
hood are said to be directly density-reachable from q.

In general, an object p is considered density-reachable if it is within the
e-neighborhood of an object that is directly density-reachable or just density-
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reachable from q. The objects p and q are said to be density-connected if there exist
an object g that both p and q are density-reachable from.

The DBSCAN algorithm define then a cluster as the set of objects in a data set
that are density-connected to a particular core object. Any object that is not part of a
cluster is categorized as noise. For a given data set S ¼ hkf gNk¼1, e and MinPts as
inputs, the e-neighborhood of a point hi is defined as:

NeðhiÞ ¼ hj 2 S; hi � hj
�� ��� e

� 	 ð17Þ

The DBSCAN constructs clusters by checking the e-neighborhood of each object
in the data set. If the cardinal of the e-neighborhood (denoted by cNe) of an object
hk contains more than MinPts, a new cluster is created having hk as core. The
DBSCAN then iteratively collects directly density-reachable objects from these
core objects. The process terminates when no new objects can be added to any
cluster. The main steps of this algorithm can be summarized as follows:

Algorithm 2: DBSCAN algorithm
Data: Define the input parameters: S = {θk}N

k=1, MinPts and
Main steps:
for k=1:N do

if θk is not in a cluster then
Compute N (θk)
if cN (θk) < MinPts then

Mark θk as noise
else

cluster-label=cluster-label+1
for j =1:cN (θk) do

Mark all point in N (θk) with the current cluster label
end
Lend N (θk) to the Seed list LS = [LS N (θk)]
while LS is not empty do

θr = LS(1)
Compute N (θr)
if cN (θr) ≥ MinPts then

for o=1:cN (θr) do
if θo is not in a cluster nor marked as noise then

Mark θo with the current cluster-label
Lend N (θr) to the Seed list LS = [LS N (θr)]
LS(1) = [ ]

end
end

else
LS(1) = [ ]

end
end

end
end

end
Result: Determination of the number of clusters s and the parameters {θi}s

i=1

PWARX Model Identification Based on Clustering Approach 173



5 Simulation Examples

In this section, we aim at illustrating the performance of the proposed methods with
three simulation examples. First of all, we take an academic PWARX model
where the proposed methods are compared with the well known k-means one
(Ferrari-Trecate et al. 2001, 2003). After that, a nonlinear model is considered to
show the efficiency of the proposed methods in approximating any nonlinear model.
Finally, a pH neutralization process is simulated in order to prove their ability to
model complex systems and to determine the number of sub-models.

5.1 Quality Measures

To achieve the purpose of these simulations, we consider the following quality
measures (Juloski et al. 2006):

• The maximum of relative error of parameter vectors is defined by

Dh ¼ max
i¼1;...;s

hi � hi
�� ��

2

hi
�� ��

2

ð18Þ

where hi and hi are the true and the estimated parameter vectors for sub-model i,
respectively. The identified model is deemed acceptable if Dh is small or close to
zero.

• The averaged sum of the squared residuals is defined by

r2e ¼
1
s

Xs

i¼1

SSRi

Dij j ð19Þ

where SSRi ¼
P

ðyðkÞ;uðkÞÞ2Di

ðyðkÞ � uðkÞ01� �
hiÞ2 and Dij j is the cardinality of

cluster Di.
The identified model is considered acceptable if r2e is small and/or close to the
expected noise variance of the true system.

• The percentage of the output variation that is explained by the model is defined
by

FIT ¼ 100 � 1� ŷ� yk k2
y� yk k2


 �
ð20Þ

where ŷ and y are the estimated and the real outputs’ vectors, respectively, and y
is the mean value of y.
The identified model is considered acceptable if FIT is close to 100.

174 Z. Lassoued and K. Abderrahim



• The relative error expressed in percentage (%) is given by:

er kð Þ ¼ 100 � y kð Þ � ŷ kð Þj j
y kð Þj j ð21Þ

where ŷðkÞ and y(k) are the estimated and the real outputs at time k.
The identified model is considered acceptable if er is close to 0 %.

5.2 Identification Results of a PWARX Model

Consider the following PWARX model (Boukharouba 2011):

yðkÞ ¼
0:4 0:5 0:3½ ��uðkÞ þ eðkÞ if uðkÞ 2 H1;
�0:7 0:6 �0:5½ ��uðkÞ þ eðkÞ if uðkÞ 2 H2;
0:4 �0:2 �0:2½ ��uðkÞ þ eðkÞ if uðkÞ 2 H3;

8<
: ð22Þ

H1 ¼ u 2 <2 : 1 0:3 0½ �u� 0 and 0 0:5 0½ �u[ 0
� 	

H2 ¼ u 2 <2 : 1 0:3 0½ �u� 0 and 1 �0:3 0½ �u\0
� 	

H3 ¼ u 2 <2 : 1 �0:3 0½ �u� 0 and 0 0:5 0½ �u� 0
� 	 ð23Þ

where s = 3, na = 1, nb = 1, anduðkÞ ¼ yðk � 1Þ uðk � 1Þ½ �T is the regressor vector.
System (22) is simulated using an input signal u(k) and a noise signal e(k) which

are normal distributions with variances respectively 0.5 and 0.05. The output y(k) is
presented in Fig. 1.

Table 1 presents the estimated parameter vectors obtained with the proposed
methods and the k-means one.

−2
−1

0
1

2

−1

0

1

2
−1

−0.5

0

0.5

1

1.5

Fig. 1 The real output of the
system (squares: output of
sub-model 1, triangles: output
of sub-model 2 and dots:
output of sub-model 3)
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After obtaining the estimated parameter vectors, we apply the SVM algorithm in
order to estimate the regions. We can then attribute each parameter vector to the
corresponding region where it is defined. The estimated outputs obtained with three
algorithms are presented in Fig. 2.

Table 2 presents the quality measures (18), (19) and (20) of the two proposed
methods and the k-means method. The obtained results prove the efficiently of the
proposed methods compared with the existing method (k-means).

5.3 Identification Results of a Nonlinear Model

Consider the nonlinear system described by the following equation (Lai et al.
2010):

yðkÞ ¼ 1:5yðk � 1Þyðk � 2Þ
1þ y2ðk � 1Þ þ y2ðk � 2Þ þ sin yðk � 1Þ þ yðk � 2Þð Þ

þ uðk � 1Þ þ 0:8uðk � 2Þ
ð24Þ

This nonlinear system can bemodeled by a PWARXmodel of the form (Lai 2011):

yðkÞ ¼
hT1uðkÞ if u 2 H1

..

.

hTs uðkÞ if u 2 Hs

8><
>: ð25Þ

where

uðkÞ ¼ yðk � 1Þ; yðk � 2Þ; uðk � 1Þ; uðk � 2Þ½ �T ð26Þ

u ¼ uT 1
� �T

: ð27Þ

hi are the parameter vectors and s is the number of submodels to be determined. u
(k) is a random input in the range of [−2, 2].

Table 1 Estimated parameters

True values Chiu (nq ¼ 20) DBSCAN (nq ¼ 21) k-means (nq ¼ 7)

h1 0:4
0:5
0:3

2
4

3
5 0:4046

0:5138
0:2919

2
4

3
5 0:4054

0:4903
0:2992

2
4

3
5 0:4064

0:5464
0:2598

2
4

3
5

h2 �0:7
0:6
�0:5

2
4

3
5 �0:6179

0:5336
�0:4740

2
4

3
5 �0:7369

0:6675
�0:5239

2
4

3
5 �0:6955

0:5903
�0:4939

2
4

3
5

h3 0:4
�0:2
�0:2

2
4

3
5 0:4015

�0:2071
�0:2042

2
4

3
5 0:4679

�0:1977
�0:2298

2
4

3
5 0:4792

�0:2101
�0:2406

2
4

3
5
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For the DBSCAN based method, the choice of the synthesis parameters nq,
MinPts and e is as follows:

nq ¼ 20;
MinPts ¼ 35;
e ¼ 0:85

8<
:

0 50 100 150 200 250
−1

−0.5

0

0.5

1

1.5

k

y(
k)

real output

estimated output

0 50 100 150 200 250
−1

−0.5

0

0.5

1

1.5

k

estimated y
real y

0 50 100 150 200 250
−1

−0.5

0

0.5

1

1.5

k

y(
k)

real output

estimated output

(a) (b)

(c)

Fig. 2 The estimated outputs a with Chiu, b with DBSCAN, and c with k-means

Table 2 Validation results
Quality measures Chiu DBSCAN k-means

Dh 0.0876 0.1514 0.1828

r2e 0.0023 0.0097 0.0109

FIT 89.4191 79.0183 74.195
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For the Chiu clustering algorithm, we have only one synthesis parameter:
nq ¼ 17.

The number of submodels s depends on the initial parameters chosen. With the
parameters described above, we obtain s = 6.

The parameter vectors are presented in Tables 3 and 4.
Figures 3 and 4 illustrate the outputs and the relative error signals of the two

proposed methods.
In Table 5, the FIT is computed for the identification and the validation with the

two proposed methods. The obtained results are very satisfactory and show that the
performances of the two methods are close.

5.4 Identification Results of a PH Neutralisation Process

5.4.1 Process Description

The ‘neutralization’ is used to describe the reaction result between an acid and a
base in which the properties of Hþ and OH� that characterized the acid and base
will be destroyed or neutralized. In fact, the ions Hþ and OH� will be combined to
form the water molecule H2O. The resulting solution produced by the reaction is

Table 4 Estimated parameter vectors with the DBSCAN method

Parameters vector Estimated values with DBSCAN

h1 0:5134 0:4871 1:0377 0:8082 0:0187½ �T
h2 �0:5974 �0:3021 0:8905 0:7355 2:1231½ �T
h3 0:7044 0:0158 1:0153 0:8255 0:1468½ �T
h4 �0:6958 �0:6557 1:0714 0:7435 �1:5669½ �T
h5 0:3111 0:0277 0:9738 0:7616 �0:3855½ �T
h6 �0:6177 �0:3720 0:9606 0:7291 �1:2358½ �T

Table 3 Estimated parameter vectors with the Chiu’s method

Parameters vector Estimated values with Chiu

h1 1:0996 0:6338 1:0259 0:8247 0:0762½ �T
h2 �0:7769 �1:0611 1:0016 0:8446 �2:2539½ �T
h3 0:5066 0:9219 0:9781 0:7686 0:1886½ �T
h4 �0:6576 �0:4256 0:9388 0:8097 �1:4943½ �T
h5 �0:3013 �0:5044 1:0644 0:6904 1:7459½ �T
h6 �0:8306 �0:5365 1:0030 0:7557 2:7559½ �T
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Fig. 3 The estimated outputs a with Chiu, and b with DBSCAN
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Fig. 4 The relative error a with Chiu, and b with DBSCAN

Table 5 Quality measures
with the two proposed
methods

Chiu DBSCAN

FIT for identification 78.0543 84.1135

FIT for validation 75.2050 74.1906
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composed of a salt and water. The general formula for acid–base neutralization
reactions can be written as:

acid þ base ! salt þ water ð28Þ

The process of pH neutralization (see Fig. 5) is constituted essentially of a
treatment tank of cross sectional area A, a mixer, acid and base injection pipes, a pH
probe, a level sensor to measure the level h in the tank and a discharge valve
(Henson and Seborg 1994; Salehi et al. 2009). It consists of an acid stream q1,
buffer stream q2 and base stream q3 that are mixed in the tank. The effluent stream
q4 exits the tank via the discharge valve with an adjusted pHm. The streams qif g4i¼1
are characterized by the following parameters:

• Waif g4i¼1 are the charge related quantities for qif g4i¼1.
• Wbif g4i¼1 are the mass balance quantities for qif g4i¼1.

The pH probe introduces a delay time s in the measured pHm value such as
pHm ¼ pHðt � sÞ.

The objective of the pH neutralization process is to control the pH value of the
effluent through manipulating the base flow rate q3 while considering the acid flow
rate q1 and the buffer flow rate q2 as disturbances.

The dynamic model of the neutralization process is developed as follows:

• The pH value of the obtained solution is derived from the conservation equa-
tions and equilibrium reactions as follows:

Wa4 þ Kw

Hþ½ � þWb4

Ka1
Hþ½ � þ 2Ka1Ka2

Hþ½ �2

1þ Ka1
Hþ½ � þ Ka1Ka2

Hþ½ �2
� Hþ½ � ¼ 0: ð29Þ

Fig. 5 A pH neutralization
process
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Knowing that

pHm ¼ � log Hþ½ �ð Þ ð30Þ

Kw ¼ Hþ½ � OH�½ �; ð31Þ

Equation (29) can be then rewritten as:

Wa4 þ 10pHm�14 þWb4
1þ 2 10pHm�pKa2ð Þ

1þ 10pHm�pKa1 þ 10pHm�pKa2
� 10�pHm ¼ 0 ð32Þ

• The mass balance yields to:

A
dh
dt

¼ q1 þ q2 þ q3 � q4 ð33Þ

Taking into account that the exit flow rate q4 ¼ Cv:h0:5, Eq. (33) becomes:

A
dh
dt

¼ q1 þ q2 þ q3 � Cv � h0:5 ð34Þ

where Cv is the constant valve coefficient.
• The differential equations of the effluent reaction invariants ðWa4;Wb4Þ can be

determined as follows:

A h
dWa4

dt
¼ q1ðWa1 �Wa4Þ þ q2ðWa2 �Wa4Þ þ q3ðWa3 �Wa4Þ ð35Þ

A h
dWb4

dt
¼ q1ðWb1 �Wb4Þ þ q2ðWb2 �Wb4Þ þ q3ðWb3 �Wb4Þ ð36Þ

Nominal model parameters and operating conditions (Xiao et al. 2014) are given
in Table 6.

The static nonlinearity of this process can be represented by the titration curve
shown in Fig. 6 with a beginning pH of 2.7 and an ending pH of 10.7. A brief glance
at the curve indicates that the process of pH neutralization is highly nonlinear.

Table 6 Operation
parameters of the pH
neutralization process

q1 ¼ 16:6ml/s Wa1 ¼ 3	 10�3 mol/l

q2 ¼ 0:55ml/s Wa2 ¼ �3	 10�2 mol/l

q3 ¼ 15:6ml/s Wa3 ¼ �3:05	 10�3 mol/l

h ¼ 14:0 cm Wb1 ¼ 0

A ¼ 207 cm2 Wb2 ¼ 3	 10�2 mol/l

Cv ¼ 8:75ml/cm/s Wb3 ¼ 5	 10�5 mol/l

pKa1 ¼ 6:35 pH4 ¼ 7

pKa2 ¼ 10:25 s ¼ 0:5
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5.4.2 Structure Identification

It was mentioned that the early approaches of identification of pH neutralization
process approximate this process around an operating range as a First Order Plus
Delay Time model. Added to that, the evolution of the pH in Fig. 7, for a fixed
values of the input q3, is similar to a first order system response.

Therefore, we propose to represent the sub-models by a discrete first order plus
dead time models (na = 1, nb = 2) defined by:
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yðkÞ ¼

a1;1yðk � 1Þ þ b1;1uðk � 1Þ þ b1;2uðk � 2Þ
if uðkÞ 2 H1

..

.

as;1yðk � 1Þ þ bs;1uðk � 1Þ þ bs;2uðk � 2Þ
if uðkÞ 2 Hs

8>>>>><
>>>>>:

ð37Þ

where the regressor vector is defined by:

uðkÞ ¼ yðk � 1Þ; uðk � 1Þ; uðk � 2Þ½ �T

and the parameter vectors are denoted by:

hiðkÞ ¼ ai;1; bi;1; bi;2
� �

; i ¼ 1; . . .; s:

5.4.3 Input Design

The input design is an important aspect to be considered when implementing
nonlinear system identification experiments. In fact, two main properties must be
verified by this input in order to generate representative data measurements to be
used in identification purpose. First, the input must be able to excitep the totality of
dynamics range present in the system. Second, the used input signal must illustrate
the response of the system to a range of amplitude changes since these models have
nonlinear gains. For these reasons, we have considered the Multi-Sine sequence as
input sequences to identify the ph neutralization process since it satisfies the above
two conditions. It presents several frequencies and exhibits different amplitude
changes. The dynamic of this input is defined according to the dominant time
constant range of the process. The amplitudes are selected to cover the totality
operating region around the nominal value of the base flow rate q3 ¼ 15:6ml/s.

5.4.4 Results

The nonlinear model of the pH process defined by Eqs. (32), (34), (35) and (36) and
the parameters of Table 6 is used to generate the output using a Multi-Sine exci-
tation Sequence. The system output is corrupted by a Gaussian white noise with
zero mean and standard deviation r ¼ 0:001 in order to simulate industrial situa-
tions where the obtained measurements are often noisy. The obtained input-output
data illustrated in Fig. 8 are then divided into two parts. The first part is used for the
identification and the second is considered for the validation purpose.

The number of neighboring is chosen nq ¼ 85 for the two methods. The
DBSCAN approach uses the following synthesis parameters
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MinPts ¼ 40;
e ¼ 0:18

�

The number of submodels obtained with these parameters is (s = 6). The
parameter vectors are illustrated in Table 7.

The validation results and the estimated titration curves are presented respec-
tively in Figs. 9 and 10 which shows that the obtained model gives good results in
terms of dynamic and nonlinear gain of the pH process.

Now, we compare the performance of the two proposed methods using the
quality measures (19), (20) and (21). The obtained results are summarized in
Table 8 and Fig. 11.
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Fig. 8 The data of the multi-
sine input

Table 7 Estimated parameter vectors

Parameter vectors Estimated values DBSCAN Estimated values Chiu

h1 0:9906 0:0264 �0:0218½ �T 0:9855 0:0179 �0:0101½ �T
h2 0:9808 0:0287 �0:0190½ �T 0:9692 0:0593 �0:0423½ �T
h3 0:9763 0:0282 �0:0152½ �T 1:0102 �0:0216 0:0200½ �T
h4 1:0272 0:0343 �0:0434½ �T 1:0351 0:0273 �0:0550½ �T
h5 0:9968 �0:0390 0:0432½ �T 0:9632 �0:0289 0:0440½ �T
h6 0:9690 �0:0404 0:0533½ �T 1:0021 0:0903 �0:0910½ �T
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Fig. 9 The validation outputs a with Chiu, and b with DBSCAN
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Fig. 10 The validation of the titration curve a with Chiu, and b with DBSCAN

Table 8 Quality measures
with the two proposed
methods

Chiu DBSCAN

FIT for identification 98.0203 97.8688

FIT for validation 98.1254 98.0405

r2e 8.8552 × 10−4 0.0013
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6 Experimental Example: A Semi-batch Reactor

6.1 Process Description

The olive oil esterification reactor produces ester with a very high added value
which is used in fine chemical industry such as cosmetic products. The esterifica-
tion reaction between vegetable olive oil with free fatty acid and alcohol, producing
ester, is given by the following equation:

Acid þ Alcohol $ Ester þWater: ð38Þ

The ratio of the alcohol to acid represents the main factor of this reaction because
the esterification reaction is an equilibrium reaction i.e. the reaction products, water
and ester, are formed when equilibrium is reached. In addition, the yield of ester
may be increased if water is removed from the reaction. The removal of water is
achieved by the vaporisation technique while avoiding the boiling of the alcohol. In
fact, we have used an alcohol (1-butanol), characterized by a boiling temperature of
118 °C which is greater than the boiling temperature of the water (close to 100 °C).
In addition, the boiling temperatures of the fatty acid (oleic acid) and the ester are
close to 300 °C. Therefore, the boiling point of water may be provided by a
temperature slightly greater than 100 °C.

The block diagram of the process is shown in Fig. 12. It is constituted essentially
of:

• A reactor with double-jackets: It has a cylindrical shape manufactured in
stainless steel. It is equipped with a bottom valve for emptying the product, an
agitator, an orifice introducing the reactants, a sensor of the reaction mixture
temperature, a pressure sensor and an orifice for the condenser. The double-
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Fig. 11 Relative error for the two proposed methods a with Chiu, and b with DBSCAN
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jackets ensure the circulation of a coolant fluid which is intended for heating or
for cooling the reactor.

• A heat exchanger: It allows to heat or to cool the coolant fluid circulating
through the reactor jacket. Heating is carried out by three electrical resistances
controlled by a dimmer for varying the heating power. It is intended to achieve
the required reaction temperature of the esterification. Cooling is provided by
circulating cold water through the heat exchanger. It is used to cool the reactor
when the reaction is completed.

• A condenser: It allows to condense the steam generated during the reaction. It
plays an important role because it is also used to indicate the end of the reaction
which can be deduced when no more water is dripping out of the condenser.

• A data acquisition card between the reactor and the calculator.

The ester production by this reactor is based on three main steps as illustrated in
Fig. 13.

Fig. 12 Block diagram of the reactor

0 300 540

100

T
r(° C

)

Time(min)

Heating
Stage

Cooling
stage

Reacting
stage

Fig. 13 Specific trajectory of
the reactor temperature
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6.2 Experimental Results

The alternative of considering a PWA map is very interesting because the char-
acteristic of the system can be considered as piecewise linear in each operating
phase: the heating phase, the reacting phase and the cooling phase.

Previous works has demonstrated that the adequate estimated orders na and nb of
each sub-model are equal to two (Talmoudi et al. 2008). Thus, we can adopt the
following structure:

yðkÞ ¼

�a1;1yðk � 1Þ � a1;2yðk � 2Þ þ b1;1uðk � 1Þ
þb1;2uðk � 2Þ if uðkÞ 2 H1

..

.

as;1yðk � 1Þ þ as;2yðk � 2Þ þ bs;1uðk � 1Þ
þbs;2uðk � 2Þ if uðkÞ 2 Hs

8>>>>><
>>>>>:

ð39Þ

where the regressor vector is defined by:

uðkÞ ¼ �yðk � 1Þ; �yðk � 2Þ; uðk � 1Þ; uðk � 2Þ½ �T

and the parameter vectors is denoted by:

hiðkÞ ¼ ai;1; ai;2; bi;1; bi;2
� �

; i ¼ 1; . . .; s:

We have picked out some input-output measurements from the reactor in order
to identify a model to this process. We have taken two measurement files, one for
the identification having a length N = 220 and another one of length N = 160 for the
validation.

The measurement file used in this identification is presented in Fig. 14.
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Fig. 14 The real input-output
evolution
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We apply the proposed identification procedures in order to represent the reactor
by a PWARX model. The number of neighboring is chosen nq ¼ 70 with the two
proposed techniques. Our purpose is to estimate the number of sub-models s, the
parameter vectors hiðkÞ; i ¼ 1; . . .; s and the hyperplanes defining the partitions
Hif gsi¼1.
The obtained results are as follows:

• The number of sub-models is s = 3.
• The parameter vectors hiðkÞ, i ¼ 1; 2 and 3 are illustrated in Table 9.

The attribution of every parameter vector to the submodel that has generated it is
ensured by the SVM algorithm. The obtained outputs are then computed and they
are represented in Fig. 15.

Table 9 Estimated parameter vectors with the proposed clustering techniques

Parameter
vectors

Estimated parameters with Chiu Estimated parameters with DBSCAN

h1 �1:4256
0:4508
4:9853	 10�4

0:0010

2
664

3
775

�1:4404
0:4692
0:0003
0:0014

2
664

3
775

h2 �1:1604
0:2111
0:0015
0:0014

2
664

3
775

�1:1144
0:1772
0:0003
0:0032

2
664

3
775

h3 �1:0847
0:1490
�3:9782	 10�4

0:0040

2
664

3
775

�1:0591
0:1304
0:0006
0:0034

2
664

3
775

0 50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

110

k

y(
k)

estimated y 

real y

0 50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

110

k

y(
k)

estimated y

real y

(a) (b)

Fig. 15 Estimated outputs with two methods a with Chiu, and b with DBSCAN
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To validate the obtained models, we have considered a new input-output mea-
surement file having a length N = 160 shown in Fig. 16.

The real and the estimated validation outputs and the errors are presented in
Fig. 17.
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7 Conclusion

In this chapter, we have considered only the clustering based procedures for the
identification of PWARX systems. We focused on the most challenging step which
is the task of data points classification. In fact, we have proposed the use of two
clustering techniques which are the Chiu’s clustering algorithm and the DBSCAN
algorithm. These algorithms present several advantages. Firstly, they do not require
any initialization so the problem of convergence towards local minima is overcome.
Secondly, these algorithms are able to remove the outliers from the data set. Finally,
our approaches generate automatically the number of sub-models. Numerical
simulation results are presented to demonstrate the performance of the proposed
approaches and to compare them with the k-means one. Also, an experimental
validation with an olive oil reactor is presented to illustrate the efficiency of the
developed methods.
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