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Abstract This chapter mainly deals with the fuzzy adaptive backstepping control
(FABC) design of a doubly-fed induction motor (DFI-Motor). The proposed con-
troller guarantees speed tracking and reactive power regulation at stator side. The
DFI-Motor is controlled by acting on the rotor winding and its stator is directly
connected to the grid. In the controller designing, a state-all-flux DFI-Motor model
with stator voltage vector oriented reference frame is exploited. Our approach is
based on the decomposition of the motor model in two coupled subsystems; the
stator flux and the speed-rotor flux subsystems. Under some considerations on the
system model, the DFI-Motor unity power factor control and speed tracking
problem is transferred to the rotor flux control problem. In our control approach, the
unknown load torque is estimated on-line by a suitable adaptive law and the
nonlinear functions appearing in the tracking errors dynamics and uncertainties are
reasonably approximated by adaptive fuzzy systems. A rigorous stability analysis
based on Lyapunov theory is performed to guarantee that the complete control
system is asymptotically stable. Furthermore, numerical simulation results are
provided to verify the effectiveness of the proposed FABC approach.
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1 Introduction

The doubly fed induction machine (DFIM) is a wound rotor asynchronous machine;
this form of drive is widely used in many industrial plants, for example pumps,
compressors and fans. The DFIM has some distinct advantages over the conven-
tional squirrel-cage machine. The DFIM can be fed and controlled from either or
both the stator and the rotor windings. Sub and super-synchronous speeds are
possible and the system can be used in generator or motor operation like a DC
motor (Morel et al. 1998). In motor operation, two solutions are possible, namely:
the machine can be supplied by one converter (at the rotor) or by two converters
(one at the stator and one at the rotor). The advantage of the first solution is that the
power electronic equipment only has to handle a fraction (*30 %) of the total
system power. This allows the minimizing of converter size and therefore a
decreased price of the whole system (Morel et al. 1998). However, the disadvantage
in terms of cost of the second solution can be compensated by the best control
performances of the powered systems (Brown et al. 1992). In the DFI-Motor
operation, the inherent instability due of the double feeding requires a performing
control to achieve a good stability and to obtain a high dynamic behavior. Different
strategies were proposed in the literature to solve the DFI-Motor control problem.
Most of the control strategies are established on the vector control based on the flux
orientation that offers the decoupled control of the active and reactive powers
(Bogalecka and Kzeminski 1993; Drid et al. 2005; Hopfensperger et al. 2000;
Leonhard 1997; Morel et al. 1998; Peresada et al. 2003, 1999; Wang and Ding
1993). Therefore, most of the reported control approaches are based on exact
knowledge of the DFI-Motor nonlinear model. Then, the control performance of the
DFI-Motor is still influenced by the uncertainties, such as parameter variations,
external disturbance and unmodeled dynamics, etc.

In electric motor drives and motion control, the fuzzy controller is considered as
a promising alternative for conventional control methods in the control of complex
nonlinear plants (Ghamri et al. 2007). The fuzzy controller is applied to static power
converters, DC and induction motors. It has been reported that fuzzy controllers are
more robust to system parameter changes and have better disturbance rejection. The
main advantage of fuzzy control as compared to conventional control resides in the
fact that no mathematical model of the plant is required and the human experience
can be implanted in the controller as fuzzy rules. However, classical fuzzy con-
trollers (i.e. the non-adaptive fuzzy controllers) can not adapt themselves to changes
in their environment or in operating conditions. Then, it is necessary to add some
form of adaptation that updates the controller parameters in order to maintain and
improve the control performance in wide range of changing conditions Lee (1990);
Li and Lau (1989). Using fuzzy systems for approximating of the nonlinear
uncertain functions, adaptive fuzzy controllers for inductions motors (IM) have
been developed in Agamy et al. (2004), Lin et al. (2002), Youcef and Wahba
(2009).
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Therefore, the motivation of this chapter is the design of a nonlinear controller
for DFI-Motor drives which guarantees speed tracking and reactive power regu-
lation at stator side. The DFI-Motor configuration taken in this work uses one
converter in the rotor and the stator is directly connected to the line grid. Our
approach is based on the decomposition of the machine model in two coupled
subsystems; the stator flux and the speed-rotor flux subsystems. First, the stator
voltage vector oriented reference frame is adopted, and the stator reactive power
regulation purpose is converted into a stator flux regulation problem. In fact, the
time varying stator flux vector is required to be orthogonal to line voltage. In fact,
the d-axis component of rotor flux appears as the control input for the stator flux
subsystem. Then, with an appropriate choice of the stator flux reference and a strict
control of d-axis component of rotor flux to a suitable value, the stator flux error
dynamics become linear and exponentially stable independently of the speed
dynamics. Consequently, the DFI-Motor stator unity power factor control and the
speed tracking problems are converted into a rotor flux control problem. The
controller design is based on combination of sliding-mode control, fuzzy control
and adaptive backstepping control approaches. The adaptive fuzzy systems are used
to reasonably approximate the unknown nonlinear functions appearing in the DFI-
Motor model and the tracking errors dynamics and the uncertainties. While, the
sliding-mode control is used to effectively compensate for the unavoidable fuzzy
approximation error. The adaptive laws, which are used to estimate on-line the load
torque and the fuzzy parameters, are derived in the sense of Lyapunov stability
theorem. Briefly, the nonlinear control approach described in this paper has the
following important advantages:

• The motor-generated torque becomes linear with respect to system control
states.

• The rotor flux can be easily regulated in order to increase the machine efficiency.
• The system robustness can be achieved against the uncertain parameters of

DFI-Motor (rotor resistance, stator resistance), perturbations (i.e. the unknown
load torque), functional uncertainties, etc.

• The controller design does not strongly depend on the model of DFI-Motor.

Moreover, to the authors’ best knowledge, there is no result reported in the
literature on the fuzzy adaptive control design for doubly-fed induction machine. It
is worth noting that the design of the adaptive control based on state-all flux model,
for a DFI-Motor controlled by acting on the rotor winding and with a stator which is
directly connected to the grid, is very challenge.

This chapter is organized as follows: Section 2 introduces the state-all-flux DFI-
Motor model. In Sect. 3, the DFI-Motor control problem is presented. In Sect. 4, the
fuzzy logic system used for approximating the unknown nonlinear function is
described. In Sect. 5, the proposed fuzzy adaptive backstepping controller (FABC)
is presented. In Sect. 6, the effectiveness of our FABC for a DFI-Motor is dem-
onstrated via some simulations results. Conclusions are drawn in Sect. 7.
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2 The DFI-Motor Model

The Concordia and Park transformation’s application to the traditional abc DFI-
Motor model allows to write a dynamic model in a d-q synchronous reference frame
as follows

dusd
dt ¼ � Rs

Lsr
usd þ RsM

LsLrr
urd þ xsusq þ usd

dusq

dt ¼ � Rs
Lsr

usq þ RsM
LsLrr

urq � xsusd þ usq
durd
dt ¼ � Rr

Lrr
urd þ RrM

LsLrr
usd þ xrurq þ urd

durq

dt ¼ � Rr
Lrr

urq þ RrM
LsLrr

usq � xrurd þ urq

ð1Þ

Stator and rotor flux equations are

usd ¼ Lsisd þMird
usq ¼ Lsisq þMirq
urd ¼ Lrird þMisd
urq ¼ Lrirq þMisq

ð2Þ

The mechanical equation is given by

J
dX
dt

¼ Ce � Cl � kfX ð3Þ

The electromagnetic torque is given by

Ce ¼ pM
LsLrr

usqurd � usdurq

� � ð4Þ

where
s, r Rotor and stator indices
d, q Synchronous reference frame
α, β Stationary reference frame
R, L, M Resistance, inductance and mutual in ductance
u, i, φ Voltage, current and flux
hs; hr Stator and rotor electrical angles
h;X Rotor mechanical position and speed
xs ¼ dhs

dt ; xr ¼ dhr
dt ; x ¼ dh

dt
Electrical frequencies of stator, rotor and shaft

Cl;Ce Load and electromagnetic torque
J, p Inertia, number of pole pairs
σ = 1−(M2/LsLr) Leakage coefficient

In a DFI-Motor, the combined effect of the stator and rotor currents produces a
fundamental flux that is sinusoidally distributed around the air gap and that rotates
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at frequency proportional to the stator supply frequency. For all speed ranges the
stator and the rotor angular frequencies are related to the shaft mechanical speed by
xs ¼ xr þ x.

Expressions of stator and rotor active and reactive powers are respectively given by

Ps ¼ usdisd þ usq isq
Qs ¼ usqisd þ usd isq
Pr ¼ urdird þ urq irq
Qr ¼ urqird þ urd irq

ð5Þ

In the following section, the control objective of the DFI-Motor will be discussed.

3 DFI-Motor Control Objective

First, we suppose that the stator flux vector is aligned with d-axis as shown in
Fig. 1. In the stationary frame abc, the component n of the stator voltage equation is
given by

usn ¼ Rsisn þ dusn

dt
ð6Þ

By neglecting the stator resistance (Hopfensperger et al. 2000), (6) can be
written as

usn � dusn

dt
ð7Þ

This equation demonstrates that the stator voltage vector is p
2 in advance of the

stator flux. Then, in the chosen reference frame, we can write

usd ¼ 0

usq ¼ us
ð8Þ

d 

q 

Stator−β

sω

ω

θ

rθ
sθ

sϕ

su

Rotor−β

Stator−α

Rotor−α
1θ

Fig. 1 Reference frames and
angles for DFI-Motor
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The stator is directly connected to the grid, then, the stator electrical angle hs is
calculated only with the grid voltage.

hs ¼ h1 � p
2

ð9Þ

where h1 ¼ arctan usb
�
usa

� �
is the stator voltage vector angle in the stationary

reference frame abc as shown in Fig. 1.
Our control objective is the design of a controller for the DFI-Motor which

ensures reactive power regulation at stator side and speed tracking reference with
unknown load torque. It will be demonstrated that the stator-side reactive power
regulation problem can be formalized as the requirement to guarantee that the line
voltage vector and the stator flux vector are orthogonal.

Considering the stator equations expressed in terms of stator fluxes and currents
in the line voltage reference frame

_usd ¼ �Rsisd þ xsusq

_usq ¼ �Rsisq � xsusd þ us
ð10Þ

From the second equation of (5), the unity power factor objective is equivalent to
isd ¼ 0. In steady-state condition, all the derivatives are zero. According to the first
equation of (10), usq ¼ 0 is necessary to ensure isd ¼ 0. Then, the stator-side unity
power factor control is reformulated as a stator flux orientation control objective
(the stator flux vector is required to be orthogonal to line voltage vector).

In the following section, the fuzzy logic system used to approximate the
uncertain functions will be described in detail.

4 Description of the Fuzzy Logic System

The basic configuration of a fuzzy logic system consists of a fuzzifier, some fuzzy
IF-THEN rules, a fuzzy inference engine and a defuzzifier, as shown in Fig. 2. The
fuzzy inference engine uses the fuzzy IF-THEN rules to perform a mapping from an
input vector xT ¼ ½x1; x2; . . .; xn� 2 Rn to an output f̂ 2 R. The ith fuzzy rule is
written as

RðiÞ : if x1 is Ai
1 and . . . and xn is Ai

n then f̂ is f i ð11Þ

where Ai
1; A

i
2; . . .; and Ai

n are fuzzy sets and f i is the fuzzy singleton for the
output in the ith rule. By using the singleton fuzzifier, product inference, and center-
average defuzzifier, the output of the fuzzy system can be expressed as follows:
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f̂ ðxÞ ¼
Pm

i¼1 f
i Qn

j¼1 lAi
j
ðxjÞ

� �
Pm

i¼1

Qn
j¼1 lAi

j
ðxjÞ

� �
¼ hTwðxÞ

ð12Þ

where lAi
j
ðxjÞ is the degree of membership of xj to Ai

j, m is the number of fuzzy

rules, hT ¼ ½f 1; f 2; . . .;f m� is the adjustable parameter vector (composed of conse-
quent parameters), and wT ¼ ½w1w2. . .wm� with

wiðxÞ ¼
Qn

j¼1 lAi
j
ðxjÞ

� �
Pm

i¼1

Qn
j¼1 lAi

j
ðxjÞ

� �
being the fuzzy basis function (FBF). Throughout the paper, it is assumed that the
FBFs are selected so that there is always at least one active rule (Wang 1994), i.e.Pm

i¼1

Qn
j¼1 lAi

j
ðxjÞ

� �
[ 0.

It is worth noting that the fuzzy system (12) is commonly used in control
applications. Following the universal approximation results (Wang 1994; Azar
2010a, b, 2012), the fuzzy system (12) is able to approximate any nonlinear smooth
function f ðxÞ on a compact operating space to an arbitrary degree of accuracy. Of
particular importance, it is assumed that the structure of the fuzzy system (i.e. the
pertinent inputs, the number of membership functions for each input and the
number of rules) and the membership function parameters are properly specified
beforehand. The consequent parameters h are then determined by appropriate
adaptation algorithms.

In the following section, the proposed fuzzy adaptive backstepping controller
will be presented.

x f̂

Fuzzy Rule Base 

Fuzzifier Defuzzifier

Fuzzy Inference 
  Engine 

Fig. 2 The basic configuration of a fuzzy logic system
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5 Design of the Fuzzy Adaptive Backstepping Control

In this section, the stator flux subsystem control is designed in order to achieve
asymptotic alignment of the stator flux vector with the d-axis of the line voltage
vector reference frame, consequently, the stator voltage and flux vectors become
orthogonal.

Introduce flux stator tracking errors as

eusd ¼ usd � u�
s ; eusq ¼ usq ð13Þ

where u�
s is the d-axis flux reference trajectory.

Using (8), the stator flux dynamic equations in (1) can be written in error form as

_eusd ¼ �a1eusd � a1u�
s þ a2urd þ xseusq � _u�

s
_eusq ¼ �a1eusq þ a2urq � xseusd � xsu�

s þ us
ð14Þ

where a1 ¼ Rs=Lsr, a2 ¼ RsM=LrLsr.
To realize the required stator flux orientation, the d-axis component of rotor flux

urd can be considered as control input in (14), and should be

urd ¼
1
a2

a1u
�
s þ _u�

s

� � ð15Þ

with the d-axis stator flux reference computed from the second equation of (14)

u�
s ¼

1
xs

us þ a2urq

� � ð16Þ

Using (15) and (16), (14) becomes

_eusd ¼ �a1eusd þ xseusq þ a2ðurd � u�
rdÞ

_eusq ¼ �a1eusq � xseusd

ð17Þ

However, in a DFI-Motor, the rotor flux is not available as control input and urd
in (15) can only represent the d-axis rotor flux reference u�

rd for the real flux urd .
The rotor voltages urd and urq are the only physical available control inputs of
DFI-Motor. From (17), one concludes that the dynamic of the stator flux is expo-
nentially stable (i.e. lim

t!1usd ¼ u�
s and lim

t!1usq ¼ 0) provided that lim
t!1urd ¼ u�

rd .

Remark 1 From (17) and (15), it can be concluded that in the steady state (u�
s

constant), urd ¼ a1u�
s

a2
¼ Lr

M u�
s .
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Now, it is required to design a control law (rotor voltages urd and urq) which
guarantees that lim

t!1urd ¼ u�
rd and lim

t!1X ¼ X�. Then, we will consider the reduced

order DFI-Motor model represented by the rotor flux and speed equations.

_x1 ¼ a5ðx4x3 � x5x2Þ � a6x1 � a7Cl

_x2 ¼ �a3x2 þ a4x4 � xrx3 þ d1ðx1; x2Þ þ u1
_x3 ¼ �a3x3 þ a4 x5 þ xrx2 þ d2ðx3; x2Þ þ u2

ð18Þ

with x1 ¼ X; x2 ¼ urq; x3 ¼ urd; x4 ¼ usq; x5 ¼ usd; u1 ¼ urq; u2 ¼ urd; a3 ¼
Rr=Lrr; a4 ¼ RrM=LrLsr; a5 ¼ pM=JLrLsr; a6 ¼ kf =J and a7 ¼ 1=J.where di
(i ¼ 1; 2) are the unknown uncertainties and perturbations that can be naturally
generated from the parameter variations.

Backstepping design procedure (Krstic et al. 1995) is used here for the con-
struction of the FABC which guarantees asymptotic tracking of rotor speed and
rotor flux reference signals. Then, the variables to be controlled in the model (18)
are the rotor speed (x1) and the rotor flux (x2; x3).

Step 1. For a continuous bounded reference signal x1d , we define the tracking error
e1 as follows

e1 ¼ x1 � x1d ð19Þ

Its derivative _e1 is given by

_e1 ¼ _x1 � _x1d ð20Þ

From the first subsystem of (18), we can write

_e1 ¼ a5x4x3 � a5x5x2 � a6x1 � a7Cl � _x1d ð21Þ

Choose a5x5x2 as a virtual control to stabilize e1 and select t1 as a desired
reference signal for a5x5x2

t1 ¼ a5x4x3d þ c1e1 � a6x1d � _x1d � a7Cl ð22Þ

where c1 [ 0 is a design constant.
However, the exact value of the external load torque Cl in (22) is generally
difficult to be known in advance for practical applications. Then, it cannot
be used in the virtual control signal. We can select the new virtual control
as follows

t2ðz0Þ ¼ a5x4x3d þ c1e1 � a6x1d � _x1d � a7Ĉl ð23Þ

where Ĉl is the estimate of Cl and z0 ¼ ½x1; x4; Ĉl�T .
This leads to the following dynamics
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_e1 ¼ a5x4e3 � e2 � c1 þ a6ð Þe1 � a7eCl ð24Þ

where eCl ¼ Cl � Ĉl is the load torque estimation error, and e2 is the
tracking error of the variable a5x5x2.

e2 ¼ a5x5x2 � t2 ð25Þ

Consider the following Lyapunov function candidate for the e1-subsystem

V1 ¼ 1
2

e21 þ
1
c
eC2
l

� �
ð26Þ

where c[ 0 is a design constant.
By assuming that the load torque is slowly time-varying ( _Cl ¼ 0), the time-
derivative of (26) along (24) is given by

_V1 ¼ �e1e2 þ a5x4e3e1 � c1 þ a6ð Þe21 � eCl a7e1 þ 1
c
_̂Cl

� �
ð27Þ

If the load torque adaptation law is designed as

_̂Cl ¼ beCl � ca7e1 ð28Þ

where b[ 0 is a design parameter.
Then, (27) can be written as

_V1 ¼ �e1e2 þ a5x4e3e1 � c1 þ a6ð Þe21 �
b
c
eC2
l ð29Þ

The next step consists in stabilizing the tracking error e2.
Step 2. The time-derivative of (25) is given by

_e2 ¼ a5x5 _x2 þ a5 _x5x2 � _t2 ð30Þ

From the second subsystem of (1), (18) and (23), we can write

_e2 ¼ f1ðz1Þ þ e1 þ ða5a2x2 � a5x5xr � a5c1x4Þe3
� a7ðbþ c1ÞĈl þ a5x5u1

ð31Þ

with

f1ðz1Þ ¼ �e1 � a5a3x5x2 þ a5a4x5x4 � a5x5xrx3d � a5a1x5x2
þ a5xsx4x2 þ a5a1x3dx4 þ a5xsx3dx5 � a5x3dus � a5x4 _x3d

þ a6 _x1d þ €x1d þ c1 e2 þ c1 þ a6ð Þe1ð Þ � a27ce1
þ a7ðbþ c1ÞCl þ a5x5d1ðx1; x2Þ
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where z1 ¼ ½x1; x2; x4; x5; v2;Cl�T and e3 is the tracking error of x3. It is
given by

e3 ¼ x3 � x3d ð32Þ

The desired signal x3d is given by the expression (15), i.e.
x3d ¼ 1

a2
a1u�

s þ _u�
s

� �
.

The uncertain continuous function f1ðz1Þ can be approximated by the fuzzy
system (12) as follows

f̂1ðz1; h1Þ ¼ hT1w1ðz1Þ ð33Þ

where w1ðz1Þ is the FBF vector, which is fixed a priori by the designer, and
h1 is the adjustable parameter vector of the fuzzy system. Furthermore, the
functions f1ðz1Þ can be approximated optimally (Wang 1993, 1994) as
follows

f1ðz1Þ ¼ f̂1ðz1; h�1Þ þ e1ðz1Þ
¼ h�T1 w1ðz1Þ þ e1ðz1Þ

ð34Þ

where h�1 is the optimal parameter vector and e1ðz1Þ is the unavoidable
fuzzy approximation error which is generally assumed to be bounded
(Boulkroune et al. 2008, 2009, 2010a, b; Wang 1993, 1994) as follows

e1ðz1Þj j ��e1; 8 z1 2 Xz1

where �e1 is an unknown constant.
Since the input vector z1 ¼ ½x1; x2; x4; x5; v2;Cl�T is not available, it must
be replaced by its estimate ẑ1 ¼ ½x1; x2; x4; x5; v2; Ĉl�T in (33). Thus, the
fuzzy system (33) used to approximate f1ðz1Þ is replaced by the following
fuzzy system:

f̂1ðẑ1; h1Þ ¼ hT1w1ðẑ1Þ ð35Þ

From (33–35), we have

f1ðz1Þ ¼ f1ðz1Þ � f̂1ðz1; h�1Þ þ f̂1ðz1; h�1Þ � f̂1ðẑ1; h�1Þ þ f̂1ð̂z1; h�1Þ
¼ f̂1ðẑ1; h�1Þ þ f1ðz1Þ � f̂1ðz1; h�1Þ þ f̂1ðz1; h�1Þ � f̂1ð̂z1; h�1Þ
¼ h�T1 wð̂z1Þ þ e1ðz1Þ þ ½h�T1 w1ðz1Þ � h�T1 w1ð̂z1Þ�
¼ h�T1 wð̂z1Þ þ #1ðz1; ẑ1Þ ð36Þ
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where #1ðz1; ẑ1Þ ¼ e1ðz1Þ þ ½h�T1 w1ðz1Þ � h�T1 w1ðẑ1Þ� is the approximation
error. Notice that #1ðz1; ẑ1Þ has an upper bound, i.e. #1ðz1; ẑ1Þj j � j�1 with
j�1 is an unknown positive constant (Boulkroune et al. 2008).
To stabilise the dynamics (31), the following fuzzy adaptive controller is
proposed

u1 ¼ 1
a5x5

a7ðbþ c1ÞĈl � hT1w1ðẑ1Þ � k1e2 � j21e2
j1 e2j j þ r1 e�r2t

� �
ð37Þ

where r1 and r2 [ 0 are small design constants and k1 is a positive design
constant and j1 is the estimate of the unknown bound j�1.

Remark 2 The magnetising flux x5 must be non-zero (remanence flux).
Replacing (37) into (31) and using (36) yields

_e2 ¼ e1 þ ða5a2x2 � a5x5xr � a5c1x4Þe3 � ehT1w1ð̂z1Þ

þ #1ðz1; ẑ1Þ � k1e2 � j21e2
j1 e2j j þ r1 e�r2t

ð38Þ

where eh1 ¼ h1 � h�1 is the parameter error vector.
Multiplying (38) by e2, we get

e2 _e2 ¼ e1e2 þ ða5a2x2 � a5x5xr � a5c1x4Þe2e3 � e2ehT1w1ðẑ1Þ

þ e2#1ðz1; ẑ1Þ � k1e
2
2 �

j21e
2
2

j1 e2j j þ r1 e�r2t

� e1e2 þ ða5a2x2 � a5x5xr � a5c1x4Þe2e3 � e2ehT1w1ðẑ1Þ þ j�1 e2j j

� k1e
2
2 �

j21e
2
2

j1 e2j j þ r1 e�r2t

¼ e1e2 þ ða5a2x2 � a5x5xr � a5c1x4Þe2e3 � e2ehT1w1ðẑ1Þ
� ej1 e2j j � k1e

2
2 þ r1 e

�r2t

ð39Þ

where ej1 ¼ j1 � j�1 is the parameter error.
Define a Lyapunov function candidate for the (e1, e2)-subsystem as follows

V2 ¼ V1 þ 1
2
e22 þ

1
2c1

ehT1 eh1 þ 1
2g1

ej2
1 ð40Þ

where c1 and g1 [ 0 are design constants.
Take the derivative of V2 with respect to time and using (39) and (29), one can

obtain
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_V2 ¼ _V1 þ e2 _e2 þ
1
c1

ehT1 _h1 þ 1
g1

ej1 _j1

�ða5a2x2 � a5x5xr � a5c1x4Þe2e3 þ a5x4e1e3 � c1 þ a6ð Þe21 �
b
c
eC2
l

� e2ehT1w1ðez1Þ � ej1je2j � k1e22 þ r1e�r2t þ 1
c1

ehT1 _h1 þ 1
g1

ej1 _j1

¼ ða5a2x2 � a5x5xr � a5c1x4Þe2e3 þ a5x4e1e3 � c1 þ a6ð Þe21 �
b
c
eC2
l

� k1e
2
2 þ r1 e

�r2t þ 1
c1

ehT1 _h1 � c1e2w1ðẑ1Þ
h i

þ 1
g1

ej1 _j1 � g1 e2j j½ �

ð41Þ

If the adaptation laws are designed as

_h1 ¼ c1e2w1ðẑ1Þ ð42Þ

_j1 ¼ g1 e2j j ð43Þ

Then, (41) can be expressed as follows

_V2 �ða5a2x2 � a5x5xr � a5c1x4Þe2e3 þ a5x4e1e3

� c1 þ a6ð Þe21 �
b
c
eC2
l � k1e

2
2 þ r1 e

�r2t
ð44Þ

In the next step, we try to stabilize the tracking error e3:

Step 3. At this step, we will construct the control law u2. The time-derivative of
(32) is given by

_e3 ¼ �a3x3 þ a4 x5 þ xrx2 þ d2ðx3; x2Þ þ u2 � _x3d ð45Þ

We can rewrite (45) as follows

_e3 ¼ �ða5a2x2 � a5x5xr � a5c1x4Þe2 � a5x4e1 þ f2ðz2Þ þ u2 ð46Þ

with

f2ðz2Þ ¼ ða5a2x2 � a5x5xr � a5c1x5Þe2 þ a5x4e1 � a3x3
þ a4 x5 þ xrx2 þ d2ðx3; x2Þ � _x3d

where z2 ¼ ½x1; x2; x3; x4; x5�T .
The uncertain continuous function f2ðz2Þ can be approximated by the fuzzy
system (12) as follows
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f̂2ðz2; h2Þ ¼ hT2w2ðz2Þ ð47Þ

where w2ðz2Þ is the FBF vector, which is fixed a priori by the designer, and
h2 is the adjustable parameter vector of the fuzzy system. Furthermore, the
functions f2ðz2Þ can be approximated optimally (Wang 1993, 1994) as
follows

f2ðz2Þ ¼ f̂2ðz2; h�2Þ þ e2ðz2Þ
¼ h�T2 w2ðz2Þ þ e2ðz2Þ

ð48Þ

where h�2 is the optimal parameter vector and e2ðz2Þ is the unavoidable
fuzzy approximation error which is assumed to be bounded (Boulkroune
et al. 2008, 2009, 2010a, b; Wang 1993, 1994) as follows

e2ðz2Þj j ��e2; 8z2 2 Xz2 ;

where �e2 is an unknown constant.
From (47) and (48), we have

f2ðz2Þ ¼ f2ðz2Þ � f̂2ðz2; h�2Þ þ f̂2ðz2; h�2Þ
¼ f̂2ðz2; h�2Þ þ f2ðz2Þ � f̂2ðz2; h�2Þ
¼ h�T2 w2ðz2Þ þ e2ðz2Þ

ð49Þ

To stabilise the dynamics (46), the following fuzzy adaptive controller is
proposed

u2 ¼ �hT2w2ðz2Þ � k2e3 � j22e3
j2 e3j j þ r3 e�r4t

ð50Þ

where r3 and r4 [ 0 are small design constants, k2 is a positive design
constant and j2 is the estimate of the unknown bound j�2 ¼ �e2.
Replacing (50) into (46) and using (49) yields

_e3 ¼ �ða5a2x2 � a5x5xr � a5c1x4Þe2 � a5x4e1 � ehT2w2ðz2Þ

þ e2ðz2Þ � k2e3 � j22e3
j2 e3j j þ r3 e�r4t

ð51Þ

where eh2 ¼ h2 � h�2 is the parameter error vector.
Multiplying (51) by e3, we get
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e3 _e3 ¼ �ða5a2x2 � a5x5xr � a5c1x4Þe2e3 � a5x4e1e3

� e3ehT2w2ðz2Þ þ e3e2ðz2Þ � k2e
2
3 �

j22e
2
3

j2 e3j j þ r3 e�r4t

� � ða5a2x2 � a5x5xr � a5c1x4Þe2e3 � a5x4e1e3

� e3ehT2w2ðz2Þ þ j�2 e3j j � k2e
2
3 �

j22e
2
3

j2 e3j j þ r3 e�r4t

¼ �ða5a2x2 � a5x5xr � a5c1x4Þe2e3 � a5x4e1e3

� e3ehT2w2ðz2Þ � k2e
2
3 � ej2 e3j j þ r3 e

�r4t

ð52Þ

where ej2 ¼ j2 � j�2.
Define a Lyapunov function candidate as follows

V3 ¼ V2 þ 1
2
e23 þ

1
2c2

ehT2 eh2 þ 1
2g2

ej2
2 ð53Þ

where c2 and g2 [ 0 are design constants.
Take the derivative of V 3 with respect to time and using (52) and (44), one

can obtain

_V3 ¼ _V2 þ e3 _e3 þ
1
c2

ehT2 _h2 þ 1
g2

ej2j2

� � c1 þ a6ð Þe21 �
b
c
eC2
l � k1e

2
2 � e3ehT2w2ðz2Þ � k2e

2
3

� ej2je3j þ r1e
�r2t þ r3e

�r4t þ 1
c2

ehT2 _h2 þ 1
g2

ej2 _j2

¼ � c1 þ a6ð Þe21 �
b
c
eC2
l � k1e

2
2 � k2e

2
3 þ r1e

�r2t þ r3e
�r4t

þ 1
c2

ehT2 ½ _h2 � c2e3w2ðz2Þ�

þ 1
g2

ej2 _j2 � g2 e3j j½ �

ð54Þ

If the adaptation laws are designed as

_h2 ¼ c2e3w2ðz2Þ ð55Þ

_j2 ¼ g2 e3j j ð56Þ
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Then, (54) becomes

_V3 ¼ � � c1 þ a6ð Þe21 �
b
c
eC2
l � k1e

2
2 � k2e

2
3

þ r1e
�r2t þ r3e

�r4t
ð57Þ

One can write (57) as follows

_V3 � � k Ek k2þ1ðtÞ ð58Þ

where k ¼ min c1 þ a6ð Þ; bc ; k2; k3
n o

; E ¼ e1; e2; e3; eCl

h iT
, and 1ðtÞ ¼

r1e�r2t þ r3e�r4t.
Note that 1ðtÞ verifies the following nice properties:

• 1ðtÞ 2 L1 and lim
t!1 1ðtÞ ¼ 0

• 1ðtÞ 2 L2

Those properties will be exploited later in the stability analysis.

5.1 Study of the Tracking Error Convergence

The study of the asymptotic convergence of tracking errors is divided into three
parts.

5.1.1 Proof of the Boundedness and Square Integrability
of the Tracking Errors

By inequality (58), _V3 can be rewritten as _V3 � � k Ek k2þr1 þ r3. Choosing
k[ r1þr3

v2 for any small v[ 0, there exists a constant k0 such that _V3 � �
k0 Ek k2\ 0 for all Ek k[ v. Thus, there is a T[ 0, such that Ek k� v for all t� T .
This implies that the tracking errors are uniformly ultimately bounded (UUB), i.e.
ðe1; e2; e3; eClÞ 2 L1 (Khalil 2001). According to the standard Lyapunov theorem,

we conclude that eh1; ej1; eh2 and ej2 are all UUB. The boundedness of h1; j1; h2 and

j2 is respectively established from that eh1; ej1; eh2 and ej2. Also, From (58) and
since 1ðtÞ 2 L2, one can easily show that ðe1; e2; e3; eClÞ 2 L2.
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5.1.2 Proof of ð _e1; _e2; _e3; _eC lÞ 2 L1 and the Boundedness of All Signals
in the Closed Loop

Because e1; e3 2 L1 and x1d; x3d 2 L1, therefore x1; x3 2 L1. From (14), one can
write the dynamics of the tracking errors of the stator fluxes as follows:

_e5 ¼ �a1e5 þ xse4 þ e3
_e4 ¼ �a1e4 � xse5

with e4 ¼ e/sq and e5 ¼ e/sd .
From those dynamics and since e3 2 L1, we can easily prove the boundedness

of e4, e5 and x4. From x4; x3d; e1; _x1d ; x1 2 L1, it can be concluded that t2 2 L1
based on (23). Because x2 ¼ ðe2 þ t2Þ=a5x5, e2; t2 2 L1, x5 [ 0, we can show that
x2 2 L1. The boundedness of u�

sd and x5 follows that of x2 and e5. Due to the
boundedness of x1; x2; x3; x4; x5; Ĉl and since h1; j1; h2; j2 2 L1, we can conclude
that the controls (u1 and u2)are also bounded. The boundedness of states, reference
signals, tracking errors and adaptation parameters implies the boundedness of

_e1; _e2; _e3;
_eCl (i.e. this implies that ð _e1; _e2; _e3; _eClÞ 2 L1:)

5.1.3 Proof of the Asymptotic Convergence of the Tracking Errors

Because ðe1; e2; e3; eClÞ 2 L1 \ L2 and ( _e1; _e2; _e3,
_eClÞ 2 L1, and using Barbalat’s

lemma (Khalil 2001), we can conclude that all tracking errors and the estimation
error eCl converge asymptotically to zero, despite the presence of the uncertainties
and perturbations.

5.2 An Implementable Version of the Load Torque Estimator

Now, let us consider the load torque adaptation law (28) that can be written in the
following form

_̂Cl ¼ bCl � bĈl � ca7e1 ð59Þ

As the actual load torque Cl is unknown, the first equation in (18) will be used to
compute its value. Consequently, Cl is given by

Cl ¼ � _x1 þ a5x5x2 � a5x4x3 þ a6x1ð Þ
a7

ð60Þ

Fuzzy Adaptive Controller for a DFI-Motor 103



which leads to

_̂Cl ¼ � b
a7

_x1 þ a5x5x2 � a5x4x3 þ a6x1ð Þ � bĈl � ca7e1 ð61Þ

It is worth noticing that because of the integral structure of the adaptation law
(61), this updating law is implementable despite the presence of the time derivative
_x1. To show that, let’s rewrite the adaptation law as

Ĉl ¼ Ĉl 0ð Þ � b
a7

x1 tð Þ � x1 0ð Þð Þ þ
Z t

0

h sð Þds ð62Þ

where

h ¼ � bĈl þ ca7e1 þ b
a7

a5x5x2 � a5x4x3 þ a6x1ð Þ
� �

ð63Þ

Consequently, the load torque adaptation law can be computed without the need
of using _x1.

Remark 3 From (59), we can rewrite _eCl ¼ �beCl þ ca7e1, this equation can be seen
as a standard disturbance observer. In fact, if e1 converges to zero, then eC l also
converges to zero. Consequently, Ĉl converges to Cl.

To summary, Fig. 3 shows the block diagram of our FABC proposed. The
overall scheme of the controlled DFI-Motor is depicted in Fig. 4 in which the stator
is directly connected to the grid, and the DIF-Motor is controlled by acting on the
rotor winding.

In the following section, the effectiveness of the proposed FABC will be illus-
trated via some simulations results.

1u

2u2z

1z

0z Control 1u
Eqs.(37), (42) and (43)

2υ

Control 2u
Eqs.(50), (55) and (56)  

Virtual control 2υ
Eqs. (23) and (61) 

Fig. 3 The proposed FABC
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6 Simulation Results

In order to investigate the control system effectiveness, a numerical simulation has
been realized with a 4 kW DFI-Motor. Table 1 summarizes the DFI-Motor’s
parameters along with their respective values (Vidal 2004). The performances of
the control scheme are evaluated in terms of response to speed variation, sensitivity
to external disturbances and robustness against machine parameters variations. The
design parameters are selected as: c1 ¼ 0:001; b ¼ 200; k1 ¼ 200; c1 ¼ 100; g1 ¼
0:05; k2 ¼ 200; c2 ¼ 1; 000; g2 ¼ 0:1; r1 ¼ r3 ¼ 0:1; r2 ¼ r4 ¼ 0:1: The initial
conditions are chosen as: j1ð0Þ ¼ j1ð0Þ ¼ 0:2, and h1ið0Þ ¼ h2ið0Þ ¼ 0. The
unknown uncertainties and perturbations are selected as: d1 x1; x2ð Þ ¼ 3x2 and
d2 x3; x2ð Þ ¼ 4x2 þ 2x2.

The fuzzy system hT1w1ðẑ1Þ has the vector ½x1; x2; x4; x5; v2; Ĉl�T as input, while
the fuzzy system hT2w2ðz2Þ has the state vector ½x1; x2; x3; x4; x5�T as input. For each
variable of the entries of these fuzzy systems, as in (Boulkroune et al. 2008), we
define three (one triangular and two trapezoidal) membership functions uniformly
distributed on the intervals �0:5; 1:5½ � for x2; x3, x4 and x5, �150; 150½ � for x1,
�2; 2½ � for t2, and �150; 150½ � for Ĉl.

arctan

= 

rje θ

rdu rqu

FABC

Speed and currents measurement,  
Calculation

s cbau ,

β

α

s

s

u

u

Reference signals 
r cbau ,

β

α

r

r

u

u
2/3 Converter

2

π

1θ−

sθ

Grid

DFIM 

3/2

Fig. 4 The overall control scheme of the DFI-Motor
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Table 1 DFI-Motor
Parameters Parameter Value

Rated power Pn = 4 kW

Stator—rotor voltages us = 400 V

Stator—rotor currents Is = 8.4 A, Ir = 19 A

Synchronous speed xsn ¼ 2p50 Hz

Stator resistance Rs = 1.3740 Ω

Rotor resistance Rr = 0.1000 Ω

Stator inductance Ls = 0.2241 H

Rotor inductance Lr = 0.0287 H

Mutual inductance M = 0.0740 H

Inertia J = 0.01862 Nm/rad/s2

Friction coefficient kf = 0.01400 Nm.s/rad

Pole pairs p = 2
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Fig. 5 Simulation results: a Tracking of the rotor speed: x1 (solid line) and x1d (dotted line).
b Estimation of the load torque: the estimate Ĉl (solid line) and the actual value Cl (dotted line).
c Electromagnetic torque. d Stator reactive power
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The simulation results of the proposed FABC system are depicted in Figs. 5, 6
and 7. From these simulation results, we can clearly see that a satisfactory behavior
of the mechanical speed with regard to the imposed speed profile is obtained
without the knowledge of the load torque. Moreover, the load torque estimator
gives a correct estimation for the actual load torque.

We can observe clearly that the flux responses respect the imposed constraints.
So, after transient, the stator and the rotor fluxes recover respectively their reference
signals. Consequently, the flux orientation objective is guaranteed, and the stator
reactive power is equal zero in steady-state operation. Also, the results show
quickness of transients, good robustness and insensitivity in the face of the
uncertainties.
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Fig. 6 Flux responses of the DFI-Motor: a Tracking of usd : usd (solid line) and u�
sd (dotted line).

b Tracking of usq: usq (solid line) and u�
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7 Conclusion

In this chapter, a new fuzzy adaptive backstepping controller has been developed
for a DFI-Motor. A Lyapunov approach has been adopted to derive the parameter
adaptation laws and prove the stability of the control system as well as the
asymptotic convergence of the underlying tracking and estimation errors to zero.
Simulation results show clearly the effectiveness of this control approach. In spite
of the presence of the model uncertainties, the dynamic behavior of the DFI-Motor
presents high performances in terms of the speed and the load torque tracking
accuracy, satisfactory flux control and consequently, stator reactive power regula-
tion to zero in steady-state. It is worth noting that the control methodology proposed
here can be easily extended to any other high performance electric drives. In our
future work, one will address the experimental implementation of this proposed
control scheme and the design of a speed sensorless controller.
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