Impact of Hardware/Software Partitioning
and MicroBlaze FPGA Configurations
on the Embedded Systems Performances

Iméne Mhadhbi, Nabil Litayem, Slim Ben Othman
and Slim Ben Saoud

Abstract Due to their flexible architecture, lower-cost and faster processing, Field
Programmable Gate Array (FPGA) presents one of the stimulating choices for
implementing modern embedded systems. This is due to their intrinsic parallelism,
fast processing speed, rising integration scale and lower-cost solution. This kind of
platforms can be considered as a futuristic implementation platform. The growing
configurable logic capacity of FPGA has enabled designers to incorporate one or
more processors in FPGA platform. In contrast to the traditional hard cores, the
soft cores processors present an interesting solutions for implementing embedded
applications. They give designers the ability to adapt many configurations to their
specific application; including memory subsystems, interrupt handling, ISA features,
etc. Faced to the various problems related to the selection of an efficient soft-core
FPGA embedded processor with appropriate configuration, co-design methodology
presents a good deal for embedded designers. The most crucial step in the design of
embedded systems is the hardware/software partitioning. This step consists of
deciding which component is suitable for hardware implementation and which one is
more appropriate for software implementation. This research field is especially
active (always on the move) and several approaches are proposed. In this chap-
ter, we will present our contribution on the hardware/software partitioning co-design
approach, and discuss their involvement on design acceleration and architecture
performances. The first part of this chapter describes the effect of the MicroBlaze
Xilinx configuration on the embedded system performance. The second part

1. Mhadhbi (B<)) - S.B. Othman - S.B. Saoud
LSA Laboratory, INSAT-EPT, University of Carthage, Tunis, Tunisia
e-mail: imene.mhadhbi@gmail.com

S.B. Othman
e-mail: boslim@yahoo.fr

S.B. Saoud
e-mail: slim.bensaoud @gmail.com

N. Litayem

Department of Computer Science, College of Arts & Science, Salman Bin Abdelaziz
University KSA, Al-Kharj, Saudi Arabia

e-mail: nabil.litayem@gmail.com

© Springer International Publishing Switzerland 2015 711
Q. Zhu and A.T. Azar (eds.), Complex System Modelling and Control Through

Intelligent Soft Computations, Studies in Fuzziness and Soft Computing 319,

DOI 10.1007/978-3-319-12883-2_25

712 1. Mhadhbi et al.

introduces our new hardware/software partitioning approach on a complex secure
lightweight cryptographic algorithm. This work can contribute to enforce the
security of SCADA (Supervision Control and Data Acquisition) systems and the
DSS (Digital Signal Standard) without compromising the cost and the performance
of the final system.

1 Introduction

Embedded systems are now present in practically all domestic and industrial sys-
tems (appliances and applications) such as cellular telephones, personal digital
assistants (PDAs), digital cameras, Global Positioning System (GPS) receivers,
defense systems and security applications. The increased complexities of embedded
systems and their real-time operation’s constraints allow semiconductor markets to
build other solutions for processing. Traditionally, embedded systems were
designed and implemented using Microprocessors (MP), Microcontrollers (MCUs),
Digital Signal Processors (DSPs), Application-Specific Integrated Circuits (ASICs)
and FPGAs. Due to their advantages, FPGAs have substituted DSPs in different
applications such as motor controllers (Arulmozhiyal 2012; Xiaoyin and Dong
2007) which are widely used in industrial applications, image processing (Kikuchi
and Morioka 2012), wireless (Jing-Jie and Rui 2011; Nasreddine et al. 2010),
automotive and aerospace systems. Continuing increases in FPGA performance,
capability and architectural features are enabling more embedded systems designs
to be implemented using FPGAs. Additionally, FPGAs costs are decreasing, for
less than $12, allowing designers to incorporate FPGAs circuits with one million
equivalent gates. This made the implementation of Programmable System-On-Chip
(SoPCs) possible what also allowed this implementation their pipeline ability,
intrinsic parallelism and flexible architecture (Jianzhuang et al. 2008). FPGAs offer
a faster processing speed, a lower-cost solution and more functionalities to support
more innovative characteristics.

Nevertheless, the increasing complexity of algorithms and the rising integration
scale on FPGAs triggered designers into drastically improving design methodolo-
gies. In addition, the effort to design complex applications on FPGA is generally
much more complicated than impelementing them on programmable processors.

The real challenge, as far as the embedded systems designers are concerned, is
how to increase performances (execution time, area and energy consumption) of
complex systems and reduce their complexity, and refinement time.

Many interesting design methodologies are presented. Some designers have
based their methodologies on reducing development time to implement complex
embedded systems. Among the many approaches that have been adapted there is
first the automatic transformation of the behavioral system description into struc-
tural netlist system components using high level input language such as SpecC

Impact of Hardware/Software Partitioning ... 713

(Fujita and Nakamura 2001) and Bluespec (Dave et al. 2005; Gruian and Westmijze
2008; Talpin et al. 2003). Second, there is Hardware In the Loop (HIL) technique
which increase the tractability and earlier testability of the design product (Wash-
ington and Dolman 2010). The automation of the hardware/software partitioning
step on the co-design methodologies using low-level specification presents the third
approach (Stitt et al. 2003).

Other designers have based their methodologies on minimizing the design com-
plexities. One approach is the use of Intellectual Proprieties (IPs) blocs and cores
(Mcloone and Mccanny 2003) provided by vendors or designers (Lach et al. 1999).
An other is the automating of the hardware code generation HDL (Hardware
Description Language) from a high level specification (Samarawickrama et al. 2010;
Ku and De Mitcheli 1992). This specification can be defined as language (C, SystemC,
etc.) or models (Matlab, Sycos etc.) or UML (Unified Modeling Language) diagrams,
called HLS (High Level Synthesis) approach (Lingbo et al. 2006; Wakabayashi and
Okamoto 2000).

During last decades, early designers’ works have been focused on new contri-
butions of the existing design methodologies, which allow both the high level
specification and the automation of the design process to decrease the systems
complexities, reduce the development time to enlarge the time reserved to the
optimization and increase their performance. None of these approaches deals with
the impact of the best configuration selection of soft-cores processors performance
in terms of computation acceleration.

The goal of this chapter is to actively contribute to the existing co-design
approaches including hardware/software partitioning step using high level specifi-
cation. The chapter also aims at adding a step to the selection f the best soft-cores
processors configuration. These contributions permit the increase of embedded
systems performance (soft-cores computation) and the reduction of systems com-
plexities. The remaining parts of this paper are organized as follows: Sect. 2
illustrates the related works and background of design methodologies. Section 3
presents the MicroBlaze soft-core processor. Section 4 depicts our co-design
approach. Section 4 presents the performance evaluation techniques and the
lightweight cryptographic algorithm. Section 5 determines results of our co-design
approach. In Sect. 6, we will discuss results. Finally, Sect. 7 summarizes our study,
and gives our perspectives.

2 Related Works and Background

In this section, the different steps of design methodologies will be presented in
reverse. We will begin by defining the different architecture of implementation. We
will proceed with the design methodologies approaches specifically HLS approach
and hardware/software partitioning approach. Finally, system level specification of
embedded systems will be dealt with.

714 1. Mhadhbi et al.

2.1 Design Methodologies, Challenges

Embedded applications require increasingly sophisticated functionalities and severe
constraints. They incorporate many application areas such as telecommunication,
avionics, automotive, medical implants, domestic appliances, etc. These increasing
complexities require functional constraints (computation capacities, reduced power
consumption, miniaturization of the implementation area, etc.) and non-functional
constraints (minimum time-to-market, reduced cost, maximum life, growth in the
amount of productions, etc.). To increase the embedded systems performances,
researchers and industry have focused on two areas of research. First, technological
area that is based on the evolution of the integration level of integrated circuits.
Second, methodological area, which is based on refinement of design methodolo-
gies. Faced with the physical limits of technical evolution, manufacturers of
embedded systems had to demonstrate a different reactivity. They had to continu-
ously improve their techniques and design approaches to increase the embedded
systems performances.

In our study, we examine different design architectures of complex embedded
systems. Our contribution lies in the hardware/software partitioning step starting
from high level specification. Also, a new step has been added to the hardware/
software partitioning which is the selection of the best configuration of the used
soft-core processor.

2.1.1 Design Implementation Architectures

Traditional hardware FPGA design approaches are complex. This reduces FPGA
productivity. Hardware implementation uses a low-level specification, VHDL or
Verilog languages or combination of both, to implement embedded applications.
Their implementation process consists of the (a) definition of application at a low-
level specification (b) synthesis, (c) implementation, (d) simulation and (e) tests and
verification steps. With the integration of soft-cores processors into FPGA,
designers become able to implement complex systems on software architecture. As
input, they employ a high-level specification, compile it and implement it into soft-
COres processors.

Several researches demonstrate that software implementation of embedded
systems allows flexibility (ability to modify specifications), ease of integration,
reduction of design time and bad performances. However, hardware implementa-
tion of the same application greatly achieves high performance constraints in a long
design time.

Now, FPGA offers many advantages. It can be used in all embedded systems
fields (image processing, aerospace systems, security and industrial applications,
etc.). It can be implemented on different architectures (hardware, software or both
hardware/software) using different design methodologies (Joven et al. 2011) as
illustrated on Fig. 1.

Impact of Hardware/Software Partitioning ... 715

Hardware/Software Design o : :

Hardware Design Architecture Architecture Software Design Architecture
Low Level
Specification High Level Specification High Level Specification

(HDL code)
Y v

HDL code Generation

Y Y ¥ Y

Hardware FPGA Implementation

Y

Platform System FPGA
Implementation

Y Y

Performance Evaluation Process

Fig. 1 FPGA architectures and methodologies design

Recently, designs approaches can be implemented using both hardware/software
architectures using co-design methodology to accelerate the design process. Using
this methodology, designers can incorporate co-processors, hard-cores processors
and soft-cores processors. This decision of integration is taken after a hardware/
software partitioning step. Hardware/Software partitioning is usually related to
physical constraints (computing time, energy consumption, level of integration,
area utilization) and economic constraints (cost, flexibility, design time and Time-
To-Market) embedded systems constraints, as described in Table 1.

Recently, Reconfigurable devices, such as FPGAs, become highly appealing
circuits for co-design methodology as they provide flexibility and ability to easily
implement complex embedded applications. Using co-design methodologies,
designers permit the integration of both hardware and software architectures into
FPGA (Kalomiros and Lygouras 2008). Xilinx proposes its own co-design meth-
odology using Xilinx EDK (Integrated Development Kit) environment. EDK
includes both an integrated development environment (IDE) named Xilinx Platform
Studio (XPS) and Software Design Kit (SDK). XPS tool allows the implementation
on hardware architecture and the creation of a Microprocessor Hardware Specifi-
cation (MHS) file. SDK tool permit the implementation of software architecture and
the creation of the Microprocessor Software Specification (MSS) file. The MHS file
defines the embedded system processor, architecture and peripherals. The MSS file
defines the library customization parameters for peripherals, the processor cus-
tomization parameters, the standard I/O devices, the interrupt handler routines, etc.
Figure 2 depicts the co-design flow of Xilinx EDK tool.

2.1.2 Hardware/Software Partitioning Approaches

FPGAs present powerful circuits for prototyping embedded system applications,
supporting both software and hardware architectures. The choice of architecture is

716 1. Mhadhbi et al.

Table 1 Comparative studies of the software/hardware design architectures

Software Hardware
Physical Constraints Execution time *
Energy consumption *
Integration *
Area *
Economic Constraints Cost * (Except high volume)
Flexibility *
Design time *
Time-to-market *

Software Design Flow Software Design Flow
(SDK tool) (SDK tool)
Benchmark . o
(C program) Hardware Design

* - MSS MHS |- *
Compiler Generate Netlist
\i \i
* MHS *
Linker Generate BitStream
ELF File - FPGA L Bit File

Fig. 2 Co-design flow using Xilinx EDK tool

based on the hardware/software partitioning step. The goal of that partitioning step
is to determine which components of the application are suitable for hardware or
software implementation. Hardware implementation is desirable to design efficient
embedded systems in term of execution time and computation (co-processors).
However, software implementation gives less performance in a reduced time. This
partitioning is depending on embedded systems constraints such as cost, efficiency
and speed. The real paradigm of co-design methodology is the great choice of
hardware and software sections.

Co-design approaches promote the implementation of efficient embedded sys-
tems in a low development time by integrating hardware co-processors into soft-
ware design process. During the design process, fundamental decisions have
dramatically influenced the quality and the cost of the final solution. Design
decisions have an impact of about 90 % of the overall cost. The most important
decision is that of hardware/software partitioning.

Impact of Hardware/Software Partitioning ... 717

Therefore, Partitioning is a well-known problem. During the last years, many
partitioning approaches have been proposed to automate the partitioning process
decision of hardware and software components (De Michell and Gupta 1997;
Wiangtong et al. 2005). The feasibility of these approaches depends essentially on
the system-level specification, the target architecture and the constraints parameters
(hardware size, power consumption, execution time, computation, etc.). Several
works were focused on the automation of the hardware/software partitioning using
co-design methodologies. Many interesting approaches are presented. Some of
them are described on Table 2.

As described in the table above, many partitioning hardware/software approa-
ches exist (Madsen et al. 1997; BoBung et al. 1999; Chatha and Vemuri 2000).
From the many co-design approaches, we will examine some of these. A hardware/
software partitioning approach is proposed by Lysecky and Vahid (2004). This
approach uses a relaxed cost function to satisfy performance in an Integer Linear
Programing (ILP); it handles hardware minimization in an outer loop. Lysecky and
Vahid (2004), presents a binary constraint search algorithm which determines the
smaller size constraint. Vahid partitioning approach minimizes hardware, but not
execution time. Kalavade and Lee (1994), proposed also a different hardware/
software partitioning approach. It is based on GCLP algorithm to determine for
each node iteratively the mapping to hardware or software. The used GCLP
algorithm selects its appropriate objective according to critical time measure and
another measure for local optimum.

Table 2 Hardware/software partitioning approaches

Approaches Cosyma Vulcan Polis CoWave Grapell

Specification SDL HardwareC FSM, DFL, C, etc. DFL
language esterel

Internal model No No Yes Yes Yes

Support Y chart No, Semi- Yes, with No, No Yes

model? automatic migration manual

Support automating No No Yes No Yes

partitioning? (Y-chart (Y-chart

like) like)

Supports the explo- Low Low Very High Medium

ration of the design high

space?

Level specification No No Yes No No

of approach

Support for No No Yes No Yes

synthesis

Target architecture Mono-proces- Mono-processor: Mono- Multi-pro- Multi-pro-
sor: CPU + Co- CPU + ASIC with processor cessors with cessors with
processor buses ASICs FPGAs

718 1. Mhadhbi et al.

HOL
Specification
Compilation

Y

| Assembly Progran | l HDI Specificaation |

Structural Synthesis

Duter Partitioning
Loop

Fig. 3 Vulcan and cosyma approaches

Two representative approaches directly affecting the research of this chapter are
Vulcan (Wolf 2003) and Cosyma (Co-synthesis embedded architecture) approaches
(Lopez-Vallejo and Lopez 2003). Both Vulcan and Cosyma use partitioning
approach, which iterates over hardware synthesis and software generation. Iteration,
in these approaches, is necessary because there are no approaches known to
accurately estimate the results of optimizing compilers and high-level synthesis
tools with advanced techniques. While Vulcan is hardware oriented, starting with
an all hardware implementation and moves operations to software on a given
processor until time constraints are verified, COSYMA is software oriented, starting
with an all software implementation on a given processor and moves operations to
hardware until no time constraint is verified any more. Several studies employ these
approaches to automate their co-design approach (Henkel and Ernst 1998; Gupta
et al. 1992). Figure 3 illustrates these two co-design approaches.

The automation of hardware/software partitioning process allows the classifi-
cation of embedded specification to determine which components can benefit from
the transformation to hardware and the best configuration for getting an optimal
gain of performance. Transformations of hardware nodes are provided using HLS
approaches. In the next sub-section, we will introduce the HLS design approaches.

2.1.3 HLS Approaches

Using HLS approaches, complexities are managed by (a) starting the design process
at a higher level of abstraction, (b) automating the hardware code generation, and (3)
reusing intellectual components (IPs). Reducing the migration time from a high-level

Impact of Hardware/Software Partitioning ... 719

language specification to a hardware specification language presents the main
objective of designers. Early works are focused on how to faster prototyping speed
with automatization of the Register Transfer Level (RTL) generation process from
the high level behavioural description using commercial tools (Feng et al. 2009).

During the last decades, HLS design approaches have been the main subject for
research. Their principal objective is to simplify the accelerators hardware design
by describing applications at high abstraction levels and generating the corre-
sponding description of a low-level implementation. Different studies were focused
to qualify the benefits of implementing HLS methodologies in terms of time-to-
market, execution time and area consumption.

Thangavelu et al. (2012) evaluate the Model-Based Design approach, using XSG
(Xilinx System Generator). However, Abhinvar compares the HLS approach
(C-Based Design), using Catapuls, with Bluespec design approach, in order to
prove that HLS is the most efficient in stage of the design development for fast
prototyping complex systems (Dave et al. 2005). Indeed, it offers reduced design
time and provides a generic design compared to the Bluespec design flow that
generates hardware code adapted to the performance constraints and resources. The
Rapid prototyping of complex systems are founded on HLS approaches such as C-
Based Design approach (Dave et al. 2005), Model-Based Design approach and
Architecture Based Design approach (Cherif et al. 2010) to raise their productivity
(from higher levels of abstraction) and their reliability (from automatic code and test
bench generation and more robust test technologies).

Model Based Design Approach

The Model-Based Design approach accentuates the use of models to increase the
abstraction level of the complex systems (Lingbo et al. 2006; Wakabayashi and
Okamoto 2000). This approach represents a real process of evolution in the
embedded systems design. The model used, in the systems engineering, includes
safety critical areas such as aerospace, automotive, etc. It is applied not only for the
explanation of algorithms, but likewise, for the generation of VHDL code. The
Model-based design approach level of abstraction is very high, which allows the
flexibility to add, delete and modify applications in a short design time. Using this
approach, designers can automate the generation, from a model to a synthesized
hardware code (VHDL or Verilog), ready to be implemented on FPGA. Mode-
Based Design approach emphasizes the usage of models to increase the level of
abstraction to design complex systems. It allows the modelization and verification
of each function separately using a low-level language or blocks. The ability to plot
the progress of the application using Model-Based Design presents an advantage to
detect the wrong behaviour. The design model used in the systems engineering,
includes also safety critical domains like aerospace and automotive. One of the
most widely used tools in these domains is Sicos-HDL, FPGA-module (LabView),
Syndex-Ic and XSG.

720 I. Mhadhbi et al.
Architecture-Based Design Approach

The Architecture Based Design approach permits an automatic generation of a
synthesized hardware code (VHDL or Verilog), ready to be implemented in FPGA,
from UML diagrams. The rapid prototyping approach should provide a way to
accelerate the hardware language generation. It must satisfy the following features:
(i) Flexibility analysis to produce different results with minimum changes such as
the computing precision. (ii) Accuracy of results. The abstraction level of the
Architecture Based Design approach, compared to a code written with C in the C-
Based design approach and a model described in the Model-Based Design, is very
high. This allows the flexibility to add, delete and modify the applications in a short
design time. The efficient implementation of complex algorithms (such as a light-
weight cryptographic application) in a hardware circuits (FPGA) allows a faster
processing speed (parallelism) and more functionalities to support more advanced
features.

C-Based Design

This approach consists in the automatic generation of hardware code like VHDL or
Verilog, from a C/C++ language, ready to be implemented on FPGAs (Dave et al.
2005). Recent development of C-to-HDL tools technology has minimized the gap
between software developer’s experience-level, and the expertise needed to produce
hardware applications. Many commercial and academic C-Based Design tools can
be found in the literature: Catapult-C (Mentor Graphics), CoDeveloper™, C2H,
SPARK. In this study, we chose the CoDeveloper™ tool to implement complex
embedded application using hardware architecture.

2.2 System Level Specification

The choice of hardware/software partitioning, using co-design approach, presents a
trade-off among various design metrics such as performance, cost, flexibility and
time-to-market (Lopez-Vallejo and Loépez 2003; Joven et al. 2011). Several
approaches of hardware/software partitioning are presented. Their classification is
based on their input specifications which is it based on models or languages.

2.2.1 Model Specification

Stoy and Zebo (1994) groups indicate that initial specification can be defined as
models of components such as a Finite State Machine (FSM), Discrete-Event Sys-
tems, Petri Nets, Data Flow Graphs, Synchronous/Reactive Model, and Heteroge-
neous Models. These models are described in the next sub-sections.

Impact of Hardware/Software Partitioning ... 721
Finite State Machine (FSM)

Finite State Machine (FSM) models contain sets of states, inputs, outputs, output
functions, and next-state functions. Embedded applications are described as a set of
states and input values, which can activate a transition from one state to another.
FSMs are usually used for modeling the control-flow dominated systems. To avoid
limitations of the classical FMS, researchers have proposed several derivatives of
the FSM. Some of these extensions are used in several tools such as SOLAR (Ismail
et al. 1994), Hierarchical Concurrent FSM (HCFSM) (Reynari et al. 2001) and Co-
design Finite State Machine (CFSM) (Cloute et al. 1999).

Discrete-Event Systems

In a Discrete-Event System, the occurrence of discrete asynchronous events triggers
the transitioning from one state to another. An event is defined as an instantaneous
action, and has a timestamp representation when the event took place. Events are
sorted globally according to their time of arrival. A signal is defined as a set of
events, and it is the main method of communication between processes (Stoy and
Zebo 1994). Discrete Event modeling is often used for hardware simulation. For
example, both Verilog and VHDL use Discrete Event modeling as the underlying
model of Computation. Discrete Event modeling is expensive since it requires all
events according to their timestamp.

Petri Nets

Petri Nets is widely used for modeling systems. Petri Nets consists of places, tokens
and transitions where token are stored in places. Transition causes tokens are stored
in places. Transition causes tokens to be produced and consumed. Petri Nets sup-
ports concurrency and is asynchronous; however, they lack the ability to model
hierarchy. Therefore, it can be difficult to use Petri Nets to model complex systems
due to its lack of hierarchy. Variation of Petri Nets has been devised to address the
lack of hierarchy, such as the Hierarchal Petri Nets (HPNs) proposed by Dittrich.
Hierarchical Petri Nets (HPNs) supports hierarchy in addition to maintaining the
major Petri Net’s features such as concurrency and asynchronously. HPNs use
directed graphs as the underlying model. HPNs are suitable for modeling complex
systems since they support both concurrency and hierarchy.

Data Flow Graphs
Data Flow Graphs (DFG) systems are specified using a directed graph where nodes

(actors) represent inputs, outputs and operations and edges represent data paths
between nodes (Reynari et al. 2001). The main usage of Data Flow is for modeling

722 1. Mhadhbi et al.

data flow dominated systems. Computations are executed only where the operands
are available. Communication between processes is done via unbounded FIFO
buffering Scheme (Stoy and Zebo 1994). Data Flow models support hierarchy since
the nodes can represent complex functions or other Data Flow.

Several variations of Data Flow Graphs have been proposed in the literature such
as Synchronous Data Flow (SDF) and Asynchronous Data Flow (ADF). In SDF, a
fixed number of tokens are consumed, where in ADF the number of tokens con-
sumed is variable.

Synchronous/Reactive Models

Synchronous modeling is based on the synchrony hypothesis. Outputs are produced
instantly in reaction to inputs and there is no observable delay in the outputs.
Synchronous models are used for modeling reactive real-time Systems. Stoy and
Zebo (1994) mentioned two styles for modeling reactive real time systems. First
multiple clocked recurrent systems (MCRS) which are suitable for data dominated
by real time systems. Second, state base formalisms which are suitable for control
dominated real time systems. Synchronous languages, such as Esterel, are used for
capturing Synchronous/Reactive model computation.

Heterogeneous Models

Heterogeneous Models combine features of different models of computations. Two
examples of heterogeneous models are presented: Programming languages and
Program State Machine (PSM). Programming languages provide a heterogeneous
model that can support data, activity and control modeling. Two types of pro-
gramming languages are presented, imperative language such as C, and declarative
languages such as LISP and PROLOG. In imperative languages, statements are
executed in the same order specified in the specification. On the other hand, exe-
cution order in not specified in declarative languages since the sequence of exe-
cution is based on a set of logic rules or functions.

Program State Machine (PSM) is a merger between HCFSM and programming
languages. The Spec Charts language, which was designed as an extension to
VHDL, is capable of capturing the PSM model. The SpecC is another language
capable of capturing the PSM model. The following Table 3 attempts to set a
comparison between different models of computation.

2.2.2 Specification Using Language
The goal of a specification using language is to describe the intended functionality

of non-ambiguous systems. A large number of specifications using languages are
currently being used in embedded system design since there is no language that is

723

Impact of Hardware/Software Partitioning ...

uone[idwo) Jo [PON DON

LN OAILd papunog Sutum J1idxe oN Aianoy ouksy oda Jav
OdIA

LN papunoqu Sutum J1dxe oN Aianoy youkg D4d ads

LN VIN Sutum J1dxe ON Aianoy ouksy paINqIISIY | Jou Iog NdH

dureys owm

ON S[eusIs paIIpy J/M SJUIAD PAIOS A[[eqo[D) paury, UouAkg aun [eay V/N JUSAD JIOSIq

SN S[eusis aIpn dwreys own y/m sjuaAyg eI JUASY PAUSLIO [0NUOD) NSd WSHD

QJe)s QuIT) [BAX QAT R4V (o]

SOA 1SedpeoIq jueisuy ur juads own Xej Uy Ae)S Jouksg -0BAI/PIAIUALIO [0NUOD) WSH e)s IWASDOH
[[ed 2mp

SOX -9001d 9jowray oum Jo11dxa oN AeS UouAkg PAUSBLIO [ONUOD NSH AVI0S

poyow WISTURYOIW DO
Ayorerory uoneosrunNuIuwo)) g uonejualin oo[D uoneorjdde urepy ursuQ DOIN

uonendwod Jo sfppowr snoweA jo uostedwo) ¢ dqe],

724 1. Mhadhbi et al.

the best for all applications. Below is a brief overview of the widely used language
specification.

e Formal Description Languages such as LOTOS (based on process algebra, and
used for the specification of concurrent and distributed systems) and SDL (used
for specifying distributed real time systems, and based on extended FSM).

e Real Time Languages such as Esterel (a synchronous programming language
based on the synchronous hypothesis. They are used for specifying real time
reactive systems. Esterel is based on FSM, with constructs to support hierarchy
and concurrency) and StateCharts (the graphical specification using languages
used for specifying a reactive system). StateCharts extend FSM by supporting
hierarchy, accuracy and synchronization.

e Hardware Description Languages: Commonly used HDL are a VHDL (IEEE
standardized hardware description language), Verilog (hardware description
language, which has been standardized by the IEEE) and HardwareC (a C based
language designed for hardware synthesis). It extends C by supporting structural
hierarchy, concurrency, communication and synchronization.

3 FPGA Cores Processor

The emergence of soft-cores processors (implemented using logic General Purpose
programmable and synthesized onto FPGA) and hard-core processors (available as
embedded blocks in the silicon next to the FPGA) inside FPGA increases their
efficacy. FPGAs can include various embedded processors, different communica-
tions buses, many peripherals and network interfaces. It is possible now to create a
complete hardware/software system with I/O and control interfaces on a single chip
(SoC). This coexistence improves the embedded system performances by reducing
the communication between external processors and FPGA circuit.

Embedded systems architectures allow the coexistence between hardware and
software processors working together to perform a specific application. Usually,
they can contain embedded processors who are often in the form of soft-core
processors (described at a higher level of abstraction, implemented and synthesized
to target a given FPGA or ASIC technology) and hard-core processors. Despite the
advantages of the use of hardware processors (small area and power consumption),
designers of embedded systems choose the implementation using soft-core pro-
cessors due to their many advantages and their different configurations. Soft-core
processors offer many hardware configurations to accelerate the execution time (e.g.
adding floating-point hardware as hardware components into the soft-core pro-
cessor) in terms of cost, flexibility, configuration, portability and scalability.

Atmel (FPGA vendors) and Triscend firms began introducing hard-core processor
on their FPGA circuits, basing on an efficient communication mechanism between
hard-core and FPGA components. More recently, Altera has offered Excalibur
devices hard-core using ARM9 processor, NIOS and recently NIOS II soft-cores.

Impact of Hardware/Software Partitioning ... 725

Xilinx firm has proposed the Virtex II Pro device with two or more PowerPC and tens
millions of programmable gates and both PicoBlaze and MicroBlaze soft-cores.
OpenCore has presented OpenRISC soft-core (Bolado et al. 2004) and Gaisler
Research has given LEON and LEON2 soft-cores (Denning et al. 2004). In our study,
the partitioning of software/hardware components was tested on Virtex-5 FPGA
circuit, which allows the integration of various MicroBlaze soft-cores processors. In
this chapter, embedded soft-core processor architecture, as being examined, consists
of the Xilinx MicroBlaze soft-core processor.

3.1 Xilinx MicroBlaze Soft-Core Processor Architecture

Embedded processors can be defined as software cores implemented in hardware
circuits using Logic General Purpose Programmable. The most used soft-cores
processors, in the designing of embedded system for Xilinx FPGA, is the Xilinx’s
MicroBlaze soft-core processor. MicroBlaze is a 32-bit Reduced Instruction Set
Computer (RISC) architecture optimized for synthesis and implementation into
Xilinx FPGAs with a separate 32-bit instruction and data buses to execute programs
and access data from both on-chip and external memory at the same time. This
processor includes 32-bit general-purpose registers, virtual memory management,
cache software support, and FSL interfaces. It has Harvard memory architecture and
uses: Two Local Memory Busses (LMB) for instruction and data memory, two-
Block RAMs (BRAM) and two peripherals connected via On-chip Peripheral Bas
(OPB). Three memory interfaces are supported: Local Memory Bus (LMB), the
IBM Processor Local Bus (PLB), and Xilinx Cache Link (XCL): The LMB offers
single-cycle access to on-chip dual-port block RAM. The PLB interfaces offer a
connection to both on-chip and off-chip peripherals and memory. The CacheLink
interface is proposed for use with specialized external memory controllers. The
architecture of the Xilinx MicroBlaze FPGA processor, the interfaces, buses,
memory, and peripherals are shown in Fig. 4.

The major advantage of choosing MicroBlaze soft-core processor, in our
researches, is its higher performance and its various configurations.

3.2 Xilinx MicroBlaze Soft-Core Processor Features

The MicroBlaze Xilinx processor offers tremendous flexibility during the design
process. It allows different configurations to meet the needs of their design
embedded applications by adding or removing some setting parameters such as:

e Integer Multiplier Units: Add the Integer multiplication as a co-processor.
e Barrel Shifter Units: Add the Shift by bit operations as a co-processor.
e Integer Divider Units: Add the Division of Integer as a co-processor.

726 1. Mhadhbi et al.

Instruction-side bus Data — side
interface bus interface

SHIFT = @
Program Counter - =
Special E:':;’:I é
IXCL_M Purpose _'. i A ——
Registers C: Multipler = YDXCL_]
IXCL_S Divider :: DXCL_S

|

Bus
i i | | IF
Bulfer

m Instruction
Decode
Register File
IIX32b
Dt!plimml MicroBlaze feature

1T 1T

MFSL 0.7

SFSL 0.7

T
Ul

Fig. 4 Microblaze functional block diagram

¢ Floating-Point Units: Add Basic and Extended precision as a co-processor.

e Machine Status Register Units: Add Set and clear machine status register as a
CO-Processor.

e Pattern Compare Unit: Add the String and pattern matching as a co-processor.

However, the designers need to select an appropriate configuration according to
the application to improve the system performances. Thus, performance evaluation
main function is to help embedded systems designers to answer the following
questions: Does design methodology influence on the embedded system perfor-
mances? Does a particular configuration affect the performance of the embedded
system? How fast is the design process? What are the limits of the improvement of
the design process? In the next sub-section, we will start t present our evaluation
design approaches.

4 Proposed Design Approaches

The great issue of FPGA designers is that they are faced with the various problems
for selecting the best architecture, the greatest hardware/software partitioning and
the finest configuration of the selected soft-core processor. All these difficulties
choice are constrained by execution time and area consumption. To take a decision
about the final architecture design, designers need to proceed to a performance
evaluation step. In our work, we propose to accelerate co-design methodology by

Impact of Hardware/Software Partitioning ... 727

Architecture l | High Level Specification l | Design Ceonstraints
| Division Specificaation into Sub-Function (nodes) q

Ips
Library

~—

If node exist in library

| Performance Evaluation |ﬂ—
l Hardware / Software partitioning]‘7

Y Y v Y L
Software nodes | ‘ Interfaces | | Hardware nodes |
| Hardware code |
Y i Y
| System Integration |

l Compiler & Linker l

]

| ELF File I

(]

I FPGA Architecture [

Fig. 5 Proposed co-design methodology approach

automating hardware/software partitioning step (basing of the hardware/software
costs) using a high-level specification. Figure 5 illustrates our design methodology.
The low-level specification, proposed practically by all hardware/software par-
titioning approaches is replaced, in our approach, by a high-level specification. This
high-level specification is divided into functional nodes (C functions) defined as
nodes to make possible its integration on the hardware or software architecture.
Beginning with a high-level specification, in the hardware/software partitioning step
permits the classification of nodes on software or hardware without specifying the
implementing target which allows the portability of our design process. Before
partitioning, designers have to evaluate the costs of nodes (in term of execution time
and area consumption) and the time taken for communication between software and
hardware nodes. For software nodes, these costs are computed using profiler (e.g.
compiling ¢ code on MicroBlaze using the directive -pg, permit the generation of the
profiling of each C function). However, hardware costs are measured after hardware
synthesis of the high-level specification using HLS approaches. As hardware/soft-
ware algorithms partitioning, we selected the Integer Linear Programing (ILP)
algorithm. Figure 6 details our approach on hardware/software partitioning.

728 1. Mhadhbi et al.

To evaluate our approach, software nodes are executed on the MicroBlaze soft-
core processor with its different configurations. However, the implementation of
hardware tasks is carried out, using HLS approaches. This tool allows fast proto-
typing of Intellectual Proprieties (IPs) that will be added to the MicroBlaze by the
Fast Simplex Link (FSL) interface using Xilinx EDK tool.

5 Performance Evaluation Process

The performance evaluation of embedded systems has multiple aspects depending
on the application that the system is made off. Hence, performance measurement is
involved in several stages of the design process. In this chapter, we propose to
evaluate the performance of the MicroBlaze FPGA soft-core processor features, in a
first time, then that of our proposed design methodology, in a second time, using a
lightweight cryptographic application.

5.1 Performance Evaluation Technique

Performance evaluation is the process of predicting whether the designed system
satisfies the performance goal defined by the user such as area consumption and
execution time (Mysore et al. 2005; Monmasson and Cristea 2007; Li and Malik
1995). Performance evaluation can be classified into two categories: Performance
modeling and performance measurements as mentioned on Table 4.

5.1.1 Performance Modeling

Performance modeling approach is concerned with architecture-under-develop-
ment. It can be used at an early stage of the design process where the processor is
not available, or it is very expensive to prototype all possible processors archi-
tectures choices. Performance modeling may be classified into analytical-Based
approach and Simulation-Based approach.

Analytical-Based Approach

The analytical modeling approach is based on probabilistic methods. Petri nets or
Markov models create mathematical models of the designed embedded systems. The
results of this approach are not often easy to construct. It allows predicting mainly
user performance, time execution of sub-functions rapidly without compilation or
execution. There has not been much study on the analytic approach for processors.
Processors’ structures are so complex that few analytical models can be provided for

Impact of Hardware/Software Partitioning ... 729

Table 4 Performance evaluation techniques

CPU benchmarks Synthetic benchmarks
Application based benchmarks

Algorithm based benchmarks

Performance measurement MP-on chip performance monitoring counters

Off-chip Hw monitoring

SW monitoring

Micro-coded instrumentation

Performance modeling Simulation Trance driven simulation

Execution driven simulation

Complete system simulation

Even driven simulation

Software profiling

Analytical model Probabilistic models

Queuing models

Markov models

Petri net models

them. Some research efforts are presented by Noonburg and Shen (1997) using a
Markov models to model a pipelined processor, when Sorin et al. (1998) used
probabilistic techniques to model a Multi-processor composed by superscalar
processors.

Simulation-Based Approach

Simulation-Based approach presents the best performance modeling method in the
performance evaluation of processor architectures. Model of the processor being
simulated must be written in a high-level language, such as C or Java and running
on some existing machine. Simulators give performance information in terms of
cycles of execution, cache bit ratios, branch prediction rates, etc. Many commercial
and academics simulators are presented: The SinOS simulator which presents a
simple pipeline processor model and a powerful superscalar processor model. The
SIMICS simulator simulates uni-processor and multi-processor models. Results of
simulation approaches are not very interested in the performance evaluation of the
MicroBlaze Xilinx soft-core processor because they are not exact.

5.1.2 Performance Measurement
Performance measurement approach is used for understanding systems that are

already built or prototyped. Two major purposes for performance measurement
approach can be used to tune systems to be built in order to understand the

730 I. Mhadhbi et al.

bottlenecks of such system. Performance measurement adjusts the application if its
source code or algorithms can still be changed in order to understand the applica-
tions. This application can run on the system and tune the different design config-
urations. This kind of performance evaluation approach can be done using the
following means:

e Microprocessor on-chip performance monitoring: can be used to understand
performance of high microprocessors (Intel’s Pentium III and Pentium IV, IBM
Power3 and Power4 processors, AMD’s Athlon, Compaq’s Alpha and Sum’s
Ultra SPARC). Several tools are available to measure performance monitoring
counters: Intel’s Vtune software can be used to perform measurement when the
Intel performance counters. The P6Pref utility presents a plug-in for Windows
NT performance monitoring. The Compaq DIGITAL Continuous Profiling
Infrastructure (DCPI) presents a very powerful tool used to profile program on
the Alpha processors.

e Off-Chip hardware monitoring: Instrumentation using hardware wherewithal
can be done by attaching off-chip hardware. Example Speed Tracer from AMD
and Logic analyser. AMD developed hardware-trading platform to help in the
design of X86 microprocessors. However, Poursepanj and Christie used a logic
analyser to analyze 3D graphics workloads on AMD-K6-2 based systems.

e Software monitoring: is an important mode of performance evaluation used
before the advent of on-chip performance monitoring counters. The primary
advantage of software monitoring is that it is easy to execute.

e Mircocoded instrumentation: is a technique lying between trapping information
on each instruction using hardware interrupts (traps) or software interrupts
(traps). The tracing system modified the VAX microcode to record all instruc-
tions and data references in a reserved portion of memory.

5.1.3 CPU Benchmarks

Designers of FPGA processor have to use the CPU Benchmarks approach to get a
fixed measurement of the processors ‘performance, which is attempting to imple-
ment and verify the architectural and the timing behavior under a set of benchmark
programs. Several open sources and commercial benchmarks are presented. Some
of them are: Mibench, Paranoia, LINPACK, SPEC (Standard Performance Evalu-
ation Corporation), and EEMBC (Embedded Microprocessor Benchmark Consor-
tium). These Benchmarks are divided into three categories depending on the
application (Korb and Noll 2010). The first category is Synthetic Benchmark (with
the intention to measure one or more features of systems, processors, or compilers).
The second category is application based benchmarks or “real world” benchmarks
(developed to compare different processors’ architectures in the same fields of
applications). Finally, the third category is Algorithm Based Benchmarks (devel-
oped to compare systems architectures in special (synthetic) fields of application).

Impact of Hardware/Software Partitioning ... 731
Synthetic Benchmarks

Synthetic Benchmarks are developed to measure processor specific parameters.
Synthetic benchmarks are created with the intention to measure one or more fea-
tures of systems, processors, or compilers. It tries to mimic instruction mixes in
real-world applications. However, it is not related to how that feature will perform
in a real application. Dhrystone and Whetstone benchmarks are the most-used
synthetic benchmarks.

Application Based Benchmarks

Application Based Benchmarks or “real world” benchmarks are developed to
compare different processor architectures in the same fields of applications. Appli-
cation based or “real world” benchmarks use the code drawn from real algorithms,
and they are more common in system-level benchmarking requirements.

Algorithms Based Benchmarks

Algorithm Based Benchmarks: (a compromise between the first and the second
type) developed to compare systems architectures in special (synthetic) fields of
application. Several studies are based on this approach to evaluate the processors’
performances. Bolado et al. (2004) evaluated three soft-cores processors namely
LEON2, MicroBlaze and OpenRISC to measure the execution time and the area
consumption, using Dhrystone and Standford benchmarks. Berkeley Design
Technology, Inc. evaluated the performance of the Texas Instruments’ DSCs pro-
cessors to compute the execution time using the Fast Fourier Transform (FFT)
algorithms using fixed-point and floating-point data precision. Korb and Noll
(2010) examined the performance of both DSPs and MCUs basing on the execution
time of a number of benchmark codes included fixed-point and floating-point math
operations, logic calculation, digital control, FFT, conditional jumps and recursion
test algorithms. In our paper, we have chosen to adopt the performance measure-
ment method using freely benchmark solutions. We used lightweight cryptographic
secure application as a benchmark.

In the next section, we will introduce our used benchmark: The lightweight
cryptographic application: Quark Hash Algorithm.

5.2 Lightweight Cryptographic Benchmarks:
Quark Hash Algorithm

The need for Lightweight cryptographic applications have been frequently
expressed by embedded systems designers, to implement a secured application such

732 1. Mhadhbi et al.

as the authentication, the password storage mechanisms, the Digital Signal Standard
(DSS), the Transport Layer Security (TLS), the Internet Protocol Security (IPSec),
the Random number generation algorithms; etc. Several Lightweight cryptographic
algorithms are presented. Lightweight cryptographic algorithms have been designed
to fit with a very compact hardware. Each algorithm can be adapted for a specific
field (Korb and Noll 2010; Bogdanov et al. 2013).

e SHA family: Secure SHA Algorithms are a family of Hash Algorithms pub-
lished by NIST since 1993. SHA has many derivative standards such as SHA-0,
SHA-1, SHA-3

e MDA/MD5/MD6: Message-Digest Algorithm is a family of broadly used
cryptographic hash function developed by Ronald Rivest that produces a 128-bit
for MD4 and MD35, 256-bit for MD6.

e Quark: Family of cryptographic functions designed for resource-constrained
hardware environments.

e CubeHash: A very simple cryptographic hash function designed in University of
Ilinois at Chicago, Department of Computer Science.

e Photon: A lightweight hash function designed for very constrained devices.

e SQUASH: Not collision resistant, suitable for RFID applications.

According to its complexity, Quark presents the most appropriate algorithm to
evaluate the performance of the soft-core FPGA processor architecture. Quark can
minimize area and power consumption, it offers strong security guarantees. These
Hash algorithms that are efficiently implemented in low cost embedded devices are
important components for securing new applications in ubiquitous computing.
Quark Hash algorithm is a family of lightweight cryptographic “sponge” algorithms
designed for resource-constrained hardware environments, as RFID tags. It com-
bines a number of innovations that make it unique and optimized. In the design of
Quark, designers opt for an algorithm based on bit shift. It combines a sponge
construction with a capacity e equal to the digest length n, and a core permutation
inspired by preceding primitives. Quark algorithm proposes three instances: u-
Quark, d-Quark and s-Quark. Quark is a family of cryptographic “sponge” func-
tions intended for resource-constrained hardware environments (Bogdanov et al.
2013). It minimizes area and power consumption, yet offers strong security guar-
antees.Quark function includes four functions: (1) permute function, (2) init func-
tion, (3) update function and (4) final function. These instances are parameterized
by a rate r, a capacity c, an output length n and a b-bit permutation (b = r + c).
Table 5 demonstrates the parameters of each instance of the Quark algorithms.

Table 5 Parameters of Quark hash algorithms instance

Rate (1) Capacity (c) With (b) Digest (n)
u-Quark 8 128 136 136
d-Quark 16 160 176 176
s-Quark 32 224 256 256

Impact of Hardware/Software Partitioning ... 733

6 Results

As mentioned before, the main topic of this study is to evaluate and validate the
effect of the Xilinx MicroBlaze features and the proposed hardware/software par-
titioning approach on the embedded system performances.

6.1 Experimental Setup

6.1.1 Hardware Experimental Setup

Performance evaluation was estimated on a first time by a basic measurement of the
different MicroBlazesoft-core configurations implemented on Xilinx Virtex-5
development board (XUPV5-LX110T, xc5vix110t, grade ff1136, speed-1), illus-
trated in Figure 6.

Processor performance can be measured in different metrics such as execution
time, energy consumption and area utilization. The most common metric is the time
required for a processor to accomplish the defined task. In some architecture using
an internal CPU clock driver, execution time presents the clock driver multiplied by
the total instruction cycle count. In our case, execution time is measured using a
Logic Analyser to have a high-precision measurement.

AT

Fig. 6 Our plateform

734 I. Mhadhbi et al.
6.1.2 Software Experimental Setup

In this chapter, we propose to immediately generate a cryptographic application as a
co-processor (Hardware part) that will be added to a MicroBlaze using FSL
interface (Software part). EDK tool will be used to perform the integration of both
Hardware and Software in our architecture design. To implement Virtex-5
embedded applications, we use CoDevelopper™ tool to generate co-processors or
IPs (HLS methodology) and Xilinx Project Studio (XPS) to configure the FPGA
including one MicroBlaze soft-core.

EDK Development Kit

The Xilinx EDK contains both an integrated development environment (IDE)
named Xilinx Platform Studio (XPS) to create the Microprocessor Hardware
Specification (MHS) file and the Software Design Kit (EDK) to create a Micro-
processor Software Specification (MSS) file. The MHS file defines the embedded
system processor, architecture and peripherals. The MSS file defines the library
customization parameters for peripherals, the processor customization parameters,
the standard I/O devices, the interrupt handler routines, etc.

CoDeveloper™

CoDeveloper™ is a commercialized by Impulse Accelerated Technologies in the
CAD market. It allows designers to compile C applications directly into optimized
logic ready for use with Xilinx FPGAs, in few times. ImpulseC code, the input
language of CoDeveloper™, can be written and debugged in any ANSI standard C
environment. The implemented algorithm can use both fixed and floating-point data
point types. Impulse C is a library of functions and related data types that give a
programming environment, and a programming model, for parallel applications
targeting FPGA-based platforms. It has been optimized for mixed software/hard-
ware targets, with the goal of abstracting details of inter-process communication
and can allow relatively platform-independent application design. CoDeveloper™
includes the Impulse C libraries and associated software tools that help designers
use standard C language for the design of highly parallel applications targeting
FPGAs.

Impact of Hardware/Software Partitioning ... 735

6.2 Application of the Proposed Design Approach
Jor Quark Benchmark

6.2.1 Effect of MicroBlaze Soft-Core Configuration
on Embedded Systems Performance

For embedded application, different MicroBlaze configurations can be provided. In
real-time complex applications, both execution time and area consumption deter-
mine the efficiency and the high performance of the configured embedded soft-core
processor.

The evaluation of hardware area presents one of the metric to select embedded
configurations, which requires an optimal area. In a software design methodology,
area consumption is independent from the implemented application. We can
evaluate the performance of the soft-core processor for each configuration directly
after the hardware specification step. Results prove that the average number of
slices (a group of logic cell resources in FPGA) without using optimization option
is very important. Table 6 depicts the area consumption recorded for some possible
MicroBlaze configurations.

To evaluate the performance of the MicroBlaze soft-core processor, we have
estimated the execution time in order to choose the most efficient configuration,
which takes the minimum execution time onto the smaller hardware area. In our
work, we compute the execution time of the configuration described in the table for
three Quark hash functions (u-Quark function, d-Quark function and s-Quark
function). Figure 7 illustrates the Quark hash functions execution time measurement
for the 17 configurations of Xilinx MicroBlaze.

6.2.2 Automation of Partitioning Process

Designers have to specify the target architecture early in the design by defining the
configuration of the software nodes to synthesize hardware nodes. Moreover,
designers have, also, to determine the design constraints, performance constraints
(timing) and resource constraints (area, memory). In this study, we choose to
evaluate the proposed approach for a lightweight cryptographic s-Quark bench-
mark. We divide the C-high-level specification into four functional units (C func-
tions) presented as nodes. We compute than nodes costs for all hardware and
software possible architecture. For Software nodes, cost computation will be
assured by profiling. For Hardware nodes, C functions will be transformed into
Hardware specification using HLS approach, synthesized and analysed using
Logical synthesis to get its costs. We propose MicroBlaze soft-core as software
architecture with its different configurations (presented above). With our approach;
we have to specify the costs (execution time and resources utilization) for each
s-Quark node which can be implemented using soft-core (within all configurations).

736 I. Mhadhbi et al.

Table 6 Area consumption of MicroBlaze processor synthesis

Configuration With optimization Without optimization
synthesis synthesis

MB + Units LUTs F-Fs LUTs F-Fs

1: Basic 1,210 1,452 1,657 1,693
2: BS 1,570 1,247 1,818 1,727
3: FPU 1,620 2,153 2,395 2,105
4: Mul 1,456 1,232 1,714 1,709
5: 1D 1,581 1,326 1,801 1,805
6: MSRU 1,458 1,214 1,675 1,690
7: BS + mul + ID 1,727 1,380 1,964 1,867
8: BS + mul + FPU 2,307 1,674 2,511 2,162
9: BS + ID + FPU 2,433 1,769 2,668 2,258
10: BS + mul + MSRU 1,609 1,267 1,830 1,749
11: BS + ID + MSRU 1,734 1,365 1,966 1,846
12: BS + FPU + MSRU 2,313 1,659 2,533 2,142
13: mul + ID + FPU 2,358 1,755 2,575 2,241
14: mul + ID + MSRU 1,628 1,351 1,864 1,829
15: mul + FPU + MSRU 2,207 1,645 2,418 2,127
16: ID + MSRU + FPU 2,359 1,740 2,554 2,224
MSRU + FPU 2,202 1,625 2,417 2,107

30

295

27.5

Execution time (ms)
L3
-]

27 4

26,5

26

Confl Confl Conf3 Cosfd Cosf$ Confé Cenf7 Cosf8 Conf® Conf10 Cenf1l Conf12 Conf13 Conf 14 Cenf15 Conf16 Cosf17

Fig. 7 Quark benchmark execution time usage for different MicroBlaze configurations

In order to select the greatest hardware/software architecture (partitioning pro-
cess), we used the Integer Linear Programing (ILP) algorithm. Under the ILP
algorithm, Gains of execution time and resource consumption are computed
(as described in Table 7) using these two formulas:

Impact of Hardware/Software Partitioning ... 737

Table 7 Temporal and Resources gain of s-Quark implementation

Task 1 2 3 4

Gain Gt Gr Gt Gr Gt Gr Gt Gr
Gl 20.94 68 0.84 10 291 14 6.98 145
G2 18.94 88 0.67 18 2.66 23 6.18 148
G3 19.14 109 0.72 10 2.71 21 5.78 178
G4 18.74 118 0.71 12 2.7 20 6.58 187
G5 19.94 128 0.64 14 2.63 17 5.32 198
G6 20.94 130 0.72 13 2.71 21 3.08 197
G7 19.94 132 0.82 17 291 19 4.18 197
G8 19.34 136 0.74 15 1.73 23 6.18 199
G9 20.14 139 0.82 17 2.81 22 4.08 201
G10 21.81 143 0.72 18 2.71 20 6.73 206
Gl1 18.26 146 0.71 20 2.70 22 6.18 205
Gl12 21.14 140 0.70 23 2.69 21 4.08 197
GI13 20.74 143 0.72 14 2.71 23 6.18 207
Gl4 19.14 136 0.66 26 2.65 26 4.08 185
Gl15 18.14 148 0.64 30 2.63 27 6.73 192
Gl6 17.59 151 0.7 29 2.69 28 7.18 195
G17 18.14 155 0.62 26 2.7 24 6.48 206

(1) Gt = Execution time before Hw migration—Execution time after Hw migration
(2) Gr = Resources before Hw migration—Resources after Hw migration

In the designing of Quark cryptographic application, the designer has to satisfy
temporal constraints while minimizing the number of the used resources. Parti-
tioning process is based on the assignment of tasks on software and hardware units.
This partitioning will be modified, with new hardware/software assignments, until
the designer got the partition that meets the requirements of execution time and area
consumption. The interesting parameter for partitioning is the number of nodes,
which have to be partitioned. Using both hardware/software implementation, the
time taken to transfer data between the soft-core and IPs (or co-processors) will be
added. The cost of hardware/software communications are computed based on the
width of transmitted data (8, 16 or 32 bits) and the rate of the communication buses.

As seen above, Xilinx MicroBlaze soft-core processor implements Harvard
architecture. It means that it has separate bus interface for data and instruction
access. The OPB interface gives a connexion to both on- and off-chip peripherals
and memory. The MicroBlaze soft-core also provides 8 input and 8 output inter-
faces to Fast Simplex Link (FSL) buses. This FSL buses, 32 bits wide, are unidi-
rectional non-arbitrated dedicated communication channels. In our study, we used
the FSL interface due to its high performance (can reach up 300 Mb/S). EDK
provides a set of Macros for reading and writing to or from FSL interface. Our

738 I. Mhadhbi et al.

Table 8 S-Quark implementation results

Execution Resources Design time : From architecture
time (ms) (Slices) model to design implementation
Node 1 (Hw) 75 832 1h
Node 2 (SW7) 32 774 5 min
Node 3 (SW5) 52 853
Node 4 (SW1) 124 954
Total Hw/Sw nodes 283 3413 1 h/15 min

purposed partitioning solution will determine the best partition that will reduce the
number on nodes implemented on hardware and increase the number of nodes
implemented on software to reduce the design time and the hardware area.

After hardware/software partitioning, we have to implement our s-Quark
benchmark. Hardware nodes are implemented using HLS approach (CoDevel-
oper ™ tool). Software nodes are executed using XPS tool. The integration of the
hardware nodes (co-processors or IPs) with MicroBlaze soft-core processor is
achieved using EDK tool. Table 8 illustrates results of s-Quark implementation.

7 Discussions

Increasing complexities of embedded systems application sunders core the need to
take design decisions at an early stage. In our study, we are based on two important
decisions related to the automation of the choice of both hardware/software parti-
tioning and soft-core processor configurations.

7.1 Soft-Core Processor Configuration

MicroBlaze is a 32-bit embedded soft-core processor with a reduced instruction set
computer (RISC) architecture. It is highly configurable and specifically optimized
for synthesis into Xilinx field programmable gate arrays (FPGAs). The MicroBlaze
soft-core processor is available as HDL source code or structural netlist. Itcan also
be integrated into ASICs. As described in Fig. 6, one of the advantages of Xilinx
MicroBlazesoft-core processors is its flexibility: it uses various configurations
(more than 17 configurations) required for a specific application. Another advantage
is its ability to integrate customized IP cores, which can result in a dramatic
acceleration in software execution time (difference between configuration 1 and
configuration 17) due to applications being executed in parallel with hardware and
not sequentially in software.

Impact of Hardware/Software Partitioning ... 739

Quark hash functions do not use huge values. They are dominated by barrel
shifter, integer arithmetic, logic decisions, and memory accesses intended to reflect
the CPU activities in computing applications. It takes a huge time for memory
access. As described in the Fig. 6, selecting the best configuration enables a huge
gain perspective of execution time and area consumption. The performance of
implemented embedded systems using basic configuration (config. 1) is very low
compared to the performance using Barrel Shifter Units (BS), Integer multiplier
(Mul) and Floating-Point Units (FPU) configuration (config. 8). The execution time
using the basic configuration takes 29 mS (for u-Quark); 29.8 mS (for s-Quark) and
29.2 mS (for d-Quark). 8) takes 28.58 mS (for u-Quark); 29 mS (for s-Quark) and
28.84 mS (for d-Quark). Area consumption constraint has also an effect on the
embedded systems performance when modifying the configuration. Using basic
configuration (config. 1), with optimization, takes 1,210 LUTs and 1,452 F-Fs.
However, using Barrel Shifter Units (BS), Integer multiplier (Mul) and Floating-
Point Units (FPU) configuration (config. 8) takes 2,307 LUTs and 1,674 F-Fs. If the
application is area-critical, the user should select the best area/execution time
constraints. In real-time embedded systems, area consumption constraint is not very
important compared to the execution time.

Results prove that modifying configuration have an important effect on the
embedded system performances. These results are interesting to make an optimized
architecture for software design, designers of embedded systems can also benefit of
FPGA hardware resources to more accelerate execution time and minimize the
energy consumption. Hardware/software architecture has to be used to satisfy
embedded systems constraints.

The results obtained from these different configurations require approximately
20 min per configuration, so, 60 % of the time is spent by the synthesis to choose
the best configuration. Automate this step using time estimation approach allows
the acceleration of the design time. Also, area synthesis results can be used on the
designing of other embedded application, which reduce the design time.

7.2 Hardware/Software Partitioning

Partitioning an application among software solution on a soft-core processor (Mi-
croBlaze) and hardware co-processors (IPs) in on-chip configurable logic has been
shown to improve performance in embedded systems.

The used partitioning algorithm ILP is software oriented, because it starts with
only software nodes. For this reason, the initial specifications were written in a
high-level language (C functions). These functions are divided into functional units
named nodes (nodel, node2, node3 and node4 for Quark function). The first step in
hardware/software partitioning step is the computation of both nodes and com-
munication (between hardware and software nodes) costs. The costs can be defined
as the execution time and the resources using hardware implementation (Hw1) or
software implementation with different configuration of Microblaze (Sw1-Sw17).

1. Mhadhbi et al.

740

paonpay paonpay] ysiy uondwnsuos vary
wnIpojA wnIpojA ySty K10p QwIy UONNOAXH
SO ON SO Aiiqenod
SO ON oA Aiqrxarg
QINONIYOIE PIYI
QIMOAIYOIE SUISO0YD I0J SOPOI JO -0ads ® 10} sopod Jo uonerouasd QINOAIYDIE dIeMPIRY PUB dIEM Suruonnred
uoneIauasd onewone ay) 1oy painbar own onewoine ay) Joj parmnbar own -1JOs 30q 10j 3uIpod A[[enuew QIBM)JOS/IeMpIRY
{WNIPIA {WNIPIJA. 9y} Joj panmbar owp :owmn Suo JIoy parmbar oy,
uono[as
uoneoyoads QIMOIYOIE
uonesy1oads [9A9] [QA[-MO[© UI USPLIM 9q owp uors JIem)Jos/arempirey
-y31Y & UI UM ST UOTEOYIoads :tunIpajy 0) sey uoneoyroads owr SuoT -100p Suo[:owm Juoy :A[fenuey 10J parmbar aury,
(Are1qr ayj ur jou SI 9pou JI) uoneInSyuood uoneIn3yuod yoed Jurzisoyjuks uonem3yuod yoes Jurzisayl uonemsyuod
yoeo JuIZIsayjuAs 10j SW (g + suon 10} Sw (g + suonein3yuod -uks 10J Sui () + suonem3yuod 2100-)J0S owmn
-emn3yuod [[e Jurkjroads 10 parmbar owry, e Suikyroads 1oy parmbar owry, e Surkjroads 1oy parmbar oury, J10J parmbar oury, ugisog
.soyoeoxdde usisop 1nQ soyoeoxdde u3isop U0y soyoeoxdde u3isop [euonipel],

souo 3unsixa ay) 01 paredwos yoeordde udrsop o jo sjyoudg ¢ dqeL

Impact of Hardware/Software Partitioning ... 741

Choosing the greatest partitioning is verified by ILP algorithm. As result, we select
to implement the node 1 (permute C function) as hardware. Permute function (node)
is dominated by barrel shifter, integer arithmetic and logic decision. Implement it as
a hardware node allows the designer to minimize area and execution time at least to
1.95 % for LUTs resources and 0.86 % for execution time comparing to software
implementation. In addition, the integration of hardware nodes in soft-core Mi-
croBlaze processor did not require to inline assembler code because the FSL
interface has predefined C-macros that can be used for sending and receiving data
between hardware and software nodes. Results of s-Quark benchmark (illustrated
on the Table 8) prove that implementing complex applications on hardware/soft-
ware architecture with automatic hardware/software partitioning are better than
implementing these applications on software architectures (using MicroBlaze Soft-
core processors). As summary, Table 9 illustrates features of our design approach
compared to the existing ones.

8 Conclusions and Perspectives

FPGA presents an interesting circuit for implementing embedded applications. The
purpose of this chapter to illustrate the impact of co-design approach, on the design
acceleration and architecture performance. Based on the proposed co-design
approaches of hardware/software partitioning, we are contributing to specification
in order to increase its level. We, also, added a step to select the finest soft-core
processor configuration in order to facilitate the co-design process, improve
embedded systems’ performance and reduce design time.

The presented results demonstrate that the choice of the good configuration has a
significant impact on the system performance. The same approach can be used to
evaluate the performance of other embedded systems or other architectures. Design
methodologies of embedded systems, as mentioned in this paper, can be software,
hardware or both software/hardware. Using co-design methodology helps the
designer to obtain a good performance in a short time-to-market based on a good
hardware/software partition. In this chapter, we have also introduced the hardware/
software partitioning problem from a high-level specification. Several partitioning
algorithms are presented in this study: One of them is based on ILP, which is used
in our empirical tests. The ILP algorithm works efficiently for graphs with several
hundreds of nodes and yield optimal solutions. As perspective, we can validate our
proposed approach for more complexes embedded applications using FPGA
devices for other vendors such as Altera, Actel, etc. We can also study the per-
formances and design time benefits using time estimation approach instead of real
performance evaluation.

742 1. Mhadhbi et al.

References

Arulmozhiyal, R. (2012). Design and implementation of fuzzy PID controller for BLDC motor
using FPGA. In IEEE International Conference on Power Electronics, Drives and Energy
Systems (PEDES) (pp. 1-6), December 1619, 2012. doi:10.1109/pedes.2012.6484251.

Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., & Verbauwhede, 1. (2013).
Spongent: The design space of lightweight cryptographic hashing. IEEE Transactions on
Computers, 62(10), 2041-2053.

Bolado, M., Posadas, H., Castillo, J., Huerta, P., Sanchez, P., Sanchez, C., Fouren, H., & Blasco,
F. (2004). Platform based on open-source cores for industrial applications. In Europe
Conference and Exhibition on Design, Automation and Test (pp. 1014-1019), February 16-20,
2004. doi:10.1109/date.2004.1269026.

BoBung, W., Huss, S. A., & Klaus, S. (1999). High-level embedded system specifications based on
process activation conditions. Journal of VLSI Signal Processing Systems for Signal, Image
and Video Technology, 21(3), 277-291.

Chatha, K. S., & Vemuri, R. (2000). An iterative algorithm for hardware-software partitioning,
hardware design space exploration and scheduling. Design Automation for Embedded Systems,
5(3-4), 281-293.

Cherif, S., Quadri, L. R., Meftali, S., & Dekeyser, J. (2010). Modeling reconfigurable systems-on-
chips with UML MARTE profile: An exploratory analysis. In 13th Euromicro Conference on
Digital System Design: Architectures, Methods and Tools (DSD) (pp. 706-713), September
1-3, 2010. doi:10.1109/dsd.2010.58.

Cloute, F., Contensou, J. N., Esteve, D., Pampagnin, P., Pons, P., & Favard, Y. (1999). Hardware/
software co-design of an avionics communication protocol interface system: An industrial case
study. In 7th International Workshop on Hardware/Software Codesign (CODES '99)
(pp. 48-52). doi:10.1109/hsc.1999.777390.

Dave, N., Ng, M. C., & Arvind. (2005). Automatic synthesis of cache-coherence protocol
processors using Bluespec. In 3rd ACM and IEEE International Conference on Formal
Methods and Models for Co-Design (pp. 25-34), July 11-14, 2005. doi:10.1109/memcod.
2005.1487887.

De Michell, G., & Gupta, R. K. (1997). Hardware/software co-design. Proceedings of the IEEE,
85(3), 349-365.

Denning, D., Irvine, J., Stark, D., & Delvin, M. (2004). Multi-user FPGA co-simulation over TCP/
IP. In I5th IEEE International Workshop on Rapid System Prototyping (pp. 151-156), June
28-30, 2004. doi:10.1109/iwrsp.2004.1311110.

Feng, W., Yuan, X., & Takach, A. (2009). Variation-aware resource sharing and binding in
behavioral synthesis. In Asia and South Pacific Design Automation Conference (ASP-DAC)
(pp. 79-84), January 19-22, 2009. doi:10.1109/aspdac.2009.4796445.

Fujita, M., & Nakamura, H. (2001). The standard SpecC language. In Proceedings of the 14th
International Symposium on Systems synthesis (pp. 81-86).

Gruian, F., & Westmijze, M. (2008). VHDL vs. Bluespec system verilog: A case study on a java
embedded architecture. In Proceedings of the 2008 ACM Symposium on Applied Computing
(pp. 1492-1497).

Gupta, R. K., Coelho, C. N., & De Micheli, G. (1992). Synthesis and simulation of digital systems
containing interacting hardware and software components. In 29th ACM/IEEE Design
Automation Conference (pp. 225-230), June 8-12, 1992. doi:10.1109/dac.1992.227832.

Henkel, J., & Ernst, R. (1998). High-level estimation techniques for usage in hardware/software
co-design. In Asia and South Pacific Design Automation Conference (pp. 353-360), February
10-13, 1998. doi:10.1109/aspdac.1998.669500.

Ismail, T. B., Abid, M., O’brien, K., & Jerraya, A. (1994). An approach for hardware-software
codesign. In 5th International Workshop on Rapid System Prototyping Shortening the Path
from Specification to Prototype (pp. 73-80), June 21-23, 1994. doi:10.1109/iwrsp.1994.
315907.

http://dx.doi.org/10.1109/pedes.2012.6484251
http://dx.doi.org/10.1109/date.2004.1269026
http://dx.doi.org/10.1109/dsd.2010.58
http://dx.doi.org/10.1109/hsc.1999.777390
http://dx.doi.org/10.1109/memcod.2005.1487887
http://dx.doi.org/10.1109/memcod.2005.1487887
http://dx.doi.org/10.1109/iwrsp.2004.1311110
http://dx.doi.org/10.1109/aspdac.2009.4796445
http://dx.doi.org/10.1109/dac.1992.227832
http://dx.doi.org/10.1109/aspdac.1998.669500
http://dx.doi.org/10.1109/iwrsp.1994.315907
http://dx.doi.org/10.1109/iwrsp.1994.315907

Impact of Hardware/Software Partitioning ... 743

Jianzhuang, W., Youping, C., Jingming, X., Bing, C., & Haiping, L. (2008). System structure for
FPGA-based SOPC design using hard tasks. In 6th IEEE International Conference on
Industrial Informatics, INDIN 2008 (pp. 1154-1159), July 13-16, 2008. doi:10.1109/indin.
2008.4618277.

Jing-Jie, W., & Rui, H. (2011). A FPGA-based wireless security system. In Third International
Conference on Multimedia Information Networking and Security (MINES) (pp. 512-515),
November 4-6, 2011. doi:10.1109/mines.2011.82.

Joven, J., Strict, P., Castells-Rufas, D., Bagdia, A., De Micheli, G., & Carrabina, J. (2011). HW-
SW implementation of a decoupled FPU for arm-based cortex-M1 SOCS in FPGAS. In 6th
IEEE International Symposium on Industrial Embedded Systems (SIES) (pp. 1-8), June 15-17,
2011. doi:10.1109/sies.2011.5953649.

Kalavade, A., & Lee, E. A. (1994). A global criticality/local phase driven algorithm for the
constrained hardware/software partitioning problem. In 3rd International Workshop on
Hardware/Software Codesign (pp. 42—48), September 22-24, 1994. doi:10.1109/hsc.1994.
336724.

Kalomiros, J. A., & Lygouras, J. (2008). Design and evaluation of a hardware/software FPGA-
based system for fast image processing. Microprocessors and Microsystems, 32(2), 95-106.

Kikuchi, H., & Morioka, K. (2012). Development of wireless image sensor nodes based on FPGA
for human tracking in intelligent space. In IECON 2012—38th Annual Conference on IEEE
Industrial Electronics Society (pp. 5529-5534), October 25-28, 2012. doi:10.1109/iecon.2012.
6388950.

Korb, M., & Noll, T. G. (2010). LDPC decoder area, timing, and energy models for early
quantitative hardware cost estimates. In International Symposium on System on Chip (SoC)
(pp. 169-172), September 29-30, 2010. doi:10.1109/iss0c.2010.5625546.

Ku, D. C., & De Mitcheli, G. (1992). Relative scheduling under timing constraints: Algorithms for
high-level synthesis of digital circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 11(6), 696-718.

Lach, J., Mangione-Smith, W. H., & Potkonjak, M. (1999). Robust FPGA intellectual property
protection through multiple small watermarks. In Proceedings 36th Design Automation
Conference (pp. 831-836), 1999.

Li, Y.-T. S., & Malik, S. (1995). Performance analysis of embedded software using implicit path
enumeration. ACM SIGPLAN Notices, 30(11), 88-98.

Lingbo, Z., Fuchun, S., & Zengqi, S. (2006). Cloud model-based controller design for flexible-link
manipulators. In IEEE Conference on Robotics, Automation and Mechatronics (pp. 1-5),
December 2006. doi:10.1109/ramech.2006.252742.

Lopez-Vallejo, M., & Lopez, J. C. (2003). On the hardware-software partitioning problem: System
modeling and partitioning techniques. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 8(3), 269-297.

Lysecky, R., & Vahid, F. (2004). A configurable logic architecture for dynamic hardware/software
partitioning. In Design, Automation and Test in Europe Conference and Exhibition (pp. 480-
485), February 16-20, 2004. doi:10.1109/date.2004.1268892.

Madsen, J., Grode, J., Knudsen, P. V., Petersen, M. E., & Haxthausen, A. (1997). LYCOS: The
Lyngby co-synthesis system. Design Automation for Embedded Systems, 2(2), 195-235.
Mcloone, M., & Mccanny, J. V. (2003). Generic architecture and semiconductor intellectual
property cores for advanced encryption standard cryptography. IEE Proceedings on Computers

and Digital Techniques, 150(4), 239-244.

Monmasson, E., & Cirstea, M. N. (2007). FPGA design methodology for industrial control
systems—A review. IEEE Transactions on Industrial Electronics, 54(4), 1824-1842.

Mysore, N., Akcakaya, M., Bajcsy, J., & Kobayashi, H. (2005). A new performance evaluation
technique for iteratively decoded magnetic recording systems. In Digests of the IEEE
International Magnetics Conference (INTERMAG) (pp. 1603-1604), April 4-8, 2005. doi:10.
1109/intmag.2005.1464235.

http://dx.doi.org/10.1109/indin.2008.4618277
http://dx.doi.org/10.1109/indin.2008.4618277
http://dx.doi.org/10.1109/mines.2011.82
http://dx.doi.org/10.1109/sies.2011.5953649
http://dx.doi.org/10.1109/hsc.1994.336724
http://dx.doi.org/10.1109/hsc.1994.336724
http://dx.doi.org/10.1109/iecon.2012.6388950
http://dx.doi.org/10.1109/iecon.2012.6388950
http://dx.doi.org/10.1109/issoc.2010.5625546
http://dx.doi.org/10.1109/ramech.2006.252742
http://dx.doi.org/10.1109/date.2004.1268892
http://dx.doi.org/10.1109/intmag.2005.1464235
http://dx.doi.org/10.1109/intmag.2005.1464235

744 1. Mhadhbi et al.

Nasreddine, N., Boizard, J. L., Escriba, C., & Fourniols, J. Y. (2010). Wireless sensors networks
emulator implemented on a FPGA. In International Conference on Field-Programmable
Technology (FPT) (pp. 279-282), December 8-10, 2010. doi:10.1109/fpt.2010.5681484.

Noonburg, D. B., & Shen, J. P. (1997). A framework for statistical modeling of superscalar
processor performance. In 3rd International Symposium on High-Performance Computer
Architecture (pp. 298-309), February 1-5, 1997. doi:10.1109/hpca.1997.569691.

Reynari, L. M., Cucinotta, F., Serra, A., & Lavagno, L. (2001). A hardware/software co-design
flow and IP library based of simulink. In Design Automation Conference (pp. 593-598), 2001.
doi:10.1109/dac.2001.156209.

Samarawickrama, M., Rodrigo, R., & Pasqual, A. (2010). HLS approach in designing FPGA-
based custom coprocessor for image preprocessing. In 5th International Conference on
Information and Automation for Sustainability (ICIAFs) (pp. 167-171), December 17-19,
2010. doi:10.1109/iciafs.2010.5715654.

Sorin, D. J., Pai, V. S., Adve, S. V., Vemon, M. K., & Wood, D. A. (1998). Analytic evaluation of
shared-memory systems with ILP processors. In The 25th Annual International Symposium on
Computer Architecture (pp. 380-391), June 27-July 1, 1998. doi:10.1109/isca.1998.694797.

Stitt, G., Lysecky, R., & Vahid, F. (2003). Dynamic hardware/software partitioning: A first
approach. In Proceedings of the 40th Annual Design Automation Conference (pp. 250-255).

Stoy, E., & Zebo, P. (1994). A design representation for hardware/software co-synthesis. In The
20th EUROMICRO Conference on System Architecture and Integration (pp. 192-199),
September 5-8, 1994. doi:10.1109/eurmic.1994.390391.

Talpin, J., Le Guernic, P., Shukla, S. K., Gupta, R., & Doucet, F. (2003). Polychrony for formal
refinement-checking in a system-level design methodology. In 3rd International Conference
on Application of Concurrency to System Design (pp. 9-19), June 18-20, 2003. doi:10.1109/
¢sd.2003.1207695.

Thangavelu, A., Varghese, M. V., & Vaidyan, M. V. (2012). Novel FPGA based controller design
platform for DC-DC buck converter using HDL co-simulator and Xilinx system generator. In
IEEE Symposium on Industrial Electronics and Applications (ISIEA) (pp. 270-274),
September 23-26, 2012. doi:10.1109/isiea.2012.6496642.

Wakabayashi, K., & Okamoto, T. (2000). C-based SoC design flow and EDA tools: An ASIC and
system vendor perspective. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12), 1507-1522.

Washington, C., & Dolman, J. (2010). Creating next generation HIL simulators with FPGA
technology. In IEEE AUTOTESTCON (pp. 1-6), September 13-16, 2010. doi:10.1109/autest.
2010.5613618.

Wiangtong, T., Cheung, P. Y., & Luk, W. (2005). Hardware/software code sign: A systematic
approach targeting data-intensive applications. [EEE Signal Processing Magazine, 22(3),
14-22.

Wolf W. (2003). A decade of hardware/software codesign. Computer, 36(4), 38-43.

Xiaoyin, S., & Dong, S. (2007). Development of a new robot controller architecture with FPGA-
based IC design for improved high-speed performance. Industrial Informatics, IEEE
Transactions on, 3(4), 312-321.

http://dx.doi.org/10.1109/fpt.2010.5681484
http://dx.doi.org/10.1109/hpca.1997.569691
http://dx.doi.org/10.1109/dac.2001.156209
http://dx.doi.org/10.1109/iciafs.2010.5715654
http://dx.doi.org/10.1109/isca.1998.694797
http://dx.doi.org/10.1109/eurmic.1994.390391
http://dx.doi.org/10.1109/csd.2003.1207695
http://dx.doi.org/10.1109/csd.2003.1207695
http://dx.doi.org/10.1109/isiea.2012.6496642
http://dx.doi.org/10.1109/autest.2010.5613618
http://dx.doi.org/10.1109/autest.2010.5613618

	25 Impact of Hardware/Software Partitioning and MicroBlaze FPGA Configurations on the Embedded Systems Performances
	Abstract
	1 Introduction
	2 Related Works and Background
	2.1 Design Methodologies, Challenges
	2.1.1 Design Implementation Architectures
	2.1.2 Hardware/Software Partitioning Approaches
	2.1.3 HLS Approaches
	Model Based Design Approach
	Architecture-Based Design Approach
	C-Based Design

	2.2 System Level Specification
	2.2.1 Model Specification
	Finite State Machine (FSM)
	Discrete-Event Systems
	Petri Nets
	Data Flow Graphs
	Synchronous/Reactive Models
	Heterogeneous Models

	2.2.2 Specification Using Language

	3 FPGA Cores Processor
	3.1 Xilinx MicroBlaze Soft-Core Processor Architecture
	3.2 Xilinx MicroBlaze Soft-Core Processor Features

	4 Proposed Design Approaches
	5 Performance Evaluation Process
	5.1 Performance Evaluation Technique
	5.1.1 Performance Modeling
	Analytical-Based Approach
	Simulation-Based Approach

	5.1.2 Performance Measurement
	5.1.3 CPU Benchmarks
	Synthetic Benchmarks
	Application Based Benchmarks
	Algorithms Based Benchmarks

	5.2 Lightweight Cryptographic Benchmarks: Quark Hash Algorithm

	6 Results
	6.1 Experimental Setup
	6.1.1 Hardware Experimental Setup
	6.1.2 Software Experimental Setup
	EDK Development Kit
	CoDeveloperTM

	6.2 Application of the Proposed Design Approach for Quark Benchmark
	6.2.1 Effect of MicroBlaze Soft-Core Configuration on Embedded Systems Performance
	6.2.2 Automation of Partitioning Process

	7 Discussions
	7.1 Soft-Core Processor Configuration
	7.2 Hardware/Software Partitioning

	8 Conclusions and Perspectives
	References

