
Advanced Metaheuristics-Based Approach
for Fuzzy Control Systems Tuning

Soufiene Bouallègue, Fatma Toumi, Joseph Haggège
and Patrick Siarry

Abstract In this study, a new advanced metaheuristics-based optimization
approach is proposed and successfully applied to design and tuning of a PID-type
Fuzzy Logic Controller (FLC). The scaling factors tuning problem of the FLC
structure is formulated and systematically resolved, using various constrained
metaheuristics such as the Differential Search Algorithm (DSA), Gravitational
Search Algorithm (GSA), Artificial Bee Colony (ABC) and Particle Swarm Opti-
mization (PSO). In order to specify more time-domain performance control objec-
tives of the proposed metaheuristics-tuned PID-type FLC, different optimization
criteria such as Integral of Square Error (ISE) and Maximum Overshoot (MO) are
considered and compared The classical Genetic Algorithm Optimization (GAO)
method is also used as a reference tool to measure the statistical performances of the
proposed methods. All these algorithms are implemented and analyzed in order to
show the superiority and the effectiveness of the proposed fuzzy control tuning
approach. Simulation and real-time experimental results, for an electrical DC drive
benchmark, show the advantages of the proposed metaheuristics-tuned PID-type
fuzzy control structure in terms of performance and robustness.

S. Bouallègue � F. Toumi (&) � J. Haggège
Research Laboratory in Automatic Control LA.R.A, National Engineering School
of Tunis (ENIT), BP 37, Le Belvdre, 1002 Tunis, Tunisia
e-mail: fatima.toumi@enit.rnu.tn

S. Bouallègue
e-mail: soufiene.bouallegue@issig.rnu.tn

J. Haggège
e-mail: joseph.haggege@enit.rnu.tn

F. Toumi � P. Siarry
Signals, Images and Intelligent Systems Laboratory, LiSSi-EA-3956, University Paris-Est
Créteil Val de Marne, 61 Avenue du Général de Gaulle, 94010 Créteil, France
e-mail: siarry@univ-paris12.fr

© Springer International Publishing Switzerland 2015
Q. Zhu and A.T. Azar (eds.), Complex System Modelling and Control Through
Intelligent Soft Computations, Studies in Fuzziness and Soft Computing 319,
DOI 10.1007/978-3-319-12883-2_22

627

1 Introduction

Fuzzy logic control approach has been widely used in many successful industrial
applications. This control strategy, with the Mamdani fuzzy type inference, dem-
onstrated high robustness and effectiveness properties (Azar 2010a, b, 2012; Lee
1998a, b; Passino and Yurkovich 1998). The known PID-type FLC structure, firstly
proposed in Qiao and Mizumoto (1996), is especially established and improved
within the practical framework (Eker and Torun 2006; Guzelkaya et al. 2003; Woo
et al. 2000). This particular fuzzy controller retains the characteristics similar to the
conventional PID controller and can be decomposed into the equivalent propor-
tional, integral and derivative control components (Eker and Torun 2006; Qiao and
Mizumoto 1996). In this design case, the dynamic behaviour depends on the
adequate choice of the fuzzy controller scaling factors. The tuning procedure
depends on the control experience and knowledge of the human operator, and it is
generally achieved based on a classical trials-errors procedure. There is not up to
now a systematic method to guide such a choice. This tuning problem becomes
more delicate and hard as the complexity of the control plant increases.

In order to improve further the performance of the transient and steady state
responses of the PID-type fuzzy structure, various strategies and methods are
proposed to tune their parameters. In Qiao and Mizumoto (1996) , proposed a peak
observer mechanism-based method to adjust the PID-type FLC parameters. This
self-tuning mechanism decreases the equivalent integral control component of the
fuzzy controller gradually with the system response process time. On the other
hand, Woo et al. (2000) developed a method based on two empirical functions
evolved with the system’s error information. In Guzelkaya et al. (2003), the authors
proposed a technique that adjusts the scaling factors, corresponding to the deriva-
tive and integral components, using a fuzzy inference mechanism. However, the
major drawback of all these PID-type FLC tuning methods is the difficult choice of
their scaling factors and self-tuning mechanisms. The time-domain dynamics of the
fuzzy controller depends strongly on this hard choice. The tuning procedure
depends on the control experience and knowledge of the human operator, and it is
generally achieved based on a classical trials-errors procedure. Hence, having a
systematic approach to tune these scaling factors is interesting and the optimization
theory may present a promising solution.

In solving this kind of optimization problems, the classical exact optimization
algorithms, such as gradient and descent methods, do not provide a suitable solution
and are not practical. The relative objective functions are non linear, non analytical
and non convex (Bouallègue et al. 2012a, b). Over the last decades, there has been a
growing interest in advanced metaheuristic algorithms inspired by the behaviours of
natural phenomena (Boussaid et al. 2013; Dréo et al. 2006; Rao and Savsani 2012;
Siarry and Michalewicz 2008). It is shown by many researchers that these algo-
rithms are well suited to solve complex computational problems in wide and var-
ious ranges of engineering applications summarized around domains of robotics,
image and signal processing, electronic circuits design, communication networks,

628 S. Bouallègue et al.

but more especially the domain of process control design (Bouallègue et al.
2011,2012a, b; David et al. 2013; Goswami and Chakraborty 2014; Madiouni et al.
2013; Toumi et al. 2014).

Various metaheuristics have been adopted by researchers. The Differential
Search Algorithm (DSA) (Civicioglu 2012), Gravitational Search Algorithm (GSA)
(Rashedi et al. 2009), Artificial Bee Colony (ABC) (Karaboga 2005) and Particle
Swarm Optimization (PSO) (Eberhart and Kennedy 1995; Kennedy and Eberhart
1995) algorithms are the most recent proposed techniques in the literature. They
will be adapted and improved for the considered fuzzy control design problem.
Without any regularity on the cost function to be optimized, the recourse to these
stochastic and global optimization techniques is justified by the empirical evidence
of their superiority in solving a variety of non-linear, non-convex and non-smooth
problems. In comparison with the conventional optimization algorithms, these
optimization techniques are a simple concept, easy to implement, and computa-
tionally efficient algorithms. Their stochastic behaviour allows overcoming the local
minima problem.

In this study, a new approach based on the use of advanced metaheuristics, such
as DSA, GSA, ABC and PSO is proposed for systematically tuning the scaling
factors of the particular PID-type FLC structure. The well known classical GAO
algorithm is used in order to compare the obtained optimization results (Goldberg
1989; MathWorks 2009). This work can be considered as a contribution on the
results given in Bouallègue et al. (2012a, b), Toumi et al. (2014). The synthesis and
tuning of the fuzzy controller are formulated as a constrained optimization problem
which is efficiently solved based on the proposed metaheuristics. In order to specify
more robustness and performance control objectives of the proposed metaheuris-
tics-tuned PID-type FLC, different optimization criteria such as ISE and MO are
considered and compared.

The remainder of this chapter is organized as follows. In Sect. 2, the studied
PID-type FLC structure is presented and formulated as a constrained optimization
problem. An external static penalty technique is investigated to handle the problem
constraints. The advanced DSA, GSA, ABC and PSOmetaheuristic algorithms, used
in solving the formulated problem, are described in Sect. 3. Section 4 is dedicated
to apply the proposed fuzzy control approach on an electrical DC drive benchmark.
All obtained simulation results are compared with each other and analysed.
Experimental setup and results are presented within a real-time framework.

2 PID-Type FLC Tuning Problem Formulation

In this section, the PID-type fuzzy controller synthesis problem is formulated as a
constrained optimization problem which will be resolved through the suggested
metaheuristics algorithms.

Advanced Metaheuristics-Based Approach … 629

2.1 A Review of PID-Type Fuzzy Control Structure

The particular PID-type fuzzy controller structure, originally proposed by Qiao and
Mizumoto within the continuous-time formalism (Qiao and Mizumoto 1996), retains
the characteristics similar to the conventional PID controller. This result remains
valid while using a particular structure of FLC with triangular uniformly distributed
membership functions for the fuzzy inputs and a crisp output, the product-sum
inference and the center of gravity defuzzification methods (Bouallègue et al. 2012a,
b; Eker and Torun 2006; Guzelkaya et al. 2003; Haggège et al. 2010; Toumi et al.
2014; Woo et al. 2000).

Under these conditions, the equivalent proportional, integral and derivative
control components of such a PID-type FLC are given by aKePþ bKdD, bKeP
and aKdD, respectively, as shown in Qiao and Mizumoto (1996). In these
expressions, P and D represent relative coefficients, Ke, Kd , a and b denote the
scaling factors associated to the inputs and output of the fuzzy controller. When
approximating the integral and derivative terms within the discrete-time framework
(Bouallègue et al. 2012a, b; Haggège et al. 2010; Toumi et al. 2014), we can
consider the closed-loop control structure for a digital PID-type FLC, as shown in
Fig. 1. The dynamic behaviour of this PID-type FLC structure is strongly
depending on the scaling factors, difficult and delicate to tune.

As shown in Fig. 1, this particular structure of Mamdani fuzzy controller uses
two inputs: the error ek and the variation of error Dek , to provide the output uk that
describes the discrete fuzzy control law.

2.2 Optimization-Based Problem Formulation

The choice of the adequate values for the scaling factors of the described PID-type
FLC structure is often done by a trials-errors hard procedure. This tuning problem
becomes difficult and delicate without a systematic design method. To deal with
these difficulties, the optimization of these control parameters is proposed like a

Fuzzy Controller

Delay Operator

z

1

Delay operator

z

1

K

K

e

d

u
k

e
k

Δek

+
_

+
+

+

+

Fig. 1 Proposed discrete-time PID-type FLC structure

630 S. Bouallègue et al.

promising procedure. This tuning can be formulated as the following constrained
optimization problem:

minimize
x¼ Ke;Kd ;a;bð ÞT2S�R

4
þ

f xð Þ
subject to :
g1 xð Þ ¼ d� dmax � 0
g2 xð Þ ¼ ts � tmax

s � 0
g3 xð Þ ¼ Ess � Emax

ss � 0

8>>>>><
>>>>>:

ð1Þ

where f : R4 ! R the cost function, S ¼ x 2 R
4
þ; xlow � x� xup

� �
the initial search

space, which is supposed containing the desired design parameters, and gl : R4 !
R the nonlinear problem’s constraints.

The optimization-based tuning problem (1) consists in finding the optimal
decision variables, representing the scaling factors of a given PID-type FLC
structure, which minimizes the defined cost function, chosen as the Maximum
Overshoot (MO) and the Integral of Square Error (ISE) performance criteria. These
cost functions are minimized, using the proposed particular constrained metaheu-
ristics, under various time-domain control constraints such as overshoot d, steady
state error Ess, rise time tr and settling time ts of the system’s step response, as
shown in Eq. (1). Their specified maximum values constrain the step response of
the tuned PID-type fuzzy controlled system, and can define some time-domain
templates.

2.3 Proposed Constraints Handling Method

The considered metaheuristics in this study are originally formulated as an
unconstrained optimizer. Several techniques have been proposed to deal with
constraints. One useful approach is by augmenting the cost function of problem (1)
with penalties proportional to the degree of constraint infeasibility. This approach
leads to convert the constrained optimization problem into the unconstrained
optimization problem. In this paper, the following external static penalty technique
is used:

u xð Þ ¼ f xð Þ þ
Xncon
l¼1

klmax 0; gl xð Þ2
h i

ð2Þ

where kl is a prescribed scaling penalty parameter, and ncon is the number of
problem constraints gl xð Þ.

Advanced Metaheuristics-Based Approach … 631

3 Solving Optimization Problem Using Advanced
Algorithms

In this section, the basic concepts as well as the algorithm steps of each proposed
advanced metaheuristic are described for solving the formulated PID-type FLC
tuning problem.

3.1 Differential Search Algorithm

The Differential Search Algorithm (DSA) is a recent population-based metaheu-
ristic optimization algorithm invented in 2012 by Civicioglu (2012). This global
and stochastic algorithm simulates the Brownian-like random-walk movement used
by an organism to migrate (Civicioglu 2012; Goswami and Chakraborty 2014;
Waghole and Tiwari 2014).

Migration behavior allows the living beings to move from a habitat where
capacity and diversity of natural sources are limited to a more efficient habitat. In
the migration movement, the migrating species of living beings constitute a
superorganism containing large number of individuals. Then it starts to change its
position by moving toward more fruitful areas using a Bownian-like random-walk
model. The population made up of random solutions of the respective problem
corresponds to an artificial-superorganism migrating. The artificial superorganism
migrates to global minimum value of the problem. During this migration, the
artificial-superorganism tests whether some randomly selected positions are suitable
temporarily. If such a position tested is suitable to stop over for a temporary time
during the migration, the members of the artificial-superorganism that made such
discovery immediately settle at the discovered position and continue their migration
from this position (Civicioglu 2012).

In DSA metaheuristic, a superorganism Xi
k of N artificial-organisms making up,

at every generation k ¼ 1; 2; . . .; kmax, an artificial-organism with members as much
as the size of the problem, defined as follows:

Xi
k ¼ xi;1k ; xi;2k ; . . .; xi;dk ; . . .; xi;Dk

� �
ð3Þ

A member of an artificial-organism, in initial position, is randomly defined by
using Eq. (4):

xi;d0 ¼ xi;dlow þ rand 0; 1ð Þ xi;dup � xi;dlow
� �

ð4Þ

In DSA, the mechanism of finding a so called Stopover Site, which presents the
solution of optimization problem, at the areas remaining between the artificial-
organisms, is described by a Brownian-like random walk model. The principle is

632 S. Bouallègue et al.

based on the move of randomly selected individuals toward the targets of a Donor
artificial-organism, denoted as (Civicioglu 2012):

XDonor
k ¼ Xrandom shuffling ið Þ

k ð5Þ

where the index i of artificial-organisms is produced by the Shuffling-random
function.

The size of the change occurred in the positions of the members of the artificial-
organisms is controlled by the Scale factor given as follows:

sik ¼ randG 2rand1f g rand2 � rand3ð Þ ð6Þ

where rand1, rand2 and rand3 are uniformly distributed random numbers in the
interval [0, 1], randG is a Gamma-random number.

The Stopover Site positions, which are very important for a successful migration,
are produced by using Eq. (7):

Yi
k ¼ Xi

k þ sik XDonor
k � Xi

k

� � ð7Þ

So, the individuals of the artificial-organisms of the superorganism to participate
in the search process of Stopover Site are determined by a random process based on
the manipulation of two control parameters p1 and p2. The algorithm is not much
sensitive to these control parameters and the values in the interval [0, 0.3] usually
provide best solutions for a given problem (Civicioglu 2012).

Finally, the steps of the original version of DSA, as described by the pseudo
code in Civicioglu (2012), can be summarized as follows:

1. Search space characterization: size of superorganism, dimension of problem,
random numbers p1 and p2, …

2. Randomized generation of the initial population.
3. Fitness evaluation of artificial-organisms.
4. Calculation of the Stopover Site positions in different directions.
5. Randomly select individuals to participate in the search process of Stopover

Site.
6. Update the Stopover Site positions and evaluate the new population.
7. Update the superorganism by the new Stopover site positions.
8. Repeat steps 3–7 until the stop criteria are reached.

3.2 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is population-based metaheuristic opti-
mization algorithm introduced in 2009 by Rashedi et al. (2009). This algorithm is
basedon the lawof gravity andmass interactions as described inNobahari et al. (2011),

Advanced Metaheuristics-Based Approach … 633

Precup et al. (2011), Rashedi et al. (2009). The search agents are a set of masses which
interact with each other based on the Newtonian gravity and the law of motion.

Several applications of this algorithm in various areas of engineering are
investigated (Nobahari et al. 2011; Precup et al. 2011; Rao and Savsani 2012). In
GSA, the particles, called also agents, are considered as bodies and their perfor-
mance is measured by their masses. All these bodies attract each other by the
gravity force that causes a global movement of all objects towards the objects with
heavier masses. These agents correspond to the optimum solutions in the search
space (Rashedi et al. 2009). Indeed, each agent presents a solution of optimization
problem and is characterised by its position, inertial mass, active and passive
gravitational masses. The GSA is navigated by properly adjusting the gravitational
and inertia masses leading masses to be attracted by the heaviest object.

The position of the mass corresponds to a solution of the problem, and its
gravitational and inertial masses are determined using a cost function. The
exploitation capability of this algorithm is guaranteed by the movement of the
heavy masses, more slowly than the lighter ones.

Let us consider a population with N agents. The position of the ith agent at
iteration time k is defined as:

Xi
k ¼ xi;1k ; xi;2k ; . . .; xi;dk ; . . .; xi;Dk

� �
ð8Þ

where xi;dk presents the position of the ith particle in the dth dimension of search
space of size D.

At a specific time “t”, denoted by the actual iteration “k”, the force acting on
mass “i” from mass “j” is given as follows:

Fij;d
k ¼ Gk

Mpi
k �Maj

k

Rij
k þ e

xj;dk � xi;dk
� �

ð9Þ

where Maj
k is the active gravitational mass related to agent j, Mpi

k is the passive
gravitational mass related to agent i, Gk is the gravitational constant at time k, e is a
small constant, andRij

k is the Euclidian distance between two agents i and j, defined as:

Rij
k ¼ Xi

k;X
j
k

�� ��
2 ð10Þ

To give a stochastic characteristic to this algorithm, authors of GSA suppose that
the total force that acts on agent i is a randomly weighted sum of jth components of
the forces exerted from other bodies, given as follows (Rashedi et al. 2009):

Fi;d
k ¼

XN
j¼1;j 6¼i

rand jFij;d
k ð11Þ

where rand j is a random number in the interval [0, 1].

634 S. Bouallègue et al.

By the law of motion, the acceleration of the agent i at time k, and in dth
direction, is given as follows:

ai;dk ¼ Fi;d
k

Mii
k

ð12Þ

where Mii
k is the inertial mass of ith agent in the search space with dimension d.

Hence, the position and the velocity of an agent are updated respectively by the
mean of equations of movement given as follows:

xi;dkþ1 ¼ xi;dk þ vi;dkþ1 ð13Þ

vi;dkþ1 ¼ randivi;dk þ ai;dk ð14Þ

where randi is a uniform random number in the interval [0, 1], used to give a
randomized characteristic to the search.

To control the search accuracy, the gravitational constant Gk, is initialized at the
beginning and will be reduced with time. In this study, we use an exponentially
decreasing of this algorithm parameter, as follows:

Gk ¼ G0e
�g k

kmax ð15Þ

where G0 is the initial value of Gk, g is a control parameter to set, and kmax is the
total number of iterations.

In GSA, gravitational and inertia masses are calculated by the fitness evaluation.
A heavier mass means a more efficient agent. Better agents have higher attractions
and walk more slowly.

As given in Rashedi et al. (2009), the values of masses are calculated using the
fitness function and gravitational and inertial masses are updated by the following
equations:

Mai
k ¼ Mpi

k ¼ Mii
k ¼ Mi

k ð16Þ

Mi
k ¼

mi
kPN

j¼1 m
j
k

ð17Þ

mi
k ¼

fitik � worstk
bestk � worstk

ð18Þ

where fitik represents the fitness value of the agent i at iteration k, and, worstk and
bestk are defined, for a minimization problem, as follows:

Advanced Metaheuristics-Based Approach … 635

bestk ¼ min
1� j�N

fit jk ð19Þ

worstk ¼ max
1� j�N

fit jk ð20Þ

To perform a good compromise between exploration and exploitation, authors of
GSA choose to reduce the number of agents with lapse of iterations in Eq. (11),
which will be modified as:

Fi;d
k ¼

X
j2Kbest;j6¼i

rand jFij;d
k ð21Þ

where Kbest is the set of the first K agents with best fitness and biggest mass that
will attract the others.

The algorithm parameter Kbest is a function of iterations with the initial value
K0, usually set to the total size of population N at the beginning, and linearly
decreasing with time. At the end of search, there will be just one agent applying
force to the others.

Finally, the steps of the original version of GSA, as described in Rashedi et al.
(2009), can be summarized as follows:

1. Search space characterization: number of agents, dimension of problem, control
parameters G0, K0, …

2. Randomized generation of the initial population.
3. Fitness evaluation of agents.
4. Update the algorithm parameters Gk , bestk, worstk and Mi

k for each agent and at
each iteration.

5. Calculation of the total force in different directions.
6. Calculation of acceleration and velocity.
7. Updating agents’ position.
8. Repeat steps 3–7 until the stop criteria are reached.

3.3 Artificial Bee Colony

The Artificial Bee Colony (ABC) is a population-based metaheuristic optimization
algorithm introduced in 2005 by Karaboga (2005). The principle of such an algo-
rithm is based on the intelligent foraging behavior of honey bee swarm (Basturk and
Karaboga 2006; Karaboga 2005; Karaboga and Akay 2009; Karaboga and Basturk
2007, 2008). The ABC algorithm has been enormously successful in various
industrial domains and a wide range of engineering applications as summarized in
Karaboga et al. (2012).

636 S. Bouallègue et al.

In this formalism, the population of the artificial bees’ colony is constituted of
three groups: employed bees, onlookers and scouts. Employed bees search the
destination where food is available, translated by the amount of their nectar. They
collect the food and return back to their origin, where they perform waggle dance
depending on the amount of nectar’s food available at the destination. The onlooker
bee watches the dance and follows the employed bee depending on the probability
of the available food.

In ABC algorithm, the population of bees is divided into two parts consisting of
employed bees and onlooker bees. The sizes of each part are usually taken equal to.
Employed bee, representing a potential solution in the search space with dimension,
updates its new position by using the movement Eq. (22) and follows greedy
selection to find the best solution. The objective function associated with the
solution is measured by the amount of food.

Let us consider a population with N=2 individuals in the search space. The
position of the ith employer at iteration time k is defined as:

Xi
k ¼ xi;1k ; xi;2k ; . . .; xi;dk ; . . .; xi;Dk

� �
ð22Þ

where D is the number of decision variables, i is the index on N=2 employers.
In the dth dimension of search space, the new position of the ith employer, as

well as of the ith onlooker, is updated by means of the movement equation given as
follows:

xi;dkþ1 ¼ xi;dk þ rik xi;dk � xm;dk

� �
ð23Þ

where rik is a uniformly distributed random number in the interval [−1, 1]. It can be
also chosen as a normally distributed random number with mean equal to zero and
variance equal to one as given in Karaboga (2005). The employer’s index m 6¼ i is a
randomly number in the interval [1, N/2].

Besides, an onlooker bee chooses a food source depending on the probability
value of each solution associated with that food source, calculated as follows:

pi;dk ¼ f i;dkPN=2
n f n;dk

ð24Þ

where f i;dk is the fitness value of the ith solution at iteration k.
When the food source of an employed bee cannot be improved for some pre-

determined number of cycles, called “Limit for abandonment” and denoted by L,
the source food becomes abandoned and the employer behaves as a scout bee and it
searches for the new food source using the following equation:

Advanced Metaheuristics-Based Approach … 637

xi;dk ¼ xi;dlow þ rand 0; 1ð Þ xi;dup � xi;dlow
� �

ð25Þ

where xi;dlow and xi;dup are the lower and upper ranges, respectively, for decision
variables in the dimension.

This behaviour of the artificial bee colony reflects a powerful mechanism to
escape the problem of trapping in local optima. The value of the “Limit for
abandonment” control parameter of ABC algorithm is calculated as follows:

L ¼ N
2
� D ð26Þ

Finally, the steps of the original version of ABC algorithm, as described in
Basturk and Karaboga (2006), Karaboga (2005), Karaboga and Basturk (2007,
2008), can be summarized as follows:

1. Initialize the ABC algorithm parameters: population size N, limit of abandon-
ment L, dimension of the search space D, …

2. Generate a random population equal to the specified number of employed bees,
where each of them contains the value of all the design variables.

3. Obtain the values of the objective function, defined as the amount of nectar for
the food source, for all the population members.

4. Update the position of employed bees using Eq. (23), obtain the value of
objective function and select the best solutions to replace the existing ones.

5. Run the onlooker bee phase: onlookers proportionally choose the employed bees
depending on the amount of nectar found by the employed bees, Eq. (24).

6. Update the value of onlooker bees using Eq. (23) and replace the existing
solution with the best new one.

7. Identify the abundant solutions using the limit value. If such solutions exist then
these are transformed into the scout bees and the solution is updated using
Eq. (25).

8. Repeat the steps 3–7 until the termination criterion is reached, usually chosen as
the specified number of generations.

3.4 Particle Swarm Optimization

The PSO technique is an evolutionary computation method developed in 1995 by
Kennedy and Eberhart (1995), Eberhart and Kennedy (1995). This recent meta-
heuristic technique is inspired by the swarming or collaborative behaviour of bio-
logical populations. The cooperation and the exchange of information between
population individuals allow solving various complex optimization problems. The
convergence and parameters selection of the PSO algorithm are proved using several
advanced theoretical analysis (Bouallègue et al. 2011, 2012a, b;Madiouni et al. 2013).

638 S. Bouallègue et al.

PSO has been enormously successful in several and various industrial domains and
engineering fields (Bouallègue et al. 2012a; Dréo et al. 2006; Rao and Savsani 2012;
Siarry and Michalewicz 2008).

The basic PSO algorithm uses a swarm consisting of N particles Ni
k , randomly

distributed in the considered initial search space, to find an optimal solution x� ¼
argmin f xð Þ 2 R

D of a generic optimization problem. Each particle, that represents
a potential solution, is characterised by its position and its velocity xi;dk and vi;dk ,
respectively.

At each iteration of the algorithm, and in the dth direction, the ith particle
position evolves based on the following update rules:

xi;dkþ1 ¼ xi;dk þ vi;dkþ1 ð27Þ

vi;dkþ1 ¼ wkþ1v
i;d
k þ c1r

i
1;k pi;dk � xi;dk
� �

þ c2r
i
2;k pg;dk � xi;dk
� �

ð28Þ

where wkþ1 the inertia factor, c1 and c2 the cognitive and the social scaling factors
respectively, ri1;k and ri2;k the random numbers uniformly distributed in the interval

[0,1], pi;dk the best previously obtained position of the ith particle and pg;dk the best
obtained position in the entire swarm at the current iteration k.

In order to improve the exploration and exploitation capacities of the proposed
PSO algorithm, we choose for the inertia factor a linear evolution with respect to the
algorithm iteration (Bouallègue et al. 2011, 2012a, b; Madiouni et al. 2013):

wkþ1 ¼ wmax � wmax � wmin

kmax

	

k ð29Þ

where wmax ¼ 0:9 and wmin ¼ 0:4 represent the maximum and minimum inertia
factor values, respectively.

Finally, the steps of the original version of PSO algorithm, as described in
Eberhart and Kennedy (1995), Kennedy and Eberhart (1995), can be summarized as
follows:

1. Define all PSO algorithm parameters such as swarm size N, maximum and
minimum inertia factor values, cognitive and social coefficients, …

2. Initialize the particles with random positions and velocities. Evaluate the initial
population and determine pi;d0 and pg;d0 .

3. For each particle apply the update Eqs. (27)–(29).
4. Evaluate the corresponding fitness values and select the best solutions.
5. Repeat the steps 3–4 until the termination criterion is reached.

Advanced Metaheuristics-Based Approach … 639

4 Case Study: PID-Type FLC Tuning for a DC Drive

This section is dedicated to apply the proposed metaheuristics-tuned PID-type FLC
for the variable speed control of a DC drive. All the obtained simulations results are
presented and discussed.

4.1 Plant Model Description

The considered benchmark is a 250 W electrical DC drive shown in Fig. 2. The
machine’s speed rotation is 3,000 rpm at 180 V DC armature voltage.

The motor is supplied by an AC-DC power converter. The considered electrical
DC drive can be described by the following model (Haggège et al. 2009):

G sð Þ ¼ K
1þ sesð Þ 1þ smsð Þ ð30Þ

The model’s parameters are obtained by an experimental identification proce-
dure and they are summarized in Table 1 with their associated uncertainty bounds.
This model is sampled with 10 ms sampling time for simulation and experimental
setups.

Table 1 Identified DC Drive
model parameters Parameters Nominal values Uncertainty bounds (%)

Λ 0.05 50

τm 300 ms 50

τe 14 ms 50

Fig. 2 Electrical DC drive
benchmark

640 S. Bouallègue et al.

4.2 Simulation Results

For this study case, product-sum inference and center of gravity defuzzification
methods are adopted. Uniformly distributed and symmetrical membership functions,
are assigned for the fuzzy input and output variables, as shown in Fig. 3.

The linguistic levels assigned to the input variables ek and Dek, and the output
variable Duk are given as follows: N (Negative), Z (Zero), P (Positive), NB
(Negative Big) and PB (Positive Big). The associated fuzzy rule-base is given in
Table 2. The view of this rule-base is illustrated in Fig. 4.

For our design, the initial search domain of PID-type FLC parameters is chosen
in the limit range of xlow ¼ 1; 5; 2; 25ð Þ and xup ¼ 5; 10; 10; 50ð Þ. For all proposed
metaheuristics, we use a population size equal to N ¼ 30 and run all used algo-
rithms under kmax ¼ 100 iterations. The size of optimization problem is equal
to D ¼ 4. The decision variables are the scaling factors of the studied particular
PID-type FLC structure, i.e., a, b, Ke and Kd .

In this study, the control problem constraints are defined by the maximum values
of the performance criteria: overshoot (dmax ¼ 20%), settling time (tmax

s ¼ 0:9 s)
and steady state error (Emax

ss ¼ 0:0001). The scaling penalty parameter is chosen as
constant equal to kl ¼ 104. The algorithm stops when the number of generations
reaches the specified value for the maximum number of generations.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

e
k
,Δe

k

D
eg

re
e

of
 m

em
be

rs
hi

p

N Z P

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Δu
k

D
eg

re
e

of
 m

em
be

rs
hi

p

NB N Z P PB

Fig. 3 Membership functions for fuzzy inputs and output variables

Table 2 Fuzzy rule-base for
the standard FLC ek, Δek N Z P

N NB N Z

Z N Z P

P Z P PB

Advanced Metaheuristics-Based Approach … 641

For the software implementation of the proposed metaheuristics, the control
parameters of each algorithm are set as follows:

• DSA: random numbers Stopover site research p1 ¼ p2 ¼ 0:3rand 0; 1ð Þ;
• GSA: initial value of gravitational constant G0 ¼ 75, parameter g ¼ 20, initial

value of the Kbest agents K0 ¼ N ¼ 30 which is decreased linearly to 1;
• ABC: Limit of abandonment L ¼ 60;
• PSO: cognitive and social coefficients equal to c1 ¼ c2 ¼ 2, inertia factor

decreasing linearly from 0.9 to 0.4;
• GAO: Stochastic Uniform selection and Gaussian mutation methods, Elite

Count equal to 2 and Crossover Fraction equal to 0.8.

In order to get statistical data on the quality of results and so to validate the
proposed approaches, we run all implemented algorithms 20 times. Feasible solu-
tions are usually found within an acceptable CPU computation time. The obtained
optimization results are summarized in Tables 3 and 4.

4.3 Results Analysis and Discussion

According to the statistical analysis of Tables 3 and 4, as well as the numerical
simulations in Figs. 5, 6, 7 and 8, we observe that the proposed approaches produce
near results in comparison with each other and with the standard GAO-based
method. Globally, the algorithms convergences always take place in the same
region of the design space whatever is the initial population. This result indicates
that the algorithms succeed in finding a region of the interesting research space to
explore.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−0.5

0

0.5

e
k

Δe
k

Δu
k

Fig. 4 View of the fuzzy rule-base for the standard FLC

642 S. Bouallègue et al.

In this case study, we tested the proposed algorithms with different values of the
population size in the range of [20, 50]. Globally, all the results found are close to
each other. The best values of this control parameter are usually obtained while
using a population size equal to 30.

Table 3 Optimization results
from 20 trials of problem
(1.1): ISE criterion

Algorithm Best Mean Worst ST deviation

DSA 0.1621 0.1691 0.1760 0.0045

GSA 0.1556 0.1710 0.1800 0.0193

ABC 0.1928 0.2274 0.2322 0.0134

PSO 0.1600 0.1715 0.1802 0.0140

GAO 0.1643 0.1722 0.1799 0.0086

Table 4 Optimization results
from 20 trials of problem
(1.1): MO criterion

Algorithm Best Mean Worst ST deviation

DSA 0.0365 0.0722 0.1307 0.0277

GSA 0.0307 0.0624 0.0096 0.0315

ABC 0.1305 0.1550 0.1972 0.0412

PSO 0.0422 0.0936 0.1420 0.0511

GAO 0.0411 0.0913 0.1300 0.0373

0 20 40 60 80 100
0.15

0.2

0.25

0.3

Iteration

C
os

t f
un

ct
io

n
va

lu
e

p

1
=0.3; p

2
=0.3

p
1
=0.1; p

2
=0.1

p
1
=0.1; p

2
=0.2

p
1
=1.5; p

2
=2.0

Fig. 5 Robustness convergence under control parameters variation of the DSA-based approach:
ISE criterion case

Advanced Metaheuristics-Based Approach … 643

0 20 40 60 80 100
0.15

0.2

0.25

0.3

Iteration

C
os

t f
un

ct
io

n
va

lu
e

G
0
=90; η=25

G
0
=75; η=20

G
0
=100; η=20

G
0
=80; η=10

Fig. 6 Robustness convergence under control parameters variation of the GSA-based approach:
ISE criterion case

0 20 40 60 80 100
0.15

0.2

0.25

0.3

Iteration

C
os

t f
un

ct
io

n
va

lu
e

L=75
L=70
L=65
L=60

Fig. 7 Robustness convergence under control parameters variation of the ABC-based approach:
ISE criterion case

644 S. Bouallègue et al.

Both for the MO and ISE criteria, the robustness on convergence of the proposed
algorithms is guaranteed under their main control parameters variation. The qual-
ities of the obtained solution, the fast convergence as well as the simple software
implementation are comparable with the standard GAO-based approach. According
to the convergence plots of the implemented metaheuristics, i.e., results of Figs. 5,
6, 7 and 8, the exploitation and exploration capabilities of these algorithms are ever
guaranteed.

In this study, only simulation results from the ISE criterion case are illustrated.
The main difference between performances of the implemented metaheuristics is
their relative quickness or slowness in terms of CPU computation time. For this
particular optimization problem, the quickness of DSA and PSO is specially marked
in comparison with other techniques. Indeed, while using a Pentium IV, 1.73 GHz
and MATLAB 7.7.0, the CPU computation times for the PSO algorithm are about
328 and 360 s in the MO and ISE criterion, respectively. For the DSA algorithm,
these are about 296 and 310 s, respectively. For example and in the case of GSA
metaheuristic, we obtain about 540 and 521 s for the above criterion respectively.

For the ISE criterion case, all optimization results are close to each other in terms
of solutions quality, except those obtained by the ABC-based method. The relative
numerical simulation shows the sensitivity of this algorithm under the “Limit for
abandonment” parameter variation. The best optimization result, with fitness value
equal to 0:1928, is obtained with L ¼ 60.

0 20 40 60 80 100
0.15

0.2

0.25

0.3

Iteration

C
os

t f
un

ct
io

n
va

lu
e

c
1
=2; c

2
=2

c
1
=0.2; c

2
=1.3

c
1
=2.9; c

2
=0.1

c
1
=1.19; c

2
=1.19

Fig. 8 Robustness convergence under control parameters variation of the PSO-based approach:
ISE criterion case

Advanced Metaheuristics-Based Approach … 645

On the other hand, the scaling parameters kl, given in Eq. 2, will be linearly
increased at each iteration step so constraints are gradually enforced. In a generic
and typical optimization problem, the quality of the solution will directly depend on
the value of this algorithm control parameter. In this chapter and in order to make
the proposed approach simple, great and constant scaling penalty parameters, equal
to 104, are used for numerical simulations. Indeed, simulation results show that with
great values of kl, the control system performances are weakly degraded and the
effects on the tuning parameters are less meaningful. The proposed constrained and
improved algorithms convergence is faster than the case with linearly variable
scaling parameters.

The time-domain performances of the proposed metaheuristics-tuned PID-type
FLC structure are illustrated in Figs. 9 and 10. Only simulations from the DSA and
PSO techniques implementation are presented. All results, for various obtained
decision variables, are acceptable and show the effectiveness of the proposed fuzzy
controllers tuning method. The robustness, in terms of external disturbances
rejection, and tracking performances are guaranteed with degradations for some
considered methods. The considered time-domain constraints for the PID-type FC
tuning problems, such as the maximum values of overshoot dmax ¼ 20 %, steady
state Emax

ss ¼ 0:0001 and settling time tmax
s ¼ 0:9 s, are usually respected.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

D
C

 d
riv

e
sp

ee
d

(1
00

0
rp

m
)

K
e
=1.2734;K

d
=7.9922;α=3.2795;β=33.2944

K
e
=1.6852;K

d
=5.0000;α=5.6764;β=28.2553

K
e
=1.4355;K

d
=5.0679;α=2.0000;β=43.3021

K
e
=1.2069;K

d
=9.2740;α=3.4090;β=50.0000

Fig. 9 Step responses of the DSA-tuned PID-type fuzzy controlled system: ISE criterion case

646 S. Bouallègue et al.

4.4 Experimental Results

In order to illustrate the efficiency of the proposed metaheuristics-tuned PID-type
fuzzy control structure, we try to implement the controller within a real-time
framework. The developed real-time application acquires input data, speed of the
DC drive, and generates control signal for thyristors of AC-DC power converter as
a PWM signal (Haggège et al. 2009). This is achieved using a digital control system
based on a PC computer and a PCI-1710 multi-functions data acquisition board
which is compatible with MATLAB/Simulink as described in Fig. 11.

The power part of the controlled process is constituted of the single-phase bridge
rectifier converter. Figure 11 shows the considered half-controlled bridge rectifier,
constituted by two thyristors and two diodes. The presence of thyristors makes the
average output voltage controllable. A thyristor can be triggered by the application
of a positive gate voltage and hence a gate current supplied from a gate drive
circuit. The control voltage is generated with the help of a gate drive circuit, which
is called a firing or triggering circuit. The used bridge thyristors are switched ON by
a train of high-frequency impulses.

In order to obtain an impulse train, beginning with a fixed delay after the AC
supply source zero-crossing, it is necessary to generate a sawtooth signal, syn-
chronized with this zero-crossing. This is achieved using a capacitor charged with a
constant current during the 10 ms half period of the AC source, and abruptly
discharged at every zero-crossing instant. The constant current is obtained using a
BC547 bipolar transistor whose base voltage is maintained constant due to a

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

D
C

 d
riv

e
sp

ee
d

(1
00

0
rp

m
)

K
e
=1.5562;K

d
=5.1256;α=4.2115;β=30.2011

K
e
=1.5200;K

d
=9.0011;α=6.2364;β=29.2500

K
e
=1.0000;K

d
=9.0600;α=3.1107;β=42.7888

K
e
=1.2550;K

d
=8.3340;α=2.0012;β=48.0100

Fig. 10 Step responses of the PSO-tuned PID-type fuzzy controlled system: ISE criterion case

Advanced Metaheuristics-Based Approach … 647

polarization bridge constituted by a resistor and two 1N4148 diodes in series. This
transistor acts as a current sink, whose value can be determined by an adjustable
emitter resistor, to make the capacitor be fully charged after exactly 10 ms. The
obtained synchronous saw-tooth signal is compared with a variable DC voltage,
using an LM393 comparator, in order to generate a PWM signal which drives a
NE555 timer, used as an astable multi-vibrator, producing the impulse train needed
to control the thyristors firing. This impulse train is applied to the base of a 2N1711
bipolar transistor which drives an impulse transformer that ensuring the galvanic
isolation between the control circuit and the power circuit.

The nominal model of the studied plant and the controller model obtained in
synthesis development phase were used to implement the real-time controller. The
model of the plant was removed from the simulation model, and instead of it, input
device drivers (sensor) and output device driver (actuator) were introduced as
shown in Fig. 12. These device drivers close the feedback loop when moving from
simulations to experiments. According to this concept, the Fig. 13 illustrates the

Load

D1 D2

Th1 Th2

DC

Tachometer

D3

motor
.

DT

ω
v

 Interfacing
of AC-DC power converter control
 and galvanic insulation

 Interfacing
of acquirement and adaptation
 of speed DC motor

Gate impulses

.

.∼vs

is

 Data Acquisition
and Control System

 Thyristors
gate drive circuit

Fig. 11 The proposed experimental setup schematic for DC drive control

Controller model

Plant model

Input Driver Output Driver

Simulation procedure

Real-time application

Controller model

Fig. 12 Synoptic of the
PCI-1710 based real-time
controller implementation

648 S. Bouallègue et al.

principle of the implementation based on the Real-Time Windows Target tool of
MATLAB/Simulink.

The real-time fuzzy controller is developed through the compilation and linking
stage, in a form of a Dynamic Link Library (DLL), which is then loaded in memory
and started-up. The used environment of real-time controller has some capabilities
such as automatic code generation in C language, automatic compilation, start-up of
a real-time program and external mode start-up of the simulation phase model
allowing for real-time set monitoring and on-line adjustment of its parameters.

The real-time implementation of the proposed metaheuristics-tuned PID-type
FLC leads to the experimental results of Figs. 14, 15, 16 and 17.

ek

Δek

Trajectory planning
block

Controlled system
 output

Control signal Tracking error

Delay operator

z

1Delay operator

z

1
S-Function Builder

traj1_ct yc

Ke

Kd

Fuzzy ControllerClock Analog Output
Advantech

PCI-1710 [auto]

Analog
Output

Analog Input
Advantech

PCI-1710 [auto]

Analog
Input

Fig. 13 PCI-1710 board based implementation of the proposed FLC structure

0 10 20 30 40 50 60 70
0.5

0

0.5

1

1.5

2

2.5

3

Acquisition time (sec)

C
on

tr
ol

le
d

sp
ee

d
va

ria
tio

n
(1

00
0

rp
m

)

Fig. 14 Experimental results
of the PID-type FLC
implementation: controlled
speed variation

Advanced Metaheuristics-Based Approach … 649

In comparison with the results in Haggège et al. (2009) for a such plant, obtained
by the use of a full order H1 controller, as well as those obtained by PID-type FLC
with trials-errors tuning method in Haggège et al. (2010), the experimental results
of this study are satisfactory for a simple, non conventional and systematic meta-
heuristics-based control approach. They point out the controller’s viability and
performance. As shown in Figs. 14 and 15, the measured speed tracking error is
small (less than 10 % of set point) showing the high performances of the proposed
control, especially in terms of tracking. The robustness, in terms of external load
disturbances of the proposed PID-type FLC approach, is shown in Figs. 16 and 17.
The proposed fuzzy controller leads to reject the additive disturbances on the
controlled system output with a fast and more damped dynamic.

0 10 20 30 40 50 60 70
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Acquisition time (sec)

S
pe

ed
 tr

ac
ki

ng
 e

rr
or

 (
10

00
 r

pm
)

Fig. 15 Experimental results
of the PID-type FLC
implementation: speed
tracking error

0 10 20 30 40 50 60 70

0

1

2

3

C
on

tr
ol

le
d

sp
ee

d
va

ria
tio

n
(1

00
0

rp
m

) External load disturbance rejection

Acquisition time (sec)

Fig. 16 Robustness of the
external disturbance rejection:
controlled speed variation

650 S. Bouallègue et al.

Globally, the obtained simulation and experimental results for the considered
ISE and MO criteria are satisfactory. Others performance criteria, such as gain and
margin specifications (Azar and Serrano 2014), can be used in order to improve the
robustness and efficiency of the proposed fuzzy control approach.

5 Conclusion

A new method for tuning the scaling factors of Mamdani fuzzy controllers, based
on advanced metaheuristics, is proposed and successfully applied to an electrical
DC drive speed control. This efficient metaheuristics-based tool leads to a robust
and systematic PID-type fuzzy control design approach. The comparative study
shows the efficiency of the proposed techniques in terms of convergence speed and
quality of the obtained solutions. This hybrid PID-type fuzzy design methodology
is systematic, practical and simple without need to exact analytical plant model
description. The obtained simulation and experimental results show the efficiency in
terms of performance and robustness. All used DSA, GSA, ABC and PSO tech-
niques produce near results in comparison with each others. Small degradations
are always marked by going from one technique to another. The application of the
proposed control approach, for more complex and non linear systems, constitutes
our future works. The tuning of other fuzzy control structures, such as those
described by Takagi-Sugeno inference mechanism, will be investigated.

0 10 20 30 40 50 60 70
-0.5

-0.25

0

0.25

0.5

Acquisition time (sec)

S
pe

ed
 tr

ac
ki

ng
 e

rr
or

 (
10

00
 r

pm
)

External load disturbance rejection

Fig. 17 Robustness of the
external disturbance rejection:
speed tracking error

Advanced Metaheuristics-Based Approach … 651

References

Azar, A. T. (Ed.) (2010a). Fuzzy systems. Vienna, Austria: INTECH. ISBN 978-953-7619-92-3.
Azar, A. T. (2010b). Adaptive neuro-fuzzy systems. In Fuzzy systems. Vienna, Austria: INTECH.

ISBN 978-953-7619-92-3.
Azar, A. T. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System

Applications, 2(4), 1–28.
Azar, A. T., & Serrano, F. E. (2014). Robust IMC-PID tuning for cascade control systems with

gain and phase margin specifications. Neural Computing and Applications,. doi:10.1007/
s00521-014-1560-x.

Basturk, B. & Karaboga, D. (2006). An artificial bee colony (ABC) algorithm for numeric function
optimization. In Proceedings of IEEE Swarm Intelligence Symposium, May 12–14, Indianapolis,
USA.

Bouallègue, S., Haggège, J., Ayadi, M., & Benrejeb, M. (2012a). PID-type fuzzy logic controller
tuning based on particle swarm optimization. Engineering Applications of Artificial Intelligence,
25(3), 484–493.

Bouallègue, S., Haggège, J., & Benrejeb, M. (2011). Particle swarm optimization-based fixed-
structure H1control design. International Journal of Control, Automation and Systems, 9(2),
258–266.

Bouallègue, S., Haggège, J., & Benrejeb, M. (2012b). A new method for tuning PID-type fuzzy
controllers using particle swarm optimization. In Fuzzy Controllers: Recent Advances in
Theory and Applications (pp. 139–162). Vienna, Austria: INTECH. ISBN 978-953-51-0759-0.

Boussaid, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics.
Information Sciences, 237(1), 82–117.

Civicioglu, P. (2012). Transforming geocentric Cartesian coordinates to geodetic coordinates by
using differential search algorithm. Computers and Geosciences, 46(1), 229–247.

David, R. C., Precup, R. E., Petriu, E. M., Radac, M. B., & Preitl, S. (2013). Gravitational search
algorithm-based design of fuzzy control systems with a reduced parametric sensitivity.
Information Sciences, 247(1), 154–173.

Dréo, J., Siarry, P., Pétrowski, A., & Taillard, E. (2006). Metaheuristics for Hard Optimization
Methods and Case Studies. Heidelberg: Springer.

Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings
of the 6th International Symposium on Micro Machine and Human Science (pp. 39–43),
October 4–6, Nagoya, Japan.

Eker, I., & Torun, Y. (2006). Fuzzy logic control to be conventional method. Energy Conversion
and Management, 47(4), 377–394.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston:
Addison-Wesley Publishing Company.

Goswami, D., & Chakraborty, S. (2014). Differential search algorithm-based parametric
optimization of electrochemical micromachining processes. International Journal of Industrial
Engineering Computations, 5(1), 41–54.

Guzelkaya, M., Eksin, I., & Yesil, E. (2003). Self-tuning of PID type fuzzy logic controller
coefficients via relative rate observer. Engineering Applications of Artificial Intelligence, 16(3),
227–236.

Haggège, J., Ayadi, M., Bouallègue, S., & Benrejeb, M. (2010). Design of Fuzzy Flatness-based
Controller for a DC Drive. Control and Intelligent Systems, 38(3), 164–172.

Haggège, J., Bouallègue, S., & Benrejeb, M. (2009). Robust H1Design for a DC Drive.
International Review of Automatic Control, 2(4), 415–422.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical
report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department,
Turkey.

Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm.
Applied Mathematics and Computation, 214(1), 108–132.

652 S. Bouallègue et al.

http://dx.doi.org/10.1007/s00521-014-1560-�x
http://dx.doi.org/10.1007/s00521-014-1560-�x

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3),
459–471.

Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm.
Applied Soft Computing, 8(1), 687–697.

Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2012). A comprehensive survey:
Artificial bee colony (ABC) algorithm and applications. Artificial Intelligent Review, 42,
21–57. doi:10.1007/s10462-012-9328-0.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings. of IEEE
International Joint Conference on Neural Networks (pp. 1942–1948), November 27–December
01, Perth, Australia.

Lee, C. C. (1998a). Fuzzy logic in control systems: Fuzzy logic controller-part I. IEEE
Transactions on Systems, Man, and Cybernetics, 20(2), 404–418.

Lee, C. C. (1998b). Fuzzy logic in control systems: Fuzzy logic controller-part II. IEEE
Transactions on Systems, Man, and Cybernetics, 20(2), 419–435.

Madiouni, R., Bouallègue, S., Haggège, J., & Siarry, P. (2013). Particle swarm optimization-based
design of polynomial RST controllers. In Proceedings. of the 10th IEEE International Multi-
Conference on Systems, Signals and Devices (pp. 1–7), Hammamet, Tunisia.

MathWorks. (2009). Genetic algorithm and direct search toolbox user’s guide.
Nobahari, H., Nikusokhan, M., & Siarry, P. (2011). Non-dominated sorting gravitational search

algorithm. In Proceedings. of the International conference on swarm intelligence (pp. 1–10),
June 14–15, Cergy, France.

Passino, K. M. & Yurkovich, S. (1998). Fuzzy control. Boston, Addison Wesley Longman.
Precup, R. E., David, R. C., Petriu, E. M., Preitl, S., & Radac, M. B. (2011). Gravitational search

algorithms in fuzzy control systems tuning. In Proceedings. of the 18th IFAC World Congress
(pp. 13624–13629), August 28–September 02, Milano, Italy.

Qiao, W. Z., & Mizumoto, M. (1996). PID type fuzzy controller and parameters adaptive method.
Fuzzy Sets and Systems, 78(1), 23–35.

Rao, R. V. and Savsani, V. J. (2012). Mechanical design optimization using advanced
optimization techniques. Heidelberg: Springer.

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm.
Information Sciences, 179(13), 2232–2248.

Siarry, P., & Michalewicz, Z. (2008). Advances in metaheuristics for hard optimization.
New York: Springer.

Toumi, F., Bouallègue, S., Haggège, J., & Siarry, P. (2014). Differential search algorithm-based
approach for PID-type fuzzy controller tuning. In Proceedings. of the International Conference
on Control, Engineering & Information Technology, March 22–25, Sousse, Tunisia.

Waghole, V., & Tiwari, R. (2014). Optimization of needle roller bearing design using novel hybrid
methods. Mechanism and Machine Theory, 72(1), 71–85.

Woo, Z. W., Chung, H. Y., & Lin, J. J. (2000). A PID type fuzzy controller with self-tuning
scaling factors. Fuzzy Sets and Systems, 115(2), 321–326.

Advanced Metaheuristics-Based Approach … 653

http://dx.doi.org/10.1007/s10462-012-9328-0

	22 Advanced Metaheuristics-Based Approach for Fuzzy Control Systems Tuning
	Abstract
	1 Introduction
	2 PID-Type FLC Tuning Problem Formulation
	2.1 A Review of PID-Type Fuzzy Control Structure
	2.2 Optimization-Based Problem Formulation
	2.3 Proposed Constraints Handling Method

	3 Solving Optimization Problem Using Advanced Algorithms
	3.1 Differential Search Algorithm
	3.2 Gravitational Search Algorithm
	3.3 Artificial Bee Colony
	3.4 Particle Swarm Optimization

	4 Case Study: PID-Type FLC Tuning for a DC Drive
	4.1 Plant Model Description
	4.2 Simulation Results
	4.3 Results Analysis and Discussion
	4.4 Experimental Results

	5 Conclusion
	References

