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Abstract The genetic algorithm (GA) is an evolutionary optimization algorithm
operating based upon reproduction, crossover and mutation. On the other hand,
particle swarm optimization (PSO) is a swarm intelligence algorithm functioning by
means of inertia weight, learning factors and the mutation probability based upon
fuzzy rules. In this paper, particle swarm optimization in association with genetic
algorithm optimization is utilized to gain the unique benefits of each optimization
algorithm. Therefore, the proposed hybrid algorithm makes use of the functions and
operations of both algorithms such as mutation, traditional or classical crossover,
multiple-crossover and the PSO formula. Selection of these operators is based on a
fuzzy probability. The performance of the hybrid algorithm in the case of solving
both single-objective and multi-objective optimization problems is evaluated by
utilizing challenging prominent benchmark problems including FON, ZDT1,
ZDT2, ZDT3, Sphere, Schwefel 2.22, Schwefel 1.2, Rosenbrock, Noise, Step,
Rastrigin, Griewank, Ackley and especially the design of the parameters of linear
feedback control for a parallel-double-inverted pendulum system which is a com-
plicated, nonlinear and unstable system. Obtained numerical results in comparison
to the outcomes of other optimization algorithms in the literature demonstrate the
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efficiency of the hybrid of particle swarm optimization and genetic algorithm
optimization with regard to addressing both single-objective and multi-objective
optimization problems.

Keywords Particle swarm optimization � Genetic algorithm optimization � Single-
objective problems � Multi-objective problems � State feedback control � Parallel-
double-inverted pendulum system

1 Introduction

Optimization is the selection of the best element from some sets of variables with a
long history dating back to the years when Euclid conducted research to gain the
minimum distance between a point and a line. Today, optimization has an extensive
application in different branches of science, e.g. aerodynamics (Song et al. 2012),
robotics (Li et al. 2013; Cordella et al. 2012), energy consumption (Wang et al.
2014), supply chain modeling (Yang et al. 2014; Castillo-Villar et al. 2014) and
control (Mahmoodabadi et al. 2014a; Wang and Liu 2012; Wibowo and Jeong
2013). Due to the necessity of addressing a variety of constrained and uncon-
strained optimization problems, many changes and novelties in optimization
approaches and techniques have been proposed during the recent decade. In gen-
eral, optimization algorithms are divided into two main classifications: deterministic
and stochastic algorithms (Blake 1989). Due to employing the methods of suc-
cessive search based upon the derivative of objective functions, deterministic
optimization algorithms are appropriate for convex, continuous and differentiable
objective functions. On the other hand, stochastic optimization techniques are
applicable to address most of real optimization problems, which are heavily non-
linear, complex and non-differentiable. In this regard, a great number of studies
have recently been devoted to stochastic optimization algorithms, especially,
genetic algorithm optimization and particle swarm optimization.

The genetic algorithm, which is a subclass of evolutionary algorithms, is an
optimization technique inspired by natural evolution, that is, mutation, inheritance,
selection and crossover to gain optimal solutions. Lately, it was enhanced by using
a novel multi-parent crossover and a diversity operator instead of mutation in order
to gain quick convergence (Elsayed et al. 2014), utilizing it in conjunction with
several features selection techniques, involving principle components analysis,
sequential floating, and correlation-based feature selection (Aziz et al. 2013), using
the controlled elitism and dynamic crowding distance to present a general algorithm
for the multi-objective optimization of wind turbines (Wang et al. 2011), and
utilizing a real encoded crossover and mutation operator to gain the near global
optimal solution of multimodal nonlinear optimization problems (Thakur 2014).
Particle swarm optimization is a population-based optimization algorithm mim-
icking the behavior of social species such as flocking birds, swimming wasps,
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school fish, among others. Recently, its performance was enhanced by using a
multi-stage clustering procedure splitting the particles of the main swarm over a
number of sub-swarms based upon the values of objective functions and the par-
ticles positions (Nickabadi et al. 2012), utilizing multiple ranking criteria to define
three global bests of the swarm as well as employing fuzzy variables to evaluate the
objective function and constraints of the problem (Wang and Zheng 2012),
employing an innovative method to choose the global and personal best positions to
enhance the rate of convergence and diversity of solutions (Mahmoodabadi et al.
2014b), and using a self-clustering algorithm to divide the particle swarm into
multiple tribes and choosing appropriate evolution techniques to update each par-
ticle (Chen and Liao 2014).

Lately, researchers have utilized hybrid optimization algorithms to provide more
robust optimization algorithms due to the fact that each algorithm has its own
advantages and drawbacks and it is not feasible that an optimization algorithm can
address all optimization problems. Particularly, Ahmadi et al. (2013) predicted the
power in the solar stirling heat engine by using neural network based on the hybrid
of genetic algorithm and particle swarm optimization. Elshazly et al. (2013) pro-
posed a hybrid system which integrates rough set and the genetic algorithm for the
efficient classification of medical data sets of different sizes and dimensionalities.
Abdel-Kader (2010) proposed an improved PSO algorithm for efficient data clus-
tering. Altun (2013) utilized a combination of genetic algorithm, particle swarm
optimization and neural network for the palm-print recognition. Zhou et al. (2012)
designed a remanufacturing closed-loop supply chain network based on the genetic
particle swarm optimization algorithm. Jeong et al. (2009) developed a hybrid
algorithm based on genetic algorithm and particle swarm optimization and applied
it for a real-world optimization problem. Mavaddaty and Ebrahimzadeh (2011) used
the genetic algorithm and particle swarm optimization based on mutual information
for blind signals separation. Samarghandi and ElMekkawy (2012) applied the
genetic algorithm and particle swarm optimization for no-wait flow shop problem
with separable setup times and make-span criterion. Deb and Padhye (2013)
enhanced the performance of particle swarm optimization through an algorithmic
link with genetic algorithms. Valdez et al. (2009) combined particle swarm opti-
mization and genetic algorithms using fuzzy logic for decision making. Premalatha
and Natarajan (2009) applied discrete particle swarm optimization with genetic
algorithm operators for document clustering. Dhadwal et al. (2014) advanced
particle swarm assisted genetic algorithm for constrained optimization problems.
Bhuvaneswari et al. (2009) combined the genetic algorithm and particle swarm
optimization for alternator design. Jamili et al. (2011) proposed a hybrid algorithm
based on particle swarm optimization and simulated annealing for a periodic job
shop scheduling problem. Joeng et al. (2009) proposed a sophisticated hybrid of
particle swarm optimization and the genetic algorithm which shows robust search
ability regardless of the selection of the initial population and compared its capa-
bility to a simple hybrid of particle swarm optimization and the genetic algorithm
and pure particle swarm optimization and pure the genetic algorithm. Castillo-Villar
et al. (2012) used genetic algorithm optimization and simulated annealing for a
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model of supply-chain design regarding the cost of quality and the traditional
manufacturing and distribution costs. Talatahari and Kaveh (2007) used a hybrid of
particle swarm optimization and ant colony optimization for the design of frame
structures. Thangaraj et al. (2011) presented a comprehensive list of hybrid algo-
rithms of particle swarm optimization with other evolutionary algorithms e.g. the
genetic algorithm. Valdez et al. (2011) utilized the fuzzy logic to combine the
results of the particle swarm optimization and the genetic algorithm. This method
has been performed on some single-objective test functions for four different
dimensions contrasted to the genetic algorithm and particle swarm optimization,
separately.

For the optimum design of traditional controllers, the evolutionary optimization
techniques are appropriate approaches to be used. To this end, Fleming and Purs-
house (2002) is an appropriate reference to overview the application of the evolu-
tionary algorithms in the field of the design of controllers. In particular, the design of
controllers in Fonseca and Fleming (1994) and Sanchez et al. (2007) was formulated
as a multi-objective optimization problem and solved using genetic algorithms.
Furthermore, in Ker-Wei and Shang-Chang (2006), the sliding mode control con-
figurations were designed for an alternating current servo motor while a particle
swarm optimization algorithm was used to select the parameters of the controller.
Also, PSOwas applied to tune the linear control gains in Gaing (2004) and Qiao et al.
(2006). In Chen et al. (2009), three parameters associated with the control law of the
sliding mode controller for the inverted pendulum system were properly chosen by a
modified PSO algorithm. Wai et al. (2007) proposed a total sliding-model-based
particle swarm optimization to design a controller for the linear induction motor.
More recently, in Gosh et al. (2011), an ecologically inspired direct search method
was applied to solve the optimal control problems with Bezier parameterization.
Moreover, in Tang et al. (2011), a controllable probabilistic particle swarm optimi-
zation (CPPSO) algorithm was applied to design a memory-less feedback controller.
McGookin et al. (2000) optimized a tanker autopilot control system using genetic
algorithms. Gaing (2004) used particle swarm optimization to tune linear gains of the
proportional-integral-derivative (PID) controller for an AVR system. Qiao et al.
(2006) tuned the proportional-integral (PI) controller parameters for doubly fed
induction generators driven by wind turbines using PSO. Zhao and Yi (2006) pro-
posed a GA-based control method to swing up an acrobot with limited torque. Wang
et al. (2006) designed a PI/PD controller for the non-minimum phase system and used
PSO to tune the controller gains. Sanchez et al. (2007) formulated a classical
observer-based feedback controller as a multi-objective optimization problem and
solved it using genetic algorithm. Mohammadi et al. (2011) applied an evolutionary
tuning technique for a type-2 fuzzy logic controller and state feedback tracking
control of a biped robot (Mahmoodabadi et al. 2014c). Zargari et al. (2012) designed
a fuzzy sliding mode controller with a Kalman estimator for a small hydro-power
plant based on particle swarm optimization. More recently, a two-stage hybrid
optimization algorithm, which involves the combination of PSO and a pattern search
based method, is used to tune a PI controller (Puri and Ghosh 2013).
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In this chapter, a hybrid of particle swarm optimization and the genetic algorithm
developed previously by authors (Mahmoodabadi et al. 2013) is described and used
to design the parameters of the linear state feedback controller for the system of a
parallel-double-inverted pendulum. In elaboration, the used operators of the hybrid
algorithm include mutation, crossover of the genetic algorithm and particle swarm
optimization formula. The classical crossover and the multiple-crossover are two
parts of the crossover operator. A fuzzy probability is used to choose the particle
swarm optimization and genetic algorithm operators at each iteration for each
particle or chromosome. The optimization algorithm is based on the non-dominated
sorting concept. Moreover, a leader selection method based upon particles density
and a dynamic elimination method which confines the numbers of non-dominated
solutions are utilized to present a high convergence and uniform spread. Single and
multi-objective problems are utilized to assess the capabilities of the optimization
algorithm. By using the same benchmarks, the results of simulation are contrasted
to the results of other optimization algorithms. The structure of this chapter is as
follows. Section 2 presents the genetic algorithm and its details including the
crossover operator and the mutation operator. Particle swarm optimization and its
details involving inertia weight and learning factors are provided in Sect. 3. Sec-
tion 4 states the mutation probabilities at each iteration which is based on fuzzy
rules. Section 5 includes the architecture, the pseudo code, the parameter settings,
and the flow chart of the single-objective and multi-objective hybrid optimization
algorithms. Furthermore, the test functions and the evolutionary trajectory for the
algorithms are provided in Sect. 5. State feedback control for linear systems is
presented in Sect. 6. Section 7 presents the state space representation, the block
diagram, and the Pareto front of optimal state feedback control of a parallel-double-
inverted pendulum. Finally, conclusions are presented in Sect. 8.

2 Genetic Algorithm

The genetic algorithm inspired from Darwin’s theory is a stochastic algorithm based
upon the survival fittest introduced in 1975 (Holland 1975).

Genetic algorithms offer several attractive features, as follows:

• An easy-to-understand approach that can be applied to a wide range of problems
with little or no modification. Other approaches have required substantial
alteration to be successfully used in applications. For example, the dynamic
programming was applied to select the number, location and power of the lamps
along a hallway in such a way that the electrical power needed to produce the
required illuminance will be minimized. In this method, significant alternation is
needed since the choice of the location and power of a lamp affect the decisions
made about previous lamps (Gero and Radford 1978).

• Genetic algorithm codes are publicly available which reduces set-up time.
• The inherent capability to work with complex simulation programs. Simulation

does not need to be simplified to accommodate optimization.
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• Proven effectiveness in solving complex problems that cannot be readily solved
with other optimization methods. The mapping of the objective function for a day
lighting design problem showed the existence of local minima that would
potentially trap a gradient-based method (Chutarat 2001). Building optimization
problems may include a mixture of a large number of integer and continuous
variables, non-linear inequality and equality constraints, a discontinuous objec-
tive function and variables embedded in constraints. Such characteristics make
gradient-based optimization methods inappropriate and restrict the applicability
of direct-search methods (Wright and Farmani 2001). The calculation time of
mixed integer programming (MIP), which was used to optimize the operation of a
district heating and cooling plant, increases exponentially with the number of
integer variables. It was shown that it takes about two times longer than a genetic
algorithm for a 14 h optimization window and 12 times longer for a 24 h period
(Sakamoto et al. 1999), although the time required byMIP was sufficiently fast for
a relatively simple plant to make on-line use feasible.

• Methods to allow genetic algorithms to handle constraints that would make
some solutions unattractive or entirely infeasible.

Performing on a set of solutions instead of one solution is one of notable abilities
of stochastic algorithms. Thus, at first, initial population consisting of a random set
of solutions is generated by the genetic algorithm. Each solution in a population is
named an individual or a chromosome. The size of population (N) is the number of
chromosomes in a population. The genetic algorithm has the capability of per-
forming with coded variables. In fact, the binary coding is the most popular
approach of encoding the genetic algorithm. When the initial population is gener-
ated, the genetic algorithm has to encode the whole parameters as binary digits.
Hence, while performing over a set of binary solutions, the genetic algorithm must
decode all the solutions to report the optimal solutions. To this end, a real-coded
genetic algorithm is utilized in this study (Mahmoodabadi et al. 2013). In the real
coded genetic algorithm, the solutions are applied as real values. Thus, the genetic
algorithm does not have to devote a great deal of time to coding and decoding the
values (Arumugam et al. 2005). Fitness which is a value assigned to each chro-
mosome is used in the genetic algorithm to provide the ability of evaluating the new
population with respect to the previous population at any iteration. To gain the
fitness value of each chromosome, the same chromosome is used to obtain the value
of the function which must be optimized. This function is the objective function.
Three operators, that is, reproduction, crossover and mutation are employed in the
genetic algorithm to generate a new population in comparison to the previous
population. Each chromosome in new and previous populations is named offspring
and parent, correspondingly. This process of the genetic algorithm is iterated until
the stopping criterion is satisfied and the chromosome with the best fitness in the
last generation is proposed as the optimal solution. In the present study, crossover
and mutation are hybridized with the formula of particle swarm optimization
(Mahmoodabadi et al. 2013). The details of these genetic operators are elaborated in
the following sections.
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2.1 The Crossover Operator

The role of crossover operator is to generate new individuals, that is, offspring from
parents in the mating pool. Afterward, two offspring are generated based upon the
selected parents and will be put in the place of the parents. Moreover, this operator
is used for a number of pair of parents to mate (Chang 2007). This number is
calculated by using the formula as Ptc�N

2 , where Ptc and N denote the probability of
traditional crossover and population size, correspondingly. By regarding xi

!ðtÞ and
xj
!ðtÞ as two random selected chromosomes in such a way that xi!ðtÞ has a smaller
fitness value than xj

!ðtÞ, the traditional crossover formula is as follows

xi
!ðt þ 1Þ ¼ xi

!ðtÞ þ c1ð xi!ðtÞ � xj
!ðtÞÞ

xj
!ðt þ 1Þ ¼ xj

!ðtÞ þ c2ð xi!ðtÞ � xj
!ðtÞÞ ð1Þ

where c1 and c2 2 ½0; 1� represent random values. When Eq. (1) is calculated,
between ~xðtÞ and ~xðt þ 1Þ, whichever has the fewer fitness should be chosen.
Another crossover operator called multiple-crossover operator is employed in this
paper (Mahmoodabadi et al. 2013). This operator was presented in (Ker-Wei and
Shang-Chang 2006) for the first time. The multiple-crossover operator consists of
three chromosomes. The number of Pmc�N

3 chromosomes is chosen for adjusting in
which Pmc denotes the probability of multiple-crossover. Furthermore, xi!ðtÞ, xj!ðtÞ
and xk

!ðtÞ denote three random chosen chromosomes in which xi
!ðtÞ has the smallest

fitness value among these chromosomes. Multiple-crossover is computed as follows

xi
!ðt þ 1Þ ¼ xi

!ðtÞ þ k1ð2 xi!ðtÞ � xj
!ðtÞ � xk

!ðtÞÞ
xj
!ðt þ 1Þ ¼ xj

!ðtÞ þ k2ð2 xi!ðtÞ � xj
!ðtÞ � xk

!ðtÞÞ
xk
!ðt þ 1Þ ¼ xk

!ðtÞ þ k3ð2 xi!ðtÞ � xj
!ðtÞ � xk

!ðtÞÞ
ð2Þ

where k1 ; k2 ; and k3 2 ½0; 1� represent random values. When Eq. (2) is computed,
between~xðtÞ and x!ðt þ 1Þ, whichever has the fewer fitness should be selected.

2.2 The Mutation Operator

According to the searching behavior of GA, falling into the local minimum points is
unavoidable when the chromosomes are trying to find the global optimum solution.
In fact, after several generations, chromosomes will gather in several areas or even
just in one area. In this state, the population will stop progressing and it will become
unable to generate new solutions. This behavior could lead to the whole population
being trapped in the local minima. Here, in order to allow the chromosomes’
exploration in the area to produce more potential solutions and to explore new
regions of the parameter space, the mutation operator is applied. The role of this
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operator is to change the value of the number of chromosomes in the population.
This number is calculated via Pm � N, in which Pm and N are the probability of
mutation and population size, correspondingly. In this regard, a variety in popu-
lation and a decrease in the possibility of convergence toward local optima are
gained through this operation. By regarding a randomly chosen chromosome, the
mutation formula is obtained as (Mahmoodabadi et al. 2013):

xi
!ðt þ 1Þ ¼~xminðtÞ þ tð~xmaxðtÞ �~xminðtÞÞ ð3Þ

in which xi
!ðtÞ,~xmaxðtÞ and~xminðtÞ present the randomly chosen chromosome, upper

bound and lower bound with regard to search domain, correspondingly and t 2
½0; 1� is a random value. When Eq. (3) is calculated, between ~xðtÞ and ~xðt þ 1Þ,
whichever has the fewer fitness should be chosen.

The second optimization algorithm used for the hybrid algorithm is particle
swarm optimization and this algorithm and its details involving the inertia weight
and learning factors will be presented in the following section.

3 Particle Swarm Optimization (PSO)

Particle swarm optimization introduced by Kennedy and Eberhart (1995) is a
population-based search algorithm based upon the simulation of the social behavior
of flocks of birds. While this algorithm was first used to balance the weights in
neural networks (Eberhart et al. 1996), it is now a very popular global optimization
algorithm for problems where the decision variables are real numbers (Engelbrecht
2002, 2005).

In particle swarm optimization, particles are flying through hyper-dimensional
search space and the changes in their way are based upon the social-psychological
tendency of individuals to mimic the success of other individuals. Here, the PSO
operator adjusted the value of positions of particles which are not chosen for genetic
operators (Mahmoodabadi et al. 2013). In fact, the positions of these particles are
adjusted based upon their own and neighbors’ experience. xi!ðtÞ represents the posi-
tion of a particle and it is adjusted through adding a velocity vi

!ðtÞ to it, that is to say:

xi
!ðt þ 1Þ ¼ xi

!ðtÞ þ vi
!ðt þ 1Þ ð4Þ

The socially exchanged information is presented by a velocity vector defined as
follows:

vi
!ðt þ 1Þ ¼ W vi

!ðtÞ þ C1r1ð~xpbesti � xi
!ðtÞÞ þ C2r2ð~xgbest � xi

!ðtÞÞ ð5Þ

where C1 represents the cognitive learning factor and denotes the attraction that a
particle has toward its own success. C2 is the social learning factor and represents
the attraction that a particle has toward the success of the entire swarm. W is the
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inertia weight utilized to control the impact of the previous history of velocities on
the current velocity of a given particle.~xpbesti denotes the personal best position of
the particle i.~xgbest represents the position of the best particle of the entire swarm.
r1; r2 2 ½0; 1� are random values. Moreover, in this paper, a uniform probability
distribution is assumed for all the random parameters (Mahmoodabadi et al. 2013).
The trade-off between the global and local search abilities of the swarm is adjusted
by using the parameter W. An appropriate value of the inertia weight balances
between global and local search abilities by regarding the fact that a large inertia
weight helps the global search and a small one helps the local search. Based upon
experimental results, linearly decreasing the inertia weight over iterations enhances
the efficiency of particle swarm optimization (Eberhart and Kennedy 1995). The
particles approach to the best particle of the entire swarm (~xgbest) via using a small
value of C1 and a large value of C2. On the other hand, the particles converge into
their personal best position ( x!pbesti ) through employing a large value of C1 and a
small value of C2. Furthermore, it was obtained that the best solutions were gained
via a linearly decreasing C1 and a linearly enhancing C2 over iterations (Ratnaweera
et al. 2004). Thus, the following linear formulation of inertia weight and learning
factors are utilized as follows:

W1 ¼ W1 � ðW1 �W2Þ � ð t
maximum iteration

Þ ð6Þ

C1 ¼ C1i � ðC1i � C1f Þ � ð t
maximum iteration

Þ ð7Þ

C2 ¼ C2i � ðC2i � C2f Þ � ð t
maximum iteration

Þ ð8Þ

in which W1 and W2 represent the initial and final values of the inertia weight,
correspondingly. C1i and C2i denote the initial values of the learning factors C1 and
C2, correspondingly. C1f and C2f represent the final values of the learning factors
C1 and C2, respectively. t is the current number of iteration and maximum iteration
is the maximum number of allowable iterations. The mutation probabilities at each
iteration which is based on fuzzy rules will be presented in the next section.

4 The Mutation Probabilities Based on Fuzzy Rules

The mutation probability at each iteration is calculated via using the following
equation:

Pm ¼ fm � Limit ð9Þ
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in which fm is a positive constant. Limit represents the maximum number of iter-
ation restraining the changes in positions of the particles or chromosomes of the
entire swarm or population. Equations (10) and (11) are utilized to compute other
probabilities, as follows:

Ptc ¼ ntc � Pg ð10Þ

Pmc ¼ nmc � Pg ð11Þ

in which ntc and nmc are positive constants. Pg denotes a fuzzy variable and its
membership functions and fuzzy rules are presented in Fig. 1 and Table 1.

The inference result Pg of the consequent variable can be computed via
employing the min-max-gravity method, or the simplified inference method, or the
product-sum-gravity method (Mizumoto 1996).

Single objective and multi-objective hybrid algorithms based on particle swarm
optimization and the genetic algorithm and the details including the pseudo code,
the parameter settings will be presented in the following section. These algorithms
will be evaluated with many challenging test functions.

Fig. 1 Membership functions
of fuzzy variable Pg

Table 1 Fuzzy rules of fuzzy
variable Pg

Antecedent variable Consequence variable

S 0.0

M 0.5

B 1.0
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5 Optimization

Optimization is mathematical and numerical approaches to gain and identify the
best candidate among a range of alternatives without having to explicitly enumerate
and evaluate all possible alternatives (Ravindran et al. 2006). While maximum or
minimum solutions of objective functions are the optimal solutions of an optimi-
zation problem, optimization algorithms are usually trying to address a minimiza-
tion problem. In this regard, the goal of optimization is to gain the optimal solutions
which are the points minimizing the objective functions. Based upon the number of
objective functions, an optimization problem is classified as single-objective and
multi-objective problems. This study uses both single-objective and multi-objective
optimization algorithms to evaluate the capabilities of the hybrid of particle swarm
optimization and the genetic algorithm (Mahmoodabadi et al. 2013). To this end,
challenging benchmarks of the field of optimization are chosen to evaluate the
optimization algorithm. The hybrid of particle swarm optimization and the genetic
algorithm is applied to these benchmarks and the obtained results are compared to
the obtained results of running a number of similar algorithms on the same
benchmark problems.

5.1 Single-Objective Optimization

5.1.1 Definition of Single-Objective Optimization Problem

A single-objective optimization problem involves just one objective function as
there are many engineering problems where designers combine several objective
functions into one. Each objective function can include one or more variables.
A single-objective optimization problem can be defined as follow:

Find x!� ¼ ½x�1; x�2; . . .; x�n� 2 Rn

Tominimize f ð~xÞ

By regarding p equality constraints gið~xÞ ¼ 0; i ¼ 1; 2; . . .; p; and q inequality
constraints hjð~xÞ� 0; j ¼ 1; 2; . . .; q, where ~x represents the vector of decision
variables and f ð~xÞ denotes the objective function.

5.1.2 The Architecture of the Algorithm of Single-Objective
Optimization

In this section, a single-objective optimization algorithm is used which is based on a
hybrid of genetic operators and PSO formula to update the chromosomes and
particle positions (Mahmoodabadi et al. 2013). In elaboration, the initial population
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is randomly produced. At each iteration, the inertia weight, the learning factors, and
the operators probabilities are computed. Afterward, x!pbesti and x!gbest are specified
when the fitness values of all members are evaluated. The genetic algorithm
operators, that is, traditional crossover, multiple-crossover and mutation operators
are used to adjust the chromosomes (which are chosen randomly). Each chromo-
some is a particle and the group of chromosome is regarded as a swarm. Further-
more, the chromosomes which are not chosen for genetic operations will be
appointed to particles and improved via PSO. Until the user-defined stopping cri-
terion is satisfied, this cycle is repeated. Figures 2 and 3 illustrate the pseudo code
and flow chart of the technique respectively.

5.1.3 The Results of Single-Objective Optimization

To evaluate the performance of the hybrid of particle swarm optimization and the
genetic algorithm, nine prominent benchmark problems are utilized regarding a
single-objective optimization problem. Essential information about these functions
is summarized in Table 2 (Yao et al. 1999). Some of these functions are unimodal
and the others are multimodal. Unimodal functions have only one optimal point
while multimodal functions have some local optimal points in addition to one
global optimal point.

The hybrid of particle swarm optimization and the genetic algorithm is applied to
all the test functions with 30 dimensions ðn ¼ 30Þ (Mahmoodabadi et al. 2013).
The mean and standard deviation of the best solution for thirty runs are presented in
Table 4. In this regard, the results are contrasted to the results of three other
algorithms [i.e., GA with traditional crossover (Chang 2007), GA with multiple-
crossover (Chang 2007; Chen and Chang 2009), standard PSO (Kennedy and
Eberhart 1995)]. Table 3 illustrates the list of essential parameters to run these

Initialize population and determine the algorithm configuration of the hybrid method.
While stopping criterion is satisfied

Determine tcP , mcP , mP based on the hybrid formulations.

Find fitness values of each member and store 
ipbestx

→
and gbestx

→

If 
tcPrand <

Select randomly two chromosomes from population and update them using traditional crossover
operator;

Elseif
mcPrand<

Select randomly three chromosomes from population and update them using multiple-crossover 
operator;

Elseif
mPrand <

Select randomly a chromosome from population and update it using mutation operator;
Else

Select randomly a particle from swarm and update its position based on PSO formula;
End.

Fig. 2 The pseudo code of the hybrid algorithm for single-objective optimization
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Fig. 3 The flow chart of the
hybrid algorithm for single-
objective optimization
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algorithms. The population size and maximum iteration are set at 20 and 10,000,
accordingly.

By contrasting the results of GA with traditional crossover, GA with multiple-
crossover, standard PSO, and the hybrid of particle swarm optimization and the
genetic algorithm (Tables 4, 5, 6, 7, 8, 9, 10, 11 and 12), it can be found that the
hybrid algorithm has a superior performance with respect to other optimization
algorithms. Moreover, the hybrid algorithm presents the best solutions in all test
functions except Schwefel 2.22, in which the PSO algorithm has the best solution

Table 2 Single-objective test functions

Name (comment) Formula: f ðxÞ Search domain

Sphere (unimodal)
Pn

i¼1 x2i [–100, 100]n

Schwefel 2.22 (unimodal)
Pn

i¼1 xij j þQn
i¼1 xij j [–10, 10]n

Schwefel 1.2 (unimodal) Pn
i¼1

Pi
j¼1 xj

� �2 [–100, 100]n

Rosenbrock (unimodal) Pn�1
i¼1 100 xiþ1�x2i

� �2þ xi�1ð Þ2
h i

[–30, 30]n

Noise (unimodal)
Pn

i¼1 ix4i þ random½0; 1Þ [–1.28, 1.28]n

Step (unimodal) Pn
i¼1 xi þ 0:5b cð Þ2 [–100, 100]n

Rastrigin (multimodal)
Pn

i¼1 ðx2i �10 cosð2pxiÞ þ 10Þ [–5.12, 5.12]n

Griewank (multimodal) 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cos

xiffi
i

p
� �

þ 1 [–600, 600]n

Ackley (multimodal) 20þ e� 20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x

2
i

q� �
� exp 1

n

Pn
i¼1 cos ð2pxiÞ

� � [–32, 32]n

Table 4 The comparison results among single-objective optimization algorithms for the Sphere
function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 3.28 × 10−14 2.56 × 10−18 2.25 × 10−98 1.58 × 10−119

Standard
deviation

4.58 × 10−14 1.34 × 10−17 6.54 × 10−98 8.58 × 10−119

Table 3 The parameter settings of optimization algorithms

Algorithm Parameter

GA (traditional crossover) Pr ¼ 0:2; Pc ¼ 0:4; Pm ¼ 0:1; S ¼ 0:05, tournament method
for selection

GA (multiple-crossover) Pr ¼ 0:2; Pc ¼ 0:4; Pm ¼ 0:1; S ¼ 0:05, tournament method
for selection

Standard PSO W ¼ 0:9; C1 ¼ C2 ¼ 2

The hybrid algorithm W1 ¼ 0:9; W2 ¼ 0:4; C1i ¼ C2f ¼ 2:5; C1f ¼ C2i ¼ 0:5;
fm ¼ 0:001; ntc ¼ nmc ¼ 0:2
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Table 5 The comparison results among single-objective optimization algorithms for the Schwefel
2.22 function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 1.83 × 10−6 8.16 × 100 3.15 × 10−26 9.11 × 10−25

Standard
deviation

4.32 × 10−6 3.13 × 10+1 1.73 × 10−25 4.99 × 10−24

Table 6 The comparison results among single-objective optimization algorithms for the Schwefel
1.2 function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 7.74 × 10+2 3.14 × 10+2 6.73 × 10−5 2.14 × 10−11

Standard
deviation

4.16 × 10+2 1.99 × 10+2 9.40 × 10−5 6.91 × 10−11

Table 7 The comparison results among single-objective optimization algorithms for the
Rosenbrock function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 1.33 × 10+2 8.25 × 10+1 2.04 × 10+1 5.34 × 10−1

Standard
deviation

1.32 × 10+2 5.51 × 10+1 2.53 × 10+1 1.38 × 100

Table 8 The comparison results among single-objective optimization algorithms for the Noise
function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 5.10 × 10−2 8.64 × 10−2 1.06 × 100 3.38 × 10−3

Standard
deviation

1.88 × 10−2 2.48 × 10−2 3.12 × 10−1 1.47 × 10−3

Table 9 The comparison results among single-objective optimization algorithms for the Step
function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 2.10 × 10+2 3.40 × 10+1 1.00 × 10−1 0

Standard
deviation

3.27 × 10+2 1.32 × 10+2 3.05 × 10−1 0
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but the result is very close to the results of the hybrid method. Figures 4, 5, 6, 7, 8, 9
and 10 illustrate the evolutionary traces of some test functions of Table 2. In these
figures, the mean best values are gained for thirty runs. The maximum iteration,
population size, and dimension are set at 1,000, 10 and 50, respectively. In these
figures, the vertical axis is the value of the best function found after each iteration of
the algorithms and the horizontal axis is the iteration. By comparing these figures, it
is obtained that the combination of the traditional crossover, multiple-crossover and
mutation operator can enhance the performance of particle swarm optimization.

5.2 Multi-objective Optimization

5.2.1 Definition of Multi-objective Optimization Problem

In most of real problems, there is more than one objective function required to be
optimized. Furthermore, most of these functions are in conflict with each other.
Hence, there is not just one solution for the problem and there are some optimal

Table 10 The comparison results among single-objective optimization algorithms for the
Rastringin function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 7.54 × 10+1 1.52 × 10+2 4.11 × 10+1 2.15 × 10−3

Standard
deviation

1.90 × 10+1 4.37 × 10+1 9.19 × 100 1.18 × 10−2

Table 11 The comparison results among single-objective optimization algorithms for the
Griewank function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 7.16 × 10−1 4.86 × 10−1 2.15 × 10−2 2.03 × 10−2

Standard
deviation

2.87 × 100 1.4478 × 100 2.31 × 10−2 2.21 × 10−2

Table 12 The comparison results among single-objective optimization algorithms for the Ackley
function

GA (traditional
crossover)

GA (multiple-
crossover)

PSO
(standard)

The hybrid
algorithm

Mean 1.57 × 10+1 1.80 × 10+1 2.81 × 10−1 4.30 × 10−8

Standard
deviation

1.13 × 100 6.23 × 10−1 5.92 × 10−1 9.90 × 10−8
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solutions which are non-dominated with respect to each other and the designer can
use each of them based upon the design criteria.

Find~x� ¼ ½x�1; x�2; . . .; x�n� 2 Rn

Tominimize~f ð~xÞ ¼ ½f1ð~xÞ; f2ð~xÞ; . . .; fmð~xÞ� 2 Rm

By regarding p equality constraints gið~xÞ ¼ 0; i ¼ 1; 2; . . .; p and q inequality
constraints hjð~xÞ� 0; j ¼ 1; 2; . . .; q, where ~x represents the vector of decision

variables and~f ð~xÞ denotes the vector of objective functions.
As it is mentioned earlier, there is not one unique optimal solution for multi-

objective problems. There exists a set of optimal solutions called Pareto-optimal
solutions. The following definitions are needed to describe the concept of opti-
mality (Deb et al. 2002).
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Definition 1 Pareto Dominance: It says that the vector ~u ¼ ½u1; u2; . . .; un� domi-
nates the vector~v ¼ ½v1; v2; . . .; vn� and it illustrates ~u\~v, if and only if:

8i 2 f1; 2; . . .; ng : ui � vi ^ 9 j 2 f1; 2; . . .ng : uj\vj

Definition 2 Non-dominated: A vector of decision variables ~x 2 X � Rn is non-
dominated, if there is not another ~x0 2 X which dominates ~x. That is to say that
8~x 2 X; 6 9~x0 2 X;~x 6¼~x0 :~f ð~x0Þ\~f ð~xÞ, where ~f ¼ ff1; f2; . . .; fmg denotes the
vector of objective functions.

Definition 3 Pareto-optimal: the vector of decision variables~x� 2 X � Rn,where X
is the design feasible region, is Pareto-optimal if this vector is non-dominated in X.

Definition 4 Pareto-optimal set: In multi-objective problems, a Pareto-optimal set
or in a more straightforward expression, a Pareto set denoted by P� consists of all
Pareto-optimal vectors, namely:
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P� ¼ ~x2Xj~x is Pareto-optimalf g

Definition 5 Pareto-optimal front: The Pareto-optimal front or in a more straight-
forward expression, Pareto front PF� is defined as:

PF� ¼ f~f ð~xÞ 2 Rmj~x 2 P�g:

5.2.2 The Structure of the Hybrid Algorithm for Multi-objective
Optimization

It is necessary to make modifications to the original scheme of PSO in finding the
optimal solutions for multi-objective problems. In the single-objective algorithm of
PSO, the best particle of the entire swarm (~xgbest) is utilized as a leader. In the multi-
objective algorithm, each particle has a set of different leaders that one of them is
chosen as a leader. In this book paper, a leader selection method based upon density
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measures is used (Mahmoodabadi et al. 2013). To this end, a neighborhood radius
Rneighborhood is defined for the whole non-dominated solutions. Two non-dominated
solutions are regarded neighbors in case the Euclidean distance of them is less than
Rneighborhood . Based upon this radius, the number of neighbors of each non-domi-
nated solution is computed in the objective function domain and the particle having
fewer neighbors is chosen as leaders. Furthermore, for particle i, the nearest
member of the archive is devoted to x!pbesti . At this stage, a multi-objective opti-
mization algorithm using the hybridization of genetic operators and PSO formula
can be presented (Mahmoodabadi et al. 2013). In elaboration, the population is
randomly generated. Once the fitness values of all members are computed, the first
archive can be produced. The inertia weight, the learning factors and operator’s
probabilities are computed at each iteration. The genetic operators, that is, mutation
operators, traditional crossover and multiple-crossover are utilized to change some
chromosomes selected randomly. Each chromosome corresponds to a particle in it
and the group of chromosome can be regarded as a swarm. On the other hand, the
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chromosomes which are not chosen for genetic operations are enhanced via particle
swarm optimization. Then, the archive is pruned and updated. This cycle is repeated
until the user-defined stopping criterion is met. Figure 11 illustrates the flow chart
of this algorithm.

The set of non-dominated solutions is saved in a different location named
archive. If all of the non-dominated solutions are saved in the archive, the size of
archive enhances rapidly. On the other hand, since the archive must be updated at
each iteration, the size of archive will expand significantly. In this respect, a sup-
plementary criterion is needed that resulted in saving a bounded number of non-
dominated solutions. To this end, the dynamic elimination approach is utilized here
to prune the archive (Mahmoodabadi et al. 2013). In this method, if the Euclidean
distance between two particles is less than Relimination which is the elimination radius
of each particle, then one of them will be eliminated. As an example, it is illustrated
in Fig. 12. To gain the value of Relimination, the following equation is utilized:

Relimination ¼
t

a�maximum iteration if t
b

� �
¼ fix t

b

� �
0 else

(
ð12Þ
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Fig. 11 The flow chart of the
hybrid algorithm for multi-
objective optimization
problems
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In which, t stands for the current iteration number and maximum iteration is the
maximum number of allowable iterations. a and b are positive constants regarding
as a ¼ 100 and b ¼ 10.

5.2.3 Results for Multi-objective Optimization

Five multi-objective benchmark problems are regarded which have similar features
such as the bounds of variables, the number of variables, the nature of Pareto-
optimal front and the true Pareto optimal solutions. These problems which are
unconstrained have two objective functions. The whole features of these algorithms
are illustrated in Table 13. The contrast of the true Pareto optimal solutions and the
results of the hybrid algorithm is illustrated in Figs. 13, 14, 15, 16 and 17. As it is
obtained, the hybrid algorithm can present a proper result in terms of converging to
the true Pareto optimal and gaining advantages of a diverse solution set.

In this comparison, the capability of the hybrid algorithm is contrasted to three
prominent optimization algorithms, that is, NSGA-II (Deb et al. 2002), SPEA
(Zitzler and Theile 1999) and PAES (Knowles and Corne 1999) with respect to the
same test functions. Two crucial facts considered here are the diversity solution of
the solutions with respect to the Pareto optimal front and the capability to gain the
Pareto optimal set. Regarding these two facts, two performance metrics are utilized
in evaluating each of the above-mentioned facts.

Fig. 12 The particles located
in another particle’s Relimination

will be removed using the
dynamic elimination
technique
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(1) A proper indication of the gap between the non-dominated solution members
and the Pareto optimal front is gained by means of the metric of distance (!)
(Deb et al. 2002) as follows:

! ¼
Xn
i¼1

d2i ð13Þ

where n is the number of members in the set of non-dominated solutions and di is
the least Euclidean distance between the member i in the set of non-dominated
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solutions and Pareto optimal front. If all members in the set of non-dominated
solutions are in Pareto optimal front then ! ¼ 0:

(2) The metric of diversity ðDÞ (Deb et al. 2002) measures the extension of spread
achieved among non-dominated solutions, which is given as

D ¼ df þ dl þ
Pn�1

i¼1 di��d
�� ��

df þ dl þ ðn� 1Þ�d ð14Þ

In this formula, df and dl denote the Euclidean distance between the boundary
solutions and the extreme solutions of the non-dominated set, n stands for the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1 (x)

f 2
(x
)

Pareto optimal front
Hybrid algorithm

Fig. 15 The non-dominated
solutions of the hybrid
method for the ZDT1 test
function

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

f1 (x)

f 2
(x
)

Pareto optimal front
Hybrid algorithm

Fig. 16 The non-dominated
solutions of the hybrid
method for the ZDT2 test
function

A Hybrid Global Optimization Algorithm: Particle Swarm … 71



number of members in the set of non-dominated solutions, di is the Euclidean
distance between consecutive solutions in the gained non-dominated set, and

�d ¼
Pn�1

i¼1
di

n�1 .
For the most extent spread set of non-dominated solutions D ¼ 0
The performance of the hybrid algorithm comparing to NSGA-II (Deb et al.

2002), SPEA (Zitzler and Theile 1999), and PAES (Knowles and Corne 1999)
algorithms is illustrated in Tables 14, 15, 16, 17 and 18.

Based on the results of Tables 14, 15, 16, 17 and 18, the hybrid algorithm has
very proper Δ values for all test functions excluding ZDT2. While NSGA-II pre-
sents proper Δ results for all test functions except ZDT3, the approaches SPEA and
PAES do not illustrate proper performance in the diversity metric. The hybrid
algorithm presents acceptable results for the convergence metric in all test func-
tions. On the other hand, NSGA-II ZDT3 function, SPEA for FON function, and
PAES for FON and ZDT2 functions do not show proper performance.

The hybrid optimization algorithm is used to design the parameters of state
feedback control for linear systems. In the following section, state space repre-
sentation and the control input of state feedback control for linear systems will be
presented.
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Table 14 The results of the comparison of multi-objective optimization algorithms for the SCH
test function

Metrics NSGA-II SPEA PAES The hybrid algorithm

Δ Mean 4.77 × 10−1 1.02 × 100 1.06 × 100 6.00 × 10−1

Standard deviation 3.47 × 10−3 4.37 × 10−3 2.86 × 10−3 1.81 × 10−2

! Mean 3.39 × 10−3 3.40 × 10−3 1.31 × 10−3 3.22 × 10−3

Standard deviation 0 0 3.00 × 10−6 1.35 × 10−4
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6 State Feedback Control for Linear Systems

The vector state equation can be utilized for a continuous time system, as follows:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þ BvvðtÞ ð15Þ

where x tð Þ 2 R
n stands for the state vector, _x tð Þ denotes the time derivative of state

vector and u tð Þ 2 R
m is the input vector. The disturbance v tð Þ is assumed to be a

Table 15 The results of the comparison of multi-objective optimization algorithms for the FON
test function

Metrics NSGA-II SPEA PAES The hybrid algorithm

Δ Mean 3.78 × 10−1 7.92 × 10−1 1.16 × 100 5.90 × 10−1

Standard deviation 6.39 × 10−4 5.54 × 10−3 8.94 × 10−3 3.60 × 10−2

! Mean 1.93 × 10−3 1.25 × 10−1 1.51 × 10−1 1.56 × 10−3

Standard deviation 0 3.80 × 10−5 9.05 × 10−4 1.71 × 10−4

Table 16 The results of the comparison of multi-objective optimization algorithms for the ZDT1
test function

Metrics NSGA-II SPEA PAES The hybrid algorithm

Δ Mean 3.90 × 10−1 7.84 × 10−1 1.22 × 100 6.55 × 10−1

Standard deviation 1.87 × 10−3 4.44 × 10−3 4.83 × 10−3 4.91 × 10−2

! Mean 3.34 × 10−2 1.79 × 10−3 8.20 × 10−2 8.16 × 10−3

Standard deviation 4.75 × 10−3 1.00 × 10−6 8.67 × 10−3 2.73 × 10−3

Table 17 The results of the comparison of multi-objective optimization algorithms for the ZDT2
test function

Metrics NSGA-II SPEA PAES The hybrid algorithm

Δ Mean 4.30 × 10−1 7.55 × 10−1 1.16 × 100 9.57 × 10−1

Standard deviation 4.72 × 10−3 4.52 × 10−3 7.68 × 10−3 3.20 × 10−2

! Mean 7.23 × 10−2 1.33 × 10−3 1.26 × 10−1 3.04 × 10−2

Standard deviation 3.16 × 10−2 0 3.68 × 10−2 1.84 × 10−2

Table 18 The results of the comparison of multi-objective optimization algorithms for the ZDT3
test function

Metrics NSGA-II SPEA PAES The hybrid algorithm

Δ Mean 7.38 × 10−1 6.72 × 10−1 7.89 × 10−1 6.28 × 10−1

Standard deviation 1.97 × 10−2 3.58 × 10−3 1.65 × 10−3 5.30 × 10−2

! Mean 1.14 × 10−1 4.75 × 10−2 2.38 × 10−2 8.88 × 10−3

Standard deviation 7.94 × 10−3 4.70 × 10−5 1.00 × 10−5 6.97 × 10−3
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deterministic nature. Furthermore, A 2 R
n�n is the system or dynamic matrix, B 2

R
n�m is the input matrix and Bv is the disturbance matrix. Measurements are made

on this system which can be either the states themselves or linear combinations of
them:

y tð Þ ¼ Cx tð Þ þ wðtÞ ð16Þ

where y tð Þ 2 R
r is the output vector and C 2 R

r�n is the output matrix. The vector
wðtÞ stands for the measurement disturbance.

In order to establish linear state feedback around the above system, a linear
feedback law can be applied as follows:

u tð Þ ¼ �Kx tð Þ þ rðtÞ ð17Þ

In this formula, K 2 R
m�n stands for a feedback matrix (or a gain matrix). rðtÞ

denotes the reference input vector of the system having dimensions the same as the
input vector u tð Þ. The resulting feedback system is a full state feedback system due
to measuring all of the states. To design the state feedback controller with an
optimal control input and minimum error, the hybrid optimization algorithm is
applied and the optimal Pareto front of the controller is shown in the following
section.

7 Pareto Optimal State Feedback Control of a Parallel-
Double-Inverted Pendulum

The model of a parallel-double-inverted pendulum system is presented in this
section. The work deals with the stabilization control of a system which is a
complicated nonlinear and unstable high-order system. Figure 18 illustrates the
mechanical structure of the inverted pendulum. According to the figure, the cart is
moving on a track with two pendulums hinged and balanced upward by means of a
DC motor. In addition, the cart has to track a (varying) reference position. This
system includes two pendulums and one cart. The pendulums are attached to the
cart. While the cart is moving, the system has to be controlled in such a way that
pendulums are placed in desired angels. The dynamic equations of the system are as
follows:

I1€uþ C1 _u� a3 sinuþ a1€x cosu ¼ 0 ð18Þ

I2€aþ C2 _a� a4 sin aþ a2€x cos a ¼ 0 ð19Þ

M€xþ fr _xþ a1 €u cosu� _u2 sinu
� �þ a2 €a cos a� _a2 sin a

� � ¼ u ð20Þ
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where

I1 ¼ I 01 þM1l
2
1; I2 ¼ I 02 þM2l

2
2; ð21Þ

M ¼ M0 þM1 þM2 ð22Þ

a1 ¼ M1l1; a2 ¼ M2l2; a3 ¼ M1l1g; a4 ¼ M2l2g ð23Þ

where x is the position of the cart, _x is the velocity of the cart, u stands for the
angular velocity of the first pendulum with respect to the vertical line, _u is the
angular velocity of the first pendulum, a is the angular position of the second
pendulum, _a represents the angular velocity of the second pendulum,M1 is the mass
of the first pendulum, M2 is the mass of second pendulum, M0 is the mass of the
cart, l1 denotes the length of the first pendulum with respect to its center, l2 stands
for the length of the second pendulum with respect to its center, fr is the friction
coefficient of the cart with ground, I 01 is the inertia moment of the first pendulum
with respect to its center, I 02 represents the inertia moment of the second pendulum
with respect to its center, C1 is the angular frictional coefficient of the first pen-
dulum, C2 stands for the angular frictional coefficient of the second pendulum, and
u is the control effort.

To obtain the state space representations of the dynamic equations, the state
space variables are defined as x ¼ ½x1; x2; x3; x4; x5; x6�T . This vector includes the
position of the cart, the velocity of the cart, the angular position and velocity of the
first pendulum, the angular position and velocity of the second pendulum. After
linearization around the equilibrium point xa ¼ ½x1; 0; 0; 0; 0; 0�T , the state space
representation is obtained according to Eq. (25).

Fig. 18 The system of a
parallel-double-inverted
pendulum

A Hybrid Global Optimization Algorithm: Particle Swarm … 75



_x1
_x2
_x3
_x4
_x5
_x6

2
666666664

3
777777775
¼

0 1 0 0 0 0

0 fr I1I2
P2

��a1a3I2
P2

� a1C1I2
P2

��a2a4I1
P2

� a2C2I1
P2

0 0 0 1 0 0

0 � a1fr I2
P1

a3ða22�mI2Þ
P1

� c1ða22�mI2Þ
P1

� a1a2a4
P1

� a1a2a4
P1

0 0 0 0 0 1

0 � a2fr I1
P2

�a21a2a3I2
P3

a1a2C1
P2

a31a4I2�a1a4mI1I2
P3

�a31C2I2þa1C2mI1I2
P3

2
6666666664

3
7777777775

x1
x2
x3
x4
x5
x6

2
666666664

3
777777775

þ

0

� I1I2
P2

0
a1I2
P1

0
a2I1
P2

2
6666666664

3
7777777775
u

ð25Þ

where

P1 ¼ a21I2 � I1ð�a22 þ mI2Þ ð26Þ

P2 ¼ a22I1 þ a21I2 � mI1I2 ð27Þ

P3 ¼ a1I2ða22I1 þ a21I2 � mI1I2Þ ð28Þ

The block diagram of the linear state feedback controller to control the parallel-
double-inverted pendulum is illustrated in Fig. 19. The control effort of the state
feedback controller is obtained as follows

u ¼ K1 x1 � x1;d
� �þ K2 x2 � x2;d

� �þ K3 x3 � x3;d
� �

þ K4 x4 � x4;d
� �þ K5ðx5 � x5;dÞ þ K6ðx6 � x6;dÞ

ð29Þ

where xd ¼ ½x1;d; x2;d; x3;d ; x4;d; x5;d ; x6;d�T is the vector of the desired states and
K ¼ ½K1;K2;K3;K4;K5;K6� is the vector of design variables obtained via the
optimization algorithm. The boundaries of the system are:

The boundary of the control effort is uj j � 20 ½N�
The boundary of the length of x1; x3 and x5 are x1j j � 0:5 ½m�, x3j j � 0:174 ½rad�,
x5j j � 0:174 ½rad�.

The initial state vector, final state vector, and the boundaries of design variables
are as follows. Furthermore, the values of the parameters of the system of a parallel-
double-inverted pendulum are presented in Table 19.
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x0 ¼ ½0; 0; 0; 0; 0; 0�T ð30Þ

xd ¼ ½0:2; 0; 0; 0; 0; 0�T ð31Þ

50�K1 � 150 ð32Þ

150�K2 � 250 ð33Þ

Fig. 19 The block diagram of the linear state feedback controller for a parallel-double-inverted
pendulum for xd ¼ ½x1;d; 0; 0; 0; 0; 0�T

Table 19 The values of the
parameters of the system of a
parallel-double-inverted
pendulum

m0 4.2774 kg

m1 0.3211 kg

m2 0.2355 kg

l1 0.3533 m

l2 0.0963 m

H1 0.072 kg m2

H2 0.0044 kg m2

Fr 10 Kg/s

C1 0:023 Kg m2=s

C2 0:00145 Kg m2=s
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14; 900�K3 � 15; 700 ð34Þ

3; 000�K4 � 4; 000 ð35Þ

�14; 000�K5 � � 12; 000 ð36Þ

�3; 000�K6 � � 1; 500 ð37Þ

In this problem, the objective functions of the multi-objective optimization
algorithm are

F1 = the sum of settling time and overshoot of the cart;
F2 = the sum of settling time and overshoot of the first pendulum + the sum of
settling time and overshoot of the second pendulum;

These objective functions have to be minimized simultaneously. The Pareto
front of the control of the system of the parallel-double-inverted pendulum obtained
via multi-objective hybrid of particle swarm optimization and the genetic algorithm
is shown in Fig. 20. In Fig. 20, points A and C stand for the best sum of settling
time and overshoot of the cart and the sum of settling time and overshoot of the first
and second pendulums, respectively. It is clear from this figure that all the optimum
design points in the Pareto front are non-dominated and could be chosen by a
designer as optimum linear state feedback controllers. It is also clear that choosing a
better value for any objective function in a Pareto front would cause a worse value
for another objective. The corresponding decision variables (vector of linear state
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Fig. 20 Pareto front of multi-objective hybrid of particle swarm optimization and the genetic
algorithm for the control of the system of the parallel-double-inverted pendulum
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feedback controllers) of the Pareto front shown in Fig. 20 are the best possible
design points. Moreover, if any other set of decision variables is selected, the
corresponding values of the pair of those objective functions will locate a point
inferior to that Pareto front. Indeed, such inferior area in the space of two objectives
is top/right side of Fig. 20. Thus, the Pareto optimum design method causes to find
important optimal design facts between these two objective functions. From
Fig. 20, point B is the point which demonstrates such important optimal design
facts. This point could be the trade-off optimum choice when considering minimum
values of both sum of settling time and overshoot of the cart and sum of settling
time and overshoot of the first and second pendulums. The values of the design
variables obtained for three design points are illustrated in Table 20. The control
effort, the angle of the first pendulum, the angle of the second pendulum, and the
position of the cart are illustrated in Figs. 21, 22, 23 and 24. By regarding these
figures, it can be concluded that the point A has the best time response (overshoot
plus settling time) of the cart and the worst time responses (overshoot plus settling
time) of the pendulums while point C has the best time responses of pendulums and
the worst time response of the cart.
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Fig. 21 The control effort of the system of the parallel-double-inverted pendulum for design
points of the Pareto front of multi-objective hybrid of particle swarm optimization and the genetic
algorithm
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Fig. 23 The angle of the second pendulum of the system of the parallel-double-inverted pendulum
for design points of the Pareto front of multi-objective hybrid of particle swarm optimization and
the genetic algorithm
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8 Conclusions

In this work, a hybrid algorithm using GA operators and PSO formula was pre-
sented via using effectual operators, for example, traditional and multiple-crossover,
mutation and PSO formula. The traditional and multiple-crossover probabilities
were based upon fuzzy relations. Five prominent multi-objective test functions and
nine single-objective test functions were used to evaluate the capabilities of the
hybrid algorithm. Contrasting the results of the hybrid algorithm with other algo-
rithms demonstrates the superiority of the hybrid algorithm with regard to single
and multi-objective optimization problems. Moreover, the hybrid optimization
algorithm was used to obtain the Pareto front of non-commensurable objective
functions in designing parameters of linear state feedback control for a parallel-
double-inverted pendulum system. The conflicting objective functions of this
problem were the sum of settling time and overshoot of the cart and the sum of
settling time and overshoot of the first and second pendulums. The hybrid algorithm
could design the parameters of the controller appropriately in order to minimize
both objective functions simultaneously.
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