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Abstract Correct prediction of secondary and tertiary structure of proteins is one
of the major challenges in bioinformatics/computational biological research.
Predicting the correct secondary structure is the key to predict a good/satisfactory
tertiary structure of the protein which not only helps in prediction of protein
function but also in prediction of sub-cellular localization. This chapter aims to
explain the different algorithms and methodologies, which are used in secondary
structure prediction. Similarly, tertiary structure prediction has also emerged as one
of developing areas of bioinformatics/computational biological research owing to
the large gap between the available number of protein sequences and the known
experimentally solved structures. Because of time and cost intensive experimental
methods, experimentally determined structures are not available for vast majority of
the available protein sequences present in public domain databases. The primary
aim of this chapter is to offer a detailed conceptual insight to the algorithms used for
protein secondary and tertiary structure prediction. This chapter systematically
illustrates flowchart for selecting the most accurate prediction algorithm among
different categories for the target sequence against three categories of tertiary
structure prediction methods. Out of the three methods, homology modeling which
is considered as most reliable method is discussed in detail followed by strengths
and limitations for each of these categories. This chapter also explains different
practical and conceptual problems, obstructing the high accuracy of the protein
structure in each of the steps for all the three methods of tertiary structure
prediction. The popular hybrid methodologies which further club together a number
of features such as structural alignments, solvent accessibility and secondary
structure information are also discussed. Moreover, this chapter elucidates about the
Meta-servers that generate consensus result from many servers to build a protein
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model of high accuracy. Lastly, scope for further research in order to bridge
existing gaps and for developing better secondary and tertiary structure prediction
algorithms is also highlighted.

Keywords Secondary structure prediction � Tertiary structure prediction �
Ab initio folding/modeling � Threading � Homology modeling � CASP
Abbreviations

PSS Protein secondary structure
SSE Secondary structure elements
UniProtKB UNIversal PROTein resource KnowledgeBase
TrEMBL Translated European molecular biology laboratory
PDB Protein data bank
NMR Nuclear magnetic resonance
FM Free modelling
TBM Template based modelling
GOR Garnier-Osguthorpe-Robson
NNSSP Nearest-neighbor secondary structure prediction
ANN Artificial neural networks
SVM Support vector machines
SOV Segment overlap
CASP Critical assessment of protein structure prediction
EVA EValuation of automatic protein structure prediction
FR Fold recognition
BLAST Basic local alignment search tool
PSI-BLAST Position specific iterative basic local alignment search tool
MEGA Molecular evolutionary genetics analysis
PHYLIP PHYLogeny inference package
GROMACS GROningen machine for chemical simulations
AMBER Assisted model building and energy refinement
CHARMM Chemistry at HARvard molecular mechanics
GDT Global displacement test
PROCHECK PROtein structure CHECK
PROSA PROtein structure analysis
MAT MonoAmine transporters
HMM Hidden Markov model
CPU Central processing unit
RPS-BLAST Reversed position specific BLAST
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1 Introduction

Proteins are the building blocks of all cells in the living creatures of all kingdoms.
Proteins are produced by the process of translation. In this process, transcribed gene
sequence or mRNA is translated into a linear chain of amino acids which are called
proteins. To characterize the structural topology of proteins, primary, secondary,
tertiary and quaternary structure levels have been proposed. In the hierarchy, pro-
tein secondary structure (PSS) plays an important role in modeling of the protein
structures because it represents the local conformation of amino acids into regular
structures. There are three basic secondary structure elements (SSEs): alpha-helices,
beta-strands and coils. Alpha helices are corkscrew-shaped conformations where
the amino acids are packed tightly together. Beta sheets are made up of two or more
adjacent strands connected to each other by hydrogen bonds, extended so that the
amino acids are stretched out as far from each other to form beta strand. There are
also two main categories of the beta-sheet structures: if strands run in the same
direction then, called parallel-sheet whereas, if they run in the opposite direction
then, called anti-parallel beta-sheet. Several approaches have been taken in order to
devise tools for predicting the secondary structure from the protein sequence alone.
Moreover, secondary structure itself may be sufficient for accurate prediction of a
protein’s tertiary structure (Przytycka et al. 1999). Therefore, many researchers
employ PSS as a feature to predict the tertiary structure (Gong and Rose 2005),
function (Lisewski and Lichtarge 2006) and sub-cellular localization of proteins
(Nair and Rost 2003, 2005; Su et al. 2007).

Proteins have a precise tertiary structure that directs their function. Determining
the structures of various proteins would aid in our understanding of the mechanisms
of protein functions in biological systems. Prediction of protein structure from
amino acid sequences has been one of the most challenging tasks in computational
biology/bioinformatics for many years (Baker and Sali 2001; Skolnick et al. 2000).
Currently, only biophysical experimental techniques such as X-ray crystallography
and nuclear magnetic resonance are able to provide precise protein tertiary struc-
tures. There are 17,473,872,940 protein sequences in the latest release of UNIversal
PROTein resource KnowledgeBase (UniProtKB)/Translated European Molecular
Biology Laboratory (TrEMBL) as of 22nd April 2014, whereas the Protein Data
Bank (PDB) contained only 99,624 protein structures till then. This is achieved as a
result of an increase in large-scale genomic sequencing projects and the inability of
proteins to crystallize or crystals to diffract well. This gap has widened too much
over the last decade, despite the development of dedicated high-throughput X-ray
crystallography pipelines (Berman et al. 2000). Solving the protein structure by
Nucleic Magnetic Resonance (NMR) is limited to small and soluble proteins only.
Moreover, X-ray crystallography and NMR are costly and time consuming methods
for solving the protein structure. A list of the number of different types of molecules
in PDB and their experimental methods by which the structure is determined is
listed in Table 1. Therefore, the computational prediction of structure of proteins is
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highly needed to fill the gap between the protein sequences available in public
domain databases and their experimentally solved structures.

Historically, protein structure prediction was classified into three categories: (i)
Ab initio modeling (Liwo et al. 1999; Zhang et al. 2003; Bradley et al. 2005;
Klepeis et al. 2005; Klepeis and Floudas 2003) (ii) Threading or Fold recognition
(Bowie et al. 1991; Jones et al. 1992; Xu and Xu 2000; Zhou and Zhou 2005;
Skolnick et al. 2004) and (iii) Homology or Comparative modeling (Šali and
Blundell 1993; Fiser et al. 2000). Threading and comparative modeling build
protein models by aligning query sequences onto solved template structures by X-
ray crystallography or NMR. When close templates are identified, high-resolution
models could be built by the template-based methods. If templates are absent from
the PDB, the models need to be built from scratch, i.e. ab initio modeling.

Nowadays, these prediction categories are clubbed into two major groups: free
modeling (FM) involving Ab initio folding and template-based modeling (TBM),
which includes comparative/homology modeling and threading. These predicted
models must be checked for protein structure quality validation by various pro-
grammes available.

This chapter is broadly divided under 9 sections which are further divided into
sub-headings wherever required. Section 2.1 describes about amino acid propensity
based secondary structure prediction method. Section 2.2 discusses about template
based secondary structure predictions and the accuracy obtained by these methods.
Section 2.3 explains the secondary structure prediction methods based on machine
learning approaches. Ab initio folding/modeling and its limitations are is described
in Sect. 3.1. Threading and Homology modeling methods with their strengths and
their weakness are explained in Sects. 3.2 and 3.3 respectively. Hybrid and Meta-
Servers which aid in accuracy of protein models are described in Sects. 4 and 5.
Section 6 describes about the protein structure prediction community, Critical
Assessment of protein Structure Prediction (CASP). Section 7 describes about the
various application of protein models generated by the three major prediction
methods. Future prospects of protein secondary and tertiary structure prediction

Table 1 Current PDB holdings (as on April 22nd, 2014)

Experimental methods Molecule types

Proteins Nucleic
acids

Protein/NA
complexes

Other Total

X ray 82,406 1,516 4,287 4 88,213

NMR 9,129 1,078 206 7 10,420

Electron microscopy 523 52 173 0 748

Hybrid 59 3 2 1 65

Other 155 4 6 13 178

Total 92,272 2,653 4,674 25 99,624
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methodologies or algorithms as well as key steps which need to be improved are
discussed in Sect. 8. Finally, Sect. 9 provides a comprehensive conclusion for the
entire chapter.

2 Secondary Structure Prediction

2.1 Amino Acid Propensity Based Prediction

Early prediction methods as proposed by Chou and Fasman (1974) and the Garnier-
Osguthorpe-Robson (GOR) (Garnier et al. 1978) rely on the propensity of amino
acids that belong to a given secondary structure. These are simple and direct
methods, devoid of complex computer calculations, that utilize empirical rules for
predicting the initiation and termination of helical regions in proteins. The relative
frequencies of each amino acid in each secondary structure of known protein
structures are used to extract the propensity of the appearance of each amino acid in
each secondary structure type. Propensities are then used to predict the probability
that amino acids from the protein sequence would form a helix, a beta strand, or a
turn in a protein. These methods have introduced the conditional probability of
immediate neighbor residues for computation. The web-servers based on Chou and
Fasman (1974) and GOR showed prediction accuracy between 60–65 %. However
the updated, GOR V algorithm which is available as web-server at http://gor.bb.
iastate.edu/ combines information theory, bayesian statistics and evolutionary
information and has reached an accuracy of prediction to 73.5 % (Sen et al. 2005).

2.2 Template Based Prediction

This method uses the information from database of proteins with known secondary
structures to predict the secondary structure of a query protein by aligning the
database sequence with the query sequence and finally assigning the secondary
structures to the query sequence. The nearest-neighbor method belongs to this
category. This category is reliable if both sequences have good identical or
homologous regions as compared to a threshold value. The two most successful
template-based methods are Nearest-neighbor Secondary Structure Prediction
(NNSSP) (Yi and Lander 1993) and PREDATOR (Frishman and Argos 1997). The
accuracy of these methods lies in the range 63–68 % (Runthala and Chowdhury
2013).

Secondary and Tertiary Structure Prediction of Proteins … 545

http://gor.bb.iastate.edu/
http://gor.bb.iastate.edu/


2.3 Sequence Profile Based Method

This method uses the machine learning algorithms to predict the secondary struc-
ture of the query protein. Artificial Neural Networks (ANNs), Support Vector
Machines (SVMs) and Hidden Markov Models (HMMs) are the most widely used
machine learning algorithms that come under this category (Jones 1999a; Karplus
et al. 1998; Kim and Park 2003; Chandonia and Karplus 1995). Currently, most
effective PSS prediction methods are based on machine learning algorithms, such as
PSIPRED (McGuffin et al. 2000), SVMpsi (Kim and Park 2003), PHD (Rost et al.
1994), PHDpsi (Przybylski and Rost 2002), Porter (Pollastri and McLysaght 2005),
JPRED3 (Cole et al. 2008), STRIDE (Heinig and Frishman 2004), SPARROW
(Bettella et al. 2012) and SOPMA (Geourjon and Deléage 1995) and which employ
Artificial Neural Network (ANN) or Support Vector Machines (SVM) learning
models. In addition to protein secondary structure, these servers also make pre-
dictions on Solvent Accessibility and Coiled-coil regions etc. These programmes or
web-servers are listed in Table 2. These methods have an accuracy ranging
72–80 %, depending on the method, the training and the test datasets.

Two types of errors are most prevalent in secondary structure prediction of
proteins. One of these errors is called local errors which occur when a residue is
wrongly predicted. Second type of error is called structural error, which occur when
the structure is altered globally. Sometimes, errors that alter the function of a
protein should be avoided whenever possible. Q3 is the most commonly used
measures of local errors, whereas the Segment Overlap (SOV) Score (Zemla et al.
1999) is the most well known measure for structural errors. These measures have
been adopted by various communities in these research areas e.g. CASP (Moult
et al. 1995) and EVA (Eyrich et al. 2001). Good secondary structures lay the
foundation for better prediction of tertiary structures of proteins. The following
section provides an insight into the methods for predicting the tertiary structures of
proteins.

3 Tertiary Structure Prediction

As discussed in introduction, tertiary structure prediction methods are categorized
into three major methods to model a target protein sequence. Flowchart for
selecting the most accurate prediction algorithm/method among these three cate-
gories for the target sequence is schematically represented in Fig. 1.
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3.1 Ab Initio Folding/Modeling

This method is simply based on elementary fundamentals of energy and geometry
(Moult and Melamud 2000). Ab initio structure prediction seeks to predict the
native conformation of a protein from the amino acid sequence alone. Ab initio
prediction of protein structures makes no use of information available in databases
mainly PDB (Nanias et al. 2005). The goal of this method is to predict the structure
of a protein based entirely on the laws of physics and chemistry. It is assumed that
the actual native state of a protein sequence has the lowest free energy. It means that
the protein native state conformation is basically a model at the global minima of

Table 2 List of sequence profile-based web servers and programmes for secondary structure
prediction along with the webpage URL and the programme description

S. no. Name of the web server/group (URL) Description of the web server/group

1 PSIPRED (McGuffin et al. 2000) [http://
bioinf.cs.ucl.ac.uk/psipred/]

A simple and accurate secondary struc-
ture prediction server, incorporating two
feed-forward neural networks which
perform an analysis on output obtained
from PSI-BLAST

2 PORTER (Pollastri and McLysaght
2005) [http://distill.ucd.ie/porter/]

A server which relies on bidirectional
recurrent neural networks with shortcut
connections, accurate coding of input
profiles obtained from multiple sequence
alignments, second stage filtering by
recurrent neural networks

3 PHD (Rost et al. 1994) [http://npsapbil.
ibcp.fr/cg-bin/npsa_automat.pl?page=/
NPSA/npsa_phd.html]

An automated server which uses evolu-
tionary information from multiple
sequence alignment to predict the sec-
ondary structure prediction of proteins

4 JPRED3 (Cole et al. 2008) [http://www.
compbio.dundee.ac.uk/www-jpred/]

Jpred incorporates the Jnet algorithm in
order to make more accurate predictions.
In addition to protein secondary struc-
ture Jpred also makes predictions on
solvent accessibility and coiled-coil
regions

5 STRIDE (Heinig and Frishman 2004)
[http://webclu.bio.wzw.tum.de/stride/]

This server implements a knowledge-
based algorithm that makes combined
use of hydrogen bond energy and
statistically derived backbone torsional
angle information

6 SPARROW (Bettella et al. 2012) [http://
agknapp.chemie.fu-berlin.de/sparrow/]

This server uses a hierarchical scheme of
scoring functions and a neural network
to predict the secondary structure

7 SOPMA (Geourjon and Deléage 1995)
[http://npsa-pbil.ibcp.fr/cgi-bin/npsa_
automat.pl?page=npsa_sopma.html]

A web-server which improved their
prediction accuracy when combined
with PHD secondary structure prediction
method
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the energy landscape. Hence, ab initio algorithm actually searches the entire pos-
sible conformational space of a target sequence, in order to find the native state
among all conformations.

For example, if we consider only three allowed conformations per residue, then a
protein of 200 residues can have 3200 different conformations (Runthala and
Chowdhury 2013). Hence, searching this huge conformational space will be extre-
mely challenging task. This is the most difficult category of protein structure pre-
diction among all the three different methods of structure prediction which

Fig. 1 Flowchart for selecting the most accurate algorithm for prediction of the target sequence
against three categories of tertiary structure prediction
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completely predicts a new fold (Skolnick and Kolinski 2002; Floudas et al. 2006).
With increasing protein size, the conformational space to be searched increases
sharply, this makes the ab initio modeling of larger proteins extremely difficult
(Zhang and Skolnick 2004).

Currently, the accuracy of ab initio modeling is limited to small proteins having
length less than 50 amino acid residues. Ab initio structure prediction requires an
efficient potential function to find the conformation of the modeled protein near to
native state protein structure with lowest free energy. Ab initio structure prediction
is challenging because current potential functions have limited accuracy. Few
popular web servers for modeling of the protein structure by ab initio folding/
modeling method are listed in Table 3.

3.2 Fold Recognition (FR) or Threading

Fold recognition or threading method aims to fit a target sequence to a known
structure in a library of folds and the model built is evaluated using residue based
contact potentials (Floudas 2007). Although fold recognition will not yield equiv-
alent results as those from X-ray crystallography or NMR yet, it is a comparatively

Table 3 List of web servers for modeling protein structure by ab initio folding method along with
the webpage URL and the programme description

S. no. Name of the web server/group
(URL)

Description of the web server/group

1 ROBETTA (Kim et al. 2004;
Bradley et al. 2005) [http://
robetta.bakerlab.org]

This web-server provides ab initio and
comparative models of protein domains.
Domains having no sequence similarity
with PDB sequences are modeled by
Rosetta de novo protocol

2 QUARK (Xu and Zhang 2012)
[http://zhanglab.ccmb.med.
umich.edu/QUARK/]

De novo protein structure prediction web server
aims to construct the correct protein 3D model
from amino acid sequence by replica-exchange
Monte Carlo simulation under the guide of an
atomic-level knowledge-based force field

3 PROTINFO (Hung et al. 2005)
[http://protinfo.compbio.
washington.edu]

De novo protein structure prediction web
server utilizes simulated annealing for 3D
structure generation and different scoring
functions for selection of final five conformers

4 SCRATCH (Cheng et al. 2005)
[http://www.igb.uci.edu/servers/
psss.html]

This server utilizes recursive neural networks,
evolutionary information, fragment libraries and
energy to build protein 3D model

5 BHAGEERATH (Jayaram et al.
2006) [http://www.scfbio-iitd.
res.in/bhageerath]

Energy based methodology for narrowing down
the search space and thus helps in building a
good protein 3D model
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fast and inexpensive way to build a close approximation of a structure from a
sequence without involving the time and costs of experimental procedures. Fold
Recognition (FR) was reserved for methods which did not rely on sequence
searching and where the sequence identity between target and template was below
the so-called “twilight zone” spanning between 25–30 %. The rationale behind the
threading method is that total number of experimentally solved 3D structure
deposited in PDB database doesn’t have a new fold. The nature has limited number
of basic folds which form the framework of most of the protein structures available
in PDB. Generally, similar sequence implies similar structure but the reverse is not
true. Similar structures are often found for proteins for which no sequence similarity
to any known structure can be detected (Floudas et al. 2006). Using fold recognition
or threading, we are able to identify proteins with known structures that share
common folds with the target sequences. Fold recognition methods work by com-
paring each target sequence against a library of potential fold templates using energy
potentials and/or other similarity scoring methods. For such comparison, we first
need to define a library of potential folds. Once the library is defined, the target
sequence will be fitted into each library entry and an energy function is used to
evaluate the fit between the target sequence and the library entries to determine the
best possible templates. The template with the lowest energy score is then assumed
to best fit the fold of the target protein.

Fold recognition methods also includes various properties of structural envi-
ronment of the amino acid residue. Structural environments are more conserved
than the actual type of residue, therefore in the absence of homology, a fold could
be predicted by measuring the compatibility of a sequence with template folds in
terms of amino acid preferences for certain structural environments. These amino
acid preferences for structural environment provide sufficient information to choose
among the folds. The amino acid preferences for three main types of structural
environment comprise of the solvent accessibility, the contact with polar atoms and
the secondary structure. The main limitation of this method is high computational
cost, since each entry in the whole library of thousands of possible folds needs to be
aligned in all possible ways to select the fold(s). Another major bottleneck is the
energy function used for the evaluation of alignment. It is not reasonable to expect
to find the correct folds in all cases with a single form of energy function. Few
popular web servers for modeling the protein structure by threading method are
listed in Table 4.

3.3 Homology Modeling or Comparative Modeling

Comparative or homology protein structure modeling builds a three-dimensional
model for a protein of unknown structure (the target) based on one or more related
proteins of known structure. The necessary conditions for getting a useful model are
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(a) Detectable similarity (Greater than or equal to 30 %) between the target
sequence and the template structures and

(b) Availability of a correct alignment between them.

Homology or Comparative modeling is a multistep process that can be sum-
marized in following six steps:

3.3.1 Template Search, Selection and Alignment

Template search is generally done by comparing the target sequence with the
sequence of each of the structures in the PDB database. The performance depends
on the sensitivity of the comparison of target and template sequences by various
programmes e.g. FASTA which is available at http://www.ebi.ac.uk/Tools/sss/fasta/
while, BLAST and PSI-BLAST (Altschul et al. 1997) are available at http://blast.
ncbi.nlm.nih.gov/Blast.cgi. The simplest template selection rule is to select the
structure with the highest sequence similarity with the target sequence. The quality
of a template increases with its overall sequence similarity with the target and

Table 4 List of web servers for modeling the protein structure by threading or fold recognition
method along with the webpage URL and the description of programme

S. no. Name of the web server/group [URL] Description of the web server/group

1 I-TASSER (Zhang et al. 2005) [http://
zhanglab.ccmb.med.umich.edu/I-
TASSER/]

3D models are built based on multiple-
threading alignments by LOMETS and
iterative template fragment assembly

2 SPARKSX (Yang et al. 2011) [http://
sparks-lab.org/yueyang/server/
SPARKS-X/]

This server employs significantly
improved secondary structure predic-
tion, real value torsion angle prediction
and solvent accessibility prediction to
model a more accurate protein structure

3 LOOPP (Teodorescu et al. 2004) [http://
cbsuapps.tc.cornell.edu/loopp.aspx]

A fold recognition program based on the
collection of numerous signals to build
the target structure

4 PROSPECT (Xu and Xu 2000) [http://
compbio.ornl.gov/structure/prospect]

PROSPECT is based on scoring func-
tion, which consists of four additive
terms: (i) a mutation term, (ii) a single-
ton fitness term, (iii) a pairwise-contact
potential term, and (iv) alignment gap
penalties

5 MUSTER (Wu and Zhang 2008) [http://
zhanglab.ccmb.med.umich.edu/
MUSTER/]

Muster generates sequence-template
alignments by combining sequence
profile-profile alignment with multiple
structural information

6 PHYRE2 (Kelley and Sternberg 2009)
[http://www.sbg.bio.ic.ac.uk/*phyre2/
html/page.cgi?id=index]

A server which uses profile–profile
matching algorithms to build the protein
model
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decreases with the number and length of gaps in the alignment. Multiple sequence
alignment by various freely available programmes e.g. ClustalW (Larkin et al.
2007) Mufft (Katoh et al. 2002), Kalign (Lassmann and Sonnhammer 2005),
Probcons (Do et al. 2005) etc. and a development of phylogenetic tree by freely
available programmes e.g. MEGA (Tamura et al. 2013) and PHYLIP etc. can help
in selecting the template from the subfamily that is closest to the target sequence.
HHpred (http://toolkit.tuebingen.mpg.de/hhpred) is one of the best servers which
the can even detect very distant relationships between the target sequence and the
solved PDB structures significantly. This is the first server that is based on the
pairwise comparison of profile Hidden Markov Models (HMMs) (Söding et al.
2005).

The similarity between the ‘environment’ of the template and the environment in
which the target needs to be modeled should also be considered. The quality of the
experimentally determined structure is another important factor in template selec-
tion whereby high resolution X-ray crystal structure is more preferred for template
selection than that of low resolution crystal structure. Multiple templates rather than
selecting a single template, generally increases the model accuracy. A good protein
structure model depends on alignment between the target and template.

3.3.2 Alignment Correction in Core Regions

An accurate alignment can be calculated automatically using standard sequence-
sequence alignment methods, for example, Blast2seq (http://blast.ncbi.nlm.nih.gov/
Blast.cgi) and dynamic programming based Needle global sequence alignment
(https://www.ebi.ac.uk/Tools/psa/emboss_needle/). In low sequence identity cases,
the alignment accuracy is the most important factor which affects the quality of the
predicted model. Alignments can be improved by including structural information
from the template protein structure. Gaps should be avoided in core regions mainly
in secondary structure elements (which are found to be conserved in most cases),
buried regions and between two residues that are far in space. It is important to
inspect and edit the alignment manually by many tools e.g. Bioedit (www.mbio.
ncsu.edu/bioedit/bioedit.html) etc., especially if the target-template sequence iden-
tity is low.

3.3.3 Backbone, Loop and Side-Chain Modeling

Creating the backbone is essential for modeled protein structure. For backbone, we
simply copy the coordinates of those template residues that show up in the align-
ment with the model sequence. If two aligned residues differ, only the backbone
coordinates (N, Cα, C and O) can be copied. If they are the same, we can also
include the coordinates of side chain amino acid residues.
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In comparative modeling, target sequences often have few inserted residues as
compared to the template structures. Thus, no structural information about these
inserted regions could be obtained from the template structures. These regions are
called surface loops. Loops often play an important role in defining the functional
specificity of a given protein structure, forming the active and binding sites for drug
molecules. The accuracy of loop modeling is a major issue for comparative models
for applications such as protein-ligand docking i.e. structure based drug design.
There are two main classes of loop modeling methods:

(a) Database search approaches, where a small loop of 3–10 amino acid residues
are searched in a database of known protein structures and if such loops fit the
criteria of lowest energy, such loops are selected and added to the model
structure. All major molecular modeling programs and servers support this
approach e.g. Modeller (Šali and Blundell 1993), Swiss-Model (Guex and
Peitsch 1997).

(b) The conformational search approaches mainly depend on an efficient energy
function to choose the loop with lowest energy. If required, energy of the
selected loop is minimized using Monte Carlo or molecular dynamics simu-
lations by AMBER, and GROMACS techniques in order to arrive at the best
loop conformation with lowest energy.

Side chain modeling is also one of the essential components in structure pre-
diction of proteins. When we compare the side-chain conformations (rotamers) of
residues that are conserved in structurally similar proteins, we copy coordinates of
conserved amino acid residues entirely from the template to the model. But when
we have different residues, side chains are added to each amino acid and their all
possible rotamers are searched to find the most stable (having least energy) rotamer
from rotamer library.

3.3.4 Model Refinement

One of the major limitations of computational protein structure prediction is the
deviation of predicted models from their experimentally derived true, native
structures. Refinement of the protein model is required, if there is problem in
structural packing of side chains, loops, and secondary structural elements in the
target model. For any error in backbone or side chain packing, energy minimization
is done which requires an enormous precision in the energy function. At every
minimization step, a few big errors (like bumps, i.e., too short atomic distances) are
removed while many small errors might be introduced which lead to another dis-
tortion in the structure. In energy minimization, force fields must be fast to handle
these large molecules efficiently. Refinement of the low resolution predicted models
to high resolution structures are close to the native state, however, it has proven to
be extremely challenging. There are various programmes e.g. GROMACS (http://
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www.gromacs.org/), AMBER (www.amber.scripps.edu), and CHARMM (http://
www.charmm.org/) which are freely as well commercially available for protein
model refinement by correcting the overall protein structural geometry. One of the
recently developed refinement methods called 3Drefine is computationally inex-
pensive and consumes only few minutes of CPU time to refine a protein of typical
length of 300 amino acid residues (Bhattacharya and Cheng 2013).

3.3.5 Model Evaluation or Validation

The predicted model must be checked for

(a) Errors or distortion in side chain packing of the modeled structure.
(b) Distortions or shifts in correctly aligned region of target with the template

structures.
(c) Distortions or shifts of a region that does not align with any of the template

structures.
(d) Distortions or shifts of a region that is aligned incorrectly with the template

structures.

Structural model accuracy is mainly based on global distance test (GDT), which
is an average percentage of model Cα atoms within a specified distance threshold to
actual native conformation (Jauch et al. 2007).

GDT ¼ 1
4
ðmax C

1A0þmax C
2A0þmax C

4A0þmax C
8A0Þ ð1Þ

Equation 1 GDT score where CnA
0 is the number of atom pairs closer than distance

of n = 1, 2, 4 and 8A0.
TM score is another method for validating the model accuracy to score the

topological similarity of target and template structures, where the score near to 1.00
is the best predicted near-native model against the actual experimental structure for
a target (Xu and Zhang 2010). MaxSub is another new and independently devel-
oped method which aims at identifying the largest subset of C(alpha) atoms of a
model that superimpose ‘well’ over the experimental structure, and produces a
single normalized score that represents the quality of the model (Siew et al. 2000).

Various programmes and web-servers are available for checking the quality of
the model. One of these is Procheck (Laskowski et al. 1993) that generates the
Ramachandran Plot, which illustrates the stereo chemical quality of the protein
model. Few popular web servers for protein structure quality validation and their
description are listed in Table 5.

Few popular web servers for modeling the protein structure by homology or
comparative modeling method along with the webpage URL and description are
listed in Table 6.
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3.3.6 Homology Models Repositories

However, there are many repositories available, which contain protein homology
models generated using various automated methods that provide models which
serve as starting points for biologists/experimentalists. SWISS-MODEL repository
(http://swissmodel.expasy.org/repository/) is one of the databases of annotated
three-dimensional comparative protein structure models generated by the fully
automated homology-modelling pipeline SWISS-MODEL. Protein Model Portal
(http://proteinmodelportal.org) is another repository aimed at storing manually built
3D models of proteins (Arnold et al. 2009). The most recent database is Modbase
(http://modbase.compbio.ucsf.edu) which contains the datasets of comparative
protein structure models, calculated by modeling pipeline ModPipe (Pieper et al.
2011).

Several additional features when clubbed to the methods for tertiary structure
prediction generate hybrid methods which are used to produce more accurate
protein tertiary structures. Following section discusses about these hybrid methods
for the protein tertiary structure prediction.

Table 5 List of web servers for protein structure quality validation along with the webpage URL
and the programme description

S. no. Name of the web server/group [URL] Description of the web server/group

1 QMEAN (Benkert et al. 2009) [http://
swissmodel.expasy.org/qmean/cgi/
index.cgi]

Quality estimate is based on geometrical
analysis of single model, and the clus-
tering-based scoring function

2 PROSA-WEB (Wiederstein and Sippl
2007) [https://prosa.services.came.sbg.
ac.at/prosa.php]

Quality is checked by generation of
Z-scores and energy plots that highlight
potential problems spotted in protein
structures

3 PROCHECK (Laskowski et al. 1993)
[http://services.mbi.ucla.edu/SAVES/]

Stereo chemical quality of a protein
structure is checked by analyzing resi-
due-by-residue geometry and overall
structural geometry

4 VERIFY-3D (Bowie et al. 1991; Luthy
et al. 1992) [http://services.mbi.ucla.
edu/SAVES/]

Determines the compatibility of an
atomic model (3D) with its own amino
acid sequence (1D) by assigning a
structural class based on its location and
environment

5 ERRAT (Colovos and Yeates 1993)
[http://services.mbi.ucla.edu/SAVES/]

This server analyzes the statistics of
non-bonded interactions between differ-
ent atom types and plots the value of the
error function
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4 Hybrid Methods for Protein Tertiary Structure
Prediction

Nowadays, a number of fully automated hybrid methods are designed in order to
perform rapid, completely automated fold recognition on a proteome wide scale.
These hybrid methods club together a number of features such as structural
alignments, solvent accessibility and secondary structure information in order to
produce a protein model with high accuracy. Some such methods are discussed
below.

GenTHREADER (Jones 1999b) is a fully automated hybrid method for fold
recognition which uses a traditional sequence alignment algorithm to generate
alignments. These generated alignments are thereafter evaluated by a method
derived from threading techniques. The algorithm for GenTHREADER is divided
into three stages: alignment of sequences, calculation of pair potential as well as

Table 6 List of web servers for modeling the protein structure by homology modeling or
comparative modeling method along with the webpage URL and the programmes description

S. no. Name of the web server/group [URL] Description of the web server/group

1 GENO3D (Combet et al. 2002) [http://
geno3d-pbil.ibcp.fr/]

A web server which builds the model
based on distance geometry, simulated
annealing and energy minimization
algorithms to build the protein 3D
model

2 M4T (Fernandez-Fuentes et al. 2007)
[http://manaslu.aecom.yu.edu/M4T/]

A fully automated comparative protein
structure modeling server with two
major modules, Multiple Templates
(MT) and Multiple Mapping Method
(MMM)

3 CPHMODELS 3.2 (Nielsen et al. 2010)
[http://www.cbs.dtu.dk/services/
CPHmodels/]

Protein modeling is based on profile-
profile alignment guided by secondary
structure and exposure predictions

4 3DJIGSAW (Bates et al. 2001) [http://
www.bmm.icnet.uk/servers/3djigsaw/]

An automated server to build three-
dimensional models for proteins based
on homologues of known structure

5 PUDGE (Norel et al. 2010) https://
bhapp.c2b2.columbia.edu/pudge/cgi-
bin/pipe_int.cgi

A server that includes secondary struc-
ture predictions, domains predictions
and disorder prediction to predict the
high quality homology model

6 SWISS-MODEL (Guex and Peitsch
1997) [http://swissmodel.expasy.org/
SWISSMODEL.html]

A fully automated protein structure
homology-modeling server

7 ESYPRED3D (Lambert et al. 2002)
[http://www.fundp.ac.be/sciences/
biologie/urbm/bioinfo/esypred/]

This server results in good protein
model by using several multiple align-
ment programs by combining, weighing
and screening
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solvation terms and finally, evaluation of the alignment using a neural network
(Jones 1999b). GenTHREADER is advantageous as apart from being very fast, it
requires no human intervention in the prediction process.

FUGUE (Shi et al. 2001) is another example of hybrid server for recognizing
distant homologues by sequence-structure comparison. FUGUE utilizes environ-
ment-specific substitution tables and structure-dependent gap penalties. Here scores
for amino acid matching and insertions/deletions are evaluated based on the local
structural environment of each amino acid residue in a known structure. Local
structural environment defined in terms of secondary structure, solvent accessibil-
ity, and hydrogen bonding status, are used by FUGUE to produce a high quality 3D
protein model. FUGUE also encompasses scanning database of structural profiles,
calculation of the sequence-structure compatibility scores and prediction of align-
ment of multiple sequences against multiple structures in order to enrich the con-
servation/variation information (Shi et al. 2001).

123D+ (http://pole-modelisation.univ-bpclermont.fr/prive/fiches_HTML/123D
+.html) is another hybrid server which combines sequence profiles, secondary
structure prediction and contact capacity potential to thread a protein sequence
through asset of structures.

RaptorX (http://raptorx.uchicago.edu/) is a protein structure prediction hybrid
server that excels in predicting 3D structures for protein sequences without close
homologs in the PDB (Källberg et al. 2012). It predicts secondary and tertiary
structures, contacts, solvent accessibility, disordered regions and binding sites for a
given input sequence. Raptor X, first of all uses profile-entropy scoring method to
assess the quality of information content in sequence profiles (Peng and Xu 2010).
Thereafter it uses conditional random fields to integrate a variety of biological
signals in a nonlinear threading score. Finally, multiple-template threading proce-
dure (Peng and Xu 2009), which enables the use of multiple templates to model a
single target sequence is used to produce a high quality protein 3D model.

MULTICOM toolbox (http://sysbio.rnet.missouri.edu/multicom_toolbox/) is
another programme consisting of a set of protein structure and structural feature
prediction tools. Secondary structure prediction, solvent accessibility prediction,
disorder region prediction, domain boundary prediction, contact map prediction,
disulfide bond prediction, beta-sheet topology prediction, fold recognition, multiple
template combination and alignment, template-based tertiary structure modeling,
protein model quality assessment, and mutation stability prediction are some of the
functions facilitated by MULTICOM toolbox (Cheng et al. 2012).

Hybrid methods use various aspects for predicting an accurate protein tertiary
structure. However Meta-servers discussed in the following section deals with
generation of a consensus prediction of protein tertiary structure assembled from
different servers.
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5 Meta-Servers for Protein Tertiary Structure Prediction

Several meta-servers not only integrate protein structure predictions performed by
various methods but also assemble and interpret the results to come up with a
consensus prediction. This section deals with a comprehensive discussion of such
meta-servers.

Pcons.net meta-server (Wallner et al. 2007) retrieves results from several pub-
lically available servers which are then analyzed and assessed for structural cor-
rectness using Pcons as well as ProQ, thus presenting the users a ranked list of
possible models (Lundström et al. 2001). In combination of several publically
available servers, Pcons.net meta-server also uses Reversed Position Specific
BLAST (RPS-BLAST) to parse the sequence into structural domains by analyzing
the significance and span of the best RPS-BLAST alignment.

3D-Jury (Ginalski et al. 2003) are the meta-servers which focus on the selection
of high quality obtained from different servers. 3D-Jury, takes groups of models
generated by a set of servers as input which are then compared with each other and
a similarity score is assigned to each pair by MaxSub tool (Siew et al. 2000)
followed by providing ranking to the models.

3D-SHOTGUN (Fischer 2003) meta server does not just select the best model
but also refines initial models for building the protein structure model with high
accuracy. 3D-SHOTGUN meta-predictor consists of three steps: (i) assembly of
hybrid models, (ii) confidence assignment, and (iii) selection. 3D-SHOTGUN first
assembles hybrid models from the initial models and then assigns scores to each of
the assembled models by using the original models scores and the structural sim-
ilarities between them. Thereby resulting a highly sensitive and ensuring a signif-
icantly higher specificity of the models than that of individual servers (Fischer
2003).

GeneSilico (Kurowski and Bujnicki 2003) is another meta-server which com-
bines the useful features of other meta-servers available, but with much greater
flexibility of the input in terms of user-defined multiple sequence alignments.
However, there are several drawbacks reported in the current meta-servers
including 3D-Jury (Ginalski et al. 2003) and GeneSilico (Kurowski and Bujnicki
2003). They take the initial threading inputs from remote computer which are
occasionally shut down or are not available. Secondly, the instability of the algo-
rithms of the remote servers is another drawback of these meta-servers (Wu and
Zhang 2007).

LOMETS (Wu and Zhang 2007), overcomes the above drawbacks. It is one of
the good performing meta-servers in which all nine individual threading servers are
installed locally, which facilitates controlling and tuning of Meta-server algorithms
in a consistent manner making the users able to obtain quick final consensus. It
facilitates quick generation of initial threading alignments owing to the nine state of
art threading programs that are installed and run in a local computer cluster, thus
ensure faster results as compared to the traditional remote-server-based meta-
servers. Based on TM-score, the consensus models generated from the top
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predictions by LOMETS were at least 7 % more accurate than the best individual
servers. In addition to the 3D structure prediction by threading, LOMETS also
provides highly accurate contact and distance predictions for the query sequences.
The performance of LOMETS can be analyzed by the fact that average CPU time
for a medium size protein (∼200 residues) is less than 20 min when the programs
are run in parallel on nine nodes of the cluster.

A List of Meta-servers for protein tertiary structure prediction along with the
webpage URL and the description of the programs in Table 7.

The need for critical evaluation of various methods and developments in the field
of protein structure prediction is successfully fulfilled by CASP meetings. The
following section gives an overview of several agenda of CASP.

6 CASP

Protein structure prediction algorithms are constantly being developed and rede-
fined to reach the experimental accuracy. Therefore, protein structure prediction
strategies and methodologies are tested every 2 years in the Critically Assessment
of techniques for protein Structure Prediction (CASP) meeting, which started since
1994. Since then, ten successful CASP meetings are over by 2012 and CASP11 is
due in 2014. The participation by various research groups in the CASP are

Table 7 List of meta-servers for protein tertiary structure prediction along with the webpage URL
and the description of the programs

S. no. Name of the web server/group [URL] Description of the web server/group

1 LOMETS (Wu and Zhang 2007)
[http://zhanglab.ccmb.med.umich.
edu/LOMETS/]

Meta server that includes locally installed
threading programs FUGUE, HHpred,
SPARKS. LOMETS generates the final
models using a consensus approach

2 3D-Jury (Ginalski et al. 2003) [http://
BioInfo.PL/Meta/]

The meta server provides access and results
assessment from various remote predictors
including, 3DPSSM, ESyPred3D, FUGUE,
HHpred, mGenTHREADER etc.

3 GeneSilico (Kurowski and Bujnicki
2003) [https://genesilico.pl/meta2/]

The meta server provides access to various
remote and local predictors including
3DPSSM, FUGUE, HHpred, mGenTH-
READER, Pcons, Phyre, etc.

4 Pcons.net (Lundström et al. 2001),
(Wallner et al. 2007) [http://pcons.
net/]

The Pcons protocol analyzes the set of
protein models and looks for recurring
three-dimensional structural patterns and
assigns a score

5. 3D-SHOTGUN (Fischer 2003)
[http://bioinfo.pl/meta]

This meta-predictor consists of three steps:
(i) assembly of hybrid models, (ii) confi-
dence assignment, and (iii) selection
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increasing by each successive CASP meetings. The main goal of CASP is to obtain
an in-depth and objective assessment of the current abilities and inabilities in the
area of protein structure prediction. It critically evaluates the various protein
structure programmes and servers besides assigning ranks for the same. CASP also
tests the prediction accuracy of those protein sequences, whose solved experimental
structures are kept undisclosed until the end of summit. Predictors/participants in
CASP, fall into two categories. The first category comprises of teams of human
participants who devote considerable time, usually a period of several weeks in
order to model each target, to complete their work. The second category involves
automatic servers with a target time period of 48 h for the completion of the
assigned task (Moult 2005). Participant registration, target management, prediction
collection and numerical analysis are all handled by the Protein Structure Prediction
Center (http://predictioncenter.org/). The later also provides access to details of all
experiments and results apart from providing a discussion forum for the CASP
community. CASP also monitors progress in identification of disordered regions in
proteins, and the ability to predict three-dimensional (3D) contacts which can be
used as restraints during tertiary structure prediction of proteins (Moult et al. 2014).
Ab initio modeling methods have also improved substantially and now we have
topologically accurate models for small residues (<100 residues) having single
domain non-template proteins due to regular CASP experiments (Kryshtafovych
et al. 2014). Homology models vary greatly in accuracy depending on a number of
factors, and for that reason CASP has encouraged the development of methods that
can estimate overall accuracy of a model and accuracy at the individual amino acid
level. The accuracy of homology models monitored by CASP, has improved dra-
matically, through a combination of improved methods. In CASP10, a new “con-
tact-assisted” category has been introduced apart from the already existing previous
categories. The idea in the CASP contact-assisted category is to investigate the
extent to which experimental information is needed in order to deliver a given level
of model accuracy besides encouraging the development of new methods for the
same (Moult et al. 2014).

In CASP10 experiment, 114 protein sequences were released as modeling tar-
gets. Among these, 53 were designated “all groups” (human and server) targets.
Finally 96 experimental structures were available for evaluation and assessment
after cancellation of 18 targets (Moult et al. 2014). In CAS10, 217 groups regis-
tered, from several relevant communities. Finally, 41,740 predicted models sub-
mitted by 150 predictor groups were assessed as template-based modeling
predictions where Zhang-Server, QUARK, PMS, Leecon and Zhang groups pro-
vided the most accurate models for the assessment units targets (Huang et al. 2014).
Thus, CASP meeting is the best way to keep updated with the advancement in
protein structure prediction strategies and methodologies.

Any development in the field of science is considered important if it has
applications which are of significance to biological systems. The following section
deals with various applications of the above discussed methods for protein structure
prediction.
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7 Applications of Protein Structure Prediction

Homology/Comparative modeling plays an essential role in structure based drug
design. For example representative structures produced by in silico screening forms
the basis of generation of three-dimensional structures of the remaining proteins
encoded in the various genomes that can be predicted by homology modeling
(Takeda-Shitaka et al. 2004). Comparative modeled proteins may be used for
predicting the binding modes and affinities of different drug compounds as they
interact with protein binding sites in structure-based drug design. Computational
approach to this problem is usually termed as molecular docking. The goal of
ligand-protein docking is to predict the predominant binding mode(s) of a ligand
with a protein of known three-dimensional structure. Docking can be used to
perform virtual screening on large libraries of compounds, rank the results, and
propose structural hypotheses of how the ligands inhibit the target (Morris and Lim-
Wilby 2008). However, it is widely accepted that docking with comparative models
is more challenging and less successful than docking with crystallographic struc-
tures. Comparative models are not only useful in protein-ligand, but also useful in
protein-protein docking (Vakser 1997).

Comparative models can also be used for testing and improving sequence
structure alignment (Wolf et al. 1998). Based on the alignment of known structures,
alignments can be well defined even for a new target sequence. Apart from the
presence of functional motifs or the signature sequences, calculated electrostatic
potential around the protein structure may help in predicting the protein function
(Drew et al. 2011).

Protein models by comparative method can be also used to decipher important
residues for biological activity as well as function of the protein. These models can
be helpful in designing mutants to test hypotheses about protein functions (Boissel
et al. 1993). On the basis of its primary sequence and the location of its disulfide
bonds, erythropoietic hormone erythropoietin was modeled by homology modeling
which predicts a four alpha-helical bundle motif, in common with other cytokines.
Deletions of 5–8 residues from erythropoietin hormone erythropoietin protein
within predicted alpha-helices resulted in the failure of export of the mutant protein
from the cell (Boissel et al. 1993).

Comparative models can also be used to explore the substrate specificity in
several enzymes. After the crystallization of the bacterial leucine transporter protein
LeuT, development of 3-D computational models were used for structure-function
studies on the plasmalemmal monoamine transporters (MATs). LeuT-based MAT
models were used to guide elucidation of substrate and inhibitor binding pockets.
Moreover, molecular dynamics simulations using these models provided insight
into the conformations involved in the substrate translocation cycle (Manepalli et al.
2012).

Comparative models have been used in conjunction with virtual screening to
successfully identify novel inhibitors over the past few years. Novel inhibitors of
dihydrofolate reductase in Typnosoma. cruzi (the parasite that causes Chagas
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disease) was discovered by docking into a comparative model to dihydrofolate
reductase in L. major, a related parasite (Zuccotto et al. 2001). Since the crystal/
NMR structure of various drug targets are not available so far, comparative models
of drug targets could also be used for computational screening of new inhibitors for
Mycobacterium tuberculosis drug target proteins (Gahoi et al. 2013).

Comparative modeled structure of cell receptors responsible for binding of
foreign particles and thus causing diseases may also be used to study these inter-
actions and may facilitate in investigating the mechanism. Comparative models can
be also used to predict the antigenic epitopes. Mouse mast cell protease (mMCP) 1,
mMCP-2, mMCP-4, and mMCP-5 models were used to predict immunogenic
epitopes and surface regions that are likely to interact with proteoglycans (Sali et al.
1993).

Native PAGE results illustrated the presence of variations in number of isoforms
of superoxide dismutase antioxidative enzymes in different cyanobacterial samples
(Kesheri et al. 2011). Comparative modeling may be used to generate antioxidative
enzymes models that may further help in studying the binding of metal cofactors
with the isoforms. Comparative modeling may also be used to study the drug
resistance in many vectors.

Garg et al. (2009) constructed the comparative model of dihydropteroate syn-
thase protein which illustrated that novel point mutations at two positions may lead
to sulphadoxine drug resistance in Plasmodium falciparum. Compararative models
facilitates molecular replacement in X-ray structure/NMR models which allows
refinement of a determined structure through the knowledge of already known
structures.The computational prediction of protein structure also serves as an
alternative to produce raw informations that may be validated by wet lab experi-
ments. Following section produces an overview of further developments that may
be made in the field of protein structure prediction.

8 Future Prospects

Homology modeling and protein threading are becoming more powerful and
important for structure prediction along with the PDB growth and the improvement
of prediction protocols. The error of a template-based model comes from template
selection and sequence-template alignment. So, the identification of the best tem-
plate is still a challenging task in protein structure prediction. However, HMM
based template search algorithms like HHpred has solved this issue to some extent.
Now, another big dilemma is of generation and choosing the correct alignment
between target sequence and template sequence. Still, there is no set benchmark
available for selection of the best alignment between the target and template
sequence.

Model building is also one of the challenging task in structure prediction, in
which a number of times it has been seen that side chains are not added properly in
their proper conformations which mostly need structure refinement. Model
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Refinement algorithms mostly don’t fold a target structure to its possible native
state. Model refinement is still obstructed with incorrect energy function, integrated
with an additional complication of erroneous conformational search programs.

Model selection among hundreds of models generated by Modeller is still a
challenging task. However, these issues have been solved to some extent by
evaluating these models by various scores e.g. GDT-TS and TM Score etc.
Improvement in the current algorithms is needed for the selection of the best model
since till date there is no set benchmark for selection of the best model, even by top
ranked servers as per CASP.

9 Conclusion

Correct prediction of secondary structure is the key to predict a good or satisfactory
tertiary structure of the protein. Secondary structure not only helps in predicting the
tertiary structure but also helps in predicting the function as well as sub-cellular
localization of proteins. Staring from the amino acid propensity based secondary
structure prediction methods, machine learning approaches has revolutionized the
prediction accuracy of secondary structure from 60 to 80 %.

Tertiary structure prediction by bioinformatics or computational biology tools is
always a challenging task for scientists. Ab initio folding and threading are com-
putationally expensive methods for tertiary structure prediction which, also results
in protein structural models having low accuracy. Tertiary structure prediction by
ab initio folding/modelling still has a limitation due to searching a large number of
conformations generated as well as absence of suitable potential functions as the
number of amino acid increases. Another method is fold recognition where, the
prediction accuracy is better than ab initio folding/modeling. Homology modeling,
the third prediction method, has emerged as the sole method which can build the
model close to X-ray crystal/NMR structure. Therefore, among the three methods,
comparative or homology modeling is considered as the best method for protein
structure predication with high accuracy in such cases where the sequence identity
between the target and template sequence is more than 30 %. These comparative
models may be used for structure based drug designing as well as virtual screening
to identify novel inhibitors. Selecting the best model in homology modelling is one
of the major challenging tasks to look into. In homology modeling, the major
chances of error may be in loop modeling if long loop is present in the target protein
molecule. Side chain modeling is another challenging area where prediction
accuracy should be increased. Now a day, hybrid methods became popular because
they club together a number of features such as structural alignments, solvent
accessibility and secondary structure information in order to produce a protein
model with high accuracy. Along with hybrid methods, several meta-servers are
also available which integrate protein structure predictions performed by various
methods that assemble and interpret the results to come up with a consensus model
prediction. Nevertheless, we have not reached the pinnacle of that modelling

Secondary and Tertiary Structure Prediction of Proteins … 563



accuracy till date. However, it is interesting to discuss that, all our predictions may
take a long time, while a cell takes only a few micro-seconds to fold a primary
sequence into fully functional global native minima structure. Hence, further
research to improve the algorithms is still needed to make the prediction close to
native state or in other words close to fold adopted by the nature.

Acknowledgments Minu Kesheri is thankful to University Grant Commission, Govt. of India,
New Delhi, for providing financial assistance in the form of research fellowship. Swarna Kanchan
is thankful to University Grant Commission, Govt. of India, New Delhi for providing the financial
support in the form of the Basic Science Research Fellowship under University Grant Commission
(New Delhi) Special Assistance Programme to Department of Biological Sciences, Birla Institute
of Technology and Science, Pilani, India.

References

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997).
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
Nucleic Acids Research, 25(17), 3389–3402.

Arnold, K., Kiefer, F., Kopp, J., Battey, J. N., Podvinec, M., Westbrook, J. D., et al. (2009). The
protein model portal. Journal of Structural and Functional Genomics, 10(1), 1–8.

Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294
(5540), 93–96.

Bates, P. A., Kelley, L. A., MacCallum, R. M., & Sternberg, M. J. E. (2001). Enhancement of
protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and
3D-PSSM. Proteins: Structure, Function, and Bioinformatics, 45(5), 39–46.

Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality
estimation. Nucleic Acids Research, 37(Web Server issue), W510–W514.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The
protein data bank. Nucleic Acids Research, 28(1), 235–242.

Bettella, F., Rasinski, D., & Knapp, E. W. (2012). Protein secondary structure prediction with
SPARROW. Journal of Chemical Information and Modeling, 52(2), 45–56.

Bhattacharya, D., & Cheng, J. (2013). 3Drefine: Consistent protein structure refinement by
optimizing hydrogen bonding network and atomic-level energy minimization. Proteins:
Structure, Function, and Bioinformatics, 81(1), 119–131.

Boissel, J. P., Lee, W. R., Presnell, S. R., Cohen, F. E., & Bunn, H. F. (1993). Erythropoietin
structure-function relationships. Mutant proteins that test a model of tertiary structure. Journal
of Biological Chemistry, 268(21), 15983–15993.

Bowie, J., Luthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into
a known three-dimensional structure. Science, 253(5016), 164–170.

Bradley, P., Misura, K. M. S., & Baker, D. (2005). Toward high-resolution de novo structure
prediction for small proteins. Science, 309(5742), 1868–1871.

Chandonia, J.- M., & Karplus, M. (1995). Neural networks for secondary structure and structural
class predictions. Protein Science, 4(2), 275–285.

Cheng, J., Li, J., Wang, Z., Eickholt, J., & Deng, X. (2012). The MULTICOM toolbox for protein
structure prediction. BMC Bioinformatics, 13, 65.

Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure
and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue),
W72–W76.

564 M. Kesheri et al.



Chou, P. Y., & Fasman, G. D. (1974). Prediction of protein conformation. Biochemistry, 13(2),
222–245.

Cole, C., Barber, J. D., & Barton, G. J. (2008). The Jpred3 secondary structure prediction server.
Nucleic Acids Research, 36(Web Server issue), W197–W201.

Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of non-bonded
atomic interactions. Protein Science, 2(9), 1511–1519.

Combet, C., Jambon, M., Deléage, G., & Geourjon, C. (2002). Geno3D: Automatic comparative
molecular modelling of protein. Bioinformatics, 18(1), 213–214.

Do, C. B., Mahabhashyam, M. S. P., Brudno, M., & Batzoglou, S. (2005). ProbCons: Probabilistic
consistency-based multiple sequence alignment. Genome Research, 15(2), 330–340.

Drew, K., Winters, P., Butterfoss, G. L., Berstis, V., Uplinger, K., Armstrong, J., et al. (2011). The
Proteome folding project: Proteome-scale prediction of structure and function. Genome
Research, 21(11), 1981–1994.

Eyrich, V. A., Martı ́-Renom, M. A., Przybylski, D., Madhusudhan, M. S., Fiser, A., Pazos, F.,
Valencia, A., Sali, A., & Rost, B. (2001). EVA: Continuous automatic evaluation of protein
structure prediction servers. Bioinformatics, 17(12), 1242–1243.

Fernandez-Fuentes, N., Madrid-Aliste, C. J., Rai, B. K., Fajardo, J. E., & Fiser, A. (2007). M4T: A
comparative protein structure modeling server. Nucleic Acids Research, 35(Web Server issue),
W363–W368.

Fischer, D. (2003). 3D-SHOTGUN: A novel, cooperative, fold-recognition meta-predictor.
Proteins: Structure, Function, and Bioinformatics, 51(3), 434–441.

Fiser, A., Do, R. K. G., & Šali, A. (2000). Modeling of loops in protein structures. Protein Science,
9(9), 1753–1773.

Floudas, C. A. (2007). Computational methods in protein structure prediction. Biotechnology and
Bioengineering, 97(2), 207–213.

Floudas, C. A., Fung, H. K., McAllister, S. R., Mönnigmann, M., & Rajgaria, R. (2006). Advances
in protein structure prediction and de novo protein design: A review. Chemical Engineering
Science, 61(3), 966–988.

Frishman, D., & Argos, P. (1997). Seventy-five percent accuracy in protein secondary structure
prediction. Proteins: Structure, Function, and Bioinformatics, 27(3), 329–335.

Gahoi, S., Mandal, R. S., Ivanisenko, N., Shrivastava, P., Jain, S., Singh, A. K., et al. (2013).
Computational screening for new inhibitors of M. tuberculosis mycolyltransferases antigen 85
group of proteins as potential drug targets. Journal of Biomolecular Structure and Dynamics,
31(1), 30–43.

Garg, S., Saxena, V., Kanchan, S., Sharma, P., Mahajan, S., Kochar, D., et al. (2009). Novel point
mutations in sulfadoxine resistance genes of Plasmodium falciparum from India. Acta Tropica,
110(1), 75–79.

Garnier, J., Osguthorpe, D. J., & Robson, B. (1978). Analysis of the accuracy and implications of
simple methods for predicting the secondary structure of globular proteins. Journal of
Molecular Biology, 120(1), 97–120.

Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary
structure prediction by consensus prediction from multiple alignments. Computer applications
in the biosciences: CABIOS, 11(6), 681–684.

Ginalski, K., Elofsson, A., Fischer, D., & Rychlewski, L. (2003). 3D-Jury: A simple approach to
improve protein structure predictions. Bioinformatics, 19(8), 1015–1018.

Gong, H., & Rose, G. D. (2005). Does secondary structure determine tertiary structure in proteins?
Proteins: Structure, Function, and Bioinformatics, 61(2), 338–343.

Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb viewer: An environment
for comparative protein modeling. Electrophoresis, 18(15), 2714–2723.

Heinig, M., & Frishman, D. (2004). STRIDE: A web server for secondary structure assignment
from known atomic coordinates of proteins. Nucleic Acids Research, 32(Web Server issue),
W500–W502.

Secondary and Tertiary Structure Prediction of Proteins … 565



Huang, Y. J., Mao, B., Aramini, J. M., & Montelione, G. T. (2014). Assessment of template-based
protein structure predictions in CASP10. Proteins: Structure, Function, and Bioinformatics, 82
(2), 43–56.

Hung, L.- H., Ngan, S.- C., Liu, T., & Samudrala, R. (2005). PROTINFO: New algorithms for
enhanced protein structure predictions. Nucleic Acids Research, 33(Web Server issue),
W77–W80.

Jauch, R., Yeo, H. C., Kolatkar, P. R., & Clarke, N. D. (2007). Assessment of CASP7 structure
predictions for template free targets. Proteins: Structure, Function, and Bioinformatics, 69(8),
57–67.

Jayaram, B., Bhushan, K., Shenoy, S. R., Narang, P., Bose, S., Agrawal, P., et al. (2006).
Bhageerath: An energy based web enabled computer software suite for limiting the search
space of tertiary structures of small globular proteins. Nucleic Acids Research, 34(21),
6195–6204.

Jones, D. T. (1999a). Protein secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology, 292(2), 195–202.

Jones, D. T. (1999b). GenTHREADER: An efficient and reliable protein fold recognition method
for genomic sequences. Journal of Molecular Biology, 287(4), 797–815.

Jones, D. T., Taylort, W. R., & Thornton, J. M. (1992). A new approach to protein fold
recognition. Nature, 358, 86–89.

Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., et al. (2012). Template-based
protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522.

Karplus, K., Barrett, C., & Hughey, R. (1998). Hidden Markov models for detecting remote
protein homologies. Bioinformatics, 14(10), 846–856.

Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14),
3059–3066.

Kelley, L. A., & Sternberg, M. J. E. (2009). Protein structure prediction on the Web: A case study
using the Phyre server. Nature Protocols, 4(3), 363–371.

Kesheri, M., Richa, & Sinha, R. P. (2011). Antioxidants as natural arsenal against multiple stresses
in cyanobacteria. International Journal of Pharma and Bio Sciences, 2(2), B168–B187.

Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the
Robetta server. Nucleic Acids Research, 32(Web Server issue), W526–W531.

Kim, H., & Park, H. (2003). Protein secondary structure prediction based on an improved support
vector machines approach. Protein Engineering, 16(8), 553–560.

Klepeis, J. L., & Floudas, C. A. (2003). ASTRO-FOLD: A combinatorial and global optimization
framework for ab initio prediction of three-dimensional structures of proteins from the amino
acid sequence. Biophysical Journal, 85(4), 2119–2146.

Klepeis, J. L., Wei, Y., Hecht M. H., & Floudas, C. A. (2005). Ab initio prediction of the three-
dimensional structure of a de novo designed protein: A double-blind case study. Proteins:
Structure, Function, and Bioinformatics, 58(3), 560–570.

Kryshtafovych, A., Fidelis, K., & Moult, J. (2014). CASP10 results compared to those of previous
CASP experiments. Proteins: Structure, Function, and Bioinformatics, 82(2), 164–174.

Kurowski, M. A., & Bujnicki, J. M. (2003). GeneSilico protein structure prediction meta-server.
Nucleic Acids Research, 31(13), 3305–3307.

Lambert, C., Léonard, N., De, B. X., & Depiereux, E. (2002). ESyPred3D: Prediction of proteins
3D structures. Bioinformatics, 18(9), 1250–1256.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H.,
et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A
program to check the stereochemical quality of protein structures. Journal of Applied
Crystalography, 26, 283–291.

Lassmann, T., & Sonnhammer, E. (2005). Kalign—An accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics, 6(1), 298.

566 M. Kesheri et al.



Lisewski, A. M., & Lichtarge, O. (2006). Rapid detection of similarity in protein structure and
function through contact metric distances. Nucleic Acids Research, 34(22), e152.

Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., & Scheraga, H. A. (1999). Protein structure prediction
by global optimization of a potential energy function. Proceedings of the National Academy of
Sciences, USA, 96(10), 5482–5485.

Lundström, J., Rychlewski, L., Bujnicki, J., & Elofsson, A. (2001). Pcons: A neural-
network–based consensus predictor that improves fold recognition. Protein Science, 10(11),
2354–2362.

Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-
dimensional profiles. Nature, 356, 83–85.

Manepalli, S., Surratt, C., Madura, J., & Nolan, T. (2012). Monoamine transporter structure,
function, dynamics, and drug discovery: A computational perspective. American Association of
Pharmaceutical Scientists Journal, 14(4), 820–831.

McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction
server. Bioinformatics, 16(4), 404–405.

Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology, 443,
365–382.

Moult, J. (2005). A decade of CASP: Progress, bottlenecks and prognosis in protein structure
prediction. Current Opinion in Structural Biology, 15(3), 285–289.

Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., & Tramontano, A. (2014). Critical
assessment of methods of protein structure prediction (CASP)-round x. Proteins: Structure,
Function, and Bioinformatics, 82(2), 1–6.

Moult, J., & Melamud, E. (2000). From fold to function. Current Opinion in Structural Biology,
10(3), 384–389.

Moult, J., Pedersen, J. T., Judson, R., & Fidelis, K. (1995). A large-scale experiment to assess
protein structure prediction methods. Proteins: Structure, Function, and Bioinformatics, 23(3),
ii–iv.

Nair, R., & Rost, B. (2003). Better prediction of sub-cellular localization by combining
evolutionary and structural information. Proteins: Structure, Function, and Bioinformatics, 53
(4), 917–930.

Nair, R., & Rost, B. (2005). Mimicking cellular sorting improves prediction of subcellular
localization. Journal of Molecular Biology, 348(1), 85–100.

Nanias, M., Chinchio, M., Ołdziej, S., Czaplewski, C., & Scheraga, H. A. (2005). Protein structure
prediction with the UNRES force-field using replica-exchange Monte Carlo-with-minimiza-
tion; comparison with MCM, CSA, and CFMC. Journal of Computational Chemistry, 26(14),
1472–1486.

Nielsen, M., Lundegaard, C., Lund, O., & Petersen, T. N. (2010). CPHmodels-3.0—Remote
homology modeling using structure-guided sequence profiles. Nucleic Acids Research, 38(Web
Server issue), W576–W581.

Norel, R., Petrey, D., & Honig, B. (2010). PUDGE: A flexible, interactive server for protein
structure prediction. Nucleic Acids Research, 38(Web Server issue), W550–W554.

Peng, J., & Xu, J. (2009). Boosting protein threading accuracy (Vol. 5541, pp. 31–45). Lecture
Notes in Computer Science.

Peng, J., & Xu, J. (2010). Low-homology protein threading. Bioinformatics, 26(12), i294–i300.
Pieper, U., Webb, B. M., Barkan, D. T., Schneidman-Duhovny, D., Schlessinger, A., Braberg, H.,

et al. (2011). MODBASE, a database of annotated comparative protein structure models and
associated resources. Nucleic Acids Research, 39(Database issue), D465–D474.

Pollastri, G., & McLysaght, A. (2005). Porter: A new, accurate server for protein secondary
structure prediction. Bioinformatics, 21(8), 1719–1720.

Przybylski, D., & Rost, B. (2002). Alignments grow, secondary structure prediction improves.
Proteins: Structure, Function, and Bioinformatics, 46(2), 197–205.

Przytycka, T., Aurora, R., & Rose, G. D. (1999). A protein taxonomy based on secondary
structure. Nature Structural & Molecular Biology, 6(7), 672–682.

Secondary and Tertiary Structure Prediction of Proteins … 567



Rost, B., Sander, C., & Schneider, R. (1994). PHD-an automatic mail server for protein secondary
structure prediction. Computer Applications in the Biosciences: CABIOS, 10(1), 53–60.

Runthala, A., & Chowdhury, S. (2013). Protein structure prediction: Are we there yet?. In D.
P. Tuan, & L. C. Jain (Eds.), Knowledge-based systems in biomedicine and computational life
science (Vol. 450, pp. 9–115). Berlin, Heidelberg: Springer.

Šali, A., & Blundell, T. L. (1993). Comparative Protein modelling by satisfaction of spatial
restraints. Journal of Molecular Biology, 234(3), 779–815.

Sali, A., Matsumoto, R., McNeil, H. P., Karplus, M., & Stevens, R. L. (1993). Three-dimensional
models of four mouse mast cell chymases. Identification of proteoglycan binding regions and
protease-specific antigenic epitopes. Journal of Biological Chemistry, 268(12), 9023–9034.

Sen, T. Z., Jernigan, R. L., Garnier, J., & Kloczkowski, A. (2005). GOR V server for protein
secondary structure prediction. Bioinformatics, 21(11), 2787–2788.

Shi, J., Blundell, T. L., & Mizuguchi, K. (2001). FUGUE: Sequence-structure homology
recognition using environment-specific substitution tables and structure-dependent gap
penalties. Journal of Molecular Biology, 310(1), 243–257.

Siew, N., Elofsson, A., Rychlewski, L., & Fischer, D. (2000). MaxSub: An automated measure for
the assessment of protein structure prediction quality. Bioinformatics, 16(9), 776–785.

Skolnick, J., Fetrow, J. S., & Kolinski, A. (2000). Structural genomics and its importance for gene
function analysis. Nature Biotechnology, 18(3), 283–287.

Skolnick, J., Kihara, D., & Zhang, Y. (2004). Development and large scale benchmark testing of
the PROSPECTOR_3 threading algorithm. Proteins: Structure, Function, and Bioinformatics,
56(3), 502–518.

Skolnick, J., & Kolinski, A. (2002). A unified approach to the prediction of protein structure and
function. In R. Friesner (Ed.), A Computational Methods for Protein Folding (Vol. 120,
pp. 131-192). USA: Wiley.

Söding, J., Biegert, A., & Lupas, A. N. (2005). The HHpred interactive server for protein
homology detection and structure prediction. Nucleic Acids Research, 33(Web Server issue),
W244–W248.

Su, E., Chiu, H.- S., Lo, A., Hwang, J.- K., Sung, T.- Y., & Hsu, W.- L. (2007). Protein subcellular
localization prediction based on compartment-specific features and structure conservation.
BMC Bioinformatics, 8(1), 330.

Takeda-Shitaka, M., Takaya, D., Chiba, C., Tanaka, H., & Umeyama, H. (2004). Protein structure
prediction in structure based drug design. Current Medicinal Chemistry, 11(5), 551–558.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular
evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12),
2725–2729.

Teodorescu, O., Galor, T., Pillardy, J., & Elber, R. (2004). Enriching the sequence substitution
matrix by structural information. Proteins: Structure, Function, and Bioinformatics, 54(1),
41–48.

Vakser, I. A. (1997). Evaluation of GRAMM low-resolution docking methodology on the
hemagglutinin-antibody complex. Proteins: Structure, Function, and Bioinformatics, 29(1),
226–230.

Wallner, B., Larsson, P., & Elofsson, A. (2007). Pcons.net: Protein structure prediction meta
server. Nucleic Acids Research, 35(Web Server issue), W369–W374.

Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of
errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server
issue), W407–W410.

Wolf, E., Vassilev, A., Makino, Y., Sali, A., Nakatani, Y., & Burley, S. K. (1998). Crystal
structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-
acetyltransferase. Cell, 94(4), 439–449.

Wu, S., & Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein structure
prediction. Nucleic Acids Research, 35(10), 3375–3382.

568 M. Kesheri et al.



Wu, S., & Zhang, Y. (2008). MUSTER: Improving protein sequence profile–profile alignments by
using multiple sources of structure information. Proteins: Structure, Function, and Bioinfor-
matics, 72(2), 547–556.

Xu, Y., & Xu, D. (2000). Protein threading using PROSPECT: Design and evaluation. Proteins:
Structure, Function, and Bioinformatics, 40(3), 343–354.

Xu, J., & Zhang, Y. (2010). How significant is a protein structure similarity with TM-score = 0.5?
Bioinformatics, 26(7), 889–895.

Xu, D., & Zhang, Y. (2012). Ab initio protein structure assembly using continuous structure
fragments and optimized knowledge-based force field. Proteins: Structure, Function, and
Bioinformatics, 80(7), 1715–1735.

Yang, Y., Faraggi, E., Zhao, H., & Zhou, Y. (2011). Improving protein fold recognition and
template-based modeling by employing probabilistic-based matching between predicted one-
dimensional structural properties of query and corresponding native properties of templates.
Bioinformatics, 27(15), 2076–2082.

Yi, T.-M., & Lander, E. S. (1993). Protein secondary structure prediction using nearest-neighbor
methods. Journal of Molecular Biology, 232(4), 1117–1129.

Zemla, A., Venclovas, Č., Fidelis, K., & Rost, B. (1999). A modified definition of Sov, a segment-
based measure for protein secondary structure prediction assessment. Proteins: Structure,
Function, and Bioinformatics, 34(2), 220–223.

Zhang, Y., Arakaki, A. K., & Skolnick, J. (2005). TASSER: An automated method for the
prediction of protein tertiary structures in CASP6. Proteins: Structure, Function, and
Bioinformatics, 61(7), 91–98.

Zhang, Y., Kolinski, A., & Skolnick, J. (2003). TOUCHSTONE II: A new approach to Ab initio
protein structure prediction. Biophysical Journal, 85(2), 1145–1164.

Zhang, Y., & Skolnick, J. (2004). Tertiary structure predictions on a comprehensive benchmark of
medium to large size proteins. Biophysical Journal, 87(4), 2647–2655.

Zhou, H., & Zhou, Y. (2005). Fold recognition by combining sequence profiles derived from
evolution and from depth-dependent structural alignment of fragments. Proteins: Structure,
Function, and Bioinformatics, 58(2), 321–328.

Zuccotto, F. Z. M., Brun, R., Chowdhury, S. F., Di, L. R., Leal, I., Maes, L., et al. (2001). Novel
inhibitors of Trypanosoma cruzi dihydrofolate reductase. European Journal of Medicinal
Chemistry, 36(5), 395–405.

Secondary and Tertiary Structure Prediction of Proteins … 569


	19 Secondary and Tertiary Structure Prediction of Proteins: A Bioinformatic Approach
	Abstract
	1 Introduction
	2 Secondary Structure Prediction
	2.1 Amino Acid Propensity Based Prediction
	2.2 Template Based Prediction
	2.3 Sequence Profile Based Method

	3 Tertiary Structure Prediction
	3.1 Ab Initio Folding/Modeling
	3.2 Fold Recognition (FR) or Threading
	3.3 Homology Modeling or Comparative Modeling
	3.3.1 Template Search, Selection and Alignment
	3.3.2 Alignment Correction in Core Regions
	3.3.3 Backbone, Loop and Side-Chain Modeling
	3.3.4 Model Refinement
	3.3.5 Model Evaluation or Validation
	3.3.6 Homology Models Repositories


	4 Hybrid Methods for Protein Tertiary Structure Prediction
	5 Meta-Servers for Protein Tertiary Structure Prediction
	6 CASP
	7 Applications of Protein Structure Prediction
	8 Future Prospects
	9 Conclusion
	Acknowledgments
	References


