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Abstract The spray under pressure is an effective save on water. This task should
be automated and controlled in order to limit the water waste and the facilities of
damages. For this reason, it’s necessary to find a mathematical model describing the
irrigation process. In order to facilitate this step the Takagi-Sugeno fuzzy model is
the best approaches of nonlinear systems representation. Various techniques are
used in the literature of such systems; the clustering technique is one of the best
solutions. In this paper, we’ll model the irrigation station with the T-S algorithm
and use the fuzzy c-means (FCM) algorithm and present the results of simulation
and some validation tests and we present the stability of T-S irrigation station
model.

1 Introduction

The development of a mathematical model making it possible to represent “as well
as possible” the dynamic behavior of a complex real process represents a very
important problem in the practical world. In recent years, and with the evolution of
technology, a significant effort has been given to modeling, identification and
control of such systems. The Takagi-Segeno fuzzy model (Takagi and Sugeno
1985; Grisales 2007; Li et al. 2012; Chakchouk et al. 2014) is one of the best
approaches to the representation of such a process, it was widely used in many
research areas, since it has an excellent ability to describe the nonlinear system.
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Indeed, the T-S fuzzy model can approximate highly nonlinear system into several
locally linear subsystems interconnected. The identification problem in the T-S
fuzzy model can be summarized in two steps: structure identification and parameter
estimation. Several techniques were developed to conclude the modeling of these
systems: we quote primarily the neuro-fuzzy technique (Daneshwar and Noh 2013;
Azar 2010a) and clustering technique (Daneshwar and Noh 2013; Azar 2010a) and
clustering technique (Troudi et al. 2011; Li et al. 2013; Jang et al. 2007; Pingli et al.
2006; Xu and Zhang 2009; Zahid et al. 2001; Chakchouk et al. 2014). Indeed
Several researchers have noticed that a nonlinear system can be approximated by
the sum of several linear sub-systems. Method of clustering proves to be an
interesting technique for identification and the modelisation of the nonlinear sys-
tems. Indeed, this technique consists in approximating the total nonlinear system by
a vague model of Takagi-Sugeno type. In this case, each cluster represents one
fuzzy rule of Takagi-Sugeno. The number of clusters is fixed by an expert
according to the type and the performances of application considered. By conse-
quent to each cluster one correspond homogeneous zone of operation such that is
defined in the form of a linear local model. We are interested to model and identify
a nonlinear system by the fuzzy logic approach such as Takagi-Sugeno (T-S)
approach. The latter, uses modeling containing linguistic rules to obtain the model
of system outputs. Initially, we present the fuzzy logic approach design, we gives an
outline on the first two models. Then, we detail (T-S) model, uses the method of
fuzzy coalescence for the identification of the nonlinear systems by the fuzzy C-
means (FCM) algorithm. We will in addition present tests of validation of (T-S)
model. Then, we will give the results of identification and modeling of the station of
irrigation by sprinkling.

The remainder of this chapter is described such as the following section. In the
first section we have describe the station of irrigation by sprinkling, in which we
define the practical constraints existing on the outputs pressure and flow and other
components of our station, secondly, in this section we detail the operation mode
and the flowcharts of the closed loop mode with any controller and how select the
operation mode. In the second section we have describe the Fuzzy coalescence
algorithms. Thirdly, we spend to detail the FCM algorithm step by step. Finally, we
finished by application of FCM algorithm to the irrigation station by sprinkling
located in the laboratory shown in the Fig. 1. After identification and modelisation
with FCM algorithm it is necessary to validate our simulation results (model
mathematic of our pumping station) with Root Mean Square Error test (RMSE) and
the Variance accounting for test (VAF) and many other validation tests we have test
the stability of our open loop model, after modelisation and identification we
control our T-S obtained model by two types of controllers, PI controller of the
station of irrigation and Fuzzy logic regulator, and we finish our chapter with a
comparative study between these controllers.
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2 Description of the Irrigation Station with Sprinkling

The French company LEROY–SOMMER makes available to researchers an irri-
gation station (Fig. 1) with sprinkling but with practical constraints existing in the
real irrigation stations (Mejri et al. 2013), this station is composed of two parts:
hydraulic circuit and an electrical cabinet (Sommer 1996).

2.1 Practical Constraints of Irrigation Station

Before going to modeling our irrigation station, we will submit all practical con-
straints existing in the real irrigation stations, because the desired performances it is
necessary that it respects the following constraints:

• Regulation of the flow and water pressure:

QðF; tÞ ) Qref

PðF; tÞ ) Pref
ð1Þ

• Constraints on the control:

Nmin �NðtÞ�Nmax ð2Þ

The fixed speed pump will be active or not. N the numbers of turns of the
variable speed pump.

Fig. 1 Overview of the irrigation station by sprinkling
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• Constraints on the state:

Qmin �Qðx; tÞ�Qmax ð3Þ

x unspecified position of drain.
• Constraints on the output:

Pmin �PðF; tÞ�Pmax ð4Þ

• Constraints over the computing time:
Sample time: Te ¼ 0:2 s

• Energy constraints:
Concerning the operation of electrical equipment, cost optimization of pumping
and turbine.

• The constraints of operation:
As they may be related to the geometry of the system levels maximum, mini-
mum, and so on. How it should be managed to ensure the functions given to
him: instructions, etc.

• The constraints of safety:
This may result in the need to keep such a volume of safety in reserve, ensuring
the supply in case of unforeseen demand or incidents on the network.

2.2 Operation Mode of the Irrigation Station

The general diagram of the hydraulic system is given by the following Figs. 2 and 3:
Our station of irrigation is fed with an electrical network 400VðTRI þ N þ

PEÞ; 50Hz. ðTRI þ N þ PEÞ; 50Hz (Sommer 1996).
The station of irrigation starting from the cabin, we can select the operating

process of the station through a selector with 6 positions

• 0 Stop;
• 1 operation in Automatic mode;
• 2 operation in Semi-automatic mode;
• 3 operation in mode Forced;
• 4 operation in mode API;
• 5 operation in mode Open loop;

Then the selection of the operating process be described in this following.
(Fig. 4)
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Fig. 2 Closed loop operational flowchart of the irrigation station
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Fig. 3 General diagram of the hydraulic system
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Fig. 4 Function diagram of operating modes
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3 Identification and Modeling of the Irrigation Station

The implementation of a mathematical model of a complex real process operating in
a stochastic environment draw the attention of many researchers in various disci-
plines of science and technology. In this context the use of traditional methods of
modeling and identification in order to estimate the parameters of such a type of
process cannot satisfy the desired performance indices (speed, accuracy and sta-
bility). To overcome this problem, other techniques such as fuzzy logic (Azar
2010b, 2012) and more particularly the T-S fuzzy model showed a good result in
the identification of these processes types.

3.1 Fuzzy Coalescence Algorithms for System Identification

Let us consider a system described by the following differential equation:

yðkÞ ¼ fNLðxkÞ ð5Þ

with xk represent the observation vector, xk 2 Rn. The most used algorithms of
fuzzy coalescence for the identification parameters of 5 are as follows:

• The algorithm of the fuzzy C-averages, or fuzzy c-Means (FCM) (Bezdek 1981;
Chen et al. 1998),

• The algorithm of Gustafson-Kessel (GK) (Gustafson and Kessel 1979),
• The NRFCM algorithm (Soltani et al. 2012).

All these algorithms are based on their minimization of a function objectifies
form (Troudi et al. 2012):

JðX;U;VÞ ¼
XN
k¼1

Xc

i¼1

ðlikÞmðxk � viÞTMðxk � viÞ ð6Þ

where: X = {xk/k = 1, 2, …, N}, such that N donate the number of observations;
U = [μik ∊ [0, 1](c×N)], the fuzzy partition matrix of data vector X: with

Xc

i¼1

lik ¼ 1 1� i� c ð7Þ

V: The prototype clusters vector,
V = {v1, v2, …, vc}, where c represents the rule number (or of clusters) and

vi 2 Rn,
m: represent the weighting degree
This parameter influences directly on the form of cluster in data space. Indeed,

when m is close to 1, the function of the membership of each cluster becomes
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almost Boolean i.e., lik 2 0; 1f g. Whereas when m becomes very large, the parti-
tion becomes fuzzier and lik ¼ 1=c

Generally m is selected between 1.5 and 2.5 but in several applications, it is
selected between 2 and 4.

In the following section, we present the fuzzy c-means algorithm.

3.2 Fuzzy c-Means (FCM) Algorithm

This method is based on minimization of the criterion obtained by the addition of
the standardization constraint (Troudi et al. 2011).

JðX;U;VÞ ¼
XN
k¼1

Xc

i¼1

ðlikÞmðxk � viÞTMðxk � viÞ þ
XN
k¼1

kk
Xc

i¼1

lik � 1

" #
ð8Þ

In this case the minimization of the criterion 8 can be solved by cancelling the
derivative of J where the variables are U, V and λ. The solution of this criterion is
given by:

vi ¼
PN

k¼1ðlikÞm � xkPN
k¼1ðlikÞm

lik ¼
1Pc

j¼1 dik=djk
� � 2

m�1

ð9Þ

where dik: represent the distance enters Xk and vi

dik ¼ ðxk � viÞTMðxk � viÞ ð10Þ

M: generally selected equal to the identity. The prototype vector of the clusters is
given by:

d2ik ¼ ðxk � viÞTðxk � viÞ i ¼ 1; . . .; c; k ¼ 1; . . .:;N ð11Þ

The iteration count of c-means algorithm is selected according to the precise
details required by the expert and according to the type of application considered.
The criterion of the stop is selected by satisfying the following condition:

UðlÞ � Uðl�1Þ�� ��\d ð12Þ

where l is the iteration count.
Fuzzy c-means algorithm (FCM): Being given a whole of data X, FCM algo-

rithm is described by the following stages (Fig. 5):
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The FCM Algorithm converges in general towards a local minimum of the
objective function. Its performance depends on several factors such as:

• The cluster number;
• Choice m;
• Choice of stop criterion.

Fig. 5 Fuzzy c-means
algorithm (FCM)
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3.3 Determination of Consequent System Parameters

The identification of consequent parameters is necessary to determine the equiva-
lent TS model such system, we find in the literature many identification methods
such as the method of ordinary least square (Bertrand and Moonen 2012) (LMS
used for linear system) Method of recursive least square (RLS) (Duan et al. 2011),
weighted least square (WLS) (Li et al. 2009), recursive least square weighted
(RWLS) (Soltani and Chaari 2013) (this method is used for the noisy nonlinear
systems).

In our case we used in the identification algorithm method of recursive least
square (RLS) (Duan et al. 2011; Chakchouk et al. 2014).

We know the form of T-S model fi ¼ aTi xþ di, then the vector of consequent
parameters written as follow:

hi ¼ aTi ; di
� �T ð13Þ

the increased regression matrix is defined by:

Xe ¼ ½X; 1� ð14Þ

then we defined the gains matrix with the follow equation:

P Nð Þ ¼ XT Nð Þ � X Nð Þ� ��1 ð15Þ

P(N) can be written as follows:

P�1 Nð Þ ¼ k Nð Þ þ k Nð Þ � l Nð Þ � x NÞ � xT Nð Þ� � ð16Þ

If we applied the matrix inverse theorem then:

P Nð Þ ¼ 1
k

P N � 1ð Þ � P N � 1ð Þ � xT Nð Þ � x Nð Þ � P N � 1ð Þ
1

l Nð Þ þ xT Nð Þ � P N � 1ð Þ � x Nð Þ

" #
ð17Þ

Then we defined the gain G(N) with the following equation:

G Nð Þ ¼ P N � 1ð Þ � xT Nð Þ
1

l Nð Þ þ xT Nð Þ � P N � 1ð Þ � x Nð Þ

" #
ð18Þ

Then the regression matrix and the parameters consistent vector is as follow:

h Nð Þ ¼ I � G Nð ÞxT Nð Þ� �
h N � 1ð Þ

þ l Nð Þ P N � 1ð Þx Nð Þ � G Nð ÞxT Nð ÞP N � 1ð Þx Nð Þ� �
y Nð Þ ð19Þ
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If we factorize the Eq. 15, we have:

h Nð Þ ¼ h N � 1ð Þ þ G Nð Þ y Nð Þ � xT Nð Þh N � 1ð Þ� �
y Nð Þ ð20Þ

3.4 Application of FCM Algorithm on the Station
of Irrigation by Sprinkling

Let us consider a system described by the Eq. 6. Firstly, we approximate the
nonlinear function Eq. 6 by the model of Takagi-Sugeno (TS):

Ri : if xk1 isAi1 and xk2 is Ai2 and . . . and xkn is Ain then y
i ¼ aTi xk þ bi ð21Þ

To represent the rule, we need use observations vector xk ¼ xk1; xk2; . . .; xkn½ �T
the units fuzzy Ai1;Ai2; . . .;Ain to identify the parameters in the model 21, we builds
the matrix of regression X and the vector of the output Y starting from measure-

ments resulting from the system such as: X ¼ xT1 ; x
T
2 ; . . .; x

T
N

� �T
and Y ¼

y1; y2; . . .; yN½ �T with N� n.
The identification of T-S model parameters requires a taking away of the real

signals of irrigation station. Using a numerical oscilloscope, we took the real
dynamics of pressure and flow of the station of irrigation by sprinkling, then
(Figs. 6, 7 and 8):

These results are taken from connectors of the cabinet.
In order to initialize the iteration count l = 0, we fix the weighting degree

m = 2.75 what makes it possible to initialize the partial random matrix U. We pass

Fig. 6 Real curve of the
pressure evolution
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then to the choice of the number of clusters. We apply the classification entropy test
CE for each outputs pressure (P) and flow (Q). We noted CEP CEQ respectively.

CecðcÞ ¼ 1
N

XN
k¼1

Xc

i¼1

lik logðlikÞ

Copt ¼ min CecðcÞ½ �
ð22Þ

Fig. 7 Real curve of the flow evolution

Fig. 8 Connectors of sampling signals (pressure and flow)
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Then the optimal number of clusters is equal to 3 as it indicates in the 1 (Figs. 9, 10
and Table 1).

The excitation signal must be rich to run the system in all operating region. In
order to reach all steps, the simulation results of the FCM algorithm are given by
the following Figs. 11 and 12.

Algorithm FCM is followed the real data input of pressure and flow. It is noticed
that the error between the evolution of the real and estimated pressure is almost null
even for flow. The station of irrigation by sprinkling made up of two nonlinear
systems in the same way input and different output, one of pressure and the other of
flow, each one partitioned in 3 subsystems. We obtain the following results:

Fig. 9 Diagram of cluster number choice
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Fig. 10 Excitation signal of FCM algorithm

Table 1 Results of
classification entropy test C = 2 C = 3 C = 4 C = 5

CEP (10−6) −0.491 −5.21 −0.41 −1.18

CEQ (10−6) −5.4 −10.8 −3.35 −3.58

Fig. 11 Simulation results of FCM algorithm for the pressure output
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• For the pressure sub-systems:

Rp1 : yP1 kð Þ ¼ 1:0853yp k � 1ð Þ � 0:1744yp k � 2ð Þ þ 0:0570u k � 1ð Þ þ 0:0318u k � 2ð Þ
Rp2 : yP2 kð Þ ¼ 1:0851yp k � 1ð Þ � 0:1743yp k � 2ð Þ þ 0:0565u k � 1ð Þ þ 0:0320u k � 2ð Þ
Rp2 : yP2 kð Þ ¼ 1:0852yp k � 1ð Þ � 0:1750yp k � 2ð Þ þ 0:0560u k � 1ð Þ þ 0:0315u k � 2ð Þ

8<
:

• For the flow sub-systems:

RQ1 : yQ1 kð Þ ¼ 1:0853yQ k � 1ð Þ � 0:1744yQ k � 2ð Þ þ 1:4118u k � 1ð Þ � 1:31u k � 2ð Þ
RQ1 : yQ1 kð Þ ¼ 1:0851yQ k � 1ð Þ � 0:1743yQ k � 2ð Þ þ 1:4116u k � 1ð Þ � 1:33u k � 2ð Þ
RQ1 : yQ1 kð Þ ¼ 1:0852yQ k � 1ð Þ � 0:1750yQ k � 2ð Þ þ 1:4120u k � 1ð Þ � 1:31u k � 2ð Þ

8<
:

For the total identification of system we can draw a rule for each subsystem
(flow and pressure) as being modeling and linearization of the whole system,
through intermediary of the Eq. 23:

Fig. 12 Simulation results of FCM algorithm for the flow output
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y k þ 1ð Þ ¼
Pc
i¼1

lik � x kð Þð Þ � yi k þ 1ð Þ
Pc
i¼1

lik � x kð Þð Þ
ð23Þ

Then the global rule of the pressure output is as follow:

RPG : yPG kð Þ ¼1:0851yp k � 1ð Þ � 0:1745yp k � 2ð Þ
þ 0:0563u k � 1ð Þ þ 0:0317u k � 2ð Þ ð24Þ

and the global rule of flow output is as follow:

RQG : yQG kð Þ ¼1:0851yQ k � 1ð Þ � 0:1745yQ k � 2ð Þ
þ 1:4116u k � 1ð Þ � 1:32u k � 2ð Þ ð25Þ

thus, the open loop transfer functions are:

HBOP ¼ 0:05632zþ 0:0317
z2 � 1:0851zþ 0:1745

HBOQ ¼ 1:4116z� 1:32
z2 � 1:0851zþ 0:1745

8><
>: ð26Þ

The discrete state representation associated with system 26:

Pkþ1

Qkþ1

� �
¼ 0:1422 �0:4403

0:0917 0:9428

� �
Pk

Qk

� �
þ 0:0917

0:0119

� �
uk

yk ¼
0 4:7235

14:7535 4:9165

� �
Pk

Qk

� �
þ 0

0

� �
uk

8>>><
>>>:

ð27Þ

We introduce the delay s ¼ 5 s into the model obtained, The system sampling
period is chosen Te = 0.2 s then the delay s ¼ 5 s is calculated at field discrete time
by z�

s
Te ¼ z�

5
0:2 ¼ z�25. The system 26 becomes:

HBOP ¼ z�25 0:05632zþ 0:0317
z2 � 1:0851zþ 0:1745

HBOQ ¼ z�25 1:4116z� 1:32
z2 � 1:0851zþ 0:1745

8><
>: ð28Þ

3.5 Validation Tests of T-S Model

Therefore, to ensure that the model obtained from the estimation it is compatible
with other forms of inputs to represent correctly system functioning to identify. In
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this paragraph, statistical tests to validate a fuzzy model based on Root Mean
Square Error test, Variance accounting for, the residues autocorrelation function
and on the cross-correlation between residues and other inputs in the system.

• Root Mean Square Error test (RMSE) (Troudi et al. 2011):
This is an overall measure of the deviation of total points number from the
expected value.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

yk � ŷkð Þ2
vuut ð29Þ

• Variance accounting for test (VAF) (Troudi et al. 2011):
This criterion evaluates the quality percentage of a model by measuring the
normalized variance of the difference between two signals.

VAF ¼ 100% 1� var y� ŷð Þ
var yð Þ

� �
ð30Þ

• Autocorrelation function of the residues:

r̂eeðsÞ ¼
PN�s

k¼1 eðk; ĥÞ � �e

 �

eðk � s; ĥÞ � �e

 �

PN
k¼1 eðk; ĥÞ � �e


 �2 ð31Þ

• Cross-correlation between residues and inputs previous:

r̂ueðsÞ ¼
PN�s

k¼1 uðkÞ � �uð Þ eðk � s; ĥÞ � �e

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 uðkÞ � �uð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 eðk; ĥÞ � �e


 �2
r ð32Þ

with

�e ¼ 1
N

XN
k¼1

eðkÞ

�u ¼ 1
N

XN
k¼1

uðkÞ
ð33Þ

ɛ: Is the prediction error and u(k) is the system input. x(k) can take either the
value ɛ or u(k). Ideally, if the model is valid, the result of these correlation tests
gave the following results:

486 W. Chakchouk et al.



r̂ ¼ 1; s ¼ 0
0; s 6¼ 0

�
et̂rueðsÞ ¼ 0; 8 s ð34Þ

Typically, we verified that the functions r̂ are zero for the interval s 2 �20; 20½ �
with a confidence interval of 95 %, then:

�1:96ffiffiffiffi
N

p \r̂\
1:96ffiffiffiffi
N

p : ð35Þ

3.6 Results of Validation Tests

• Root Mean Square Error test (RMSE):

RMSEpressure ¼ 0:1471

RMSEflow ¼ 0:1926

(
ð36Þ

• Variance accounting for test (VAF):

VAFpressure ¼ 99:6090 %
VAFflow ¼ 99:3272 %

�
ð37Þ

• Autocorrelation and cross-correlation function results (Figs. 13 and 14):

Fig. 13 Validation results autocorrelation and cross-correlation of pressure output
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A comparison was made between the estimated outputs and actual outputs
collected using a digital oscilloscope (Figs. 15 and 16).

The results simulations of irrigation station model are confused with those of the
real taking away.

3.7 Stability Analysis

In this part we interested to study the stability of estimated model, first of all will
analyze the behavior of the discrete model obtained.

Fig. 14 Validation results autocorrelation and cross-correlation of flow output

Fig. 15 Comparison between
measured and estimated
pressure
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• Lemma 1:
A linear dynamic system is stable if and only if, isolated from its equilibrium
position by an external request, the system returns to this position when the
request ceased (Eivd 2005).

• Lemma 2:
A discrete linear dynamic system is stable, if and only if, all poles of transfer
function are located inside the unit disc.

pij j\1 ð38Þ

Initially, we referring to lemma 1 we will test the stability of irrigation station
model by impulse response which gives Fig. 17:

Fig. 16 Comparison between
measured and estimated flow

Fig. 17 Impulse response of the system
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The test of stability by placement of the poles in the discrete place of the poles,
gives Fig. 18:

We noticed well that the model obtained is a model associated with a stable
system from where the poles modules are strictly lower than one.

4 Control of Irrigation Station with Sprinkling

4.1 Control of Station with PI Regulation

The irrigation station is equipped with a PI controller card which is provided by
LEROY-SOMMER, this controller ensures specific control for the pumps. The
originators in the LEROY-SOMMER company (Sommer 1996), chooses the
parameters of following adjustments Kp ¼ 0:5 Ti ¼ 1 m.

U sð Þ
e sð Þ ¼ Kp 1þ 1

Tis

 �
ð39Þ

The form of discrete regulator PI is given by (Chakchouk et al. 2014) (Fig. 19):

U sð Þ
e sð Þ ¼

Kp 1þ T
Ti


 �
� Kpz�1

1� z�1 ¼ r0 þ r1z�1

1� z�1 ¼ r0zþ r1
z� 1

ð40Þ

Fig. 18 Location of discrete time system poles
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4.2 Simulation Results of PI Controller

The result obtained by PI regulator ensures the control of the pressure because the
answer follows the instruction given. In the presence of 20 % disturbance, the
robustness of this technique of regulation appears in the compensation of the latter.
The major disadvantage of this method of regulation resides primarily at the
problem of adaptation of the controller opposite the external variations such as the
extension of network of drain, the escapes, etc. (Figs. 20 and 21).

4.3 Fuzzy Logic Control of the Irrigation Station

To use the fuzzy controller (Chakchouk et al. 2014), this last must be programmed
through the tool FUZZY OF MATLAB. Entries and are chosen of Gaussian form

Fig. 19 Functional diagram of the system buckled with PI controller

Fig. 20 Evolution of
pressure in presence of PI
regulator
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(bell) and one divided the universe of speech of each one into three sets: Z, P, and
N. Thus, by using all the possible combinations, nine fuzzy rules were generated for
five singletons on the level of the consequence part as it shows in Table 2 (Fig. 22).
The rules can be written in the following way:

if e is Að Þ and _e is Bð Þ thenUcf ¼ Si e; _eð Þ ð41Þ

One uses the method min max like engine of inferences and the centre of gravity
for the defuzzification. The exit of the fuzzy controller can be written in the fol-
lowing form:

Fig. 21 Evolution of flow in
presence of PI regulator

Table 2 Inference matrix of
the fuzzy controller N Z P

N PG PN NM

Z PM Z NM

P PM NM NG

Fig. 22 Functional diagram of system buckled with a fuzzy
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Si e; _eð Þ ¼ min liA eð Þ; liB _eð Þ� � ð42Þ

UcfG ¼ max Si e; _eð Þð Þ ð43Þ

The discourse universe of output Ucf currency in five fields (Fig. 23)
The decision surface of fuzzy controller reflect a probably smooth law of order

what provides us an energy saving on the output of the fuzzy controller (Fig. 24).

4.4 Simulation Results of Fuzzy Controller

The response of the flow if the system is regulated by the fuzzy controller exceeds
the maximum flow (8 m3=h) accepted by the station of irrigation. One thus proposes
to add a saturation to compensate for this going beyond (Figs. 25, 26, 27 and, 28).

4.5 Comparative Study

Taking into account the results obtained, we note that for the two examples of
regulators, the fuzzy approach suggested makes it possible to obtain the best speed
ratio/energy of order however the fuzzy regulation brings a static error to the
evolution of the two outputs. The recourse has a profit inserted into the exit makes it
possible to reduce this error (Fig. 29, Tables 3 and 4).

The fuzzy controller ensures perfectly the control of the irrigation station by
sprinkling, on the other hand regulator PI used in the model appears robust from
point of view stabilization in transitory mode (Fig. 30).

Fig. 23 The decision surface of fuzzy controller
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Fig. 24 Flow chart of a regulation cycle with the fuzzy controller
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Fig. 25 Evolution of pressure with the Fuzzy controller

Fig. 26 Evolution of flow with the Fuzzy controller
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Fig. 27 Evolution of flow with the Fuzzy controller with saturation

Fig. 28 Fuzzy control signal
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Fig. 29 Evolution of the pressure for the two types of regulators

Table 3 Comparative table
enters pi and fuzzy
controllers, relating to the
pressure

PI controller Fuzzy controller

Response time at �5% 12.6 s 6.6 s

Static error of position
(in bar)

0.014 0.01

Table 4 Comparative table
enters pi and fuzzy
controllers, relating to flow

PI controller Fuzzy controller

Response time at �5% 13.4 s 11.6 s

Static error of position
(in bar)

0.8 0.088
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5 Conclusion

In this work, we have applied the Takagi-Sugeno algorithm to a station of irrigation
with sprinkling (real pumping station) and obtained real values from the station.
The system is taken as a black box with outputs pressure and flow. We have
modeled and identified the system by the FCM algorithm.

After obtained the T-S model we have validated curves is almost identical to the
real ones. The obtained linear model gives a good description of the system
behavior in the particle area of nonlinear system, and the importance of the clus-
tering methods.

Even for the control results, the comparison between the results obtained of the
two controls types (PI, Fuzzy) enables us to conclude that the fuzzy controller
makes it possible to cost reduce of the water pumping.
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