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Abstract In recent years the European Union and, moreover, Italy has seen a rapid
growth in the photovoltaic (PV) sector, following the introduction of the feed in
tariff schemes. In this scenario, the design of a new PV plant ensuring savings on
electricity bills is strongly related to household electricity consumption patterns.
This chapter presents a high-resolution model of domestic electricity use, based on
Fuzzy Logic Inference System. The model is built with a “bottom-up” approach and
the basic block is the single appliance. Using as inputs patterns of active occupancy
and typical domestic habits, the fuzzy model give as output the likelihood to start
each appliance within the next minute. In order to validate the model, electricity
demand was recorded over the period of one year within 12 dwellings in the central
east coast of Italy. A thorough quantitative comparison is made between the syn-
thetic and measured data sets, showing them to have similar statistical character-
istics. The focus of the second part of this work is to develop a neural networks
based energy management algorithm coupled with the fuzzy model to correctly size
a residential photovoltaic plant evaluating the economic benefits of energy man-
agement actions in a case study. A cost benefits analysis is presented to quantify its
effectiveness in the new Italian scenario and the evaluation of energy management
actions.
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1 Introduction

The rapid depletion of conventional energy sources and the ever-increasing demand
for more energy coupled with the focus on environmental issues has encouraged
intensive research into new sources of energy and clean fuel technologies that
utilize the latest technology. Most renewable sources use wind, micro-hydro, tidal,
geothermal, biomass and solar energy. This energy is then converted into electrical
energy to be delivered either to the utility grid directly or to isolated loads. From
ancient times, the human race has harnessed solar energy, radiant light and heat
from the sun using a range of different technologies. Some modern solar energy
technologies include solar heating, solar photovoltaic, solar thermal and solar
architecture. These methods can have the potential to make a significant contri-
bution to resolving the pressing energy problems that the world faces.

Photovoltaic (PV) systems and some other renewable energy systems (such as
wind, tidal, waves, geothermal) are excellent choices in remote areas for low to
medium power levels due to the easy scaling of the input power source (e.g. the use
of solar inverters). The main attraction of the PV systems is that they produce
electric power without harming the environment by directly transforming the free
inexhaustible solar energy into electricity. Distributed grid-connected photovoltaics
(PV) is playing an increasingly significant role as an electric supply resource and as
an integral part of the electrical grid, due to the continual decrease in costs and the
increase in their efficiency. Although inferior to other technologies in terms of
installed capacity, PV is currently the most important Distributed Generation (DG)
technology all over the world, due to financial support from the government
(Timilsina et al. 2012; Yang 2010).

As is well known, electricity systems can benefit from the integration of small-
scale PV-DG. For instance, since distributed generation produces electricity where
needed, it helps reducing the electric load on transmission lines and the need for
costly new lines associated with new power plants far from towns and cities.
However, PV poses notable challenges to grid engineers, planners and operators.

Sometimes and especially when having high penetration of PV in parts of the
distribution system dominated by residential end-users, the amount of power gen-
erated by the PV may exceed the total demand being served by a given part of the
distribution system. In those circumstances, “excess” power can have a dramatic
effect on the electric service voltage.

Another effect is known as “back-flow”. This entails the current flow from the
“low voltage side” of electrical transformers (also known as the transformers’
secondary side) to the higher voltage side (also known as the transformers’ primary
side). This challenge tends to be more common in parts of the distribution system
that serve primarily residential end-users, because demand in those parts of the grid
tend to be relatively low during the day (residents may be at work or school).
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In this scenario the modeling of residential energy use and the planning of
energy management actions can play a crucial role (Ciabattoni et al. 2013b). The
pattern of electricity use for any individual domestic dwelling is highly dependent
upon the activities of the occupants and their associated use of electrical appliances.
In this chapter we present a high-resolution model of domestic electricity use, based
upon a combination of patterns of active occupancy and daily activity profiles
(typical appliances usage frequency and starting time). The model is built using a
“bottom-up” approach, according to Richardson et al. (2010). The basic building
block is the appliance, i.e. any individual domestic electric load. The model,
managing the start of each appliance in the household through a fuzzy logic
inference system, gives as output the 1 min resolution electricity usage pattern. All
data necessary to build the fuzzy inference system are obtained from 2 weeks of
measures through wireless smart plugs installed in the households appliances with
an automatic procedure. Fuzzy sets and rules are determined with an automatic
procedure analyzing sensors measures. In order to validate the model, electricity
demand was recorded over the period of a year within 12 dwellings in the central
east coast of Italy. A through quantitative comparison is made between the synthetic
and measured data sets, showing them to have similar statistical characteristics.

The problem of household energy management has been discussed and a pos-
sible solution presented through neural network based forecasts of consumption and
PV production used to inform and influence prosumers on the way they use elec-
tricity to increase the amount of self consumed energy.

The fuzzy model has been used for a case study on the proper sizing of a PV plant
(Benghanem and Mellit 2010; Jakhrani et al. 2012; Jallouli and Krichen 2012;
Kaabeche et al. 2011) in the central east region of Italy and the evaluation of Energy
Management potential benefits based on a costs benefits analysis (CBA). The
installation in a dwelling of all the devices necessary to actuate proper EMpolicies has
a relatively high cost compared to that of a PV system (Di Giorgio et al. 2012; Sawyer
et al. 2009). The focus of this analysis is to set an upper limit for the equipment cost in
order to obtain real savings for a specific household through the CBA.

The chapter is organized as follows. An overview of the related works appears in
the second section. A brief introduction on the fuzzy inference system modeling is
reported in the third section. The structure of the model, a human interaction based
classification of the appliances into different categories, a sample of the rule set, the
National Instruments Labview software implementation details are reported in the
fourth one. Model validation results are given in Section five, where the simulator
output is compared with one year data sets recorded from 12 dwellings in the
central east coast of Italy. In the sixth section energy management problem and
neural network based forecasting algorithms for both photovoltaic production and
home consumptions are described. In Section seven is presented the application of
the FIS consumption simulator for the PV optimal sizing and energy management
benefits evaluation in a case study.
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2 Related Work

The analysis and identification of energy consumption pattern nowadays is
receiving strong interest together with fault diagnosis of appliances components and
there have been a large number of researches in this area (Ferracuti et al. 2013a, b;
Ihbal et al. 2011; Zaidi et al. 2010; Zia et al. 2011).

Another related research field regards the forecast and simulation of households’
electricity consumption patterns, see, e.g., Azadeh et al. (2008), Barbato et al.
(2011), Ciabattoni et al. (2013c), Gruber and Prodanovic (2012), Murata and Onoda
(2002), Osman et al. (2009), Subbiah et al. (2013). Most of the existing models and
analysis focus on data from specific geographic regions and try to explain the
results in a local perspective (Guo et al. 2011; Suh et al. 2012).

Photovoltaic sizing is an important research field in this area but most of the
works concern with the optimization of stand alone systems without an analysis of
the demand response scenario for grid connected users, see e.g. Benghanem and
Mellit (2010), Ciabattoni et al. (2013a), Jakhrani et al. (2012), Jallouli and Krichen
(2012), Kaabeche et al. (2011). In this scenario only the knowledge of the typical
demand pattern for each household will make possible the proper sizing of a
photovoltaic plant, the design of demand response techniques and energy man-
agement actions. The pattern of electricity use for any individual domestic dwelling
is highly dependent upon the activities of the occupants and their associated use of
electrical appliances.

Energy usage models developed in literature e.g. in Bernard et al. (2011),
Richardson et al. (2010) are configured using statistics describing mean total annual
energy demand and associated power use characteristics of household appliances.
Furthermore these modeling approaches (Bernard et al. 2011; Richardson et al.
2010; Widen et al. 2009) concern specific household energetic behavior without an
easy customization capability. It is often impossible to add every appliance and
predispose a “seasonal behavior” (Bernard et al. 2011), (Richardson et al. 2010)
without using the flexibility of a fuzzy inference systems, as proposed in this work.

It is well known that overall cost-saving by distributed generation would only
have a marginal impact if the demand pattern does not match with the production
one and no actions of energy management are performed. In this scenario only the
knowledge of the typical demand pattern and the forecast of the generation pattern
for each household will make possible the design of proper demand response
techniques and the planning of energy management actions. In this context energy
management for residential consumers has become a significant research and
development field for both electrical (Ciabattoni et al. 2013d) and thermal side
(Giantomassi et al. 2014a, b), as a result of the advances in the electrical power grid
technologies and the high penetration of solar, wind and other forms of Distributed
Generation (DG) (Ciabattoni et al. 2012, 2013e; Cimini et al. 2013; Kanchev et al.
2011). Less attractive feed-in-tariffs for new installations of renewable energy DGs
(solar, wind and geothermal plants) and incentives to promote self-consumption
suggest that new operation modes should be explored in order to reach grid parity,
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which has been predicted to become a reality in the next years in the European
Union (Fazeli et al. 2011; Kanchev et al. 2011; Palensky and Dietrich 2011; Zong
et al. 2012). By increasing the self consumed local generated energy, the grid parity
could be achieved earlier and DG of renewable energies will finally make economic
sense becoming cheaper (over the lifetime of the system) than to buy it from utility
(Aghaei and Alizadeh 2013; Lewis 2009; Lopez-Polo et al. 2012).

There are increasing numbers of studies on smart homes and the benefits of
demand-side management (Di Giorgio et al. 2011; Shahgoshtasbi and Jamshidi
2011; Zeilinger 2011) and control and monitoring techniques to reduce overall
energy usage Meyers et al. (2010).

3 Fuzzy Inference System

Fuzzy rule-based systems (FRBS) have been successfully employed for system
modeling in many areas Azar (2010b). Existing fuzzy systems in the literature Azar
(2010a, 2012) can be classified into three main categories: Mamdani, Takagi-Su-
geno (T-S) and Tsukamoto systems based on their implemented fuzzy rule struc-
tures. Furthermore, depending on the intended application, the fuzzy modeling
research field can be divided into two main approaches.

The first is the linguistic fuzzy modeling (LFM) where good human interpret-
ability of the underlying fuzzy model is paramount for tasks such as knowledge
mining and data analysis. This is usually achieved by adopting the Mamdani rule
structure for knowledge representation.

The other is the precise fuzzy modeling (PFM) where T-S and Tsukamoto fuzzy
rule structures are generally used in the learned fuzzy model to achieve high output
accuracies for function approximation and regression-centric applications. Having
good fuzzy rule-base interpretability and high modeling accuracy are contradictory
requirements and one usually prevails over the other based on the modeling
objective and fuzzy rule structure employed.

Generally, Mamdani fuzzy models are more interpretative than T-S fuzzy
models from a human perspective and thus can better explain and describe a
modeled system’s behaviors.

3.1 Fuzzy Modeling

The modeling of the appliance’s usage has been performed with a LFM approach to
determine if wether or not it is going to be started. Since the aim of this work is to
represent the household energetic behavior we choose Mamdani model, in order to
give the best interpretability to the rules.

The usage pattern, depending on the appliance’s category, can be related to
many variables, such as the number of active people in the house, the typical
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frequency of the appliance, the time of the day, the temperature. For example, when
people are not at home, most appliances will not be used (only the so called
continuous use appliances).

In daily appliance electricity profile, the occupants use virtually little power
(stand by and fridge-freezer) during the night, may wake up and have breakfast,
vacate the house during the morning and then return around mid-day for lunch, e.g.
starting the microwave. In the evening, the meal is cooked, television is watched,
lights are on, showers are taken, etc.

This typical pattern can drastically change during the weekend and holidays
(when people can be in the house mostly during daytime) and, moreover, it can
change from dwelling to dwelling due to different life styles. The main factors
influencing occupancy pattern and appliances usage are: the number of occupants,
the time the first person gets up in the morning and last person goes to sleep, the
periods house is unoccupied during work days, holidays and weekends. When
analyzing the households load profile we need information on the active occupants
of the dwelling. To compute the overall occupancy pattern a specified model can be
used, for instance that one developed by Richardson et al. (2008).

Starting from basic information in this chapter we build a 1 minute resolution
daily active occupants pattern for each day of the week. To compute the number of
the busy occupants a counter is used; this counter is increased every time an
appliance that requires interaction with a person is switched on, and decreased
every time it is switched off. The number of unoccupied people in the dwelling can
be computed from the active occupants pattern and the current value of the busy
occupants counter. Knowing this value for each time of the day, we can enable or
interdict the switching on of the appliance.

A further important feature is to identify the typical frequency of each appli-
ance’s starting for each household. This parameter is rarely a crisp value, e.g. “the
washing machine starts usually from 2 to 3 times a week”, and often related to the
time of the day, e.g. “the television starts some hours a day usually at night”. In this
work all information regarding occupancy, appliances frequency and typical start
time are taken with a brief interview. The former are used to build the active
occupancy pattern and the latter to build fuzzy rules.

4 Appliances Fuzzy Inference System

The electricity consumption pattern model for any individual domestic dwelling is
developed using a “bottom-up” approach, according to those proposed by Rich-
ardson et al. (2010). The basic block is the appliance, i.e. any individual domestic
electric load. As it is well known, home appliances differ one from each other by
size, functions, human interaction level, automation level.
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4.1 Appliances Classification

In particular to build the fuzzy rules a load classification based on the human
interaction has been used and four different groups found:

• Continuous use appliances, characterized by a 24/7 use, not depending on
factors like the time of the day and the number of active occupants of the
dwelling (e.g. refrigerator).

• Periodical use appliances without human interaction during the operation (e.g.
washing machine, dishwasher, oven).

• Periodical use appliances with human interaction during the operation (e.g.
vacuum cleaner, iron).

• Multimedia appliances and lighting, with a strongly intermittent use, directly
related to the number of active occupants of the dwelling.

These 5 different categories of appliances have different fuzzy input-output vari-
ables. Input variables for the FIS inference are the time h(t) of the day, the per-
centage p(t) of unoccupied people in the dwelling and DT/T(t) that is the time
elapsed since the last appliance start normalized on his period. The outputs of the
FIS engine are the probability P(t) to start a certain appliance and the total time D
(t) the appliance will be on. In particular Table 1 contains inputs and outputs for
each category.

Another classification method considered is based on the automation level, in
particular we can find:

• Smart Appliances: loads for which consumption profile is available and it is
possible to choose the start time (remotely or locally).

• Controllable Loads: loads which are connected to smart plugs and can be
remotely switched on/off without damage and degradation of consumer quality
of experience.

• Monitorable Loads: connected to smart plugs to monitor their consumptions;
they can not be switched on/off.

• Detectable Loads: the consumption of which can be estimated by performing the
difference among the power measures provided by the smart meter and all the
smart plugs and appliances, being them not smart appliances and not connected
to smart plugs.

Table 1 Fuzzy input output
variables for the different
appliance’s categories

Category IN IN IN OUT OUT

Continuous – – – – –

Periodic without
human

h(t) DT/T(t) – P(t) –

Periodic with
human

h(t) DT/T(t) – P(t) –

Multimedia h(t) DT/T(t) p(t) P(t) D(t)

Lighting h(t) DT/T(t) p(t) P(t) –
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Due to the lack of smart appliances on the market it has been necessary to
configure standard appliances into monitorable loads to extract their consumption
profiles. On the same time if a user plans to use energy management actions
controllable loads are necessaries. In particular the appliance remote start can be
performed only for some of the so called “periodical use without human interac-
tion”, due to their features.

4.2 Appliances Fuzzy Rules

The membership functions of the input variables (samples shown in Figs. 1–3)
consist of triangular asymmetric and trapezoidal functions. The trapezoidal function
is totally represented with four points, known also as fuzzy set: A = (a1, a2, a3, a4).
This representation is interpreted as membership functions:

lAðxÞ ¼

0; x\a1
x�a1
a2�a1

; a1\x\a2
1; a2\x\a3
a4�x
a4�a3

; a3\x\a4
0; x[ a4

8>>>><
>>>>:

ð1Þ

when a2 = a3, the triangular function can be considered as a particular case of the
trapezoidal one. Table 2 shows the fuzzy sets for the input variables.

Table 2 Considered fuzzy sets for input variables

Abbreviation a1 a2 a3 a4
h(t)

Early morning EM 0 0 300 450

Morning M 300 400 750 800

Afternoon A 650 750 1,000 1,150

Evening E 1,050 1,100 1,250 1,300

Late evening LE 1,250 1,300 1,440 1,440

DT/T(t)

Very advance VA 0 0 0.3 0.6

Advance A 0.5 0.75 0.75 1

In time IT 0.9 1 1 1.1

Late L 1 1.25 1.25 1.5

Very late VL 1.4 1.8 2 2

p(t)

Very low VL 0 0 0.2 0.4

Low L 0.2 0.3 0.4 0.5

Medium M 0.3 0.5 0.7 0.9

High H 0.7 0.8 1.0 1.1

Very high VH 1.0 1.1 inf inf
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A sample of the fuzzy control rule base for a “Periodical use appliance without
human interaction” (e.g. the dishwasher) is shown in Table 3; the Max-Min fuzzy
inference algorithm is considered, (Bose 2011). The outputs of the FIS engine are
the probability P(t) to start a certain appliance: (N) None, (VL) Very Low, (L) Low,
(M) Medium, (H) High, (VH) Very High and the total time D(t) the appliance will
be on: (VL) Very Low, (L) Low, (M) Medium, (H) High, (VH) Very High. Output
membership functions, shown as example in Fig. 4, consist of sigmoid functions
with different values for each appliance category.

Concerning the defuzzyfication we use the modified Center of Area defuzzyfi-
cation method since the centroid method evaluates the area under the scaled
membership functions only within the range of the output linguistic variable and the
resulting crisp output values could not span the full range. The fuzzy logic con-
troller uses the following equation to calculate the geometric center of the full area
under the scaled membership functions:

mCoA =

R
f(x) � xdxR
f(x)dx

ð2Þ

where mCoA is the modified center of area. The interval of integration is between
the minimum membership function value and the maximum membership function
value. Note that this interval might extend beyond the range of the output variable.

Table 3 Dishwasher FIS
sample VA A IT L VL

EM VL VL VL VL VL

M VL VL VL L L

A VL VL L L M

E VL L M H VH

LE VL VL VL VL VL

Input DT/T(t) is in the first row, while h(t) is in the first column.
Probability P(t) are the central values of the table

Fig. 1 Membership function of the input variable h(t). The x-axis is the time of the day in minutes
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4.3 Model Implementation

The aim of the simulation tests is to evaluate the potentialities of an energy man-
agement technique applied for different households, in order to evaluate the eco-
nomic benefits users can obtain.

Fig. 2 Membership function of the input variable p(t). The x-axis is the percentage of occupancy
of the dwelling

Fig. 3 Membership function of the input variable DT/T(t). The x-axis is the ratio between the time
elapsed since the last start and the average starting period

Fig. 4 Membership function of the output variable P(t). The x-axis is the probability to start an
appliance
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The model has been realized using LabVIEW, the graphical programming
environment of National Instruments. In particular the FIS has been realized using
the LabVIEW fuzzy toolkit while the input-output membership functions and the
rule set with the fuzzy system designer. As the simulator is not time driven when a
simulation runs one-min resolution electricity demand data can be generated for a
specified time period using two nested FOR loops (the outer for the days of the year
and the inner for the minutes of each day) as shown in Fig. 5.

Each single appliance block, implemented as a functional global variable, is in
the inner loop and runs in two phases. During the first iteration of the simulation all
the configuration parameters are loaded, e.g. the fuzzy rule set of the appliance, the
consumption profile, the maximum power, the typical starting frequency, number of
people typically interacting with the appliance (all the mentioned parameters are
fully editable in text files and fuzzy rules through LabVIEW graphical interface).

After the first iteration the likelihood an appliance will start within the next
minute is evaluated with a time resolution of one-minute (except for the so called
“Continuous use appliances”). In particular, since the FIS output is a probability
value, to manage the start of an appliance this value is multiplied by a calibration

Fig. 5 Structure of the LabVIEW simulator
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factor (equal to the difference in hours between the average period of use of the
appliance and the time elapsed since the last start), as stated in Richardson et al.
(2010). The result is then compared with a random number (within the real interval
0–1). The appliance will start if:

• this number is less than the scaled probability
• there is at least one person in the house
• there are sufficient active people in the house (only for some appliance’s

categories)
• the sum between the current electrical consumption and the max power of the

appliance is less than the power the customer can absorb from the grid.

Table 1 shows the need of taking into account also the number of active people
in the dwelling for “Periodical use appliances with human interaction” and “Mul-
timedia Appliances”. Starting from the typical pattern of people in the household
we decrement this number when an appliance of one of these categories starts and
increment this number when the appliance is turned off.

To simulate EM actions, fuzzy rules have been modified to approximate a
different user behavior regarding the starting time of the two main shiftable
appliances (dishwasher and washing machine). As an example, without any action,
fuzzy input sets for “periodical use appliances without human interaction” are:

• the time of the day h(t)
• the time elapsed since the last appliance start multiplied his typical start fre-

quency DT/T(t)

and a typical rule formulation is:
if h(t) is afternoon and DT/T(t) is late, then the probability to start the appliance

is low.
In the following section we will describe tests performed to validate the model.

5 Model Validation

We validated the model collecting a set of consumption data from 12 volunteer
dwellings in and around the town of Ripatransone in the province of Ascoli Piceno,
Italy. All people in these households have been briefly interviewed to build
occupancy patterns and fuzzy rule sets starting from their typical energy habits.
A set of data loggers were installed in the dwellings and configured to record
demand at 1 min intervals. An example 24 h demand profile for a single dwelling
taken from the measured data set is shown in Fig. 6. In order to create a con-
sumption database we installed in four of these dwellings individual appliance
monitors (IAMs from Current Cost company) to extract 6 s resolution consumption
data of every household monitorable load (e.g. washing machine, dishwasher,
multimedia appliances, iron, oven, microwave). For the remaining 8 dwellings,
appliances were not directly monitored, but the profiles were used choosing for
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each appliance the most similar profile in the database (e.g. same brand for the
dishwasher, same size for the TV or the laptop battery charger).

It is important to emphasize that the differences between single appliance blocks
for the different dwellings are taken into account changing the fuzzy rules, the
occupancy profile and using different consumption patterns from the database
(according to the different appliances).

The final aim of this simulation tool is the prediction of the human behavior (e.g.
the starting of an appliance within 1 h of its real start) especially during daylight
periods, in order to give a good method to correctly design a PV plant and evaluate
Energy Management actions benefits.

Consequently the purpose of the following validation is to show that the mea-
sured and simulated data have similar statistics and differ only for limited quantities.
To this end, the model was used to create synthetic data for 12 dwellings covering a
full year at 1 min resolution.

Table 4 reports the RMS error, the standard deviation and the RMS% error of
measured and simulated values for all 12 dwellings. These values are computed for
different time scales, showing a good modeling performance in particular for what
regards the daytime period, our main focus to compute the self consumption per-
centage. Indeed the RMSE% calculated from 9 a.m. to 5 p.m. in the whole year for
the 12 dwellings is 8.02 %, showing a good capability of the simulator to model the
human behavior during the day.

Fig. 6 1 min Resolution consumption for one of the considered households in Ripatransone (AP),
Italy on a spring day (March 12 2012). One the x-axis are represented the minutes in a day

Table 4 Model validation results. percentage mean error, RMSE, SD and RMSE% between the
simulated and measured values

Time Scale Mean error (%) RMSE (KWh) SD (Wh) RMSE (%)

Daytime 0.56 0.514 0.408 8.02

Daily 0.35 1.062 0.890 11.58

Weekly 0.29 6.012 4.360 7.11
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Figure 7 shows a 1 min data comparison between the simulator output and the
measured values for one day and one dwelling.

Figure 8 shows a comparison between the daily energy simulated and measured
during an entire month.

Fig. 7 March 23 2012. 1 min resolution data for one of the considered households in
Ripatransone (AP), Italy. The dotted blue line is the simulation load profile, the red continuous line
is the measured one

Fig. 8 March 2012. Daily data for one of the considered households in Ripatransone (AP), Italy.
Blue bars are the simulated values, red bars are the measured ones
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In the following section a description of the energy management problem and a
set of solution will be presented.

6 Energy Management Techniques

The installation of a PV plant can have a great impact on the energy behavior of
users. They can use an energy manager, forecasting tools or simply plan to start
appliances according to weather forecast. The energy management problem can be
expressed as the minimization of a cost function X, given a certain number of
electrical tasks NTASKS (e.g. the appliance starts) to arrange in NTIME time samples:

min x ¼
XNTASKS

k¼1

XNTIME

i¼0

xkðiÞ � LkðiÞ � CkðiÞ ð3Þ

where ωk(i) express if wether or not a task is running at time i, Ck(i) is the energy
cost at time i, as computed in 6, Lk(i) is the energy consumed by the task in the time
interval i. In particular this minimization problem is subject to the following con-
strains considering the total power absorbed at each time and the absence of
interruptions for each task:

8 i !
X
k

xkðiÞ � LkðiÞ�Pmax ð4Þ

8 k ! xkðiÞ ¼ 1 ; 8 i : Tstart\i\Tend ð5Þ

C�kð�iÞ ¼
Rð�iÞ if

P
k 6¼�k xkð�iÞ � Lkð�iÞ[PPV

0 if
P

k 6¼�k xkð�iÞ � Lkð�iÞ�PPV

�
ð6Þ

In the energy management problem considered in this work we use only two
shiftable tasks: the dishwasher and the washing machine. For these tasks ωk(i) can
be set to 1 according to a forecasting policy.

In particular since in this model we represent the typical user behavior, for what
regards the starting of one of these two tasks we need to consider the best time to
start the appliance according to user needs (the maximum end cycle time of the
appliance has to be fixed by the user) and the optimization of the cost function.

To model the user behavior a new input DX(t) is added in the model, repre-
senting the time distance from the best time to start an appliance.

According to this new input, the same rule discussed above will change:
if h(t) is afternoon and DT/T(t) is late and DX(t) is very low, then the proba-

bility to start the appliance is very high.
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6.1 Prediction Algorithms

Valid and reliable forecast information on the expected PV power production and
home consumptions play a primary role for the design of an energy management
system and to find the best time to start an appliance.

The following approach to implement a Minimal Resource Allocating Network
(MRAN) is based on a sequential learning algorithm and an Extended Kalman Filter
(EKF) Kadirkamanathan and Niranjan (1993), Platt (1991), Sundararajan et al.
(2002). In particular the sequential learning algorithm adds and removes neurons on-
line to the network according to a given criterion (Platt 1991), (Sundararajan et al.
2002; Yingwei et al. 1998), and an EKF is used to update the net parameters
(Kadirkamanathan and Niranjan 1993).

6.1.1 Radial Basis Function Neural Network

A RBFN with input pattern x 2 R
m and a scalar output ŷ 2 R implements a

mapping f : Rm ! R according to

ŷ ¼ f ðxÞ ¼ k0 þ
XK
i¼1

ki/ x� cik kð Þ ð7Þ

where ϕ( · ) is a given function from R
þ to R, k � k denotes the Euclidean norm, λi,

i = 0, 1,…, K are the weight parameters, ci 2 R
m, i = 1, 2, …, K, are the radial basis

function centers (called also units or neurons) and K is the number of centers Chen
et al. (1991). The terms:

oi ¼ ki/ x� cik kð Þ; i ¼ 1; . . .;K ð8Þ

are called the hidden unit outputs.
In this work the RBFN is used for the prediction of the output of a dynamical

system and the system dynamics can be taken into account through the network
input pattern x, that must be composed of a proper set of system input and output
samples acquired in a finite set of past time instants Hunt et al. (1992), i.e. x 2
R

nyþnu and it is defined as:

xðnÞ ¼ ½yðn� 1Þ; . . .; yðn� nyÞ; uðn� 1Þ; . . .; uðn� nuÞ�T ð9Þ

where n = 1,2,… are the time instants, y(·) and u(·) are the system output and inputs
(for a detailed description see Sect. 6.2), respectively; ny, nu are the lags of the
output and input, respectively.

Theoretical investigation and practical results show that the choice of the non-
linearity ϕ(·), a function of the distance di between the current input x and the centre
ci, does not significantly influence the performance of the RBFN Chen et al. (1991).
Therefore, the following gaussian function is considered:
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/ðdiÞ ¼ exp �d2i =b
2
i

� �
; i ¼ 1; 2; . . .;K ð10Þ

where di ¼ x� cik k and the real constant βi is a scaling or “width” parameter
(Chen et al. 1991).

Minimal Resource Allocating Network Algorithm

The learning process of MRAN involves allocation of new hidden units and a
pruning strategy as well as adaptation of network parameters (Kadirkamanathan and
Niranjan 1993; Platt 1991; Sundararajan et al. 2002). The network starts with no
hidden units and as input-output data ðxð�Þ; yð�ÞÞ are received, some of them are
used to generate new hidden units based on a suitably defined growth criteria. In
particular at each time instant n the following three conditions are evaluated to
decide if the input xðnÞ should give rise to a new hidden unit:

eðnÞk k ¼ yðnÞ � f ðxðnÞÞk k[E1 ð11Þ

ermsðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼n�ðM�1Þ

eðjÞ2
M

vuut [E2 ð12Þ

dðnÞ ¼ xðnÞ � crðnÞk k[E3 ð13Þ

where crðnÞ is the centre of the hidden unit that is nearest to xðnÞ and M represents
the number of past network outputs for calculating the output error erms(n). The
terms E1, E2 and E3 are thresholds to be suitably selected. As stated in Sundararajan
et al. (2002), Yingwei et al. (1998) these three conditions evaluate the novelty in the
data. If all the criteria of relations (11)–(13) are satisfied, a new hidden unit is added
and the following parameters are associated with it:

kKþ1 ¼ eðnÞ ð14Þ

cKþ1 ¼ xðnÞ ð15Þ

bKþ1 ¼ a xðnÞ � crðnÞk k ð16Þ

where α determines the overlap of the response of a hidden unit in the input space
as specified in Kadirkamanathan and Niranjan (1993), Sundararajan et al. (2002). If
the observation ðxðnÞ; yðnÞÞ does not satisfy the criteria of relations (11)–(13), an
EKF is used to update the following parameters of the network:

w ¼ k0; k1; cT1 ; b1; . . .; kN ; c
T
N ; bN

� �T
: ð17Þ
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The update equation is given by:

wðnÞ ¼ wðn� 1Þ þ kðnÞeðnÞ ð18Þ

where the gain vector kðnÞ is expressed by:

kðnÞ ¼ Pðn� 1ÞaðnÞ rðnÞ þ aTðnÞPðn� 1ÞaðnÞ� ��1 ð19Þ

with aðnÞ the gradient vector of the function f ðxðnÞÞ with respect to the parameter
vector wðn� 1Þ Kadirkamanathan and Niranjan (1993), Sundararajan et al. (2002),
r(n) is the variance of the measurement noise and Pðn� 1Þ is the error covariance
matrix which is updated by:

PðnÞ ¼ I � kðnÞaTðnÞ� �
Pðn� 1Þ þ Qðn� 1Þ ð20Þ

where Qðn� 1Þ is introduced to avoid that the rapid convergence of the EKF
algorithm prevents the model from adapting to future data Kadirkamanathan and
Niranjan (1993), Sundararajan et al. (2002). The z × z matrix PðnÞ is positive
definite symmetric and z is the number of parameters to be adjusted. When a new
hidden neuron is allocated, the dimension of PðnÞ increases to:

PðnÞ ¼ Pðn� 1Þ 0
0 p0Iz1�z1

� 	
ð21Þ

where p0 is an estimate of the uncertainty in the initial values assigned to the
parameters and z1 is the number of new parameters introduced by adding the new
hidden neuron. As stated in Sundararajan et al. (2002), Yingwei et al. (1998) to
keep the RBF network in a minimal size a pruning strategy removes those hidden
units that contribute little to the overall network output over a number of consec-
utive observations. To carry out this pruning strategy, for every observation
ðxðnÞ; yðnÞÞ the hidden unit outputs are computed:

oiðnÞ ¼ ki/ xðnÞ � cik kð Þ; i ¼ 1; . . .;K ð22Þ

and normalized with respect to the highest output:

oiðnÞ ¼ oiðnÞ
maxfoiðnÞg ; i ¼ 1; . . .;K ð23Þ

The hidden units for which the normalized output (23) is less than a threshold δ for
ξ consecutive observations are removed and the dimensionality of all the related
matrices are adjusted to suit the reduced network (Sundararajan et al. 2002;
Yingwei et al. (1998).
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The EKF has been implemented with the assumption that QðnÞ ¼ In;nr2g and r
(n) = σv

2.
The MRAN prediction algorithm Sundararajan et al. (2002), Yingwei et al.

(1998), with the EKF, here called MRANEKF algorithm, is shown in Fig. 9 and it
is summarized as follow:

1. For each observation ðxðnÞ; yðnÞÞ do: compute the overall network output:
ŷðnÞ ¼ f ðxðnÞÞ ¼ k0 þ

PK
i¼1 ki/ xðnÞ � cik kð Þ where K is the number of hidden

units;
2. Calculate the parameters required by the growth criterion:

• eðnÞk k ¼ yðnÞ � f ðxðnÞÞk k
• ermsðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼n�ðM�1Þ

eðjÞ2
M

s

• dðnÞ ¼ xðnÞ � crðnÞk k

Fig. 9 Flow chart of the
MRANEKF algorithm
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3. Apply the criterion for adding a new hidden unit:
if
‖e(n)‖ > E1 and erms(n) > E2 and d(n) > E3 allocate a new hidden unit K + 1
with:

• λK+1 = e(n)
• cKþ1 ¼ xðnÞ
• bKþ1 ¼ a xðnÞ � crðnÞk k
else

• tune the network parameters:

wðnÞ ¼ wðn� 1Þ þ kðnÞeðnÞ

• update the error covariance matrix:

PðnÞ ¼ I � kðnÞaTðnÞ� �
Pðn� 1Þ þ Qðn� 1Þ

end
4. Check the criterion to prune hidden units:

• compute the hidden unit outputs:

oiðnÞ ¼ ki/ xðnÞ � cik kð Þ; i ¼ 1; . . .;K

• compute the normalized outputs:

oiðnÞ ¼ oiðnÞ
maxfoiðnÞg ; i ¼ 1; . . .;K

Fig. 10 Input Output structure of the PV production forecast neural network
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• if oið�Þ\d for ξ consecutive observations than prune the ith hidden unit and
reduce the dimensionality of the related matrices

end
5. n = n + 1 and go to step 1.

6.2 Prediction Algorithm Results

Forecast algorithms performance have been evaluated through real experimental
tests based on data acquired from March 2012 to August 2012. In particular the 3
houses with 3.3 KWp PV plant considered, are located in Ripatransone (AP), Italy.
The MRANEKF learning algorithm starts with a pre-trained net based only on few
information found on the web, such as power production profile of clear sky days
and cloudy days for the specified location Pvg (2011), panel orientation and tilting
and typical electrical load profile of a house. This is a common operating condition,
when no sensors and measures are available before the forecast begins.

The inputs of the production forecasting network, as shown in Fig. 10, are:

• the day of the year (from 1 to 365)
• the hour of the day (considered from 0 to 24)
• the ambient temperature (in Kelvin)
• the sky clearness index (a coefficient ranging from 0 to 10 mapping the website

forecast, e.g. “clear and sunny” is 10 while “clouds and heavy rain” is 0)
• the wind speed (in m/s)

The input pattern of the consumption forecasting net, as shown in Fig. 11,
consists of:

• the day of the week (e.g. Monday is day 1, Tuesday is day 2)
• the hour of the day (considered from 0 to 24)

Fig. 11 Input-output structure of the load forecast network
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• the consumptions measured the day before and the week before at the same time
(in Watt, excluding the consumption profile of the shiftable loads)

• the consumptions measured the hour before (excluding the consumption profile
of the shiftable loads). Notice that if the prediction horizon is greater than 2 h,
there are no available measures and this input will be the forecasted
consumption.

• the consumption measured the day before one hour before the considered time
(excluding the consumption profile of the shiftable loads)

To measure the performance of the proposed algorithm, the normalized Root
Mean Square of the Error e(·) (RMSE), its Standard Deviation (SD) and the per-
centage RMSE have been calculated and summarized in Table 5. The set of
experimental data is composed of 4,000 pairs of input and output samples. Data
have been also normalized, between 0 and 1, in order to have the same
range. Figures 12 and 13 show a sample of electrical consumptions and PV pro-
duction forecasts respectively, considering different time horizons.

The whiteness test on the prediction errors e(·) (residuals) has been also used for
network validation Ljung (1999). The whiteness of residuals is usually evaluated by
computing the sample covariances

R̂N
e ðsÞ ¼

1
N

XN
n¼1

eðnÞeðnþ sÞ ð24Þ

with τ = 1,…,P.
If e( · ) is a white-noise sequence, then the quantity

fN;P ¼ N

ðR̂N
e ð0ÞÞ2

XP
s¼1

ðR̂N
e ðsÞÞ2 ð25Þ

will have, asymptotically, a chi-square distribution χ2(P) (Ljung 1999). The inde-
pendence between residuals can be verified by testing whether ζN,P < χα

2(P), the α
level of the χ2(P)-distribution, for a significant choice of α.

6.3 Load Manager Algorithm

The core of the proposed energy management solution is the load manager that
analyzes the information of the predictor, the decision of the user and monitor
periodically consumption and production to make the intelligent scheduling of the
appliances and to give correct information to the users.

In the scheduling of the loads, two aspects should be considered: the first is to
reduce the energy payment of the users; the other is to let the user choose the end
time of some critical appliance’s cycle. It is clear that these two objectives may be
conflicting in some scenarios. In the proposed approach, we consider both question.
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In the Italian scenario to minimize energy payment it’s necessary to maximize
PV production self-consumption, often shifting the start time of some appliances.
Users should be informed about instantaneous and forecasted energy consumption
and production to make the right decisions. Due to the occupancy profile of the
dwellings during working hours, this policy can’t easily be adopted and it is nec-
essary the remote start of some appliances, under user defined parameters (type of
appliance to start, maximum end time, cycle time).

The algorithm used to plan the better time to start an appliance is based on: price
of energy P(k), production and consumption forecasted each 30 min PPV(k) and
C0(k), feed-in tariffs δ (for PV plants installed before July 2013), appliance energy
consumption each 30 min C1(k), end time of the cycle H and cycle time J. Elec-
tricity prices are assumed to take two levels, corresponding to peak and off-peak
hours (the typical Italian scenario). During the peak period, from 8:00 a.m. to 7:00
p.m., from Monday to Friday (for the typical domestic contract) electricity costs
0.23 eur/kWh, and at all other times it costs 0.21 eur/kWh (these are actual rates
from Enel time-of-use pricing model in Italy). In absence of a PV plant and without

Fig. 12 The continuous red line is the measured consumption, the dashed blue line is the 3 h
ahead forecast, the dotted purple line and green line are respectively the 8 and 18 h ahead forecast

Table 5 RMSE and
percentage error between
electrical consumption and
PV production predicted and
measured for the 3 considered
houses

RMSE SD (W) ERR %

Consumption (h)

3 182.7 Wh 128.4 9.70

8 246.6 Wh 198.2 12.20

18 334.8 Wh 302.1 16.30

PV production (h)

3 0.167 KWh 98.4 Wh 7.70

8 0.247 KWh 173.1 Wh 9.30

18 0.371 KWh 296.7 Wh 11.80
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a specified end time, customers will reach the major economical benefits starting
appliances when P(k) has the minimum value Pmin in peak off periods, paying

X� ¼ C1ðk þ i� 1Þ � Pmin; i ¼ 1; . . .; J ð26Þ

This will be the reference value that the algorithm has to improve taking into
account that the self-consumption reduces the feed in tariff of δ (production and
consumptions are in [KWh], while prices and feed in tariffs in [eur/KWh]). When
the user plan to start an appliance with end time H, the algorithm used to minimize
the price of the appliance cycle and find the best hour to start it is summarized as
follows:

min = X*;
for k = 1, …, H − J
X(k) = 0;
for i = 1, …, J
if PPV(k + i − 1) − C0(k + i − 1) − C1(k + i − 1) < 0
X(k) = X(k) + (PPV (k + i − 1) − C0 (k + i − 1) − C1 (k + i − 1)) * P (k) + C1

(k + i − 1) * δ
else X(k) = X(k) + C1(k + i − 1) * δ
end; end;
if X(k) < min
min = X(k); hour = k * 2;
end; end

In the following section we will examine a case study on the proper sizing of a
PV plant together with an economic evaluation of energy management benefits.

Fig. 13 The continuous red line is the measured PV production, the dashed blue line is the 3 h
ahead MRANEKF network forecast, the dotted purple line and green line are respectively the 8
and 18 h ahead forecast
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7 Photovoltaic Plant Sizing: A Case Study

Due to the random nature of solar energy, great effort must be made to design PV
systems that optimize energy savings, self consumption and costs. In this section we
propose a PV sizing case study in the Italian scenario using the consumption pattern
of one of the previously considered household with an annual electrical con-
sumption of 2,300 KWh.

The key of the proposed sizing method is the self consumption percentage,
computed by the simulation tool. In Italy the government took the decision to cut
PV incentives on June 2013, instead of 2016 as previously expected. An example
on how PV incentives varied for a building integrated 3 kWp plant since their
introduction in 2005 is shown in Fig. 14.

To provide support to PV industry a new net metering scheme has been amended
Regulatory Authority for Electricity and Gas (2013) and came into effect on 1st
January 2013. Under this decree PV system owners can get credits for the value of
the excess of electricity fed into the grid over a time period. Further encouraging
self-consumption, the Italian Revenue Agency introduced tax breaks for off-grid PV
systems installed on buildings.

A 3 year historical solar irradiance data set is used to calculate the output of a
varying size PV plant (1–3.5 kWp) and compared with the consumption pattern
computed by the simulator in order to obtain the self consumption percentage for
each considered PV plant size. A financial evaluation technique is used to compare
the different investments under the revised Italian net metering scheme known as
“scambio sul posto” in which GSE pays a contribution Et to the customer equal to:

Fig. 14 Year 2005–2013. Evolution of the Italian FITs, according to the Ministerial Decrees, for a
3 kWp building integrated PV plant
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Et ¼ Ct �minðFt;WtÞ ð27Þ

where Ft and Wt are respectively the injected and withdrawn electricity in KWh and
Ct represents a coefficient comprehensive of the electricity cost and net services cost
in eur/KWh. For the global cost of the PV plant, an average of the main solar
installer prices in the considered area has been considered.

7.1 Economical Analysis

The cost-benefit analysis (CBA) is a financial valuation technique used to predict
the effects of a project, a program or an investment, verifying its benefits. CBA, as
an alternative to traditional methods of economic analysis, represents also a method
of ex-ante evaluation by external parties that have to decide on the financial via-
bility of an investment or have to choose how to allocate scarce financial resources
among different possible investments.

To evaluate the economic convenience of PV systems on the considered building
we carried out the CBA of different sizes of PV plants to choose the best one. The
discounted cash flows generated from each investment have been calculated for
20 years, equal to the period in which PV module producers guarantee at least 80 %
of their initial performance. The net present value (NPV), calculated for each PV
plant size, is:

NPV ¼
XK
t¼0

Ct

ð1þ rÞt ð28Þ

where Ct is the cash flow at time t, r the discount rate (equal to 5 % in our case) and
K the considered lifetime of the investment. The cash flow Ct is the difference
between the discounted annual cash inflows It and outflowsOt. In particular It consists
of the annual directly saved energy by self consumption (considering a 3 % annual
increase of the unitary energy price), the net metering contribution Et and government
contributions (50 % of the plant cost in taxes deduction for the first 10 years).

Ot consists instead of the initial cost of the plant (we consider an investment
made only with own capital) and the annual maintenance costs (0.5 % of the initial
cost per year). Considering that NPV calculation strongly depends on the used
reference discount rate r used (for which the same investment may be convenient or
less in relation to its value) it is useful to consider as financial indicator also the IRR
(internal rate of return), calculated as the rate r* for which results:

NPVðr�Þ ¼ 0 ð29Þ

Table 6 reports the unitary costs (Cost), the self consumption percentages of two
simulated scenarios (user performing EM actions and user maintaining the same
behavior) and CBA results for different PV plant sizes in the analyzed case study.
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Figure 15 shows the trend of NPV and IRR depending on the PV plant size when
a user do not perform any EM action. The values of NPV, which range between 790
and 2,070 €, IRR, between 6.89 and 9.71 %, show better results for a 2.25 KWp
plant. In particular revenues decrease from 2,070 to 1,360 € with a 3 KWp plant and
IRR decrease of 2 %, emphasizing the need of the correct sizing of the plant.

We have furthermore analyzed the situation in which the user performs basic EM
actions (starting the 2 main shiftable appliances around the peak production hours
of each day, according to the results provided by the energy management algo-
rithms presented).

Table 6 Unitary costs, self consumption percentages (SC) and CBA results (NPV and IRR) for
the considered case study with and without energy management actions

No EM actions EM actions

3–5 7–9 Size
(KWp)

Cost (€/
KWp)

SC
(%)

NPV
(€)

IRR
(%)

SC
(%)

NPV
(€)

IRR
(%)

1.00 3,850 41.1 787 7.91 53.4 1,005 8.64

1.25 3,750 35.3 937 7.85 47.3 1,208 8.60

1.50 3,500 31.3 1,251 8.35 42.9 1,566 9.11

1.75 3,150 27.4 1,711 9.28 38.5 2,067 10.07

2.00 2,950 24.2 2,048 9.71 35.2 2,443 10.51

2.25 2,750 22.5 2,069 9.47 32.9 2,501 10.30

2.50 2,700 20.6 1,730 8.51 30.6 2,198 9.36

2.75 2,500 19.4 1,716 8.42 29.4 2,215 9.32

3.00 2,450 17.5 1,363 7.60 26.9 1,888 8.51

3.25 2,320 16.2 1,310 7.46 25.8 1,879 8.44

3.50 2,260 15.7 1,047 6.89 24.7 1,624 7.85

Fig. 15 Results of the cost benefits analysis. NPV (blue line) and IRR (red line) for the different
sizes of PV plants computed when a user performs EM actions (squared markers) or maintains the
same energy behavior (triangular markers)
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8 Conclusions

In recent years (2005–2013), the whole Europe has highlighted a rapid growth of
the photovoltaic sector, after the introduction of economical incentives by
governments.

In this context, due to higher feed in tariffs, the expansion involved mainly PV
systems on buildings. This situation poses notable issues since demand tend to be
relatively low during peak power production periods. On the same time a new PV
installation needs aa accurate sizing to smooth the so called “back-flow” effect and
maximize economical benefits to owners.

In this scenario the modeling of residential energy use and the planning of
energy management actions can play a crucial role. Indeed the matching of the
production and consumption patterns is the only way to achieve satisfying eco-
nomical benefits.

This chapter deals with the description of a novel Fuzzy approach to model
household electrical consumption. The model is built using a “bottom-up” approach
and the basic block is the single appliance. Using as inputs patterns of active
occupancy (i.e. when people are at home and awake) and typical domestic habits (i.
e. start frequency of some appliances), the FIS model give as output the starting
probability of each appliance. To validate the model we have recorded electricity
demand within 12 dwellings in Ripatransone (AP), in the central east coast of Italy,
over the period of 12 months. Simulation performances, in particular for what
regards daytime period (the mean error is 0.52 %), make possible its use for self
consumption estimation and PV sizing.

Energy management problem has been introduced and a neural network based
algorithm to forecasts of both photovoltaic production and home consumptions
presented. The considered algorithm, based on the minimal resource allocating
networks method, is used to perform long range predictions. In particular the power
production and home consumptions presented in the above tests is forecasted up to
24 h ahead. The proposed algorithm performs an on-line prediction and no previous
measures of PV plant’s production or electrical consumptions are needed. Therefore
the algorithm have been proposed with a pre-trained net based only on few his-
torical informations found on the web.

A case study on a possible use of the fuzzy tool has been presented. Starting
from the simulated consumption of a dwelling, a residential photovoltaic (PV) plant
has been sized according to a cost benefits analysis (CBA) in the new Italian
scenario. Net present value (NPV) and internal rate of return (IRR) have been
computed for different PV plant sizes. The obtained results show that the NPV
difference between the best and worst case can be 140 % (which results in more
than 1,200 €). Furthermore a parallel analysis of the economical benefits of energy
management actions (shifting of the two main appliances) has been performed. The
CBA analysis shows that revenues can further increase from 250 to 600 €
(depending on the plant size) thus imposing cost limitation for the EM equipment.
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