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Abstract Epileptic seizure occurs as a result of abnormal transient disturbance in
the electrical activities of the brain. The electrical activities of brain fluctuate fre-
quently and can be analyzed using electroencephalogram (EEG) signals. Therefore,
the EEG signals are commonly used signals for obtaining the information related to
the pathological states of brain. The EEG recordings of an epileptic patient contain a
large amount of EEG data which may require time-consuming manual interpreta-
tions. Thus, automatic EEG signal analysis using advanced signal processing
techniques plays a significant role to recognize epilepsy in EEG recordings. In this
work, the empirical mode decomposition (EMD) has been applied for analysis of
normal and epileptic seizure EEG signals. The EMD generates the set of amplitude
and frequency modulated components known as intrinsic mode functions (IMFs).
Two area measures have been computed, one for the graph obtained as the analytic
signal representation of IMFs in complex plane and another for second-order dif-
ference plot (SODP) of IMFs of EEG signals. Both of these area measures have been
computed for first four IMFs of the normal and epileptic seizure EEG signals. These
eight features obtained from both area measures of first four IMFs have been used as
input feature set for classification of normal and epileptic seizure EEG signals using
least square support vector machine (LS-SVM) classifier. Among all three kernel
functions namely, linear, polynomial, and radial basis function (RBF) used for
classification, the RBF kernel has provided best classification accuracy in the clas-
sification of normal and epileptic seizure EEG signals. The proposed method based
on the two area measures of IMFs obtained using EMD process, together with
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LS-SVM classifier has been studied on EEG dataset publicly available by the
University of Bonn, Germany. Experimental results have been included to show the
effectiveness of the proposed method in comparison to other existing methods.

1 Introduction

Human brain is a highly complex system. The epilepsy is a common neurological
disorder of human brain. It affects at least 50 million people of the world (Ngugi
et al. 2010). The annual occurrence of epilepsy, 48 per 100,000 populations in
developed counteries was reported in Hirtz et al. (2007). The prevalence of epilepsy
is higher in low and middle income countries than developed countries (Thurman
et al. 2011). At least 50 % of the epileptic cases start developing at childhood or
adolescence (World Health Organization 2014). Occurrence of epilepsy can also be
noticed in elderly people, which may require special considerations in treatment
(Ramsay et al. 2004). If the patient with epilepsy are treated properly, then 70–80 %
of them can lead to normal lives (World Health Organization 2014). Therefore,
study of epilepsy is an important research area in the field of the biomedical
engineering.

The electroencephalogram (EEG) signals are very useful to measure the elec-
trical activity of the human brain. The EEG signals are commonly analyzed by
experts in order to assess the states of the brain. The EEG based measures are very
helpful for diagnosis of neurological disorders specially epilepsy. Presence of
spikes in EEG signals is main indication of epileptic seizure activity in the brain
(Ray 1994; Mukhopadhyay and Ray 1998). Automatic detection of epileptic seizure
by analyzing EEG signals using advanced signal processing techniques is very
useful for diagnosis of epilepsy (Iasemidis et al. 2003).

The EEG recording using electrodes from the scalp is the result of firing of
neurons within the brain (Schomer and da Silva 2005). The EEG signals recorded
from scalp exhibit oscillations of different range of frequencies, corresponding to
the electrical activities of the neurons in the brain. These oscillations of different
frequency ranges present in the EEG signals are related with the different states of
the functioning of human brain. A typical voltage range of the amplitude of EEG
signal for a adult human is about 10–100 μV when measured from the scalp
(Aurlien et al. 2004).

Conventional scalp EEG signal recording is performed by placing electrodes
over the scalp. The conductive gel or paste is utilized in order to make proper
electrical connection between scalp and electrode. The electrode cap is generally
used for recording of EEG signals. There are some standards that have been defined
for electrode placement over the scalp, out of which international 10–20 system
(Andrzejak et al. 2001) is commonly used for EEG signal recording of healthy
persons. The intracranial EEG signals obtained using intracranial electrodes which
also requires depth electrodes for recording of ictal and seizure-free EEG signals for
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epilepsy patients can be useful for diagnosis of epilepsy (Andrzejak et al. 2001).
The presence of interference or artifacts due to external sources, in the EEG signal
recording may create problem in the diagnosis based on these recorded EEG sig-
nals. Therefore, filtering is required to remove these artifacts (Senthil et al. 2008).

1.1 Epileptic Seizure EEG Signals

Epilepsy is one of the most common neurological disorders of human brain. As
epileptic activity manifests the clear and abnormal transient patterns in a normal
EEG signal, therefore EEG signals are widely used in diagnostic application for
detection of epilepsy. In epileptic patients, brain exhibits the process known as
‘epileptogenesis’ (Cross and Cavazos 2007) in which normal neural network
abruptly converts into a hyper-excitable network, causing evocation of strange
sensations and emotions or sometimes muscle spasms and consciousness loss. In
such subjects, the nerve cells in the brain transmit excessive electrical impulses that
cause epileptic seizures. Epilepsy is recognized by occurrence of such unprovoked
seizures. Evaluation of the epilepsy can be performed by recording and analyzing
the epileptic seizure EEG signals from the electrodes which are placed on the
affected area on the brain scalp region (Coyle et al. 2010; Ince et al. 2009). The
recorded EEG signals are complex, non-linear, and non-stationary in nature
(Acharya et al. 2013; Boashash et al. 2003; Pachori and Sircar 2008; Pachori 2008).
The epileptic seizures can have severe harmful effect on the brain. Manual process
to identify the seizure events, consists of visual inspection and review of the entire
recorded EEG signals by trained expert, which is time consuming process and
demands considerable skills. Moreover, subjective nature of expert can also affect
the judgement of seizure events in EEG records. Therefore, it is appealing to
develop computer-aided automatic analysis method that consists of advanced signal
processing techniques, for classification between normal and epileptic seizures EEG
signals in recorded EEG signals.

1.2 Classification of Epileptic Seizure EEG Signals

Various methods have been developed for automatic classification of the epileptic
seizures by extracting parameters from EEG signals. These parameters can be
extracted using time-domain, frequency-domain, time-frequency domain and non-
linear methods of analysis and serve as the features for classification of EEG signals
based on signal processing methods (Acharya et al. 2013).

Many time-domain based techniques have been presented in literature with an
objective to detect epileptic seizures from EEG signals. The value of linear pre-
diction error energy has been found to be much higher in seizure EEG signals than
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that of seizure-free EEG signals and has been used to detect epileptic seizures in
EEG signals (Altunay et al. 2010). The fractional linear prediction (FLP) method
has been employed to model seizure and seizure-free EEG signals and prediction
error energy along with signal energy with support vector machine (SVM) classifier
has been used to classify the epileptic seizure EEG signals from the seizure-free
EEG signals (Joshi et al. 2014). Epileptic seizures have been detected in EEG
signals using principal component analysis in combination with enhanced cosine
radial basis function neural network (Ghosh-Dastidar et al. 2008). Artificial neural
network (ANN) based methodology has been developed to detect the epileptic
seizure using time-domain as well as the frequency-domain features in Srinivasan
et al. (2005). Spectral parameters based on the Fourier transformation of EEG
signals have been utilized to detect epileptic seizures in EEG signals (Polat and
Güneş 2007).

The EEG signals exhibit non-stationary nature (Boashash et al. 2003). In litera-
ture, many time-frequency domain based methods have been proposed to detect
epileptic seizure EEG signals, these methods include time-frequency distribution
(Tzallas et al. 2007, 2009), wavelet transform (Ghosh-Dastidar et al. 2007;
Uthayakumar and Easwaramoorthy 2013; Ocak 2009; Subasi 2007; Subasi and
Gursoy 2010; Adeli et al. 2007; Acharya et al. 2012), multi-wavelet transform (Guo
et al. 2010), and empirical mode decomposition (EMD) (Pachori 2008; Oweis and
Abdulhay 2011; Pachori and Patidar 2014; Li et al. 2013; Bajaj and Pachori 2012).
The Fourier-Bessel (FB) series expansion of intrinsic mode functions (IMFs)
extracted from EMD, has been used to compute mean frequency of IMFs and these
mean frequencies have been used as features to discriminate ictal and seizure-free
EEG signals (Pachori 2008). In Oweis and Abdulhay (2011), weighted mean fre-
quency of IMFs has been proposed to detect epileptic seizures from EEG signals.
Ellipse area of second-order difference plot (SODP) of different IMFs with 95 %
confidence limit has been proposed as a feature to classify epileptic seizure and
seizure-free EEG signals (Pachori and Patidar 2014). The coefficient of variation and
fluctuation index computed from IMFs of EEG signals have been proposed to rec-
ognize patterns of ictal EEG signals (Li et al. 2013). The amplitude modulation
(AM) and frequency modulation (FM) bandwidths computed from the IMFs toge-
ther with least square support vector machine (LS-SVM) classifier have been used
for classification of seizure and nonseizure EEG signals (Bajaj and Pachori 2012).

Various non-linear parameters have been proposed as features for classification of
epileptic seizure EEG signals. The Lyapunov exponent parameter with probabilistic
neural network (PNN) in Übeyli (2010) and Güler et al. (2005), correlation integral
in Casdagli et al. (1997), fractal dimension parameters in Easwaramoorthy and
Uthayakumar (2011) and Accardo et al. (1997), multistage nonlinear pre-processing
filter combined with a diagnostic neural network in Nigam and Graupe (2004),
entropy based measures with adaptive neuro-fuzzy inference system in Kannathal
et al. (2005), and approximate entropy (ApEn) with ANN in Srinivasan et al. (2007)
have been proposed for discrimination of epileptic seizure EEG signals.
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In this work, we propose a method based on the EMD process for classification
of normal and epileptic seizure EEG signals. The area measures namely area of
analytic signal representation of IMFs and area of ellipse from SODP of IMFs have
been used as an input feature set for LS-SVM classifier.

The rest of the chapter has been organized as follows. In Sect. 2, proposed
methodology has been described which includes dataset, EMD method, feature
extraction and LS-SVM classifier. Feature extraction section consists of two further
subsections: one of which is analytic signal representation and area computation of
circular region and other is second-order difference plot and area computation of
elliptical region. Results of experimental analysis and comparison with other
methods have been discussed in Sect. 3. Finally, conclusion has been provided in
Sect. 4.

2 Methodology

2.1 Dataset

In this work, the online publicly available EEG dataset as described in Andrzejak
et al. (2001) has been used. Recordings in this dataset include EEG signals which
have been acquired for both healthy and epileptic subjects. This dataset contains
five subsets denoted as Z, O, N, F, and S, each of which having 100 single-channel
EEG signals of duration 23.6 s. The first two subsets Z and O are surface EEG
recordings of five healthy volunteers. These subsets contain EEG recordings with
eyes open and closed, respectively. The subset F have been recorded in seizure-free
intervals from five patients in the epileptogenic zone and the subset N has been
acquired from the hippocampal formation of the opposite hemisphere of the brain.
The subset S contains seizure activity selected from all recording sites exhibiting
ictal activity. The subsets Z and O have been recorded extracranially using standard
electrode placement scheme (according to the international 10–20 system (And-
rzejak et al. 2001), whereas the subsets N, F, and S have been recorded intracra-
nially using depth electrodes implanted symmetrically into the hippocampal
formations. Subsets N and F have EEG signals which were taken from all contacts
of the relevant depth electrode (Andrzejak et al. 2001). The strip electrodes were
implanted onto the lateral and basal regions (middle and bottom) of the neocortex.
The EEG signals of the subset S contains segments taken from contacts of all
electrodes (depth and strip). Set N and F contain only activity measured during
seizure free intervals, while set S only contains seizure activity. The data were
digitized at a sampling rate of 173.61 Hz using 12-bit analog-to-digital (A/D)
converter. Bandwidth range of bandpass filter were 0.53–40 Hz. More detail about
this dataset can be found in Andrzejak et al. (2001). In this study, we have used
subsets Z and S of the dataset to evaluate performance of, proposed method which
consists of EMD, feature extraction and classification using LS-SVM classifier.
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2.2 Empirical Mode Decomposition

The main idea of empirical mode decomposition (EMD) is based on the assumption
that any signal comprises of different simple mode of oscillations (Huang et al. 1998).
It is a data dependant signal processing technique that represents any temporal signal
into a finite set of amplitude and frequency modulated (AM-FM) oscillating com-
ponents termed as intrinsic mode functions (IMFs). It is noteworthy that this method
of decomposition does not require any prior assumption about the stationarity and
linearity of signal. The EMDmethod decomposes a complicated signal x(t) iteratively
into a set of the band-limited IMFs, ImðtÞ;wherem ¼ 1; 2; . . .;M (Huang et al. 1998).
Each of these IMFs satisfies the following two basic conditions:

1. The number of extrema and the number of zero crossings must be either equal or
differ at most by one,

2. The mean value of the envelopes defined by the local maxima and that of
defined by the local minima must be zero.

The EMD algorithm to extract IMFs from a signal xðtÞ can be explained in fol-
lowing steps (Huang et al. 1998):

1. Find all the local maxima and local minima in the signal xðtÞ.
2. Connect all the maxima and all the minima separately in order to get the

envelopes EmaxðtÞ and EminðtÞ respectively.
3. Compute the mean value of the envelopes by using the following formula:

mðtÞ ¼ EmaxðtÞ þ EminðtÞ
2

ð1Þ

4. Subtract mðtÞ from signal xðtÞ as:

g1ðtÞ ¼ xðtÞ � mðtÞ ð2Þ

5. Check if the g1ðtÞ satisfies the conditions for IMF as mentioned above or not.
6. Repeat the steps 2–5 until IMF is obtained.

After obtaining first IMF define I1ðtÞ ¼ g1ðtÞwhich is smallest temporal scale in xðtÞ.
Next IMF can be derived by generating a residue r1ðtÞ ¼ xðtÞ � I1ðtÞ which can be
used as the new signal for above algorithm. The process is repeated until the residue
obtained becomes a constant or monotonic function from which no more IMF can be
generated. The obtained IMFs are a set of narrow-band symmetric waveforms. After
the decomposition, the signal xðtÞ can be represented as follows (Huang et al. 1998):

xðtÞ ¼
XM
m¼1

ImðtÞ þ rMðtÞ ð3Þ

where,M is the number of IMFs, ImðtÞ is the mth IMF and rMðtÞ is the final residue.

372 R.B. Pachori et al.



The empirical mode decomposition of the normal and epileptic seizure EEG
signals are shown in Figs. 1 and 2 respectively. It should be noted that only first
nine IMFs of the signals are shown in each figure for EEG signal.

Fig. 1 Normal EEG signal and its first nine IMFs

Fig. 2 Seizure EEG signal and its first nine IMFs
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2.3 Feature Extraction

Feature extraction is an important step in pattern recognition and plays a vital role in
detection and classification of EEG signals by extracting relevant information.
Feature extraction can be understood as finding a set of parameters which effectively
represent the information content of an observation while reducing the dimension-
ality. These parameters explore the property of two classes which has separate range
of values for different classes. Two different area measures which are related with the
variability of the signal are used here as a feature set. These area measures are
computed for first four IMFs to create feature vector space. Final feature set consists
of eight features for classification of normal and epileptic seizure EEG signals. The
computation of these area measures have been described in detail as follows:

2.3.1 Analytic Signal Representation and Area Computation
of Circular Region

The IMFs that have been obtained using EMD method on EEG signals are real
signals. These IMFs can be converted to analytic signals by applying the Hilbert
transform.

Analytic signal of xðtÞ can be defined as (Huang et al. 1998; Lai and Ye 2003):

zðtÞ ¼ xðtÞ þ jyðtÞ ð4Þ

where, yðtÞ represents the Hilbert transform of the real signal xðtÞ, defined as
follows:

yðtÞ ¼ xðtÞ � 1
pt

¼ 1
p
p:v:

Z1
�1

xðsÞ
t � s

ds
ð5Þ

with Fourier transform

YðxÞ ¼ �j sgnðxÞXðxÞ ð6Þ

where p:v: indicates the Cauchy principle value, and XðxÞ is Fourier transform of
signal xðtÞ.

The signal zðtÞ can also be expressed as:

zðtÞ ¼ AðtÞej/ðtÞ ð7Þ
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where, AðtÞ is the amplitude envelope of zðtÞ, defined as:

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

p
ð8Þ

and /ðtÞ is the instantaneous phase of zðtÞ, defined as:

/ðtÞ ¼ tan�1 yðtÞ
xðtÞ

� �
ð9Þ

The instantaneous frequency of the analytic signal can be obtained by differ-
entiating (9) as:

xðtÞ ¼ d/ðtÞ
dt

¼ xðtÞ dyðtÞdt � yðtÞ dxðtÞdt

A2ðtÞ :

ð10Þ

The instantaneous frequency xðtÞ of the analytic signal zðtÞ is a measurement of
the rate of rotation in the complex plane. The Hilbert transform can be applied on
all IMFs obtained by EMD method. The IMFs are mono-component signals and
exhibit property of locally symmetry. Therefore, the instantaneous frequency is well
localized in the time-frequency domain and reveals a meaningful feature of the
signal (Huang et al. 1998).

The analytic signal can be obtained for all the IMFs using the Hilbert transform.
A complex signal can be represented as a sum of proper rotational components using
EMD method which makes it possible to compute the area in a complex plane
(Amoud et al. 2007). Since each IMF is a proper rotational component and has its own
rotation frequency, the plot of the analytic IMF follows circular geometry in complex
plane. The complex plane representation can be obtained by tracing the real part
against the imaginary part of the analytic signal. The analytic signal representations in
complex plane corresponding to the normal and epileptic seizure EEG signals and
their first four intrinsic mode functions are depicted in Figs. 3 and 4, respectively.
These figures present the traces of entire signals in the complex plane, as well as those
of each IMF for both signals. It can be observed that the shape of this trace is similar to
a rotating curve. The analytic signal representation of IMFs in complex plane possess
a proper structure of rotation with a unique center (Lai and Ye 2003).

Central tendency measure (CTM) provides a rapid way to summarize the visual
information related to a graph or plot (Cohen et al. 1996). The modified CTM can
be used to measure the degree of variability from analytic signal representation of
the signal. CTM can be used to determine the area of the complex plane repre-
sentation (Pachori and Bajaj 2011). The radius corresponding to 95 % modified
CTM can be used to compute the area of analytic signal representation of the IMF
in complex plane. The modified CTM provides the ratio of points falling inside the
circular region of specified radius to the total number of points in analytic signal
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representation. Let, the total number of points are N and the specified radius of
central area is r, then modified CTM can be defined as (Pachori and Bajaj 2011):

CTM ¼
PN

k¼1 qðdkÞ
N

ð11Þ

Fig. 3 Analytic signal representation in the complex plane for window size of 4,000 samples:
a Normal EEG signal, b IMF1, c IMF2, d IMF3 and e IMF4

Fig. 4 Analytic signal representation in the complex plane for window size of 4,000 samples:
a Seizure EEG signal, b IMF1, c IMF2, d IMF3 and e IMF4
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qðdkÞ ¼ 1 if ð½<fz½n�g�2 þ ½=fz½n�g�2Þ0:5\r
0 otherwise

�
ð12Þ

where, 1� k�N. If rCTM95 is the radius corresponding to 95 % CTM, then area of
analytic signal can be defined as:

Aanalytic ¼ pr2CTM95 ð13Þ

2.3.2 Second-Order Difference Plot and Area Computation of Elliptical
Region

The second-order difference plot (SODP) provides a graph of successive rates
against each other and has been used to measure the variability present in EEG and
center of pressure (COP) signals (Thuraisingham et al. 2007; Pachori et al. 2009).
Useful diagnostic information can be extracted from SODP of the IMFs of EEG
signals. The area of SODP of IMFs of EEG signals can be used as features for
classification of normal and epileptic seizure EEG signals. The SODP of signal x½n�
can be obtained by plotting X½n� against Y ½n� which are defined as (Cohen et al.
1996),

X½n� ¼ x½nþ 1� � x½n� ð14Þ

Y ½n� ¼ x½nþ 2� � x½nþ 1� ð15Þ

In SODP above mentioned successive rates are plotted against each other,
consequently provides rate of variability of data. The 95 % confidence ellipse area
can be used to determine the confidence area of SODP of IMFs which covers
around 95 % of the points. SODP corresponding to the normal and epileptic seizure
EEG signals and their first four intrinsic mode functions are shown in Figs. 5 and 6,
respectively. These figures represent trace of two successive rates, X½n� and Y ½n� of
different IMFs of EEG signals. The SODP of IMFs of EEG signals exhibit elliptical
patterns, the area of ellipse in SODP of IMFs has been used as a feature for
classification of epileptic seizure and seizure-free EEG signals (Pachori and Patidar
2014). In this work, we have used the area parameter computed from the SODP of
IMFs as a feature for classification of normal and epilpetic seizure EEG signals. The
procedure to compute the 95 % confidence ellipse area from the SODP can be given
as (Prieto et al. 1996; Cavalheiro et al. 2009):

The lX and lY are mean values of X½n� and Y ½n� as defined in Prieto et al. (1996),
Cavalheiro et al. (2009) and lXY can be defined as,

lXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
X½n�Y ½n�

r
ð16Þ
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The D parameter can be computed as:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2X þ l2YÞ � 4ðl2Xl2Y � l2XY Þ

q
ð17Þ

and,

a ¼ 1:7321
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2X þ l2Y þ DÞ

q
ð18Þ

Fig. 5 SODP of the normal EEG signal and its first four IMFs

Fig. 6 SODP of the seizure EEG signal and its first four IMFs
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b ¼ 1:7321
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2X þ l2Y � DÞ

q
ð19Þ

The ellipse area can be computed from the parameters a and b as:

Aellipse ¼ pab : ð20Þ

2.4 Least Square Support Vector Machine

Classification is a problem of finding out the particular category of data to which the
new upcoming observed sample can belong. The decision is made on the basis of
the observed samples of data whose category is already known, these sets of
observed samples are known as training sets. Support vector machine (SVM) is a
machine learning technique used to classify samples belongs to different classes.
SVM is a very useful tool for pattern classification problem (Cortes and Vapnik
1995). SVM is trained to search for an optimal separating hyperplane that can
provide superior generalization, particularly when dimension of input data is large.
Hyper planes are determined to create decision boundaries between two different
classes of data in SVM. The effectiveness of the features in classifying normal and
epileptic seizure EEG signals has been evaluated using a least square support vector
machine (LS-SVM) a least square version of SVM (Suykens and Vandewalle
1999).

Consider a training set of N data points ðxi; yiÞ, i ¼ 1; . . .;N, where xi is input
data and yi ¼ þ1 or −1, class label for two different classes. The SVM approach
aims at constructing a discriminant function of the form:

f ðxÞ ¼ sign xTgðxÞ þ b
� � ð21Þ

where, x is the d-dimensional weight vector and b is a bias, and g(x) is a mapping
function that maps x into d-dimensional space. The goal of SVM algorithm is to
identify optimum separating hyper plane which is able to maximize the distance
from either class to the hyperplane. This problem of optimization can be formulated
as a quadratic programming problem considering inequality constraints (Suykens
and Vandewalle 1999). The LS-SVM is the least square variant of SVM for clas-
sification of two class problem. The statement of the problem can be written as in
following way:

Minimize Jðx; b; eÞ ¼ 1
2
xTxþ c

2

XN
i¼1

e2i ð22Þ
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subjected to following equality constraints:

yi x
TgðxiÞ þ b

� � ¼ 1� ei; i ¼ 1; 2; 3; . . .;N ð23Þ

where, e ¼ ðe1; e2; . . .; eNÞT . The Lagrangian multiplier ai can be defined for (22) as:

Lðx; b; e; aÞ ¼ Jðx; b; eÞ �
XN
i¼1

aifyi½xTgðxiÞ þ b� � 1þ eig ð24Þ

On solving (24), the LS-SVM classifier can be expressed as:

f ðxÞ ¼ sign
XN
i¼1

aiyiKðx; xiÞ þ b

" #
ð25Þ

where, Kðx; xiÞ is a kernel function. The following kernel functions are used in this
work, which have been defined in Khandoker et al. (2007):

1. Linear kernel: The linear kernel can be defined as:

Kðx; xiÞ ¼ xTxi ð26Þ

2. Polynomial kernel: The polynomial kernel can be defined as:

Kðx; xiÞ ¼ ðxTxi þ 1Þd ð27Þ

where d is the degree of polynomial.
3. Radial basis function (RBF) kernel: The RBF kernel can be defined as:

Kðx; xiÞ ¼ e
�jjx�xi jj2

2r2 ð28Þ

where, width of RBF kernel can be controlled by varying scaling factor r. The
performance evaluation parameters of the LS-SVM classifier depends on the
selection of the kernel parameters. In this work, we have used trial and error
method in order to determine the suitable kernel parameters for classification of
normal and epilpetic seizure EEG signals.

2.4.1 Performance Evaluation Parameters

The classification performance of the LS-SVM classifier for classification of normal
and epileptic seizure EEG signals can be evaluated by computing the sensitivity,
specificity, and accuracy. Sensitivity measures the ability of test to identify pro-
portion of actual positives as such. Considering an example where percentage of
epileptic seizure signals from test set, correctly falls in the category of epileptic
seizure signals after classification. Specificity measures the ability of test to exclude
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the actual negatives correctly. For example, percentage of normal EEG signals
correctly identified as not having seizures. A perfect classification would result in
100 % sensitivity by detecting all epileptic seizure EEG signals correctly. It also
exhibits 100 % specificity by not recognizing any normal EEG signal as epileptic
seizure signal. Positive predictive value is, the fraction of total positive patterns,
which represents the actual positive patterns (Azar and El-Said 2014). Accuracy of
classification is proportion of number of patterns which are correctly classified.
Similarly, negative predictive value is, the fraction of total identified negative
patterns, which represent actual negative patterns. Considering, TP and TN repre-
sent the total number of correctly identified true positive patterns and true negative
patterns respectively, along with FP and FN represents total number of false
positive patterns and false negative patterns, respectively. The sensitivity (SEN),
specificity (SPF), accuracy (ACC), positive prediction value (PPV), negative pre-
diction value (NPV) of classifier can be defined as (Azar and El-Said 2014):

SEN ¼ TP
TPþ FN

� 100 ð%Þ ð29Þ

SPF ¼ TN
TN þ FP

� 100 ð%Þ ð30Þ

ACC ¼ TPþ TN
TPþ TN þ FPþ FN

� 100 ð%Þ ð31Þ

PPV ¼ TP
TPþ FP

� 100 ð%Þ ð32Þ

NPV ¼ TN
TN þ FN

� 100 ð%Þ ð33Þ

Matthews correlation coefficient (MCC) is another parameter to measure clas-
sification performance, which is the indication of classification accuracy of
imbalanced positive and negative patterns in dataset (Azar and El-Said 2014).
Higher the value of MCC parameter, the better the classifier performance (Yuan
et al. 2007). The MCC parameter can be defined as follows (Yuan et al. 2007):

MCC ¼ TP � TN � FN � FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTN þ FNÞðTN þ FPÞp : ð34Þ

3 Experimental Results and Discussion

Main steps of proposed method include applying EMD on EEG signals to obtain
IMFs, computation of both area measures for first four IMFs, extraction and for-
mation of feature set, training and testing of LS-SVM classifier. The proposed
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method has been implemented using Matlab. The Matlab codes for EMDmethod are
available at http://perso.enslyon.fr/patrick.flandrin/emd.html. In this study, the
proposed methodology has been validated with one online freely available EEG
dataset (Andrzejak et al. 2001). As discussed in Sect. 2.1, this dataset includes EEG
signals which have been recorded from both healthy and epileptic subjects. It con-
tains five subsets denoted as Z, O, N, F, and S. Data subsets Z and S have been used
to evaluate the performance of the proposed method for classification of normal and
epileptic seizure EEG signals. Data subset Z consists of normal EEG recordings
taken from 5 healthy volunteers and subset S consists of the EEG recordings of
seizure activities. Each of these subsets have 100 single-channel EEG signals of
duration 23.6 s.

The decomposition of EEG signals using EMD method results into IMFs that are
in decreasing order of frequency, in which first component is associated with
highest frequency. As the IMFs can help to compute the area of analytic signal
representation of the IMFs in the complex plane and ellipse area parameter obtained
from SODP of IMFs, therefore the EMD has been used to decompose the EEG
signals into a set of IMFs. These above mentioned two area parameters have been
used to create the feature space for classification between normal and epileptic
seizure EEG signals.

Recently in Pachori and Bajaj (2011), the ability of the analytic signal repre-
sentation of IMFs to discriminate EEG signals which contains normal and epileptic
seizure EEG signals has been explored. It comes out of this study that the analytic
signal representation of IMFs provides a set of proper rotations which facilitates
accurate identification of the centers and estimation of surface areas in the complex
plane. It has been shown that the area parameter of the analytic IMFs has significant
potential to differentiate between epileptic seizure and normal EEG signals. The
experimental results of the above mentioned method reveals that the epileptic
seizure EEG signals had evidently greater surface area in comparison to that of the
normal EEG signals. The increased surface area in the complex plane for IMFs of
the epileptic seizure EEG signals could be attributed to large amplitude of EEG
signals for seizure subjects. It should be noted that the use of EMD enabled the
extraction of individual centers of rotation for each IMF. Furthermore, as discussed
in this study, it is evident from experimental analysis, that window size of 2,000
samples has provided better results, therefore the same window size has been used
to compute the area parameters in this work. As the analytic signal representation
has circular geometry, therefore modified CTM has been measured to compute the
area of the analytic signal representation of the IMFs of EEG signals in the complex
plane. The radius of the circular region which covers the 95 % of the CTM has been
used to determine the area parameter for first four IMFs of EEG signals. In Pachori
and Patidar (2014), the efficacy of the ellipse area parameters of SODP of IMFs for
classification of seizure-free and ictal EEG signals has been examined. This study
has employed the 95 % confidence ellipse area as a feature for discrimination of
ictal EEG signals from the seizure-free EEG signals, and the classification per-
formance of the ellipse area parameter have been evaluated for various window
sizes (500, 1,000, 2,000, 4,000 samples) of seizure-free and ictal EEG signals.
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Along with area parameter of analytic IMFs, we have also computed 95 % confi-
dence ellipse area of SODP for first four IMFs of EEG signals which covers around
95 % points in SODP. By considering both area measures for first four IMFs, lead
to eight features that forms the final input feature set for LS-SVM based classifi-
cation of normal and epileptic seizure EEG signals.

SVM is a supervise machine learning approach, suitable for small-sample dataset
(Azar and El-Said 2014). LS-SVM is the least square reformulation of the SVM
problem (Suykens and Vandewalle 1999) which uses equality constraints, instead of
inequality constraint used in standard SVM. Consequently, solution follows from set
of linear equations instead of quadratic programming problem.Hence, LS-SVMoffers
less computational complexity with excellent generalised performance (Suykens and
Vandewalle 1999). In thiswork, the area parameters computed from the IMFshas been
used as input feature set for LS-SVM classifier for classification of normal and epi-
leptic seizure EEG signals. In order to evaluate the classification performance, dif-
ferent kernel functions have been utilized and their performance parameter values
have been shown in Table 1. Various performance parameters discussed in previous
section have been computed for three kernel functions which are linear kernel,
polynomial kernel, and radial basis function (RBF) kernel. It can be observed that
performance parameter values for RBF kernel are best among three kernel functions.
The value of scaling factor associated with RBF kernel has been set empirically as 1.
The ten-fold cross validation procedure is suitable for evaluating classification
accuracy of a classifier for classification of biomedical signals (Sharma et al. 2014;
Pachori and Patidar 2014). In this study, ten-fold cross validation procedure has been
employed to evaluate the classification performance of LS-SVM classifier.

The classification accuracy achieved using proposed method with RBF kernel is
100 % which suggests successful identification of all, normal and epileptic seizure
EEG signals. The resulting 100 % sensitivity shows the correct identification of all
epileptic seizure EEG signals and 100 % specificity shows adequate classification
by not recognizing any normal EEG signal as epileptic seizure EEG signal.
Moreover, Table 2 shows the results obtained with proposed method and some
other existing methods using the same dataset. Different parameters analysed for
classification in other compared methods have also been mentioned in Table 2. It
should be noted that the performance of the proposed method in terms of classi-
fication accuracy is same as that of discussed in Tzallas et al. (2007), in which time-
frequency analysis based parameters have been used for classification. The area

Table 1 Classification
performance of the proposed
method for different kernel
functions

Performance parameters Linear Polynomial
(d ¼ 2)

RBF
(r ¼ 1)

SEN (%) 100 100 100

SPF (%) 97.00 90.00 100

ACC (%) 98.50 99.00 100

PPV (%) 97.69 90.91 100

NPV (%) 100 100 100

MCC 0.97 0.98 1
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measures used in this work are the simple and can be used as indicators for
diagnosis of epilepsy. Moreover, these parameters are defined in time domain
which can help us to implement the proposed methodology for epileptic seizure
detection with low computational complexity. It can be observed that performance
of the proposed method in terms of accuracy is better than that of the other com-
pared methods. The experimental analysis of the proposed method shows that
features based on area measures are very effective to represent the behavior of
epileptic seizure EEG signals giving excellent classification performance.

4 Conclusion

This book chapter has developed a novel approach for classification of the normal
and epileptic seizure EEG signals using empirical mode decomposition and com-
puting two area parameters for IMFs. Since the EEG signal is non-linear and non-
stationary in nature, the EMD which is data dependent approach and suitable for
analysis of nonlinear and non-stationary signals, efficaciously decompose the EEG
signals into IMFs which are oscillatory components. In this work, we have explored
the capability of two area parameters as the features for classification of normal and
epileptic seizure EEG signals. It is noteworthy that the symmetric nature of IMFs,
makes it possible to compute these two area measures and justifies the application of
EMD before feature extraction from EEG signals. Computation of area measures
uses the analytic signal representation of IMFs and SODP of IMFs. The IMFs have
single center of rotation with circular geometry in analytic signal representation.
Similarly, IMFs also exhibit elliptical patterns in SODP. Consequently, these

Table 2 Comparison of the proposed method for classification of normal and epileptic seizure
EEG signals with the existing methods studied on same dataset

Authors Method Accuracy
(%)

Nigam and Graupe
(2004)

Nonlinear pre-processing filter and diagnostic neural
network

97.2

Srinivasan et al.
(2005)

Time and frequency domain based features and
recurrent neural network

99.6

Kannathal et al.
(2005)

Entropy based measures and adaptive neuro-fuzzy
inference system

about 90

Polat and Güneş
(2007)

Fast Fourier transform based features and decision tree 98.72

Subasi (2007) Discrete wavelet transform based features and mixture
of expert model

94.5

Tzallas et al. (2007) Time-frequency analysis based features and artificial
neural network

100

This work Proposed method 100
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obtained geometrical patterns help to compute the area of analytic signal
representation in complex plane with 95 % CTM and 95 % confidence area of ellipse
in SODP. It has been found that these two area parameters have significantly higher
values for seizure EEG signals as compared to normal EEG signals. The perfor-
mance of LS-SVM classifier is best when RBF kernel has been employed to create
decision boundary between two classes (normal and seizure) and consequently have
provided 100 % classification accuracy. The features of the proposed method are
suitable for real time implementation of an expert system for detection of the epi-
leptic seizure in EEG signals. This system can act as an important diagnostic tool for
clinician to detect the epilpesy automatically by analysing EEG signals.

In future, performance of the proposed methodology can be evaluated for
classification between different classes of EEG signals like normal, inter-ictal and
ictal EEG signals. The future direction of research may also include the application
of the proposed methodology for identification of different psychological states of
brain from EEG signals. Moreover, it would be of interest to study the expert
system based on the proposed methodology for classification of other signals like
electromyogram (EMG) signals, center of pressure (COP) signals, electrocardio-
gram (ECG), and speech signals corresponding to normal and abnormal conditions.
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