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Abstract Power system security assessment involves ascertaining the post-contingency
security status based on the pre-contingency operating conditions. A system operator
accomplishes this by the knowledge of critical system attributes which are closely tied to
the system security limits. For instance, voltage levels, reactive power reserves, reactive
power flows are some of the attributes that drive the voltage stability phenomena, and
hence provide easy guidelines for the operators to monitor and maneuver the highly
stressed power system to a secure state. With tremendous advancements in computational
power and machine learning techniques, there is increased ability to produce security
guidelines that are highly accurate and robust under a wide variety of system conditions.
Particularly, the decision trees, a data mining tool, has lend itself well in extracting highly
useful and succinct knowledge from a very large repository of historical information. The
most vital and sensitive part of such a decision tree based security assessment is the stage
of training database generation, a computationally intensive process which involves
sampling many system operating conditions and performing power system contingency
assessment simulations on them. The classification performance of operating guidelines
under realistic testing scenarios depend heavily on the quality of the training database
used to generate the decision trees. So the primary objective of this chapter is to develop
an improvised database generation process that creates a satisfactory training database by
sampling the most influential operating conditions from the input operating parameter
state space prior to the stage of power system contingency simulation. Embedding such
intelligence to the system scenario sampling process enhances the information content in
the training database, while minimizing the computing requirements to generate it. This
chapter will clearly explain and demonstrate the process of identifying such high infor-
mation contained sampling space and the advantage of deriving security guidelines from
decision trees that exclusively use such an enhanced training database.
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1 Introduction

Traditionally, power system reliability assessments and planning involve deter-
ministic techniques and criteria, which are being used in practical applications even
now, such as WECC/NERC disturbance-performance table for transmission plan-
ning (WECC 2003; Abed 1999). But the drawback with deterministic criteria is that
they do not reflect the stochastic or probabilistic nature of the system in terms of
load profiles, component availability, failures etc. (Billinton et al. 1997). Therefore
the need to incorporate probabilistic or stochastic techniques to assess power sys-
tem reliability and obtain suitable indices or guidelines for planning has been
recognized by the power system planners and operators; and several such tech-
niques have been developed (Beshir 1999; Chowdhury and Koval 2006; Li and
Choudhury 2007; Wan et al. 2000; Xiao and McCalley 2007).

In this regard, Monte Carlo simulation (MCS) methods lend themselves well by
simulating the actual analytical process with randomness in system states (Billinton
and Li 1994). In this way, several system effects or process including nonelectrical
factors such as weather uncertainties can be included in a study based on appro-
priate parameter’s probability distributions. Figure 1 shows an overview of MCS
based security assessment methodology, which involves two major tasks: database
generation approach and machine learning analysis.

The database generation approach involves the following steps:

e Random Sampling: Operating parameters (load, unit availability, circuit outages,
etc.) are randomly selected as per a distribution (e.g., uniform, Gaussian,
exponential, empirical etc.). This process is generally known as Monte Carlo
sampling. Using the generated samples, various base cases are formed.
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Fig. 1 Probabilistic reliability assessment based on MCS and data mining (Henry et al. 2004b)
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e Optimal power flow: Initial states for every case is obtained using OPF
e C(Contingency assessment: Using steady-state or time-domain tools contingency
events are simulated, and post-contingency performance measures are obtained.

The machine learning methods (Wehenkel 1998; Witten and Frank 2000) are
used to extract a high level information, or knowledge from a huge database
containing post-contingency responses obtained from the database generation
step. These machine learning or data mining techniques are broadly classified as:

e Unsupervised learning: Those methods which do not have a class or target
attribute. For example, association rule mining can be used to find the corre-
lation between various attributes. Clustering methods such as k-means, EM etc.
are generally used to discover classes.

e Supervised learning: Those methods that have a class or target attribute, such as
classification, numerical prediction etc., and use the other attributes (other
observable variables) to classify or predict class values of scenarios. For
example, naive bayes, decision trees, instance based learning, neural network,
support vector machine, regression etc.

Among these, decision tree based inductive learning method serves as an
attractive option for preventive-control approach in power system security assess-
ment (Zhou et al. 1994; Wehenkel 1997; Zhou and McCalley 1999; Niimura et al.
2004; Wehenkel et al. 2006). It identifies key pre-contingency attributes that
influence the post-contingency stability phenomena and provides the corresponding
acceptable scenario thresholds. Based on it, security rule or guidelines are devel-
oped, which can be deductively applied to ascertain any new pre-contingency
scenario’s post-contingency performance. Information required for building deci-
sion tree are:

e A training set, containing several pre-contingency attributes with known class
values

e The classification variable (i.e., class attribute with class values such as “secure”
or “insecure”), which could be based on post-contingency performance indices

e An optimal branching rule, i.e., a rule to find critical attribute

e A stopping rule, such as maximum tree length or minimum instances

The aim of inducing a decision tree is to obtain a model that classifies new
instances well and produces simple to interpret rules. Ideally we would like to get
the best model that has no diversity (impurity), i.e., all instances within every
branch of the tree belong to the same class. But due to many other uncertainties or
interactions that have not been accounted for in the model, there would be some
impurity (i.e., non-homogeneous branch) at most of the levels. So the goal is to
select attributes at every level of branching such that impurity is reduced. There are
many measures of impurity, which are generally used as optimal branching criteria
to select the best attribute for splitting. Some of those are entropy, information gain,
Gini index, gain ratio etc.



340 V. Krishnan

Classification accuracy and error rates are used as the performance measures of a
decision tree. There are two kinds of errors: false alarms—acceptable cases clas-
sified as unacceptable; and risks—unacceptable cases as acceptable. Errors can be
calculated by testing the obtained decision model on the training set, which is
usually an over-estimate. There are training set sampling methods such as holdout
procedures, cross-validation, bootstrap etc. (Witten and Frank 2000) to make the
error estimation unbiased. It is even better if the testing is performed using an
independent test dataset. There are numerous references that explain the process of
building a decision tree from a database with algorithms such as ID3, J48 etc.
CART, Answer Tree, Orange, WEKA etc. are some software available for building
decision trees.

Many utilities have taken and are continuing to take a serious interest in
implementing learning algorithm such as decision tree in their decision making
environment. French transmission operator RTE has been using decision tree based
security assessment methods to define operational security rules, especially
regarding voltage collapse prevention (Lebrevelec et al. 1998, 1999; Schlumberger
et al. 1999, 2002; Pierre et al. 1999; Martigne et al. 2001; Paul and Bell 2004;
Henry et al. 1999, 2004a, 2006; Cholley et al. 1998). They provide operators a
better knowledge of the distance from instability for a post-contingency scenario in
terms of pre-contingency conditions, and thus save a great amount of money by
preserving the reliability while enabling more informed operational control closer to
the stability limits. So the central topic of this chapter will be: what is the significant
component of this decision tree induction process, and how to improve it for the
betterment of the planning solutions that are needed under realistic operating
conditions?

The remaining parts of this chapter are organized as follows. Section 2 provides
the background of this work in terms of motivation behind this research, related
past work, and the objective of this work. Section 3 describes the concept of
“information content” in the context of this work. Section 4 presents the technical
approach of the proposed high information contained training database generation.
Section 5 demonstrates the application in deriving operational rules for voltage
stability problem in Brittany region of RTE’s system, and presents results and
discussions. Section 6 presents conclusions and future research directions.

2 Motivation, Related Work, and Objective

The most vital and sensitive part of MCS based reliability studies is the stage of
database generation. The confidence we will have in the results generally reflects
the confidence we have in the set of system states generated. The generated data-
base does influence the classification performance of the decision tree against
realistic scenarios, selection of critical attributes and their threshold values, and size
of the operating rules.
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Generally a uniform or random sampling of system states is carried out by
varying parameters such as load level, unit availability, exchanges at the boarders,
component availability etc. according to their independent probability distributions
obtained from projected historical data (Henry et al. 1999, 2004b; Paul and Bell
2004; Lebrevelec et al. 1999; Senroy et al. 2006). Then, various scenarios are
simulated for a pre-specified set of contingencies. This stage is generally very
tedious and time consuming, as there could be a tremendously large number of
combinations of variables [about 5,000-15,000 samples for a statistically valid
study (Henry et al. 2004b)]. Therefore, the challenge of producing high information
content training database at low computational cost needs to be addressed (Cutsem
et al. 1993; Jacquemart et al. 1996; Wehenkel 1997; Dy-Liacco 1997).

In the open literature, there are re sampling methods to retain only the most
important instances from an already generated training database (Jiantao et al. 2003;
Foody 1999) for classification purposes. But such methods involve huge compu-
tational cost in first generating a training database, then identifying the most
influential instances, and if need be, generate more of such instances. Genc et al.
(2010) proposed an iterative method to a priori identify the most influential region
in the operating parameter state space, and then enrich the training database with
more instances from the identified high information content region for enhancing
classification performance. In this case, the method proposed to identify the high
information content region involves heavy computational cost when the dimension
of the operating parameter space increases, even beyond 10 parameters.

This chapter proposes to develop an efficient sampling method to generate
influential operating conditions that captures high information content for better
classification and also reduces computing requirements. In short, the objective is to
maximize information content in the training database, while minimizing com-
puting requirements to generate it. This efficient sampling is constructed using the
Monte Carlo Variance Reduction (MCVR) techniques. Among the mostly used
MCVR methods, control variate and antithetic variate take advantage of the cor-
relation between certain random variables to obtain variance reduction in statistical
estimation studies. Stratification method and importance sampling method re-orient
the way the random numbers are generated, i.e., alters the sampling distribution
(Ripley 1987; Thisted 1988). The proposed efficient sampling method is con-
structed using the importance sampling method for its ability to bias the Monte
Carlo sampling towards the influential region identified a priori; and generate
samples within the influential region preserving the original relative likelihood of
the operating conditions.

In order to sample the most influential operating conditions, the influential
region must be first traced; which requires that the operating parameter state space
be characterized with respect to post-contingency performance. A straight forward
way to perform state space characterization is to divide the N-dimensional hyper-
cube, where N is the number of selected operating parameters, into M smaller
hypercubes, select the center point of each of the M smaller hypercubes and per-
form an assessment to identify post-contingency performance (NM contingency
simulations). But for large N, there is a curse of dimensionality, resulting in very
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large computational cost. This work proposes a computationally efficient method
based on Latin Hypercube sampling (LHS) to characterize the operational param-
eter space.

The next section introduces the concept of “high information content” and the
measure that can be used to quantify it.

3 High Information Content Region

The decision tree learning algorithm requires a database that has good represen-
tation of all the class values, so that it can effectively classify new instances and not
overlook the less representative classes. So, for a two-class problem, a good rep-
resentation of operating conditions on both sides of the class boundary is required.
Also, not every operating condition on both sides of the class boundary contributes
equally to the operating rule derivation process. This is further demonstrated using
Fig. 2 with the help of its four parts a-d, which explain the importance of sampling
the most influential operating conditions for the purpose of rule making. For
instance, consider sampling some operating conditions defined in terms of varia-
tions in Loads A and B as shown in Fig. 2a. Perform contingency analysis to find
the post-contingency voltage stability performance (yellow dots have acceptable,
and red dots have unacceptable performances). A suitable rule can be defined by
line R that effectively partitions the operating region with acceptable post contin-
gency performance from unacceptable performance. We refer to this line as the
security boundary. Now, if more operating conditions are sampled as shown in
Fig. 2b, the samples drawn near to the security boundary influences the rule making
process more than the samples away from the boundary. This is evident from the
consequent rule change (shifting line R) that is necessary as shown in Fig. 2c. So it
is very essential that the database contains operating conditions nearer to the
security boundary with finer granularity, since they convey more information on the
variability of the performance measure, which thereby enables a clear cut decision
making on the acceptability of any operating condition. Furthermore, if the some of
the operating conditions with unacceptable performance near the rule line R in
Fig. 2c are less likely to occur in reality, then the rule line R may be shifted slightly
upwards to exploit more operating conditions for economic reasons, as shown in
Fig. 2d. Hence the desired influential operating conditions are obtained by sampling
according to the probability distribution of the boundary region, which is the shaded
region in Fig. 2d where there is a high uncertainty in the acceptability of any
operating condition. This will also ensure a very good representation of both the
classes in the database at a reduced computational cost compared to sampling from
the entire operational parameter state space probability distribution.

In this work Entropy, the most commonly used information theoretic measure
for the information contained in a distribution, is used to quantify information
content in a database (Unger et al. 1990). It is a function of class proportions, when
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operating conditions are sampled according to their probability distribution.
Entropy is given by Eq. (1)

Entropy(S) =y _ —pilog, p;

i=1

()

where, S is training data, c is the number of classes, and pi is the proportion of S
classified as class i. Given that the security boundary generally falls in the lower
probability region of the operating parameter state space, a database containing
samples within the boundary region has the maximum entropy, produced at reduced
computational cost. This is the central principle that is used to devise the efficient
training database generation approach proposed in this chapter.

The following section will delineate a technical approach that will be used in this
chapter to devise the efficient sampling method to generate the high information
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contained training database. Later in the numerical results section, the entropy
measure introduced in this section will be used to measure the information content
in the training database used for producing the decision trees.

4 Technical Approach

The overall flowchart of risk-based planning approach is shown by Fig. 3, along
with the proposed efficient sampling approach. The proposed algorithm consists of
two stages, where stage I utilizes a form of stratified sampling to approximately
identify the boundary region and stage II utilizes importance sampling to bias the
sampling towards the boundary region. The database generation is performed for
every critical contingency or a group of critical contingencies screened, as depicted
by the left-side loop. The right-side loop feeds back information about the region of
sampling state space requiring more emphasis in the training database, in order to
reduce decision tree misclassifications and improve the accuracy. This chapter
primarily focuses on the proposed efficient sampling method.
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4.1 Stage I—Boundary Region Identification

This section develops a LHS method that uses linear sensitivity information to trace
the boundary region in a computationally effective manner.

The sampling procedure is computationally very burdensome for a very large
dimensional sampling space, especially if the individual load’s mutual correlation
information is taken into account. So, in order to provide a more reasonable sampling
space which would reduce the computation, typically a very strong assumption is
made that all loads vary in proportion to the total (also known as homothetic load
distribution), so that the load at any bus i maintains a constant percentage of the total
load, i.e., Pr; = (Prio/Pro) Pr, where Py ;o and Py are the bus i load and total load in
the reference or base case; and P;; and P are for any new loading scenario. In the
language of voltage stability analysis, these assumptions amount to defining a par-
ticular stress direction through the space of possible load increases. Therefore, when
asingle stress direction is assumed, the uncertainty in load can be simply expressed in
terms of the total system load (P7). So in this case, the sampling is performed only in
the univariate space of total system load (P7) to identify the boundary region.

Generally, this assumption of individual loads having a homothetic distribution
along the most probable stress direction is typically done in studies to reduce the
computational burden. However, in reality the individual loads may vary along
multiple stress directions each having substantial likelihood, and therefore confining
to a single stress direction may result in incomplete characterization of the entire load
state space. So it is important to consider the multivariate distribution of loads to
capture the boundary region effectively. Otherwise, single stress direction assump-
tion will identify only some portion of boundary, and consequently the rules derived
from such a database may face challenges when applied to realistic operating con-
ditions. Through the stratified sampling stage (LHS is one kind of stratified sam-
pling), we would want to obtain the boundary region in the multi-dimensional load
sampling state space, and then apply the importance sampling to bias the sampling
towards this boundary region, which would capture maximum information content
including the relative likelihood of sampled operating conditions.

In order to accomplish this, it is necessary to capture inter-load correlations from
historical information while sampling from multivariate load distribution to create
the training database, where such finer details will have crucial impact in a decision
tree’s ability to find rules suitable for realistic scenarios. While we can be assured of
more information content from this approach, it is likely to increase computing
requirements; especially for boundary region identification using stratified sam-
pling. Singh and Mitra (1997) proposed a state space pruning method to identify the
important region in a discrete parameter space composed of generation levels and
transmission line capacities under a single load level for system adequacy assess-
ment. Yu and Singh (2004) proposed self-organized mapping together with MCS to
characterize the transmission line space. Dobson and Lu (2002) proposed a direct
and iterative method to find the closest voltage collapse point with reduced com-
putation in the hyperspace defined by loads. But the method’s applicability to a
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specific distribution of loading conditions in the hyperspace was not shown, and
doubts were also cast over its applicability to a large power system with dimension
of the hyperspace in 100 s, as will be dealt in the case study of this chapter.
This chapter proposes a sampling space characterization method that uses Latin
hypercube sampling (LHS) of homothetic stress directions and linear sensitivities,
which promises to reduce the computational requirements. Using this approach the
multivariate load state space for a given historical distribution is quickly charac-
terized, under various combinations of Static Var Compensator (SVC) and gener-
ator unavailability states. The boundary identification method is described in
Sect. 4.1.1, while the stress direction sampling approach (central piece of the
proposed state space characterization method) is described in Sect. 4.1.2.

4.1.1 Fast Boundary Region Identification in Multivariate Space

For voltage stability related problems, voltage stability margin (VSM) can be used
as the performance measure and hence voltage stability margin sensitivities (Greene
et al. 1997; Long and Ajjarapu, 1999; Krishnan et al. 2009) with respect to oper-
ational parameters such as individual loads, generator availability, etc. can be used
to identify the boundary. VSM is defined as the amount of additional load in a
specific pattern of load increase (also termed as stress direction) that would cause
voltage instability. It is computed using the continuation power flow (CPF) method.
The assumption of a stress direction is important to perform CPF for identifying
the voltage collapse point in that direction. Figure 4 depicts existence of several
homothetic stress directions for load increase in the two dimensional space defined
by loads A and B. The line Load, + Loady = C defines various basecases with
different inter-node repartitions among loads A and B for the same system load C.
These basecases define various homothetic stress directions in the state space, as
shown by the various lines from the origin.

The same concept of multiple stress directions is shown in a 3-D load space in
the left-hand side of Fig. 5. CPF is performed on these basecases along their

Fig. 4 Multiple homothetic
stress directions
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Fig. 5 Multiple homothetic stress directions in 3-D and boundary identification

intrinsic load increase directions, and the maximum loadability along each stress
direction is computed. From these the boundary limits, {Py nin, PLmax}, in the total
system load space is found, as shown in the right-hand side of Fig. 5. This limit in
the hyperspace is subject to variation due to the influence of discrete variables such
as SVC and generator unavailability states. The effect of these two variables is
estimated using VSM sensitivities with respect to real and reactive power injections
along every stress direction, and is given by the Eq. (2). Usage of such linear
sensitivities significantly reduces the computational burden in characterizing a
multi-dimensional operational parameter state space.

AP} = QF,. - dVSMdQ,, (2)
where AP} is the change in boundary limit in a particular stress direction due to
the influence of SVC unavailability, Q. is the amount of unavailable SVC reactive
power at the collapse point, and dVSMdQ,. is the linear sensitivity of voltage
stability margin with respect to reactive power injection at the SVC node, which is
computed as a by-product of CPF study in that particular stress direction.

Finally, the boundary limits in the total system load space is identified, subject to
these discrete variable influences. The key in realizing the computational benefit in
boundary region identification lies in the manner in which the multiple homothetic
stress directions are sampled from the historical data.

4.1.2 Sampling Homothetic Stress Directions Using Latin Hypercube
Method

Latin Hypercube Sampling (LHS) is very prevalently used in Monte Carlo based
reliability studies in many fields. LHS of multivariate distribution is performed by
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dividing every variable forming the multivariate distribution into k equiprobable
intervals, and sampling once from each interval of the variable. Then these samples
are paired randomly to form k random vectors from the multivariate distribution.
Figure 6 depicts the stratified sampling in both forms, traditional and LHS, where
the difference is in the pairing process. In the traditional stratified sampling, samples
from every interval of variable i is paired with every other samples from all
intervals of variable j; whereas in the LHS, one sample from an interval of variable
i is paired only once with any one of the sample from an interval of variable j. The
pairing in LHS can also be done in such a way as to account for the mutual
correlation of the variables by preserving their rank correlation (Wyss and
Jorgensen 1998), and hence capturing the inter-dependence structure of the mul-
tivariate distribution.

Similarly, LHS of homothetic stress directions is performed from historical data
by dividing the load stress factor variables into k equidistant intervals (i.e., equal
width; a modification to traditional LHS that partitions into equiprobable intervals),
sampling once from each interval of the variable, and pairing them preserving their
rank correlation, to form k£ homothetic stress directions. Figure 7 shows (a) traditional
stratified sampling and (b) LHS of homothetic stress directions in 3-dimensional state
space. In the case of LHS, for k intervals per dimension, irrespective of state space
size the uniform stratification of stress direction is achieved with k& samples; com-
pared to the stratified sampling that produces k"~ samples for k intervals per
dimension, in a state space of dimension n. The ideal number of k is found in an
incremental fashion until there is no further improvement in the boundary limits.
Hence computation to find the boundary region can be decreased drastically by using
the proposed method based on LHS of stress directions and linear sensitivities.
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Fig. 6 Stratified sampling—a traditional, b LHS
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Fig. 7 Sampling homothetic stress directions for boundary identification. a Traditional stratified
sampling. b Latin hypercube sampling

4.2 Stage II—Importance Sampling

Once the boundary region has been identified, the next step is to sample operating
conditions from that. This section describes the central concept behind embedding
such intelligence in the sampling approach.

The standard Monte Carlo sampling approach draws values for each parameter in
proportion to the assigned distribution. Given the previous knowledge of the
boundary region from Stage I, biasing the sampling process towards the boundary
region can be implemented using the importance sampling method, which helps in
maximizing the information content. In this study, the inter-load correlations are
captured in the sampling process using copulas (Papaefthymiou and Kurowicka
2009), unlike many studies that approximate the inter-load correlations using mul-
tivariate Normal distribution for computational purposes. Copulas are generated
based on non-parametric historical load distribution, and it enables sampling realistic
scenarios.

4.2.1 Importance Sampling Variance Reduction

In risk-based security planning studies, the quantity of interest is probability of
unacceptable performance, i.e., P(Y ~ unacceptable events) (Billinton and Li 1994).

P(Y<i) = / FO)dy 3)

where, y = ¢ denotes the threshold performance such that y < ¢ is unacceptable per-
formance. The indicator function /(y) denoting region of interest /(y) is defined as,
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) =1r<0 ={ 3 1 /] @)
and hence,
Pr<n= [ B0y =B =) 5)
s i=1

The above expectation function gives crude Monte Carlo estimation (Rubinstein
1981), where yi are Monte Carlo samples taken from the distribution f(y), the post-
contingency performance index probability distribution. This estimation has a
variance associated with it, as the quantity A(y;) varies with y;. Importance sampling
attempts to reduce the variance of the crude Monte Carlo estimator by changing the
distribution from which the actual sampling is carried out. Suppose it is possible to
find a distribution g(y) such that it is proportional to A(y) f(y), then the variance of
estimation can be reduced by reformulating the expectation function as,

P(Y<i) = / h(y)f(y)% iy E(h(;()g()y)) _ Zn:h(;i()i())’i) ©

where y; are Monte Carlo samples drawn from the distribution g(y). This ensures the
quantity {h(y;)f(vi)/g(y:)} is almost equal for all y,. In effect, by choosing the
sampling distribution g(y) this way, the probability mass is redistributed according
to the relative importance of y, measured by the function |A(y)| Ay) (Ripley 1987).

4.2.2 Proposed Efficient Sample Generation

The property of importance sampling to bias the sampling using an importance
function g(y) towards an area of interest, as discussed above is used to generate
influential operating conditions from operational state space, X. The joint proba-
bility distribution of the operational parameter space f{x) can be obtained from
historical data (Rencher 1995). Once we have a priori information about f(x), stage-
I operation provides the region in X through which the boundary most likely occurs
and therefore identifies approximately the x-space in which we want to bias the
sample generation. The region of interest for sampling is defined using the indicator
function h(X), where S is the boundary region.

hX) = I(X € S) = {(1) | fg));g (7)

In a univariate case, we can define it as S = {x : x; <x<x,}, as shown in Fig. 8.
The importance function or the sampling distribution g(x) can be constructed
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Fig. 8 Boundary region in
the univariate operating 0.8
parameter distribution f(x)
fix)
0.4
0.2
(1]

X x1 x2

proportional to |[a(x)| f(x), i.e., focusing on the region S of fix). In general, the
importance sampling density can be expressed as,

g(x) =pfilx) *x € §) + (1 —p) +fox) * lx £5) (8)

where p controls the biasing satisfying the probability condition p < I, f3(x) is the
probability density function of the boundary region, and f>(x) is the probability
distribution function of the region outside boundary. We can adopt a composition
algorithm to generate samples from the distribution g(x) (Devroye 1986; Gentle
1998). Setting p = 0.75, 75 % of the points can be expected from region S, thereby
performing an upward scaling of the distribution f{(x) towards the boundary region.

In the multivariate case, sampling techniques such as copulas or LHS or sequential
conditional marginal sampling (SCMS) (Papaefthymiou and Kurowicka 2009;
Hormann et al. 2004) is used to generate correlated multivariate random vectors from
non-parametric distributions f;(x) and f>(x). The SCMS method is time consuming
and requires a lot of memory usage for storing the entire historical data, while LHS
and copulas are relatively faster and consume less memory since they work only with
non-parametric marginal distributions and correlation data. We use copulas for their
simpler and elegant approach in handling any non-parametric marginal distributions

L R

LoADA X1 x2

Fig. 9 Importance sampling: upward scaling of boundary region probability
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and inter-dependencies. Again setting p = 0.75, 75 % of the points is expected from
N-dimensional boundary region S, as the probability distribution is altered to produce
more samples from S. Figure 9 depicts the probability reorientation by importance
sampling process towards the boundary region in a 2-dimensional state space. The
parameter p serves as a sliding parameter that controls the extent of biasing between a
completely operational study with p = I to investment planning study with p = 0.

5 Case Study

The proposed sampling approach is applied for a decision tree based security
assessment study for deriving operating rules against voltage stability issues on
SEO region (Systéme Eléctrique Ouest, West France, Brittany), a voltage security-
limited region of the French EHV system containing 5,331 buses with 432 gen-
erators supplying 83,782 MW. Figure 10 shows 400 kV network of the French
system, where it can be seen that the Brittany region (highlighted in pink) is pretty
weakly interconnected. During winter periods, when demand peaks, the system gets
close to voltage collapse limits. Moreover the local production capabilities being far
lower than the local consumption, it puts the EHV grid under pressure as the needed
power comes from remote location, eventually leading to cascading phenomenon at
the sub voltage levels. The busbar fault at 225 kV Cordemais bus is the most
credible contingency in the Brittany region during winter period.

So in order to avoid the risk of collapse situations under such contingency
events, the operator may have to resort to expensive preventive measures such as
starting up close yet expensive production units. It is therefore very important to
assess the risks of a network situation correctly considering uncertainties in oper-
ating conditions and obtain operating rules built with decision trees, that aid to take
right decision at right time.

Section 5.1 describes the study specifications in terms of historical data used in
this study, the sampling parameters and assumptions, and tools and methods used to
perform power system assessments. Section 5.2 provides the numerical illustration,
presenting the systematic application of stages 1 and 2 of the efficient sampling
approach in Sects. 5.2.1 and 5.2.2 respectively, and finally discussing the results
from the proposed method and their significance in Sect. 5.2.3 in terms of operating
rule’s classification accuracy and economic benefits.

5.1 Study Specifications

Data preparation: The historical database of French EHV power grid system for the
study is extracted from records made every 15 s on the network by SCADA. The
load in the SEO region starts to increase at the end of October, as the winter comes
closer, and decreases in February. The heavily loaded period is the winter, during
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Fig. 10 French 400 kV network with SEO and Brittany highlighted

December, January, and February months. A lot of loads were shed in the month of
January under stressful conditions motivated by economic and reliability consid-
erations for system operation. The loading pattern over the year changes depending
upon various factors such as, if it is winter or summer, week or week-end, day or
night, peak-hours or off peak hours etc. Typically, the load is heavier during the
daytime of weekdays in winter, as shown by the statistics in Table 1. Therefore,
these heavily loaded periods are the most constraining in terms of voltage, and the
study focuses on them for generating samples of operating conditions. Therefore,
MCS is not performed on the entire year distribution, but only on those relevant
periods that impact the considered stability problem.

Sampling: The pre-contingency operating conditions are generated from a base
case, by considering random changes of key parameters. The basecase of SEO
network considered corresponds to 2006/2007 winter, with the variable part of the
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Table 1 Historical load data statistics in MW—year 2007

Period Mean Median Maximum
Full year 7,729 7,640 13,607
Summer (June—September) 6,609 6,600 9,182
Winter (October—March) 8,585 8,539 13,607
Winter (December—February) 9,290 9,307 13,607
Winter (December—February)—weekdays 9,758 9,823 13,607
Winter (December—February)—week 8 h to 22 h 10,350 10,284 13,607

total baseload amounting to about 13,500 MW. The most constraining contingency
is a busbar fault in the Brittany area that trips nearby generation units, which may
lead to a voltage collapse under extreme conditions. The parameters sampled to
generate operating conditions are variable part of total SEO load, SVC unavail-
ability and generator group unavailability in Brittany area. The unavailability of
main production units, consisting of nuclear groups at Civaux, Blayais, St-Laurent,
Flamanville, and Chinon are sampled such that each of these 5 unavailabilities is
represented in 1/6th of the total basecases. The unavailabilities of two SVCs at
Plaine-Haute and Poteau-Rouge are sampled such that 25 % of the cases have both,
25 % do not have both and 50 % have only one of them. The variable part of total
load, a continuous multivariate parameter, is sampled using our proposed efficient
sampling method. The power factor of loads is kept constant. All the load samples
are systematically combined with SVC and generator group unavailabilities
respecting their respective sampling laws to form various operating conditions.

Contingency analysis and database generation: For each condition, an optimal
power flow is performed, minimizing the production cost under voltage, current, flow
constraints in N. Then consequences of busbar fault are studied with a quasi steady
state simulation (QSSS) tool, where the simulation is run for 1,500 s and the con-
tingency is applied at 900 s. Scenarios are characterized as unacceptable if any of
SEO EHV bus voltage falls below 0.8 p.u or the simulation does not converge. Then a
learning dataset is formed using pre-contingency attributes of every scenario (sam-
pled at 890 s of QSSS) that drives voltage stability phenomenon, such as voltages,
active/reactive power flows, productions etc., and their respective classifications.
Then security rules are produced using decision tree to detect a probable voltage
collapse situation contingent upon the severe event. An independent test set is used to
validate the tree.

The software tools used in the study are:

1. ASSESS—Special platform for statistical and probabilistic analyses of power
networks (Available at: http://www.rte-france.com/htm/an/activites/assess.jsp)
2. TROPIC—Optimal Power Flow tool, embedded with ASSESS, to create initial
base cases
. ASTRE—Simulating slow dynamic phenomena (QSSS), embedded with ASSESS
. SAS—Statistical analysis and database processing
5. ORANGE, WEKA—Decision tree tools

B~ W
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5.2 Numerical Illustration

One of the major significances of this case study, apart from the demonstration of
efficient training database generation for decision trees, is the consideration of system
load with non-parametric multivariate distribution including the mutual correlation
or inter-load dependencies. The multivariate load distribution is comprised of 640
load buses, on which the two-stage efficient sampling process is performed to gen-
erate influential operating conditions for preparing training database.

5.2.1 Stage-I: Fast Boundary Region Identification
There are 24 combinations of discrete parameters as shown in Table 2.
For the first combination, with no component unavailability, initial basecases are

formed based on the sampled k£ homothetic stress directions using LHS. Then CPF

Table 2 Boundary identification under component combinations

S. No SVC cases Generator cases PPEOmin (MW) PPEOmax (MW)
1 None None 11,627 12,700
2 None Blayais 11,507 12,580
3 None Chinon 11,474 12,547
4 None Civaux 11,515 12,529
5 None Flamanville 11,476 12,506
6 None St-Laurent 11,490 12,562
7 Plaine-Haute None 11,618 12,691
8 Plaine-Haute Blayais 11,498 12,571
9 Plaine-Haute Chinon 11,465 12,538
10 Plaine-Haute Civaux 11,506 12,520
11 Plaine-Haute Flamanville 11,467 12,497
12 Plaine-Haute St-Laurent 11,481 12,553
13 Plaine-Rouge None 11,608 12,681
14 Plaine-Rouge Blayais 11,488 12,561
15 Plaine-Rouge Chinon 11,455 12,528
16 Plaine-Rouge Civaux 11,496 12,510
17 Plaine-Rouge Flamanville 11,457 12,487
18 Plaine-Rouge St-Laurent 11,471 12,543
19 Both None 11,599 12,672
20 Both Blayais 11,479 12,552
21 Both Chinon 11,446 12,519
22 Both Civaux 11,487 12,501
23 Both Flamanville 11,448 12,478
24 Both St-Laurent 11,462 12,534
Boundary 11,446 12,700
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Table 3 Incremental
estimation of k k P*%min (MW) PP*omax (MW) Gap (MW)
12,500 12,700 200
11,627 12,500 873
12 12,000 12,700 700
15 11,627 12,700 1,073
20 11,627 12,650 1,023
25 11,627 12,700 1,073

is performed to characterize the load state space and find the boundary limits of
total SEO load {PiEomin, PEEOmaX}, which is found to be {11,627, 12,700} MW
as shown in Table 2. The margin sensitivities are also computed along every k stress
directions, which are used to estimate the change in boundary limits due to the
influence of component combination change. Table 2 shows the estimated boundary
limits for all the remaining combinations. The final boundary limits are estimated as
11,446 and 12,700 MW.

Table 3 shows the process of estimating k for LHS in an incremental fashion.
Beyond k = 15, the boundary region is identified fairly consistently. The Expec-
tation-Maximization algorithm based clustering method, when applied to historical
record of stress directions, optimally grouped the stress directions into 21 clusters.
This information is useful to quickly zero in on the ideal value for .

Figure 11 shows the boundary characterization from a simulation performed for
24,000 operating conditions with randomly selected combinations of discrete
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Fig. 11 Boundary characterization in total SEO load state space
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parameters and loads. The boundary region (where both acceptable and unaccept-
able performances occur) begins approximately at around 11,500-11,700 MW and
ends at around 12,500-12,700 MW. Therefore, these simulation results verify the
ability of the proposed stage-I method to estimate the boundary region in the multi-
dimensional operating parameter state space at a highly reduced computing
requirements (i.e., about 20 CPF computations, compared to 24,000 simulations for
Fig. 11).

5.2.2 Stage-II: Importance Sampling

Many MCS studies in the past have assumed a multivariate normal distribution of
load data (Wan et al. 2000). But in this study, importance sampling is performed on
actual empirical non-parametric distribution obtained from the projected historical
data of loads. Figure 12 shows three marginal load distributions among the 640 load
vectors that make up the multivariate historical data. It is seen that the multivariate
distribution is made up of marginal distributions that are not exactly normal, but by
visual inspection some looks close to normal, some uniform, some discrete and so
on. So a multivariate Normality assumption will give misleading results.

Furthermore, these marginal distributions are not independent to model them
separately as a group of normal, uniform and discrete distributions respectively; but
they are mutually correlated, and the sampling method must preserve their inter-
dependencies or correlations while sampling. So considering both the non-parametric
nature of the marginal distributions and their mutual correlations, the whole sampling
task becomes very challenging. Therefore, as mentioned in the Sect. 4.2.2, copulas
are used that could efficiently work with multiple non-parametric marginal distri-
butions and their mutual correlation (rank correlation) to produce correlated multi-
variate random vectors from original multivariate distribution defined by empirical
historical data.

After identifying the boundary region limits, the empirical multivariate distri-
bution of boundary region f;(x) is begotten from historical data by filtering the
records within the identified boundary limits. When p = 1 in Eq. (8), we have
complete sampling bias towards the boundary region f;(x). The inter-dependencies
between various individual loads are captured in the sampling process that use
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Fig. 12 Some sample marginal distributions from historical load data
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copulas, and correlated multivariate random vectors from f;(x) are generated. The
generated samples are for real power values only, and the reactive power at the
corresponding individual load buses are obtained by maintaining the power factor
constant.

5.2.3 Results and Discussions

The training database generated within the boundary region contains 2,852 oper-
ating conditions. The test database includes 1,976 independent instances unseen by
training set, covering a wide range of operating conditions. The candidate attributes
available for rule formation consists of 46 and 102 node voltages at 400 and 225 kV
voltage levels respectively, reactive power flows (Q flow) in 16 tie lines, real power
reserve (P res) in SEO from 10 generator group’s, and reactive power reserve (Q
res) in SEO from 10 generator group’s and 2 SVCs.

Table 4 shows the effectiveness of various combinations of attribute sets in terms
of classification accuracy and error rates. Accuracy is defined as the percentage of
points correctly classified, false alarm rate is defined as the ratio of total misclas-
sified unacceptable instances among all unacceptable classifications, and risk rate is
defined as the ratio of total misclassified acceptable instances among all acceptable
classifications. The attribute set “400 kV + Q res” proves to be a good set with
lowest risk and high classification accuracy. It has to be noted that the accuracy
listed in the Table 4 are for trees that are pruned by restricting the minimum number
of instances per leaf node.

Effect of Bias Factor “P”

This section sheds light on the quantitative impact of biasing the sampling process
towards the boundary region by presenting results for various values of bias factor

Table 4 Attribute set selection

Attribute Set Accuracy False alarm Risk Tree size
400 kV + Q res 87.9079 0.193 0.073 15
Q res 87.7159 0.183 0.083 15
225 kv 82.8215 0.243 0.124 15
400 kV + 225 kV 82.7255 0.253 0.12 15
400 kV + 225 kV + Q res 82.6296 0.236 0.132 13
All 82.6296 0.236 0.132 13
225 kV + Q res 82.4376 0.231 0.139 13
400 kV 80.8061 0.231 0.166 17
Q flow 75.5278 0.325 0.191 23
P res 73.8004 0.402 0.169 13
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“p”. Specifically, two aspects are discussed, namely (a) computational require-
ments and accuracy, and (b) economic benefits.

(a) Computation, Accuracy and Tree Size: Fig. 13a—d show the total SEO load
probability distribution from sampled operating conditions as the sliding factor
p increases from the base value in f{x) to 1 (bias towards boundary).

Table 5 shows the results when validated using the test database, which confirms
that as the sampling of operating conditions is biased towards the boundary region,
the entropy of the database increases (a quantitative indicator of information con-
tent) and even with lesser database size higher accuracy for decision tree is
obtained. The error rates, namely false alarms and risks are both simultaneously
reduced to a great degree. It was also found that as the sampling is biased more
towards the boundary region, the size of the decision tree required for good clas-
sification also decreased. This is due to the ability of database to capture high
information content (i.e., the variability of performance measure across the security
boundary) even with smaller number of instances.

(b) Economically beneficial rules: Table 6 presents the influence of efficient
sampling in producing economical rules. The table shows that for the various
possibilities of the decision tree top node attribute among the most influential
attributes, the database generated from within boundary region with p = 1 finds
rules with attribute thresholds that are always less conservative than from the
database that was generated with p = 0, i.e., from entire operational state space.

(a) (b)
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Table 5 Performance based . .

on sampling bias Size Entropy Accuracy False Risk

alarm

Base 17,748 0.7423 92.51 0.063 0.091
0.25 13,840 |0.7716 93.4211 0.064 0.068
0.50 9,932 |0.8181 94.9899 0.049 0.051
0.75 6,025 0.9038 96.0526 0.038 0.041
1.0 2,852 10.9993 97.5202 0.021 0.03

Figure 14 shows operational rule formed using two attributes, namely reactive
reserves at Chevire unit and Chinon unit respectively. The operating conditions
shown in the Fig. 14 are from the entire database. It can be noticed that the rules
formed using the database exclusively from the boundary region is providing more
operating conditions to be exploited in real time situations, than the rule derived
using the database from entire region; because of the increased knowledge and

clarity of the boundary limits.

Sampling Strategies Comparison

Table 7 shows the comparison results of two different sampling approaches,

namely,

1. Importance sampling (IS) of boundary region, with load distribution modeled
with multivariate normal (MVN) distribution (pruned tree).

2. Importance sampling of boundary region, with load distribution modeled with
correlated non-parametric multivariate distribution (MVD) (pruned tree).

3. Same as case 2, with un-pruned tree.

Table 6 Economic benefit from efficient sampling

Top Node p=0 p=1
Cordemais voltage 401.64 kV 399.88 kV
Domloup voltage 397.56 kV 394.51 kV
Louisfert voltage 399.1 kV 396.46 kV
Plaine-Haute voltage 392.26 kV 387.21 kV
Chevire unit reactive reserve 131.38 Mvar 90.76 Mvar
Chinon unit reactive reserve 1,127.54 Mvar 694.62 Mvar
Cordemais unit reactive reserve 70.97 Mvar 16.23 Mvar
Total SEO region reactive reserve 7,395.88 Mvar 6,510.36 Mvar
Plaine-Haute SVC output 11.82 Mvar 13.64 Mvar
Poteau-Rouge SVC output 16.3 Mvar 22.03 Mvar
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Table 7 Companson . Sampling Size Accuracy False Risk
between different sampling
. strategy alarm
strategies
IS (MVN—pruned) 2,879 80.6142 0.142 0.228
IS (MVD—pruned) 2,852 87.0951 0.094 0.178
IS (MVD) 2,852 97.5202 0.021 0.03

It can be seen from Table 7 that the database produced by importance sampling
of correlated-MVD state space definitely shows better performance. When the trees
are pruned for operator’s convenience of usage the accuracy decreases, which can
be improved using the right-hand side loop as shown in the Fig. 3. It also performs
better than sampling from MVN load space, which is conventional assumption in
many studies due to trivial modeling requirements.

The significance of sampling from correlated-MVD, i.e., capturing the inter-load
dependencies, than from MVN is even strongly vindicated by Fig. 15 that shows the
top 5 critical attribute locations produced by decision trees from respective dat-
abases. The contingency event is shown by a red star. The location of 5 critical
monitoring attributes as well as their sequence in the tree matters. Compared to
MVN, all the 5 top locations found by correlated-MVD sampling strategy are very
interesting ones, with the top node being reactive reserve at a big nuclear plant
Chinon, the node in the next level of the tree is closer to the contingency location,
the next nodes (3 and 4) in the tree deals with the two SVC locations in Brittany,
and finally the attribute of node 5 is right at the contingency location.
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Fig. 15 Critical monitoring locations from decision tree: MVD versus MVN

6 Conclusion

The proposed efficient sampling method based on importance sampling idea is one
of the first to be used in power systems for making decision tree based learning
methods effective. The thrust of the proposed sampling procedure was to re-orient
the sampling process to focus more heavily on points for which post-contingency
performance is close to the threshold, i.e., boundary region that contains operating
conditions influential for rule formation. The primary goal was to increase the
information content in the learning database while reducing the computing
requirements, and consequently obtain operational rules that are more accurate for
usage in real-time situations.

The developed efficient training database approach was applied for deriving
operational rules in a decision tree based voltage stability assessment study on
RTE-France’s power grid. The results showed that the generated training database
enhances rules’ accuracy at lesser computation compared to other traditional
sampling approaches, when validated on an independent test set. The chapter
also emphasized the significance of sampling from non-parametric correlated-
multivariate load distribution obtained from historical data, as it is more realistic.
Doing so also ensures generating operating rules that provide higher classification
accuracy and economics, and selecting interesting monitoring locations that are
closer to the contingency event, as corroborated by the results. In order to reduce
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the computational burden in characterizing multivariate load state space, a linear
sensitivity based method supported by Latin hypercube sampling of homothetic
stress directions was developed for quickly characterizing the multivariate load state
space for various combinations of component unavailabilities. This aided in iden-
tifying the boundary region with respect to post-contingency performance measure
quickly.

The future directions of research include:

e Application for other stability problems: The efficient database generation
approach can also be applied to other stability problems such as rotor angle
stability, out of step etc. In these problems the performance measure’s trajectory
sensitivities will have to be used to reduce the computational cost in identifying
the boundary region.

e Optimal placement of Phasor Measurement Units (PMUs): The high informa-
tion content in the training database generated from the proposed efficient
sampling method enables finding the most important system attributes for power
system’s security state monitoring. This concept is highly beneficial in finding
the optimal placement of PMUs and extracting relevant knowledge from those
PMUs for advancing data-driven power system operation and control.

e Application in the reliability assessment of Special Protection System (SPS):
The main difference between deriving operating rules and SPS logic are:

— The SPS logic is automated.

— The SPS logic is not only limited to critical operating condition detection
with respect to some stability criteria, but also involves automatic corrective
action to safeguard the system against impending instability.

Even though many works exist that correspond to SPS “process level” design
procedures and failure assessments, there are important questions to be answered
about SPS operations from a ‘system view-point’, such as:

e Are there system operating conditions (topology, loading, flows, dispatch, and
voltage levels) that may generate a failure mode for the SPS?
e Are there two or more SPS that may interact to produce a failure mode?

So the objective of this research will be to develop a decision support tool to
perform SPS failure mode identification, risk assessment and logic re-design from a
‘systems view’. The efficient scenario processing method presented in this chapter
has tremendous scope to be used in biasing the sampling process such that SPS
failure modes (including multiple SPS interactions) can be identified, risk levels
may be estimated, and accordingly the logic may be re-designed using the efficient
decision tree process.
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