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Abstract Complex systems are found in almost all field of contemporary science
and are associated with a wide variety of financial, physical, biological, information
and social systems. Complex systems modelling could be addressed by signal based
procedures, which are able to learn the complex system dynamics from data pro-
vided by sensors, which are installed on the system in order to monitor its physical
variables. In this chapter the aim of diagnosis is to detect if the electrical machine is
healthy or a change is occurring due to abnormal events and, in addition, the
probable causes of the abnormal events. Diagnosis is addressed by developing
machine learning procedures in order to classify the probable causes of deviations
from system normal events. This chapter presents two Fault Detection and Diag-
nosis solutions for rotating electrical machines by signal based approaches. The first
one uses a current signature analysis technique based on Kernel Density Estimation
and Kullback–Liebler divergence. The second one presents a vibration signature
analysis technique based on Multi-Scale Principal Component Analysis. Several
simulations and experimentations on real electric motors are carried out in order to
verify the effectiveness of the proposed solutions. The results show that the pro-
posed signal based diagnosis procedures are able to detect and diagnose different
electric motor faults and defects, improving the reliability of electrical machines.
Fault Detection and Diagnosis algorithms could be used not only with the fault
diagnosis purpose but also in a Quality Control scenario. In fact, they can be
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integrated in test benches at the end or in the middle of the production line in order
to test the machines quality. When the electric motors reach the test benches, the
sensors acquire measurements and the Fault Detection and Diagnosis procedures
detect if the motor is healthy or faulty, in this last case further inspections can
diagnose the fault.

1 Introduction

Mathematical process models describe the relationship between input signals uðkÞ
and output signals yðkÞ and are fundamental for model-based fault detection. In
many cases the process models are not known at all or some parameters are
unknown. Further, the models have to be rather precise in order to express devi-
ations as results of process faults. Therefore, process-identification methods have to
be applied frequently before applying any model-based fault detection method as
stated in Giantomassi (2012). But also the identification method itself may be a
source to gain information on, e.g. process parameters which change under the
influence of faults. First publications on fault detection with identification methods
are found in Isermann (1984) and Filbert and Metzger (1982).

For dynamic processes the input signals may be the normal operating signal or
may be artificially introduced for testing. A considerable advantage of identification
methods is that with only one input and one output signal several parameters can be
estimated, which give a detailed picture on internal process quantities. The gen-
erated features for fault detection are then impulse response values in the case of
correlation methods or parameter estimates [see Isermann (2006)].

On-line process monitoring with fault detection and diagnosis can provide range
of processes, as stated in Cheng et al. (2008), Giantomassi et al. (2011) and Fer-
racuti et al. (2010, 2011). A large number of applications have been reviewed, e.g.
Isermann and Balle (1997) and Patton et al. (2000). Venkatasubramanian et al.
(2000a, b, c) published an article series reviewing monitoring methods with
attention in the field of chemical processes. They classified the Fault Detection and
Diagnosis methods as model-based, signal-based and knowledge-based. Signal-
based approaches to fault detection and isolation (FDI) in large-scale process plants
are consolidated and well studied, because for these processes the development of
model-based FDI methods requires considerable and eventually too high effort, and
moreover because a large amount of data is collected, as stated in Chiang et al.
(2000) and Isermann (2006).

Fault detection and diagnosis (FDD) in industrial applications regards two
important aspects: the FDD for the production plant and for the systems that work
for the plant; among these systems, induction motors are the most important
electrical machineries in many industrial applications, considering that, electric
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motors account about 65 % of energy use. In the field of operational efficiency, the
monitoring activity of rotating electrical machines by fault detection and diagnosis
is in-depth investigated: Benloucif and Balaska (2006), Ran and Penman (2008),
Singh and Ahmed (2004), Taniguchi et al. (1999), Tavner (2008), Verucchi and
Acosta (2008). Vibration analysis is widely accepted as a tool to detect faults of a
machine since it is nondestructive, reliable and it permits continuous monitoring
without stopping the machine [see Ciandrini et al. (2010), Gani and Salami (2002),
Hua et al. (2009); Immovilli et al. (2010), Shuting et al. (2002); Zhaoxia et al.
(2009)]. In particular analysing the vibration power spectrum it is possible to detect
different faults that arise in rotating machines. In traditional machine vibration
signature analysis (MVSA), the Fourier transform is used to determine the vibration
power spectrum and the signature at different frequencies are identified and com-
pared with those related to healthy motors to detect faults in the machine, as in
Lachouri et al. (2008). The shortcoming of this approach is that the Fourier analysis
is limited to stationary signals while vibrations are not stationary by its nature.

The use of Soft Computing methods is considered an important extension to the
model-based approach Patton et al. (2000). It allows to improve residual generation
in FDD when process signals show complex behaviours. Multi-scale principal
component analysis (MSPCA) deals with processes that operate at different scales:
events occurring at different localizations in time and frequency, stochastic pro-
cesses and variables measured at different sampling rate, as reported in Bakshi
(1998) and Li et al. (2000). PCA, treated in Jolliffe (2002) and Jackson (2003),
decorrelates the variables by extracting a linear relationship in order to transform
the multivariate space into a subspace which preserves maximum variance of the
original space. Wavelets extract deterministic features and approximately decor-
relate autocorrelated measurements. MSPCA combines these two techniques to
extract maximum information from multivariate sensor data (Misra et al. 2002).

Rotating electrical machines are well known systems with accurate analytical
models and extensive results in literature. Failure surveys, as Thomson and Fenger
(2001), report that failures, in induction motors, are: stator related (38 %), rotor
related (10 %), bearing related (40 %) and others (12 %). Fast and accurate diag-
nosis of incipient faults allows actions to protect the power system, the process
leaded by the machine and the machine itself.

FDD techniques based on MVSA have received great attention in literature
because by vibrations it is possible to identify directly mechanical faults regarding
rotating electrical machines. In recent years, many methodologies have been
developed to detect and diagnose mechanical faults of electrical machines by
current measurements. In this context motor current signature analysis (MCSA)
involves detection and identification of current signature patterns that are indicative
of normal and abnormal motor conditions. However, the motor current is influenced
by many factors such as electric supply, static and dynamic load conditions, noise,
motor geometry and faults. In Chilengue et al. (2011) an artificial immune system
approach is investigated for the detection and diagnosis of faults in the stator and
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rotor circuits of induction machines. The proposed technique measures the stator
currents to compute its representation before and after a fault condition. These
patterns are used to construct a characteristic image of the machine operating
condition. Moreover MCSA procedures are used to detect and diagnose not only
classic motor faults (i.e. rotor eccentricity), but also gear faults (i.e. tooth spall), as
presented in Feki et al. (2013). Fault Tolerant Control (FTC) as well as robust
control systems have been applied in electric drive systems Ciabattoni et al. (2011a,
2011b, 2014). In Abdelmadjid et al. (2013) a FTC procedure is proposed for stator
winding fault of induction motors. It consists of an algorithm which can detect an
incipient fault in closed loop and switches itself between a nominal control strategy
for healthy condition and a robust control for faulty condition. Samsi et al. (2009)
validated a technique, called Symbolic Dynamic Filtering (SDF), for early detection
of stator voltage imbalance in three-phase induction motors that involves Wavelet
Transform (WT) of current signals. In Baccarini et al. (2010) a sensor-less approach
has been proposed to detect one broken rotor bar in induction motors. This method
is not affected by load and other asymmetries. The technique estimates stator and
rotor flux and analyses the differences obtained in torque. A new saturation model
that explains the experimental data is investigated in Pedra et al. (2009). The model
has three different saturation effects, which have been characterized in four
induction motors.

As possible solutions of the FDI problem for electrical machines, two different
approaches are proposed: the first one uses vibration signals provided by acceler-
ometer sensors placed on the machine, and the second one uses current signals
provided by inverters.

In the first solution, based on current signal analysis of rotating electrical
machines, different algorithms are applied for FDD: PCA is used to reduce the three-
phase current space in two dimensions. Then, Kernel Density Estimation (KDE) is
adopted to estimate the probability density function (PDF) of each healthy and faulty
motor, which are typical features that can be used to identify each fault [see Ferracuti
et al. (2013a)]. Kullback–Leibler (K–L) divergence is used as a distance between
two PDF obtained by KDE. K–L allows to identify the dissimilarity between two
probability distributions (that can also be multidimensional): one is related to the
modelled signatures and the other one is related to the acquired data samples. The
classification of each motor condition is performed by K-L divergence.

In the second approach, based on vibration analysis of rotating electrical
machines, MSPCA is applied for fault detection and diagnosis (Ferracuti et al.
2013b; Lachouri et al., 2008; Misra et al. 2002). Fault identification is evaluated
by calculating the contributions of each variable in the principal component sub-
space and in the residual space. KDE, which allows to estimate the PDF of random
variables is introduced, in Odiowei and Cao (2010), to improve fault detection and
isolation. The contributions PDFs are estimated by KDE, the thresholds are com-
puted for each signal in order to improve fault detection. Faults are classified
by using the contribution plots by Linear Discriminant Analysis (LDA).
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The proposed data-driven algorithms for FDD based on MVSA and MCSA are
tested by several simulations and experimentations in order to verify the effec-
tiveness of the proposed methodologies.

The chapter will be organized in the following sections. In Sect. 2 the FDD
algorithm based on Motor Current Signature Analysis is discussed with focus on
Quality Control scenario. Experimental tests on real motors are reported in Sect. 3.
The FDI algorithm based on vibration signals is described in Sect. 4. Experimental
tests on real motors are reported in Sect. 5. Comments on the performances of the
proposed solutions are reported in Sect. 6.

2 Electric Motor FDD by MCSA in Quality Control
Scenario

In industry, QC is a collection of methods that are able to improve the quality and
efficiency in processes, productions and in many others industry aspects. In 1924,
Walter Shewhart designed the first control chart and gave a rationale for its use in
process monitoring and control (Stuart et al. 1995). The main concept of QC is the
“proactiveness” that ensures the product quality, processes and signals monitoring
to detect when they “go out of control”. In the last years, manufacturing industries
are paying attention and efforts for the introduction of QC in the production lines.
Large volumes of low-tech products involve many investigations on the efficient
introduction of QC in production lines.

One of the major problems, in which these manufacturing industries are
involved, is the customers satisfaction, because they usually purchase a lot of
products with some unwanted defective component. In order to satisfy customers,
manufacturing industries carry out some spot checks at the end of production lines.
This method does not ensure the quality of products and total defective products
removal. A desirable QC solution for these manufacturing industries should be
minimally invasive, effective and with a low payback period. In addition, tests
should be performed in a systematic way using a low-cost system based on a
reduced set of sensors embedded in the test bench.

The proposed FDD system acquires sensor measurements and detects defective
products. Moreover, by isolating and identifying the defective type, the FDD
procedure helps to estimate in which subprocess the defect is introduced and allows
to remove the defective products, improving the processes quality. The tests, per-
formed at the end of production lines, allow to improve the quality of processes as
proactive measures for the QC methodology.
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2.1 Recalled Results

In this section authors present the algorithms used to develop the FDD procedure.
They extract patterns by current signals using PCA and KDE. Then K–L divergence
compares these patterns to extract the motor health index.

2.1.1 Principal Component Analysis

PCA is a dimensionality reduction technique that produces a lower dimensional
representation in a way that preserves the correlation structure between the process
variables capturing the variability in the data (Jolliffe 2002). PCA rotates the
original coordinate system along the direction of maximum variance. Considering a
data matrix X 2 R

N�m of N sample rows and m variable columns that are nor-
malized to zero mean with mean values vector l. The matrix X can be decomposed
as follows:

X ¼ X̂ þ ~X; ð1Þ

where X̂ is the projection on the Principal Component Subspace (PCS) Sd , and ~X,
the residual matrix, is the projection on the Residual Subspace (RS) Sr (see Misra
et al. 2002). Defining the loading matrix P, whose columns are the right singular
vectors of X, and selecting the columns of the loading matrix P 2 R

m�d , which
correspond to the loading vectors associated with the first d singular values, it
follows that:

X̂ ¼ XPPT 2 Sd: ð2Þ

The residuals matrix ~X, is the difference between the data matrix X and its
projection into the first d principal components retained in the PCA model:

~X ¼ XðI � PPTÞ 2 Sr; ð3Þ

therefore the residual matrix captures the variations in the observations space
spanned by the loading vectors associated with the r ¼ m� d smallest singular
values. The projections of the observations into the lower-dimensional space are
contained in the score matrix:

T ¼ XP 2 R
N�d: ð4Þ

Here, PCA is applied to the three-phase currents of induction motors in order to
reduce the inputs space from the three original dimensions to two because the
currents are highly correlated. Indeed for healthy motor, with three-phase without
neutral connection, ideal conditions and a balanced voltage supply, the stator
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currents are given by Eq. (5), where ia, ib and ic denote the three stator currents, Imax

their maximum value, f their frequency, / their phase angle and t the time. It is
known that each stator current is given by the combination of the others:

iaðtÞ ¼ Imaxsinð2pft � /Þ
ibðtÞ ¼ Imaxsinð2pft � 2p=3� /Þ
icðtÞ ¼ Imaxsinð2pft � 4p=3� /Þ:

8<
: ð5Þ

The PCA transform (4), applied to the signals in Eq. (5), makes the smallest
singular value equal to zero. This implies that the information of the principal
component, captured by the smallest singular value is null, then the last principal
component could be deleted and the original space reduced from three to two
without losing information. This is justified by the fact that in Eq. (5), each stator
current is perfectly correlated to the sum of the others. Adding Gaussian white
noise, with standard deviation r, to the stator current signals (Eq. 5), the smallest
singular value will not be equal to zero, but it will depend by the ratio between Imax

and r.

2.1.2 Kernel Density Estimation

Given N independent and identically distributed (i.i.d.) random vectors
X ¼ X1; . . .;XN½ �, where Xi ¼ Xi1; . . .;Xid½ �, whose distribution function FðxÞ ¼
P½X� x� is absolutely continuous with unknown PDF f ðxÞ. The estimated density
at x is given by Parzen (1962):

f̂ ðxÞ ¼ 1
N

XN

i¼1

1

jHjd K
x� Xi

jHjd
 !

: ð6Þ

In the present study a two-dimensional Gaussian kernel function is used so d is 2
and a further simplification, which follows from the restriction of kernel bandwidth
H ¼ h2I : h[ 0

� �
, leads to the single bandwidth estimator so the estimated den-

sity f̂ ðxÞ becomes:

f̂ ðxÞ ¼ 1
N

XN

i¼1

1

2ph2ð Þ1=2
e�

x�Xik k2
2h2 : ð7Þ

where x 2 R
d whose size ngrid is the points number in which the PDF is estimated,

accordingly to Wand and Jones (1994a). It is well known that the value of the
bandwidth h and the shape of the kernel function are of critical importance as stated
in Mugdadi and Ahmad (2004). In many computational-intelligence methods that
employ KDE, the issue is to find the appropriate bandwidth h [see for example
Comaniciu (2003), Mugdadi and Ahmad (2004), Sheather (2004)]. In the present
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work the Asymptotic Mean Integrated Squared Error (AMISE) with plug-in
bandwidth selection procedure is used to choose automatically the bandwidth
h [treated in Wand and Jones (1994b)]. In the proposed algorithm, KDE is used to
model a specific pattern for each motor condition, indeed the features of the current
signals are mapped in the two-dimensional principal component space, representing
specific signatures of the motor conditions.

2.1.3 Kullback–Leibler Divergence

Given two continuous PDFs f1ðxÞ and f2ðxÞ, a measure of “divergence” or “dis-
tance” between f1ðxÞ versus f2ðxÞ is given in Kullback and Leibler (1951), as:

I1:2ðXÞ ¼
Z
R

d
f1ðxÞ log f1ðxÞf2ðxÞ dx; ð8Þ

and between f2ðxÞ versus f1ðxÞ is given by:

I2:1ðXÞ ¼
Z
R

d
f2ðxÞ log f2ðxÞf1ðxÞ dx: ð9Þ

Therefore the K–L divergence between f1ðxÞ and f2ðxÞ is:

Jðf1; f2Þ ¼ I1:2ðXÞ þ I2:1ðXÞ

¼
Z
R

d
f1ðxÞ � f2ðxÞð Þ log f1ðxÞ

f2ðxÞ dx:
ð10Þ

The above equation is known as the symmetric K–L divergence, which repre-
sents a non negative measure between two PDFs. In the present work d is 2 and a
discrete form of K–L divergence is adopted:

Jðf1; f2Þ ¼
Xngrid
i¼1

Xd
j¼1

f1ðxijÞ � f2ðxijÞ
� �

log
f1ðxijÞ
f2ðxijÞ : ð11Þ

The K–L divergence allows to define a fault index: if fX is the PDF in the PCs
space estimated by KDE of the oncoming current measurements, the motor con-
dition is that which minimizes the K–L divergence between fX and fi that is the ith
PDF related to each motor condition:

c ¼ arg min
i

JðfX; fiÞ; ð12Þ

where c is the classification output.
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2.2 Developed Algorithm

The developed FDD procedure based on KDE consists of two stages: training and
FDD monitoring. In the first, a KDE model is computed for each motor condition,
in order to have one KDE model in the case of healthy motor and one for each
faulty case. The training steps are summarized below:

T1. Stator current signals for each motor condition are acquired;
T2. Data are normalized;
T3. PCA transform (4) is applied to stator current signals, which are projected
into the two-dimensional principal component space;
T4. The matrices P and l are stored;
T5. KDE is performed on the lower-dimensional principal components space (4)
using a grid of ngrid points and a bandwidth h for the Gaussian kernel function (7);
T6. PDFs are estimated by KDE (7) and stored.

In diagnosis step, the models previously obtained are compared with the new
data and a fault index is calculated. The diagnosis steps are summarized below:

D1. Stator current signals are acquired;
D2. Data are normalized;
D3. The matrices P and l, previously computed (T4), are applied to signals;
D4. KDE is performed on the lower-dimensional principal component space (4)
using the same points grid ngrid and bandwidth h used in the training step (T5);
D5. Symmetric K–L divergence (11) is computed between the estimated PDF by
KDE (7) using the acquired current signals, and those stored in the training step
(one for each condition) (T6);
D6. Diagnosis is evaluated using Eq. (12).

Faults are identified using Eq. (12) where fX is the PDF, estimated by KDE, in
the PCs space of the oncoming current measurements and fi is the ith PDF related to
each motor condition. K–L divergence is used as an input for fault decision
algorithm allowing to take decision automatically on the operating state and con-
dition of the machine and detecting any abnormal operating condition.

The next Section introduces the FDD experimental results of induction motors in
order to show the proposed method performances.

3 Electric Motor FDD by MCSA: Results

In order to verify the effectiveness of the proposed methodology several simulations
are carried out using one benchmark and some experimentations using real asyn-
chronous motors. The benchmark uses a Time Stepping Coupled Finite Element-
State Space modelling (FEM) approach to generate current signals for induction
motors as described in Bangura et al. (2003). The simulation dataset consists of
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twenty-one different motor conditions, which are: one healthy condition, ten broken
bars conditions and ten broken connectors conditions. Twenty time series are
generated for each motor condition. Each signal consists of 1,500 samples. The
dataset can be download from UCR time series data mining archive in Keogh
(2013). The characteristics of the three-phase induction motors are: 208 V input
voltage, 60 Hz supply frequency, 34 rotor bars, 2 poles and power 1.2 hp. The
sampling rate is 33.3 kHz and the processed data, for each test, are related to 0.3 s
of acquisition. White noise with standard deviation r ¼ 0:2 is added to the simu-
lated current signals. The results are the average of 200 Monte Carlo simulations
where the training and testing data sets are randomly changed.

The real tests are carried out using three phase induction motors whose
parameters are: 380 V input voltage, 60 Hz supply frequency, 0.75 kW power, 20
kHz sampling rate. Two different faults are tested: wrong rotor and cracked rotor.
Wrong rotor refers to a non compliant rotor, in particular a single phase rotor is
assembled instead of a three phase rotor. Ten motors are tested both for the healthy
and faulty cases. The acquisition time is 14 s. The processed data, for each test, are
related to 0.7 s of acquisition. In this case study the results are the average of 2,000
Monte Carlo simulations where the training and testing data sets are randomly
changed. The motors, with a defective rotor installed, have about 3 % of efficiency
drop at the operating point of 2,800 RPM, as shown in Fig. 1. So it is important to
detect this defect in the energy efficiency context and QC.

3.1 Results and Discussion

The proposed approach processes the three-phase stator currents in order to perform
defects detection and diagnosis as described in Sect. 2.2. The following two sub-
sections show the results related to the two cases described previously. Figures 2, 3,
4 and 5 show the simulation and experimentation results. The classification
accuracy is considered as an index to evaluate the performances of the proposed

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000
20
25
30
35
40
45
50
55
60
65
70
75
80

%

Speed [RPM]

Fig. 1 Efficiency characterization of tested induction motors. Blue solid line refers the healthy
motor, red dashed line refers to motor with defective rotor
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algorithm as shown in Tables 1 and 2. This index is obtained using the probability
distributions of the K-L distances of each class, approximated as normal distribu-
tions and estimated by Monte Carlo trials. The simulations are carried out changing

Fig. 2 Interpolated PDFs of a finite element motor in the two-dimensional principal component
space estimated by KDE. a Healthy motor. b Motor with one broken bar. c Motor with one broken
connector
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Fig. 3 K–L divergence in the case of a finite element motor. The blue dots are the mean, the blue
bars are the four times standard deviation and the red asterisks are the classification output. Label
H means healthy motor, labels 1–10B mean broken bars with the relative number, labels 1–10C
mean broken connectors with relative number. a Healthy motor. b Motor with one broken bar.
c Motor with one broken connector
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ngrid , the points number in which the PDF is estimated, and the current signals
acquisition time in steady-state. Figures 3 and 5 show the K–L distances for all
Monte Carlo trials. On each vertical line, the central dot is the mean and the

Fig. 4 Interpolated PDFs of real motors in the two-dimensional principal component space
estimated by KDE. a Healthy motor. b Motor with cracked rotor. c Motor with wrong rotor
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horizontal edges are the 4 times standard deviation. The figures show the results
with ngrid ¼ 64� 64 points and the acquisition time, for the benchmark and real
motors, equals to 0.3 and 0.7 s respectively. This algorithm parameter setting
guarantees better results for these cases taking into account the classification
accuracy and the processing time. In the real motor the algorithm takes about 2.5 s
for the classification output (Eq. 12): about 1 s to acquire the current signals, of
which 0.25 s in transient state and 0.7 s in steady-state, and about 1.45 s to evaluate
the PDF and the classification output (Eq. 12). Setting ngrid ¼ 32� 32 points, the
processing time is reduced to 1.5 s but decreasing the classification accuracy as

Fig. 5 K–L divergence in the case of real motors. The blue dots are the mean, the blue bars are
the four times standard deviation and the red asterisks are the classification output. a Healthy
motor. b Motor with cracked rotor. c Motor with wrong rotor
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Table 1 Classification accuracy in the case of a finite element motor, changing ngrid , the points
number in which the PDF is estimated, and the current signals acquisition time in steady-state

ngrid 128 × 128 64 × 64 32 × 32

Acquisition time (s) 0.3 0.15 0.3 0.15 0.3 0.15

%

H 100 100 100 100 100 100

1B 100 100 100 100 100 100

2B 100 100 100 100 100 100

3B 100 100 100 100 100 99.93

4B 100 100 100 100 100 99.89

5B 100 100 100 99.96 100 99.70

6B 100 100 100 100 100 99.87

7B 100 99.98 100 99.94 100 98.19

8B 99.82 95.34 99.89 95.97 99.55 91.41

9B 100 99.74 100 99.53 100 98.56

10B 100 99.43 100 99.32 99.99 99.43

1C 100 100 100 100 100 99.99

2C 99.98 96.89 99.88 95.99 99.56 91.01

3C 99.88 91.71 99.72 95.74 98.48 93.75

4C 99.79 97.61 99.84 98.10 99.93 96.87

5C 99.98 98.96 99.99 98.49 99.96 96.37

6C 100 100 100 100 100 99.98

7C 100 100 100 100 100 99.94

8C 100 100 100 100 100 99.88

9C 100 99.99 100 100 100 99.47

10C 100 99.89 100 99.77 100 96.95

Mean 99.97 99.03 99.97 99.18 99.88 98.15

Label H means healthy motor, labels 1–10B mean broken bars with the relative number, labels
1–10C mean broken connectors with relative number

Table 2 Classification accuracy in the case of real motors, changing ngrid , the points number in
which the PDF is estimated, and the current signals acquisition time in steady-state

ngrid 128 × 128 64 × 64 32 × 32

Acquisition
time (s)

0.7 0.5 0.3 0.7 0.5 0.3 0.7 0.5 0.3

%

Healthy 100 100 100 100 100 100 100 100 100

Cracked
rotor

98.82 95.08 77.08 99.00 94.74 86.54 98.29 94.02 81.45

Wrong rotor 98.97 99.47 99.49 99.18 99.36 98.56 99.85 99.41 99.21

Mean 99.26 98.18 92.19 99.39 98.03 95.03 99.38 97.81 93.55

Motor conditions are: healthy, motor with cracked rotor and motor with wrong rotor
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shown in Tables 1 and 2. The tests are also performed for both cases using the
asymmetric K–L divergence (Eq. 9). The results are comparable to those achieved
with the symmetric K–L divergence described in the next subsections.

3.1.1 Broken Rotor Bars and Connectors Diagnosis

Figures 2a–c depict the patterns of a healthy motor, one broken bar and one broken
connector conditions, respectively; these figures show how the PDFs, estimated by
KDE in the principal component space, are used as the specific patterns for the
motor conditions. The simulation results, given in Figs. 3a–c, show the faults
diagnosis for broken rotor bars and connectors, setting ngrid ¼ 64� 64 and the
current signals acquisition time in steady-state condition is equal to 0.3 s. Figure 3
(a) shows the K–L divergence among the PDFs, estimated by KDE, of all motor
conditions (i.e. healthy, from one to ten broken rotor bars and from one to ten
broken connectors) and the PDF estimated by KDE from stator current signals of
healthy motor. The results show as the minimum K–L distance is exactly the
healthy condition. Figure 3b shows the K–L divergence among all PDFs and the
PDF estimated from stator current signals affected by one broken rotor bar. In this
case the graph shows as the minimum K–L distance is exactly the broken bar
condition. The last graph, Fig. 3c, shows the one broken connector diagnosis. Even
in this case the K–L divergence detects and identifies the fault, that is one broken
connector. By Monte Carlo simulations, all fault types are diagnosed with 100 %
accuracy hence the K–L divergence figures for the other faults are not reported.
Moreover the classification accuracy is 100 % with acquisition time above 0.3 s
for each fault, while below 0.3 s, the classification accuracy decreases as shown
in Table 1.

3.1.2 Real Induction Motors Diagnosis

Figures 4a–c depict the patterns of three real motors: healthy, cracked and wrong
rotor; these figures show as the PDFs, estimated by KDE in the principal compo-
nent space, are different and therefore can be used as specific patterns for each
motor condition. Experimental results given in Figs. 5a–c show the fault diagnosis
for cracked and wrong rotors, setting ngrid ¼ 64� 64 and the current signals
acquisition time in steady-state is equal to 0.7 s. Figure 5a shows the K–L diver-
gence among the PDFs, estimated by KDE, of all motor conditions (i.e. healthy,
cracked and wrong rotors) and the PDF estimated by KDE from stator current
signals of healthy motor. The results show as the minimum K–L distance is exactly
the healthy condition. Figure 5b shows the K–L divergence among all PDFs and the
PDF estimated from stator current signals where cracked rotors are diagnosed. In
this case the graph shows as the minimum K–L distance is exactly the cracked rotor
condition. The last graph, Fig. 5c, shows the wrong rotor diagnosis. Even in this
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case the K–L divergence detects and identifies the fault. By Monte Carlo simula-
tions, all fault types are diagnosed with accuracy reported in Table 2. It can be
noticed how the classification accuracy in the case of healthy motor is always
100 %, therefore the algorithm is able to detect if motors are healthy or if there are
some faults or defects. In Figs. 5b and c the blue lines of motors with cracked and
wrong rotor are never overlapped to the blue lines of healthy motors so, in these
tests, the algorithm never confuses the cases of healthy motors from those not
healthy.

The next Section describes the well-known MSPCA algorithm for fault detection
and isolation based on vibration signals.

4 Electric Motor FDD by MVSA

In electric motors, faults and defects are often correlated to the vibration signals,
which can be processed to model the motor behaviours by patterns that represent
the normal and abnormal motor conditions. Vibration analysis is widely accepted as
a tool to detect faults of a rotating machine since it is reliable, not destructive and it
permits continuous monitoring without stopping the machine. A brief literature
review is given by: Fan and Zheng (2007), Immovilli et al. (2010), Sawalhi and
Randall (2008a, b), Tran et al. (2009), Yang and Kim (2006). In particular, it is
possible to detect different faults by analysing the vibration power spectrum. Most
common faults are unbalance and misalignment. Unbalance may be caused by poor
balancing, shaft inflection (i.e. thermal expansion) and rotor distortion by magnetic
forces (a well known problem in high power electrical machines). Misalignment
may be caused by misaligned couplings, misaligned bearings or crooked shaft.

In order to model the vibration signals, MSPCA is taken into account, as pre-
sented in Bakshi (1998). MSPCA deals with processes that operate at different
scales, and have contributions from:

• events occurring at different localizations in time and frequency;
• stochastic processes whose energy or power spectrum changes over time and/or

frequency;
• variables measured at different sampling rate or containing missing data.

MSPCA transforms the process data information at different scales by WT. The
information of each different scale is captured by PCA modelling. These patterns,
which represent the process conditions, can be used to identify each fault and
defect.

To detect the defects, a KDE algorithm is used on the PCA residuals, and the
thresholds are computed for each sensors signal. It allows to identify if, for each
wavelet scale, the signals are involved in the fault or not. When Gaussian
assumption is not recognized, KDE method is a robust methodology to estimate
numerically the PDF, by Odiowei and Cao (2010). Fault isolation is carried out by
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contribution plots, which is based on quantifying the contribution of each process
variable to the single scores of the PCA. Diagnosis can be performed using the
contribution plots because they represent the signatures of the rotating electrical
machine conditions. The contributions are the inputs of a LDA classifier, which is a
supervised machine learning algorithm used here to diagnose each motor defect.
Several simulations are carried out using a benchmark provided by the Case
Western Reserve University Bearing Data Center (2014).

4.1 Recalled Results

In this section authors present the algorithms used to develop the fault and defect
diagnosis procedure. It extracts patterns by vibration signals using MSPCA and
PCA contributions are used to diagnose each motor fault.

4.1.1 Principal Component Analysis

PCA is introduced in the Sect. 2.1.1, here an improved PCA fault detection index is
described. A deviation of the new data sample X from the normal correlation could
change the projections onto the subspaces, either Sd or Sr. Consequently, the
magnitude of either ~X or X̂ could increase over the values obtained with normal
data. The Square Prediction Error (SPE) is a statistic that measures lack of fit of a
model to data. The SPE statistic is the difference, or residual, between a sample and
its projection into the d components retained in the model. The description of the
distribution of SPE is given in Jackson (2003):

SPE � ~X
�� ��2¼ XðI � PPTÞ�� ��2: ð13Þ

The process is faultless if:

SPE� d2 ð14Þ

where d2 is a confidence limit for SPE. A confidence limit expression for SPE,
when x follows a normal distribution, is developed in Jackson and Mudholkar
(1979), Misra et al. (2002) and Rodriguez et al. (2006). The fault detectability
condition is given in Dunia and Joe Qin (1998) and recalled in the following.
Defining:

X ¼ X� þ fN; ð15Þ
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where the sample vector for normal operating conditions is denoted by X�, f rep-
resents the magnitude of the fault and N is a fault direction vector. Necessary and
sufficient conditions for detectability are:

• ~N ¼ ðI � PPTÞN 6¼ 0, with ~N the projection of N on the residual subspace;
• ~f
�� �� ¼ ðI � PPTÞf�� ��[ 2d, with ~f the projection of f on the residual subspace.

The drawbacks of SPE index for fault detection are mainly two: the first is
related to the assumption of normal distribution to estimate the threshold of this
index, the second is that the SPE is a weighted sum, with unitary coefficients, of
quadratic residues ~Xi. To improve the fault detection, these two drawbacks are
faced assuming that the process is faultless if, for each i:

~X2
i � di i ¼ 1; . . .;m; ð16Þ

where di is a confidence limit for ~X2
i . To estimate the confidence limit di, even if the

normality assumption of ~X2
i is not valid, the solution is to estimate the PDF directly

from ~X2
i through a non parametric approach. In Yu (2011a, b) and Odiowei and Cao

(2010), KDE is considered because it is a well established non parametric approach
to estimate the PDF of statistical signals and evaluate the control limits. Assume y is
a random variable and its density function is denoted by pðyÞ. This means that:

Pðy\kÞ ¼
Zk

�1
pðyÞdy: ð17Þ

Hence, by knowing pðyÞ, an appropriate control limit can be given for a specific
confidence bound a, using Eq. (17). Replacing pðyÞ, in Eq. (17), with the estimation
of the probability density function of ~X2

i , called p̂ð~X2
i Þ, the control limits will be

estimated by:

Zdi
�1

p̂ð~X2
i Þd~X2

i ¼ a: ð18Þ

Fault isolation and diagnosis are performed by the PCA contributions: defining
the new observation vector xj 2 R

m, the total contribution of the ith process vari-
able Xi is

CONTi ¼
XN
j¼1

~x2ij i ¼ 1; . . .;m: ð19Þ
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4.1.2 Wavelet Transform

The Wavelet Transform (WT) is defined as the integral of the signal f ðtÞ multiplied
by scaled, shifted version of basic wavelet function /ðtÞ, that is a real valued
function whose Fourier transform satisfies the admissibility criteria stated in Li et al.
(1999). Then the wavelet transformation cð�; �Þ of a signal f ðtÞ is defined as:

cða; bÞ ¼ R
R
f ðtÞ 1ffiffi

a
p / t�b

a

� �
dt

a 2 R
þ � f0g

b 2 R;

ð20Þ

where a is the so-called scaling parameter, b is the time localization parameter. Both
a and b can be continuous or discrete variables. Multiplying each coefficient by an
appropriately scaled and shifted wavelet it yields the constituent wavelets of the
original signal. For signals of finite energy, continuous wavelets synthesis provides
the reconstruction formula:

f ðtÞ ¼ 1
K/

Z
R

Z
R

þ
cða; bÞ/ t � b

a

	 

da
a2

db ð21Þ

where:

K/ ¼
Z þ1

�1

j/̂ðnÞj2
jnj dn ð22Þ

denotes a (Wavelet specific) normalization parameter in which /̂ is the Fourier
transform of /. Mother wavelets must satisfy the following properties:

Zþ1

�1
j/ðtÞjdt\1;

Zþ1

�1
j/ðtÞj2dt ¼ 1;

Zþ1

�1
/ðtÞdt ¼ 0: ð23Þ

To avoid intractable computations when operating at every scale of the Con-
tinuous WT (CWT), scales and positions can be chosen on a power of two, i.e.
dyadic scales and positions. The Discrete WT (DWT) analysis is more efficient and
accurate, as reported in Li et al. (1999) and Daubechies (1988). In this scheme a and
b are given by:

a ¼ a j
0; b ¼ b0a

j
0k; ðj; kÞ 2 Z

2; Z :¼ f0;	1;	2; � � �g: ð24Þ

The variables a0 and b0 are fixed constants that are set, as in Daubechies (1988),
to: a0 ¼ 2 and b0 ¼ 1. The discrete wavelet analysis can be described mathemat-
ically as:
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cða; bÞ ¼ cðj; kÞ ¼ P
n2Zþ

f ðnÞ/j;kðnÞ;
a ¼ 2 j; b ¼ 2 jk;
j 2 Z; k 2 Z;

ð25Þ

considering the simplified notation f ðnÞ ¼ f ðn � tcÞ, n 2 Z
þ and tc the sampling

time, the discretization of continuous time signal f ðtÞ is considered. The inverse
transform, also called discrete synthesis, is defined as:

f ðnÞ ¼
X
j2Z

X
k2Z

cðj; kÞ/j;kðnÞ: ð26Þ

In Mallat (1989), a signal is decomposed into various scales with different time
and frequency resolutions, this algorithm is known as the multi-resolution signal
decomposition. Defining:

/j;kðnÞ ¼ 2�j=2/ 2�jn� k
� �

;

wj;kðnÞ ¼ 2�j=2w 2�jn� k
� �

;

Vj ¼ span /j;k; k 2 Z
� �

;

Wj ¼ span wj;k; k 2 Z
� �

;

ðj; kÞ 2 Z
2 ð27Þ

the wavelet function /j;k , is the orthonormal basis of Vj and the orthogonal wavelet
wj;k , called scaling function, is the orthonormal basis of Wj. In Daubechies (1988) is
shown that:

Vj?Wj;
Vm ¼ Wmþ1 
 Vmþ1:

Vm;Wm � L2ðRÞ ð28Þ

Defining f ðnÞ ¼ f as element of V0 ¼ W1 
 V1, f can be decomposed into its
components along V1 and W1:

f ¼ P1f þ Q1f : ð29Þ

with Pj the orthogonal projection onto Vj and Qj the orthogonal projection onto Wj.
Defining j� 1 and f ðnÞ ¼ c0n, it results:

f ðnÞ ¼
X

k2Z c
1
k/1;kðnÞ þ

X
k2Z

d1kw1;kðnÞ;

c1k ¼
X

n2Z hðn� 2kÞc0n;
d1k ¼

X
n2Z gðn� 2kÞc0n;

hðn� 2kÞ ¼ /1;kðnÞ;/0;nðnÞ
� �

;

gðn� 2kÞ ¼ w1;kðnÞ;w0;nðnÞ
� �

:

k; n 2 Z
2:

ð30Þ
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where the terms g and h are high-pass and low-pass filter coefficients derived from
the bases w and /. Considering a dataset of N ðn ¼ 1; . . .;NÞ samples, and intro-
ducing a vector notation, c1k and d1k can be rewrite as Daubechies (1988):

c1 ¼ Hc0;

d1 ¼ Gc0;
ð31Þ

with

H ¼
hð0Þ hð1Þ � � � hðNÞ
hð�2Þ hð�1Þ � � � hðN � 2Þ
..
. ..

. � � � ..
.

hð�2kÞ hð1� 2kÞ � � � hðN � 2kÞ

2
6664

3
7775; ð32Þ

G ¼
gð0Þ gð1Þ � � � gðNÞ
gð�2Þ gð�1Þ � � � gðN � 2Þ
..
. ..

. � � � ..
.

gð�2kÞ gð1� 2kÞ � � � gðN � 2kÞ

2
6664

3
7775: ð33Þ

The procedure can be iterated obtaining:

c j ¼ Hcj�1;

d j ¼ Gdj�1:
ð34Þ

Then:

c j ¼ Hjc
0;

d j ¼ Gjd
0;

ð35Þ

where Hj is obtained by applying the H filter j times, and Gj is obtained by applying
the H filter j� 1 times and the G filter once. Hence any signal may be decomposed
into its contributions in different regions of the time-frequency space by projection
on the corresponding wavelet basis function. The lowest frequency content of the
signal is represented on a set of scaling functions. The number of wavelet and
scaling function coefficients decreases dyadically at coarser scales due to the dyadic
discretization of the dilation and translation parameters. The algorithms for com-
puting the wavelet decomposition are based on representing the projection of the
signal on the corresponding basis function as a filtering operation (Mallat 1989).
Convolution with the filter H represents projection on the scaling function, and
convolution with the filter G represents projection on a wavelet. Thus, the signal
f ðnÞ is decomposed at different scales, the detail scale matrices and approximation
scale matrices. Defining L the decomposition levels, the approximation scale AL

296 A. Giantomassi et al.



and the detail scales Dj, j ¼ 1; . . .; L are the composition of c j and d j for every
m variables of the data matrix X:

Aj ¼ ½c j1; c j2; . . .; c jm�;
Dj ¼ ½d j

1; d
j
2; . . .; d

j
m�:

j ¼ 1; . . .; L ð36Þ

To select the wavelet decomposition level L it is considered the minimum
number of decomposition levels, and used to obtain an approximation signal AL so
that the upper limit of its associated frequency band is under the fundamental
frequency f, as described by the following condition Antonino-Daviu et al. (2006),
Bouzida et al. (2011):

2�ðLþ1Þfs\f : ð37Þ

where fs is the sampling frequency of the signals and f is the fundamental frequency
of the machine. From this condition, the decomposition level of the approximation
signal is the integer L given by:

L ¼ log2ðfs=f Þ � 1b c: ð38Þ

4.2 MSPCA Formulation

WT and PCA can be combined to extract maximum information from multivariate
sensor data. MSPCA can be used as a tool for fault detection and diagnosis by
means of statistical indexes. In particular, faults are detected by using Eqs. 16 and
18 and the isolation is conducted by the contribution method (Eq. 19). In this way it
is possible to detect which sensor is most affected by fault (see Misra et al. 2002).
Two fundamental theorems exist for the MSPCA formulation, they assess that PCA
assumptions remain unchanged under the Wavelet transformation. These theorems
are useful to apply MSPCA methodology, as stated in Bakshi (1998).

Theorem 4.1 Let W ¼ H0
L;G

0
L;G

0
L�1; . . .;G

0
1


 �02 R
N�N the orthonormal matrix

representing the orthonormal wavelet transformation operator containing the filter
coefficients, the principal component loadings obtained by the PCA of X and WX
are identical, whereas the principal component scores of WX are the wavelet
transform of the scores of X.

Theorem 4.2 MSPCA reduces to conventional PCA if neither the principal com-
ponents nor the wavelet coefficients at any scale are eliminated.

The developed FDD MSPCA based procedure consists of two stages: in
the first step, the faultless data are processed and a model of this data is built.
MSPCA training steps are summarized below:
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T1. Data are preprocessed;
T2. The Wavelet analysis is used, to refine the data, with a level of detail L which

is chosen by Eq. (38);
T3. Normalize mean and standard deviation of detail and approximation matrices

and apply PCA to the approximation matrix AL, of order L, and to the L detail
matrices Dj, where j ¼ 1; . . .L;

T4. The PCA transformation matrix P and the signal covariance matrix S are
computed for each approximation and detail matrices;

T5. The ~Xi signals (Eq. 13) are computed, for each wavelet matrix;
T6. The di thresholds are computed, for each detail matrix and for the approxi-

mation matrix of order L, using the KDE algorithm (Eq. 18) and a confidence
bound a;

In the second step, the model previously obtained is on-line compared with the
new data and a statistical index of failure is calculated. MSPCA diagnosis steps are
summarized below:

D1. The previous steps, except the threshold computation step (T6), are repeated
for each new dataset, the data are standardized as in the training step (T3) and
the PCA and ~Xi signals are computed using the P and S matrices, obtained in
the training step;

D2. If any of the ~X2
i signals is over the thresholds di, the fault is detected and the

isolation is performed by the contributions, else the next data set is analysed
[return to (D1)];

D3. Compute all the residual contributions, for each sensor, for all details and
approximation matrices and isolate and diagnose the fault type.

The next Section introduces the FDD experimental results in order to show the
MSPCA algorithm performances. Tests are carried out on real induction motors
with different fault severity.

5 Electric Motor FDD by MVSA: Results

The diagnosis algorithm has been tested on the vibration signals provided by the
Case Western Reserve University Bearing Data Center (2014). Experiments were
conducted using a 2 hp Reliance Electric motor, and acceleration data was mea-
sured at locations near to and remote from the motor bearings. Motor bearings were
seeded with faults using electro-discharge machining (EDM). Faults ranging from
0.007 in. to 0.040 in. of diameter were introduced separately at the inner raceway,
rolling element (i.e. ball) and outer raceway. Faulty bearings were reinstalled into
the test motor and vibration data was recorded for motor loads of 0–3 hp (motor
speeds of 1,797–1,720 RPM). Accelerometers were placed at the 12 o’clock
position at both the drive end and fan end of the motor housing. Digital data was
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collected at 12,000 samples per second. Experiments were conducted for both fan
and drive end bearings with outer raceway faults located at 3 o’clock (directly in the
load zone), at 6 o’clock (orthogonal to the load zone), and at 12 o’clock.

5.1 Results and Discussion

The proposed approach described in Sect. 4.2 has been tested using a Daubechies
mother wavelet of order 15, defined db15 mother wavelet (defined kernel / in
Sect. 4.1.2). Since the motor rotation frequency is 30 Hz and the sampling fre-
quency is 12 kHz, applying Eq. (38), the level of detail obtained is L ¼ 7. The
dimension of principal component subspace d, chosen by the Kaiser’s rule, is
described in Jolliffe (2002).

Incoming batch data samples are then fed into the MSPCA model and the PCA
residual contributions are computed for the matrices Dj, j ¼ 1; . . .; L, AL. In the
following, these matrices are defined scale matrices, and they are compared with
the respective thresholds. When, at any scale, the number of residual contribution
samples over the thresholds is greater than a � c, where a is the significance level
used for the threshold di calculation (stated in Sect. 4.2) and c is a corrective index
(fixed equal to 2), a fault is detected and the motor is considered faulty.

Once a fault is detected, the isolation and diagnosis tests are performed. At this
step the PCA contributions are computed for each scale matrix. Fault isolation
allows to detect which sensors are involved in the fault. By using several scales for
the DWT analysis, it is possible to cluster the residual contributions of each scale
and define a unique signature of the motor fault, as in a MVSA approach. More in
detail, the signature of each fault is given by the contributions of each variable for
each scale. The results are the average of 1,000 Monte Carlo simulations where the
training and testing data sets are randomly changed.

Figures 6 and 7 show the residuals of the first accelerometer (i.e. placed at the
drive end) for drive end bearing faults estimated by Eq. (16). The thresholds, drawn
in dashed red line, are estimated by KDE (Eq. 18). While Fig. 6a shows the
residuals for healthy motor, Fig. 6b, c show the residuals of rolling element and
inner raceway faults respectively at the detail scales D1 and D4, which are, among
all scales, the most affected by the faults.

Figures 7a–c show the residuals of outer raceway faults located at 3, 6, 12
o’clock respectively at the detail scales D1, D2 and D4, which are, among all scales,
the most affected by the faults. It can be noticed how the residuals are related to the
fault type and so they can be exploited as signatures of the rotating electrical
machine conditions.

Figures 8 and 9 show the contribution plots of each accelerometer at different
scales for drive end bearing fault, particularly Figs. 8a–c show the contribution
plots of healthy motor, rolling element and inner raceway faults while Figs. 9a–c
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Fig. 6 Residuals of the accelerometer placed at the drive end. a Healthy motor at D2 detail scale.
b Rolling element fault of drive end bearing at D1 detail scale. c Inner raceway fault of drive end
bearing at D4 detail scale
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Fig. 7 Residuals of the accelerometer placed at the drive end. a Outer raceway fault located at 3
o’clock of drive end bearing at D1 detail scale. b Outer raceway fault located at 6 o’clock of drive
end bearing at D2 detail scale. c Outer raceway fault located at 12 o’clock of drive end bearing at
D2 detail scale
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show the contribution plots of outer raceway fault located at 3, 6, 12 o’clock
respectively.

The contribution plots could be used as signatures of the electric motor condi-
tions, so a supervised machine learning algorithm, with the PCA contributions as
inputs, can be used to diagnose each motor fault. The Figs. 8 and 9 show that the
identified signatures by PCA contributions are features for each fault. The acceler-
ometers are involved in these signatures at different scales with different amplitudes.
As shown by Figs. 8 and 9, all faults affect the accelerometer placed at the drive end.

Fig. 8 Contribution plots. a Healthy motor. b Rolling element fault of drive end bearing. c Inner
raceway fault of drive end bearing
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This points out that the contribution plots can be used to identify the sensors affected
by the faults. Particularly, the fault isolation is performed by computing for each
scale the average value: the sensor affected by the fault is that one with the highest
average value. As shown in Figs. 8 and 9 the sensor most affected by the faults is the
accelerometer placed at the drive end. The fault diagnosis is performed using the
contribution plots because they are the signatures of the electric motor conditions
and are features for each fault as shown in Figs. 8 and 9. Outer raceway fault located

Fig. 9 Contribution plots. a Outer raceway fault located at 3 o’clock of drive end bearing. b Outer
raceway fault located at 6 o’clock of drive end bearing. c Outer raceway fault located at 12 o’clock
of drive end bearing
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at 6 o’clock and outer raceway fault located at 12 o’clock of drive end bearing affect
the contributions at the same scales (Figs. 9a–b), but the contribution amplitudes are
different so they can be used to diagnose the faults.

In order to diagnose each motor fault LDA is used. It searches a linear trans-
formation that maximizes class separability in a reduced dimensional space. LDA is
proposed in Fisher (1936) for solving binary class problems. It is further extended
to multi-class cases in Rao (1948). In general, LDA aims to find a subspace that
minimizes the within-class scatter and maximizes the between-class scatter simul-
taneously. PCA contributions are used as features input to the LDA algorithm.
Tables 3, 4 and 5 show the classification accuracy. The results are the average
classification accuracy of each motor conditions (i.e. healthy motor, rolling element
fault, inner raceway fault, outer raceway fault located at 3, 6 and 12 o’clock) and of
4 motor loads: from 0 to 3 hp (motor speeds of 1,797–1,720 RPM). Table 3 shows
the classification accuracy at different wavelet decomposition level L and acquisi-
tion time of faults occurred at drive end bearing with fault diameter of 0.007 in. The
classification accuracy is over 99 % for each level L and acquisition time, so a low
wavelet decomposition level and acquisition time can be chosen to diagnose
effectively this fault.

Table 4 shows the classification accuracy at different wavelet decomposition
level L and acquisition time of faults occurred at drive end bearing with fault
diameter of 0.021 in. The classification accuracy is over 99 % at each level L and
acquisition time higher 0.3 s, so a low wavelet decomposition level and acquisition

Table 4 Average
classification accuracy of
drive end bearing fault
with fault diameter of
0.021 in.

Acquisition time s

0.1 0.2 0.3 0.5 0.7

%

L 1 92.66 97.73 99.19 99.91 99.96

2 94.76 98.36 99.51 99.75 99.88

3 95.10 98.87 99.73 99.98 99.99

4 94.64 98.39 99.21 99.81 99.97

5 95.00 98.54 99.50 99.79 99.96

6 94.38 98.25 99.35 99.83 99.88

Table 3 Average
classification accuracy of
drive end bearing fault
with fault diameter of
0.007 in.

Acquisition time s

0.1 0.2 0.3 0.5 0.7

%

L 1 99.23 99.96 99.98 100 100

2 99.40 99.85 99.99 100 100

3 99.55 99.95 100 99.99 100

4 99.67 99.98 100 100 100

5 99.47 99.95 100 100 100

6 99.29 99.85 99.99 100 100
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time of 0.3 s can be chosen to diagnose effectively this fault. Table 5 shows the
classification accuracy at different wavelet decomposition level L and acquisition
time of faults occurred at fan end bearing with fault diameter of 0.007 in. The
classification accuracy is over 98 % for level L ¼ 3 and acquisition time higher
0.5 s, so a wavelet decomposition level of 3 and acquisition time of 0.3 s can be
chosen to diagnose effectively this fault.

6 Summary and Conclusions

This chapter addresses the modelling and diagnosis issues of rotating electrical
machines by signal based solutions. With attention to real systems, two case studies
related to rotating electrical machines are discussed. The first FDD solution uses
PCA in order to reduce the three-phase current space in two dimensions. The PDFs
of PCA-transformed signals are estimated by KDE. PDFs are the models that can be
used to identify each fault. Diagnosis has been carried out using the K–L diver-
gence, which measures the difference between two probability distributions. This
divergence is used as a distance between signatures obtained by KDE. The second
FDD solution uses MSPCA, KDE and PCA contributions to identify and diagnose
the faults. Several experimentations on real motors are carried out in order to verify
the effectiveness of the proposed methodologies. The first solution, based on current
signals, has been tested on a motor modelled by FEM and real induction motors in
order to diagnose broken rotor bars, broken connector, cracked and wrong rotor.
The second solution, based on vibration signals, has been tested on a real induction
motors in order to diagnose bearings faults: inner raceway, rolling element (i.e. ball)
and outer raceway faults with different fault severities (i.e. diameter of 0.007 and
0.021 in.). Results show that the signal based solutions are able to model the fault
dynamics and diagnose the motor conditions (i.e. healthy and faulty) and identify
the faults.

Table 5 Average
classification accuracy
of fan end bearing fault
with fault diameter of
0.007 in.

Acquisition time s

0.1 0.2 0.3 0.5 0.7

%

L 1 73.61 82.50 89.43 93.04 94.31

2 74.76 84.11 90.44 95.02 95.15

3 83.08 92.54 94.82 98.49 98.60

4 84.41 91.62 95.37 99.22 99.28

5 84.41 90.73 95.56 98.90 98.76

6 84.41 93.14 96.76 99.39 99.31
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