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Abstract In this chapter several anti windup control strategies for SISO and
MIMO systems are proposed to diminish or eliminate the unwanted effects pro-
duced by this phenomena, when it occurs in PI or PID controllers. Windup is a
phenomena found in PI and PID controllers due to the increase in the integral action
when the input of the system is saturated according to the actuator limits. As it is
known, the actuators have physical limits, for this reason, the input of the controller
must be saturated in order to avoid damages. When a PI or PID controller saturates,
the integral part of the controller increases its magnitude producing performance
deterioration or even instability. In this chapter several anti windup controllers are
proposed to eliminate the effects yielded by this phenomena. The first part of the
chapter is devoted to explain classical anti windup architectures implemented in
SISO and MIMO systems. Then in the second part of the chapter, the development
of an anti windup controller for SISO systems is shown based on the approximation
of the saturation model. The derivation of PID SISO (single input single output)
anti windup controllers for continuous and discrete time systems is implemented
adding an anti windup compensator in the feedback loop, so the unwanted effects
are eliminated and the system performance is improved. Some illustrative examples
are shown to test and compare the performance of the proposed techniques. In the
third part of this chapter, the derivation of a suitable anti windup PID control
architecture is shown for MIMO (multiple input multiple output) continuous and
discrete time systems. These strategies consist in finding the controller parameters
by static output feedback (SOF) solving the necessary linear matrix inequalities
(LMI’s) by an appropriate anti windup control scheme. In order to obtain the
control gains and parameters, the saturation is modeled with describing functions
for the continuous time case and a suitable model to deal with this nonlinearity in
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the discrete time case. Finally a discussion and conclusions sections are shown in
this chapter to analyze the advantages and other characteristics of the proposed
control algorithms explained in this work.

1 Introduction

In this chapter several control architectures of anti windup controllers are shown for
the stabilization of SISO and MIMO systems in their discrete and continuous forms.
Windup is a phenomena found in different kind of systems, when a PI or PID
controller is implemented, produced by the integral action of the controller. This
phenomenon occurs when the input of the system saturates increasing the magni-
tude of the integrator producing unwanted effects on the system like high overshoot
and long settling time. There are several techniques and architectures found in
literature to deal with this problem, for the SISO and MIMO cases, usually by
suppressing the integral action of the PI or PID controller with input saturation.

For the SISO continuous case, different anti windup controller architectures are
found in literature such as the tracking anti windup, conditional integration and
limited integrator (Bohn and Atherton 1995), these are some of the classical anti
windup control architectures implemented to eliminate the unwanted effects of
windup. These classical techniques usually consist in adding an extra feedback loop
to the controller from the saturated output so the effects of windup can be cancelled
by implementing these control models. The back—calculation techniques is a
common anti windup control architecture that ensures the system stability when the
input is saturated, improving the system performance by producing smaller over-
shoot and acceptable settling time (Tu and Ho 2011). One issue that makes it
difficult to obtain a suitable anti windup control architecture is the nonlinearity
introduced by the actuator saturation, one way to design an appropriate control
system when this nonlinearity is found, is the introduction of a saturation model
which includes all the properties of this nonlinearity (Saeki and Wada 1996). This
consideration is very important in the design of anti windup controllers for SISO
and MIMO systems in the continuous and discrete time cases respectively, allowing
the development of appropriate controllers including a saturation model.

In the case of SISO discrete system, there are similar anti windup control
techniques as the continuous counterpart that can be implemented when a dis-
cretized model of the system is available. One of the control architectures that is
very popular in the control community is the back calculation model, where the
saturated signal is feedback to the controller integrator in order to suppress the
windup effects yielded by the integrator action (Wittenmark 1989). Apart from this
anti windup control architecture for discrete time SISO systems, the anti windup
controller design by the frequency response of the model is usually implemented
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where a discrete time controller is obtained by the design of a continuous time SISO
controller and then this controller is transformed to discrete time by one of the
several well known methods (Lambeck and Sawodny 2004).

In the case of MIMO continuous and discrete time systems several anti windup
controllers are synthesized usually by static output feedback (SOF) and then the
controller is found by the solution of the respective linear matrix inequalities
(LMI’s). The SOF control law can be found by solving the LMI’s to ensure the
stability of the system by traditional ways or by an H∞ controller (Wu et al. 2005;
Henrion et al. 1999), allowing a flexible anti windup controller design when the
input of the system is saturated.

Based on the previous explanation of different kind of anti windup controller
architectures, this chapter is divided in the following sections so the first part of the
chapter is devoted to SISO continuous and discrete time systems and the second
part of this chapter is devoted to MIMO continuous and discrete time systems. In
Sect. 2, the explanation of popular anti windup control techniques is explained to
introduce the proposed strategies shown in this article, where some continuous and
discrete time classical anti windup techniques found in literature are explained. It is
important to notice that in this chapter, the main objective is to design and obtain
stable PID controllers for the SISO and MIMO case, so in the following sections
this problem is considered for analysis. Based on the previous explanation, in
Sect. 3 the design of an internal model anti windup controller for continuous time
systems is explained, showing that is possible to obtain a desired anti windup PID
controller with an internal model controller (IMC) characteristics. In Sect. 4 an
internal model anti windup controller for discrete SISO system is shown where a
similar technique like the continuous counterpart is developed to eliminate the
unwanted effects produced by the system saturation by implementing a scalar sign
function approach (Zhang et al. 2011); an illustrative example is shown to compare
the performance of the system. In Sect. 5 the derivations of an anti windup PID
controller are done by SOF applying LMI’s that includes the saturation of the
system. The SOF control law is obtained by the stability characteristics of the
system and by a H∞ design, so the controller and system performance can be
compared by the solution of these control problems. In Sect. 6 an anti windup PID
controller for MIMO discrete time systems is shown and similar to its continuous
counterpart, a SOF controller is implemented and then solving the LMI’s based on
the system stability or H∞ the respective PID gains are found when the input of the
system is saturated; in this section an illustrative example is shown to compare the
systems performance. Finally, in Sects. 7 and 8 the discussion and conclusions of
this chapter are shown respectively so a complete analysis of all the proposed
schemes is done and then the conclusions are analyzed at the end of this chapter.
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2 Previous Work

As explained in the previous section, the windup phenomena is caused by the
integral action of a PI or PID controllers when the input of the system is saturated,
then the performance of the system is deteriorated by the increasing of the integral
action of the controller, yielding many unwanted effects such as a higher overshoot,
a long settling time and even instability. This phenomena is found in SISO and
MIMO systems in the continuous and discrete time representations when the input
is saturated due to the physical limits of different kind of actuators such as
mechanical, hydraulic and electrical systems.

In the case of SISO continuous systems there are some classical architectures
implemented to avoid this unwanted effect, some of them, are based on the back
calculation of the integral action and other are based on the feedback of the satu-
rated input to the PID controller. The tracking anti windup controller is one of the
well known control strategies implemented to avoid the deterioration of the system
when this phenomena is found; it consists of a feedback loop generated by the
saturated and non saturated inputs and then this signal is used to reduce the inte-
grator input (Bohn and Atherton 1995). In Fig. 1 the tracking anti windup controller
is shown where as can be noticed the difference of the non saturated and saturated
inputs are fedback to the integrator.

Another method is conditional integration, which consist in turning on and off the
integrator according on higher values of the control and error inputs (Bohn and
Atherton 1995). Another anti windup control architecture is the limited integrator, this
technique consist in feed the integrator output through a dead zone with high gain,
reducing the effects of windup when the input saturates (Bohn and Atherton 1995).

The anti windup control architectures for discrete time SISO system are similar
to their continuous counterpart, for example in Chen et al. (2003) an anti windup
cascade control technique is implemented to suppress the unwanted effects yielded
by windup in digital control systems, proving that is an efficient control architecture
when the input is saturated. In Lambeck and Sawodny (2004) an anti windup
control architecture is derived when the input of the system is constrained, the
development of this strategy is based on the frequency response characteristics of
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Fig. 1 Tracking anti windup controller
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the closed loop system obtaining the digital controller by the conversion of an
analog to digital controller. In (Wittenmark 1989) the development of different anti
windup controllers are explained such as PID and cascade control for digital control
system with constrained input, where the back calculation is implemented similar to
the analog counterparts.

One of the common architectures for MIMO system with constrained inputs is the
design of an output feedback control law that stabilizes the system while reducing
the effects of windup, these control architectures can be applied in continuous and
discrete MIMO systems such as explained in (Rehan et al. 2013) where an output
feedback controller is implemented and the gains of the controller are found by
solving the LMI’s for continuous time systems. Another anti windup controller
design technique is found in (Saeki and Wada 1996) where an output feedback
controller is found by solving the LMI’s for continuous MIMO systems with satu-
rated inputs, the controller gains are found by solving the H∞ optimal LMI’s.

With this review about some commons anti windup architectures, in the fol-
lowing sections the development of this kind of novel configuration is shown,
where in the first part of this chapter internal model anti windup architectures are
developed for the SISO continuous and discrete cases, and the second part of the
chapter, some anti windup techniques for MIMO continuous and discrete time
systems are shown with illustrative examples to evince the performance of these
control strategies.

3 Internal Model Anti Windup Control of Continuous
SISO Systems

In this section an anti windup control architecture is developed by implementing an
internal model controller (IMC). Internal model control is a technique that consists
in designing an appropriate controller according to the internal stability of the
system, therefore, as it is proved in this section, this control strategy is convenient
for the design of an antiwindup control architecture, reducing the unwanted effects
yielded by this phenomena and improving the system performance. The anti
windup control strategy shown in this section is developed by feedback the satu-
rated input to the internal model controller so the effects of windup are minimized.
The IMC PID controller synthesis is done by the minimization of the H∞ norm of
the error signal as explained in (Morari and Zafiriou 1989; Lee et al. 1998; Tu and
Ho 2011) when a unit step input is implemented as a reference signal (Cockbum
and Bailey 1991; Doyle III 1999). With this control technique, the resulting PID
controller has anti windup properties while maintaining its robustness, so this
control strategy is ideal to avoid the unwanted effects yielded by windup. In this
section the derivation of an IMC PID anti windup controller is shown step by step
ensuring the internal stability of the system while reducing the unwanted effects
yielded by the integral action of the PID controller.
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3.1 IMC PID Anti Windup Controller for Continuous Time
SISO Systems

The anti windup controller architecture implemented in this section is defined in
Fig. 2 and it is based on the controller architecture explained in (Saeki and Wada
1996) where a compensator is added to the feedback loop from the saturation input
of the system. In Fig. 2 the description of each block is the following; Gp(s) is the
plant transfer function that is represented by a first order plus time delay model
(FOPTD), Gc(s) is the internal model PID controller and R(s) is the anti windup
compensator filter.

In order to obtain a simplified model of the saturation nonlinearity, it is nec-
essary to represent this model by the following equation (Saeki and Wada 1996):

U ¼ ðaþ bD/Þ~U
D/

�� ��\1

aþ b ¼ 1

a� b ¼ a

ð1Þ

Where the saturation nonlinearity is considered to be in the interval [a, 1]. The filter
R(s) is defined by a first order system as described below:

RðsÞ ¼ 1
a1sþ a0

ð2Þ

Then the equivalent transfer function of the nonlinearity (1) and the filter (2),
depicted in Fig. 2, is given as Gsat(s) as shown in Fig. 3

GsatðsÞ ¼ aþ bD/

1� RðsÞðaþ bD/Þ ð3Þ

)(sGc

)(sR

)(sGp

r cu u~ u

d
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- +

+
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+

Fig. 2 Anti windup controller architecture
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Then the equivalent internal model anti windup control system is shown in
Fig. 3. Where Gp1(s) is the equivalent plant given by Gp1(s) = Gsat(s)Gp(s)

Gp(s) is represented by a first order plus time delay function given by:

GpðsÞ ¼ ke�hs

ssþ 1
ð4Þ

where k is the gain of the transfer function, θ is the time delay and τ is the time
constant of the transfer function.

After finishing the explanation of the anti windup controller by implementing a
model of the saturation nonlinearity, the IMC PID anti windup controller design can
be derived using the equivalent transfer functions of the original system, consid-
ering the saturation effects on the model. To start this process it is necessary to
obtain the equivalent transfer function of the anti windup controller, basically after
obtaining this transfer function Gp1, the design of the IMC PID controller is
straightforward because the equivalent transfer function is completely linear due to
the implementation of an equivalent model of the saturation nonlinearity. Consid-
ering the equivalent transfer function Gp1

Gp1ðsÞ ¼ kðaþ bD/Þða1sþ a0Þe�hs

ða1sþ a0 � ðaþ bD/ÞÞðssþ 1Þ ð5Þ

Then an IMC controller is obtained (Morari and Zafiriou 1989; Shamsuzzoha
and Lee 2007) dividing first the transfer function Gp1 into two parts as the process
for designing a IMC controller with anti windup properties

Gp1ðsÞ ¼ p1mp1A ð6Þ

where p1a contains all the RHP poles and zeros with time delay and the portion p1m
includes the rest of the transfer function. Now, define the IMC controller q1 as
shown in the following equation, considering a unit step input as the reference:

q1 ¼ p�1
1m f ð7Þ

where f is a filter selected by the designer in the following form:

)(sGc )(sGp
r +

-
)(sGsat

)(
~

1 sGp

+

+

)(1 sGpFig. 3 Anti windup IMC PID
architecture
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f ¼ 1
ðksþ 1Þr ð8Þ

for some positive constant r. The IMC PID anti windup controller Gc(s) is given by
the following formulae

GcðsÞ ¼ q1
1� Gp1q1

ð9Þ

where this controller is transformed into a PID form as shown in the rest of this
section. The transfer function Gp1 is divided in the following parts as explained in
(6)

p1AðsÞ ¼ e�hs

p1mðsÞ ¼ kðaþ bD/Þða1sþ a0Þ
ða1sþ a0 � ðaþ bD/ÞÞðssþ 1Þ

ð10Þ

Based on these equations q1 is given by:

q1ðsÞ ¼ ða1sþ a0 � ðaþ bD/ÞÞðssþ 1Þ
kðaþ bD/Þða1sþ a0Þðksþ 1Þr ð11Þ

Using these equations the controller Gc(s) is given by:

GcðsÞ ¼ 1
p1mððksþ 1Þr � p1aÞ ð12Þ

Substituting the functions p1m and p1A the following IMC anti windup controller
is found:

GcðsÞ ¼ ða1sþ a0 � ðaþ bD/ÞÞðssþ 1Þ
kðaþ bD/Þða1sþ a0Þððksþ 1Þr � e�hsÞ ð13Þ

For the PID anti windup controller synthesis it is necessary to consider a PID
controller for Gc(s) and then by Mclaurin series expansion the IMC anti windup
controller parameters are found (Shamsuzzoha and Lee 2007). For this purposes,
consider the following PID controller

GcðsÞ ¼ Kcð1þ 1
sis

þ sdsÞ ð14Þ

where Kc is the controller gain, τi and τd are the integral and derivative time constant
that must be obtained in order to get the IMC anti windup controller time constants.
The time constants of the IMC anti windup controller are found by the Mclaurin

8 A.T. Azar and F.E. Serrano



series expansion as shown in (Shamsuzzoha and Lee 2007). The IMC gain and
constants are obtained as follow (Lee et al. 1998):

Kc ¼ _f ð0Þ

si ¼
_f ð0Þ
f ð0Þ

sd ¼
€f ð0Þ
2_f ð0Þ

ð15Þ

The IMC anti windup controller gains are given in detail in Appendix 1, so the
reader can refer to this section for detailed information. The function f and its deriv-
atives are defined in this section according to the formulas given in (Lee et al. 1998).

With the derivation and design of an IMC anti windup controller for SISO
system, the internal stability of the system while suppressing the unwanted effects
of windup is ensured with the addition of a feedback loop which includes the
saturated input signal through a filter that improves the system performance when
the input is saturated and windup occurs in the PID controller. As it is verified later
this control strategy is efficient when saturation occurs in the model, as it is noticed,
this strategy is based on the implementation of a saturation model that includes all
the properties of this nonlinearity. In the following section an illustrative and
comparative example is done in order to test the performance of the IMC anti
windup controller, the conclusions of this section are shown in order to compare the
system performance with anti windup compensation and no compensation.

3.2 Example 1

In this subsection an illustrative example of the internal model anti windup con-
troller for SISO continuous time system is shown. Consider the following FOPTD
system:

GpðsÞ ¼ e�0:0000001s

0:001sþ 1
ð16Þ

and the following parameters for the anti windup filter and saturation model as
shown in Table 1.

Now implementing the formulae found in Appendix 1, the following IMC
parameters are found for the IMC PID controller with anti windup compensation
and when there is no anti windup compensation. These parameters are shown in
Table 2.

The system response of the IMC anti windup controller is depicted in Fig. 4.
It can be noticed that when the AWC is implemented the system response has

almost no overshoot and a small settling time in comparison when no AWC is
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implemented where a high overshoot, a large settling time and higher oscillations
are shown proving that the system has a better performance when the anti windup
controller is implemented. These results are yielded due to the feedback compen-
sation applied to the PID controller reducing the unwanted effects produced by
windup, in comparison when there is not compensation where the system perfor-
mance is deteriorated due to the increasing in the integrator output when the input
of the system is saturated.

In Fig. 5 the input ~U for the system with AWC is shown where the input is
generated according to the reference signal. This signal is the non saturated signal
generated by the IMC PID AWC, so the signal follows a designated trajectory
according to the required control input necessary to control the system.

Table 1 Filter and saturation
parameters Parameter Value

a0 5

a1 0.1

α 1

β 0.06

Δ 100

λ 0.9

r 1

Table 2 Parameters with
AW and no AW
compensation

Parameter Value with AW
compensation

Value with no AW
compensation

Kc 0.0635 0.0036

τi 0.9503 33,327.8

τd 1 0.0005

Fig. 4 System response with the IMC AWC (upper) and with no AWC (lower)
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In Fig. 6 the control input ~U with no AWC is shown, where the nonsaturated
signal applied to the system is depicted proving that this signal is more irregular
than in the AWC version due to the increasing of the integral action producing an
abrupt change in the input signal deteriorating the system response.

As it is corroborated in Figs. 7 and 8 these results are affected by the non
saturated signals, especially when there is not AWC compensation due to the
compensators improves the system performance considerably in comparison when
there is no AWC compensation.

In Figs. 7 and 8 the respective control inputs with AWC and AWC compen-
sation are shown, where as it is expected, the control input of the saturated system
with no anti windup compensation is deteriorated due to the increasing of the
integral action when the input of the system is saturated. This effect is improved by
the IMC PID AWC compensation, because the extra feedback added to the model
reduces the integral action when the system is saturated.

Fig. 5 Control input ~u of the anti windup controller

Fig. 6 Control input ~u when there is no anti windup controller compensation
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These unwanted effects lead to the system performance deterioration, as
explained before, Therefore a correction signal send to the internal model controller
corrects and improves the system performance deterioration, yielding better system
characteristics in comparison when there is no anti windup compensation.

Finally, as a conclusion of this section, it was proved that is possible to stabilize
a saturated system by anti windup control compensation, when the system is a
single input single output continuous time model, independently of the saturation
and the unwanted effects yielded by the windup, generated by the increasing of the
integral action. In the next section the discrete time counterpart of the IMC PID anti
windup controller is derived, following the internal model control guidelines for the
design of an appropriate anti windup controller for this kind of models.

Fig. 7 Saturated input with AWC controller compensation

Fig. 8 Saturated input with no AWC controller compensation

12 A.T. Azar and F.E. Serrano



4 Internal Model Anti Windup Control of Discrete Time
SISO Systems

In this section the design of a discrete time anti windup controller for discrete time
SISO system is explained. In this case, an internal model PID controller compen-
sator is proposed to suppress the unwanted effects yielded by windup when the
integrator output is increased due to the actuator saturation. The nonlinearities
found in many control systems, specially saturation, deteriorates the system per-
formance similar as it occurs in the SISO continuous time counterpart. As explained
before, there are several anti windup control architectures for discrete time systems,
some of them are derived from the system frequency response as shown in (Chen
et al. 2003; Lambeck and Sawodny 2004) where the design of a frequency response
method in a cascade configuration, eliminates the effects yielded by windup. As
shown in (Wittenmark 1989) the incorporation of a back calculation compensator
improves the system performance and reduces the unwanted effects yielded by
saturation. This anti windup controller compensation is shown in (Baheti 1989)
where a digital PID controller implementation is used to eliminate the unwanted
effects of windup when the input of the system is saturated.

The anti windup controller strategy shown in this section is based on the the-
oretical background shown in (Morales et al. 2009) where a standard IMC anti
windup compensator is implemented where the robustness of the control system is
analyzed and the stabilization of the system is done by an internal model controller.
The proposed strategy shown in this section is based on an IMC PID anti windup
compensator, where due to integral characteristic of the PID controller it is nec-
essary to cancel the windup effects yielded by saturation. The saturation nonlin-
earity model is obtained by a scalar function approach as explained in (Zhang et al.
2011), so the IMC PID controller can be derived in order to avoid the unwanted
effects yielded by windup.

4.1 IMC PID Anti Windup Controller for Discrete Time
SISO Systems

The anti windup internal model PID controller architecture is shown in Fig. 9.
Where Gc(z) is the digital internal model controller, R(z) is the anti windup

compensator filter, Gp(s) is the continuous time transfer function discretized by a
sampler and p�cðzÞ is the equivalent discrete time transfer function implemented in
the internal model PID anti windup controller design. In Fig. 10 the equivalent
discrete time transfer function is shown, where this transfer function is obtained by
the implementation of the scalar sign function approach.

The resulting transfer function p�cðzÞ is implemented to design the anti windup
internal model controller with the robustness and internal stability requirements
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including the anti windup compensator to eliminate the unwanted effects yielded by
windup when the input signal is saturated.

Similar as the continuous time counterpart can be divided into two parts, p�cAðzÞ
and p�cMðzÞ as shown in the following equation:

p�cðzÞ ¼ p�cAðzÞp�cMðzÞ ð17Þ

where

p�cAðzÞ ¼ z�N
Yh
j¼1

ð1� ðfHj Þ�1Þðz� fjÞ
ð1� fjÞðz� ðfHj Þ�1Þ ð18Þ

ζj are the zeros of p�cA zð Þ outside the unit circle for j = 1…h. N is selected to make
p�cM zð Þ semiproper and H denotes the complex conjugate (Morari and Zafiriou
1989). In order to design the internal model anti windup controller the following
controller must be implemented:

)(zGc

)(zR

)(sGp
r cu u~ u

Saturation

+

+-

+

ZOH

)(zp (

y

Sampler

∗

∗
γ

Fig. 9 Anti windup controller architecture
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Fig. 10 Equivalent IMC controller architecture
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GcðzÞ ¼ qðzÞ
1� p�cðzÞqðzÞ

ð19Þ

where

qðzÞ ¼ p��1
cM ðzÞf ðzÞ ð20Þ

and the filter f(z) is given by:

f ðzÞ ¼ ð1� aÞz
z� a

ð21Þ

for a given value of α. Meanwhile, the anti windup compensator filter R(z) is given
by:

RðzÞ ¼ 1
a1zþ a0

ð22Þ

where a1, a0 > 0. The saturation function is obtained by the scalar sign function
(Zhang et al. 2011) taking into account the following sign function representation:

signðzÞ ¼ 1 if Re(z)[ 0
�1 if Re(z)\0

�
ð23Þ

so for j = 1 the following representation of the saturation model is implemented:

saturationðzÞ ¼ Umaxsign1ðzÞ ð24Þ

where Umax is the saturation limit and

sign1ðzÞ ¼ z ð25Þ

In this section in order to design the anti windup control system for discrete time
models the following first order plus time delay discrete time model is
implemented:

GpðzÞ ¼ k
szþ 1

z�N ð26Þ

Where k is the system gain, τ is the time constant and N > 0 is an integer which
indicates the number of time delays. In order to obtain the internal model controller
it is necessary to get the equivalent transfer function pγ

*(z) taking in count the
compensator and saturation in order to obtain this transfer function:
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p�cðzÞ ¼
kðUmaxa1z2�N þ Umaxa0z1�NÞ
ðða1 � UmaxÞzþ a0Þðszþ 1Þ ð27Þ

With a sample time T. Where this transfer function is divided as explained in
(17) and (18) as:

p�cMðzÞ ¼
kðUmaxa1z2 þ Umaxa0zÞ

ðða1 � UmaxÞzþ a0Þðszþ 1Þ ð28Þ

p�cAðzÞ ¼ z�N ð29Þ

Then using (19) the following internal model controller is obtained:

GcðzÞ ¼ ð1� aÞzðða1 � UmaxÞzþ a0Þðszþ 1Þ
ðUmaxa1z2 þ Umaxa0zÞðz� aÞ � ðUmaxa1z3�N þ Umaxa0z2�NÞ ð30Þ

In order to obtain the internal model anti windup controller, it is necessary to
define the following standard PID controller:

GcðzÞ ¼ Kcð1þ 1
siðz� 1Þ þ sdðz� 1ÞÞ ð31Þ

Due to the integral term of Gc(z) the controller gain and parameters using a
similar procedure like the continuous time counterpart. Implementing the Taylor
series expansion, similar as the previous section the following constant and time
constants of the PID controller are found:

Kc ¼ f 0ð1Þ

si ¼ f 0ð1Þ
f ð1Þ

sd ¼ f 00ð1Þ
2f 0ð1Þ

ð32Þ

where f and its derivatives are defined in Appendix 2. This equations are valid for
any sampling period T and the resulting equations are shown in Appendix 2. The
proposed control strategy explained in this section meets the robustness and internal
stability properties that make them suitable for the anti windup control of discrete
time SISO systems. In the next subsection, an illustrative example is shown, to test
the system performance by a numerical example.
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4.2 Example 2

In this subsection the stabilization of a discrete time SISO system is done when
saturation is found in the model. The system to be stabilized is the following:

GpðzÞ ¼ z�2

10zþ 1
ð33Þ

with the following saturation, filter and anti windup compensator parameters
(Table 3).

Using the formulae shown in Appendix 2and a sampling period of T = 1 s, the
controller gain and parameters are found as shown in Table 4.

With this control systems parameters, the system output with AWC compen-
sation and with no AWC compensation are shown in the figure below.

The system response shown in Fig. 11 corroborates that a small overshoot and
small settling time is obtained when an internal model anti windup controller is
implemented, in contrast when there is not anti windup compensation. These results
are expected due to the anti windup compensator reduces the integral action when
the system is saturated, so a smaller overshoot and smaller settling time is obtained
when the internal model controller is implemented.

In Fig. 12 the non saturated input of the system with anti windup compensation
is shown where this signal reaches the necessary output value to obtain the required
value.

In Fig. 13 the non saturated input, when there is no anti windup compensation, is
shown. As can be noticed, the required input signal is applied to the system until the
required output value is obtained.

In Fig. 14 the saturated input value is depicted, where the limiter imposed by the
saturation makes the system to reach the desired value and as it is compared with
Fig. 15 the saturated signal is better when an anti windup controller is implemented.

Table 3 Filter, compensator
and saturation parameters Parameter Value

α 0.2

a0 4 × 10−7

a1 5 × 10−7

Umax 10.9

Table 4 Parameters with
AW and no AW
compensation

Parameter Value with AW
compensation

Value with no AW
compensation

Kc 3.4362 × 107 3.1062 × 108

τi 1.6869 2

τd 0.4265 1 × 10−6
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Fig. 11 System output with AWC and no AWC

Fig. 12 Non saturated input with AWC

Fig. 13 Non saturated input with no AWC
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In this section an internal model PID anti windup controller is designed in order
to improve the system performance by reducing the windup effect. As it is noticed,
the controller design is very similar to the continuous time counterpart taking in
account the saturated signal and then this signal is sent through a feedback loop by a
compensator. The main idea behind this controller is to apply the robust controller
characteristics of internal model control in order to obtain the desired gain and time
constants of the PID controller to make the system to follow a step reference signal.
With the control strategies derived in Sects. 3 and 4 a complete design and analysis
of anti windup controllers for continuous and discrete time SISO systems is
deployed. Where it was proved that efficient anti windup control strategies can be
derived implementing the internal model control strategy for any kind of SISO
systems while ensuring internal stability and the improvement of the system output
performance.

Fig. 14 Saturated input with AWC

Fig. 15 Saturated input with AWC
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In the following sections, the design and analysis of anti windup techniques for
discrete and continuous time MIMO systems is shown, where different approaches
are implemented in order to improve the control system performance when satu-
ration or constrained inputs are present in the system. Generally, the design of anti
windup control strategies for MIMO systems are more difficult than the anti windup
control of SISO system, for this reason, the solution of this problem is done by
static output feedback control law design, where MIMO PID controllers are
designed in the continuous and discrete time cases.

It will be proved that as similar to the SISO system cases, the modeling and
design of effective anti windup control techniques is possible improving the system
performance when some kind of compensation is added to the controller.

5 Anti Windup Control of Continuous MIMO Systems
by Static Output Feedback (SOF)

In this subsection the design of an anti windup PID controller for continuous time
MIMO system is derived based on static output feedback (SOF) controller. This
work is based on the solution of the specified linear matrix inequalities (Cao et al.
2002; Wu et al. 2005; Rehan et al. 2013) where a static output feedback controller is
defined in order to improve the anti windup characteristics of this MIMO controller
(Neto and Kucera 1991; Henrion et al. 1999; Fujimori 2004; He and Wang 2006).
A PID control law is obtained by solving the required LMI’s in order to find the
PID controller gains. The controller gains are found by two static output feedback
solutions, by solving an standard LMI and a H∞ problem. With these two control
strategies it is possible to find appropriate controller gains for the PID anti windup
controller taking in count the saturation nonlinearity.

In order to design the anti windup PID controller it is necessary to model the
saturation nonlinearity by a describing function approach (Taylor and O’Donnell
1990) in order to deal with the nonlinearities added to the system by the actuators
saturation.

The intention of this control approach is to design an efficient anti windup
controller system for MIMO continuous time systems when the inputs are con-
strained or saturated. It is proved that solving the system constraints by LMI’s in
order to obtain a stable PID control law, the addition of anti windup compensation
similar as the SISO time systems, improves the system performance and avoids the
deterioration of the output signal. In the following subsections the design of an anti
windup controller is explained in detail, and in order to test the system performance
an illustrative example of the stabilization and control of a DC motor is evinced.
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5.1 PID Anti Windup Controller Design for MIMO
Continuous Time Systems

The PID anti windup controller design for MIMO continuous time systems, consist
of a back calculation PID controller by a loop which includes the saturated and non
saturated input signal of a linear time invariant MIMO system. In Fig. 16 the anti
windup controller is shown where v is the back calculation signal that is imple-
mented to avoid the windup effects which deteriorates the system performance. The
MIMO system is represented by G(s) and the anti windup PID controller and
compensator is represented by Gc(s).

The anti windup controller takes the non saturated and saturated difference signal
v to suppress the increment of the integral action when the system saturates. As
occurs in the SISO case, the windup phenomena yields unwanted effects that
deteriorates the system performance; the settling time and overshoot generally are
damage when the input signal is saturated, so the compensator corrects the effects of
windup by the back calculation of the input signal added by an extra loop.

The approach explained in this section consist in obtaining a saturation repre-
sentation by a describing function approach (Taylor and O’Donnell 1990), where
this method simplifies the PID controller synthesis and provides an accurate rep-
resentation of the equivalent control systems.

In Fig. 17 the saturation model is depicted in order to be represented by a
describing function that helps to obtain an equivalent anti windup controller.

The saturation model shown in Fig. 17 depicts the parts in which this model is
divided in order to obtain the Fourier series coefficients of the describing function.
n(e) is the saturation output, e is the saturation input, α is the input limit andM is the
saturation output limit. The describing function is given by the following transfer
function:

/ðsÞ ¼ a1 þ b1s
E

ð34Þ

where a1 and b1 are the Fourier series coefficients when a sinusoidal input signal
with amplitude E is implemented. The coefficients of the Fourier series imple-
mented in this analysis are:

)(sG
r

Saturation

+

-

)(sGc

+

-

v

Fig. 16 Multivariable control
system
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a1 ¼ 1
T

ZT
�T

sinðxtÞnðtÞdt

b1 ¼ 1
T

ZT
�T

cosðxtÞnðtÞdt
ð35Þ

where ω is the angular frequency of the input signal e and in order to obtain the
Fourier series coefficients a sinusoidal input signal of amplitude E and period
T must be assumed as the input of the saturation. Considering that e is 2π periodic
or T = 2π the following Fourier coefficients are obtained:

a1 ¼ ð�a
2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ða

E
Þ2

r
þ sin�1ða

E
Þ þ p

4
Þ þ M

2p
ð2a
E
Þ

b1 ¼ �E
4p

2 1� a
E

� �2� �
� a

E

� �2
�1

� �
�M

p
a
E

� � ð36Þ

Considering the following PID controller:

ycðsÞ ¼ F1ucðsÞ þ F2
ucðsÞ
S

þ F3ucðsÞ s� 1
s

� �
ð37Þ

where F1, F2 and F3 are diagonal matrices of appropriate dimensions (He and Wang
2006) for the proportional, integral and derivative parts of the controller.

In order to obtain the anti wind up controller, consider the following linear time
invariant system G(c) given by:

)(en

e

1
1

M

M

α
α

Fig. 17 Saturation model
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_x ¼ Ax� B/ðuÞ
y ¼ Cx

ð38Þ

where x 2 <n; u 2 <m and A, B and C are matrices of appropriate dimensions. From
(37) The controller and anti windup compensator can be represented in state space
by (Cao et al. 2002):

_xc ¼ k1yþ D /ðuÞ � uð Þ
u ¼ xc þ k2y ¼ xc þ k2Cx

ð39Þ

where k1 = F2 - F3, k2 = F1 + F3, and Δ is a positive definite diagonal matrix that is
part of the anti windup controller and compensator. Usually a correction term
D /ðuÞ � uð Þ is needed in the controller to compensate the saturation effects.

With (38) and (39) a closed loop augmented control system is obtained as:

_�x ¼ Axþ Bw

u ¼ Fx
ð40Þ

where:

x ¼ x

xc

	 


A ¼ A 0

k1C 0

	 


B ¼ �B 0

D �D

	 

F ¼ k2C I½ �
w ¼ /ðuÞ u½ �T

ð41Þ

Using the saturation model ϕ, the obtained input vector w is:

w ¼ Fða1E xþ b1
E
_�xÞ

Fx

	 


Making another change of variable with z ¼ x _�x
� �T the following system is

obtained:

_z ¼ A0zþ B0Mz ð42Þ

that yields the following system’s equation:

_z ¼ ðA0 þ B0MÞz ð43Þ
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where:

A0 ¼ A 0

0 0

" #

B0 ¼ B

0

" #

M ¼ Fa1=E Fb1=E

F 0

	 

ð44Þ

In order to obtain the linear matrix inequality to solve the gains of the PID anti
windup compensator the following Lyapunov function must be considered:

VðzÞ ¼ zTPz ð45Þ

where P is a positive definite matrix, used in order to ensure the stability of the
system. Deriving the Lyapunov function the following result is obtained:

_VðzÞ ¼ zTðA0 þ B0MÞTPzþ zTPðA0 þ B0MÞz ð46Þ

where in linear matrix inequality form (45) is represented as:

ðA0 þ B0MÞTPþ PðA0 þ B0MÞ\0 ð47Þ

So by solving the following LMI the controller parameters of the equivalent
system are found (Fujimori 2004):

ðA0 þ B0MÞTPþ PðA0 þ B0MÞ 0
0 0

	 

\0 ð48Þ

For the H∞ synthesis, a similar approach is implemented to find the controller
gains, considering the following criteria:

T2xðsÞk k1\c ð49Þ

where T2ω(s) is the closed loop transfer function of the model (Fujimori 2004; He
and Wang 2006; Rehan et al. 2013) and γ > 0 is a positive constant that indicates the
desired performance. Then the respective LMI is needed to find the gain F and the
solutions of the anti windup PID controller.

PAcl þ PTAcl 0 Ccl

0 �cI 0
Ccl 0 �cI

2
4

3
5\0 ð50Þ
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where:

Acl ¼ ðA0 þ B0MÞ

Ccl ¼
I 0

0 0

	 
 ð51Þ

where I is an identity matrix of an appropriate dimension. Solving the LMI shown
in (48) and (50) for P and M the controller parameters can be extracted from
M obtaining all the PID controller gain matrices found by these optimization
techniques.

In this subsection is proved that an anti windup PID controller for MIMO
continuous time system can be implemented by solving a LMI based optimization
problem. In the following subsection, the control of a DC motor is done in order to
show by an illustrative example the application of these control strategies, it is
proved that finding the respective matrix M the rest of the controller variables can
be obtained. The solution of these LMI can be obtained by several numerical
methods found in literature, such as shown in (He and Wang 2006) for example.

5.2 Example 3

In this section the stabilization and control of a DC motor by an anti windup PID
controller for MIMO systems is shown to illustrate the advantages of the proposed
technique.

Consider the following DC motor transfer function (Cockbum and Bailey 1991):

xLðsÞ
vaðsÞ ¼ km

ðJmLþ JLLÞs2 þ ðJmRþ JLBLÞsþ k2m
ð52Þ

where ωL is the angular velocity of the model, va is the applied armature voltage, JL
is the inertial load, Jm is the motor inertia, L is the inductance, R is the resistance, BL

is the viscous friction constant and km is the motor constant. Converting (52) to state
space the following equation is obtained:

_x1
_x2

	 

¼

JmRþJLBL
JmþJLL

1

� K2
m

JmþJLL
0

" #
x1
x2

	 


þ 0 0

0 Km
JmþJLL

" #
0

va

	 
 ð53Þ
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and

Y ¼ Cx ð54Þ

where x1 is the angular velocity of the motor, x2 is the armature current and C is a
2 × 2 identity matrix. The motor parameters are shown in Table 5.

Solving the LMI (48) for P by an optimization algorithm, a matrix F can be
found from M in order to obtain the gain matrices for the PID controller. The gain
matrices of the PID anti windup controller can be obtained by (55).

F ¼ 800 0 1 0
0 800 0 1

	 

ð55Þ

From F the following PID anti windup controller parameters are found

F1 ¼
�200 0

0 �200

	 


F2 ¼
2000 0

0 2000

	 


F3 ¼
1000 0

0 1000

	 
 ð56Þ

The gain matrices when there is no anti windup compensation are the following:

F1 ¼
�100000 0

0 �100000

	 


F2 ¼
2000 0

0 2000

	 


F3 ¼
1000 0

0 1000

	 
 ð57Þ

The matrix F for the H∞ controller are given by:

Table 5 Parameters of the
DC motor Parameter Value

Jm 0.02215 kg m2

JL 0.01 kg m2

BL 0.002953 Nm s

R 11.2 Ohms

L 0.1215 H

Km 0.5161 Nm/A

Nominal speed 1,750 RPM
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F ¼ �4:0825 0 0 0
0 �4:0825 0 0

	 

� 108 ð58Þ

and the following gain matrices for the H∞ anti windup controllers are given by:

F1 ¼
�4:0825 0

0 �4:0825

	 

� 108

F2 ¼
2000 0

0 2000

	 


F3 ¼
1000 0

0 1000

	 
 ð59Þ

and the compensator gain Δ is given by:

D ¼ 2 0
0 2

	 

ð60Þ

The main idea of this example is to keep the nominal angular velocity(1,750
RPM) or (183.26 rad/s) while applying a disturbance torque of (100 Nm) at 0 s, so
the anti windup PID controller must be able to keep this velocity even when an
external disturbance is applied on the model.

In Fig. 18 the angular velocity of the DC motor in three cases; with anti windup,
no anti windup and H∞ anti windup PID controllers are shown; where in the H∞

and standard static feedback anti windup controller better results were obtained with
smaller settling time, smaller steady state error and smaller overshoot in comparison
when there is not anti windup compensation. For these reasons, the anti windup
controllers and compensator are better than the uncompensated controller version.

Fig. 18 Angular velocities with AWC, H∞ and no AWC
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It is clear when an anti windup compensator is implemented the performances is
improved significantly, this means, that the settling time, steady state error and
overshoot are smaller than the performance indexes of the uncompensated system.

In Fig. 19 the armature current ia is depicted for the three cases of static output
feedback (SOF) controller. It can be noticed that even than in the standard and H∞

SOF the armature current is greater in comparison when no compensation is
implemented in the SOF controller. These results are obtained due to the better
performance of the standard and H∞ SOF in comparison with the uncompensated
controller, so more control effort is necessary in order to obtain an acceptable
performance.

In Fig. 20 the input voltage of the DC motor (field voltage) is depicted where the
input voltage of the non compensated systems increases to higher values than the
compensated control systems. The input voltage for the uncompensated controller
raises to higher values due to the windup effects that increases the integral action,
similar to the SISO case, deteriorating the system performance.

The anti windup PID compensator by SOF improves the system response and
performance significantly due to the compensator added to the MIMO PID con-
troller, The windup effects are suppressed by the compensator action, reducing the
integral action when the input of the system is saturated.

Finally, in Fig. 21 the mechanical torque of the DC motor is depicted where this
variable reaches the final value of 100 Nm, which is the value of the disturbance
input applied to the motor at 0 s while keeping the desired nominal velocity.

In this section the design of an anti windup PID controller for MIMO system by
standard and H∞ SOF is explained in order to obtain a suitable controller that
eliminates the unwanted effects yielded by windup. As it occurs in the SISO case,
the windup phenomena occurs when the input of the system is saturated increasing
the integrator action, this effects damage the system performance, specially, it yields
higher overshoot and longer settling times.

Fig. 19 Armature current ia
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In this section the design of two control strategy to deal with windup reducing
the integral action and improving the system performance significantly. The satu-
ration nonlinearity is implemented by the describing function method simplifying
the design of the proposed control strategies. It is confirmed by an example, that the
standard anti windup SOF controller yields better results than the uncompensated
systems in which the system output is deteriorated by the windup effect. The
standard and H∞ SOF PID controllers are a perfect option for the control and
compensation of saturated or constrained input MIMO systems.

In the next section, the MIMO counterpart of the control strategy presented in this
section is shown. A discrete time MIMO system is obtained by a static output feed-
back, a PID compensator is selected similar as the continuous counterpart. In this

Fig. 20 Input voltage

Fig. 21 Mechanical torque
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section it is shown that an efficient control strategy is developed for the suppression of
the unwanted effects yielded by windup, and the controller synthesis is done by a
different saturation model.

6 Anti Windup Control of Discrete MIMO Systems
by Static Output Feedback (SOF)

In this section the derivation of an anti windup PID controller for discrete MIMO
system is proposed. The main idea behind this controller is to design an anti windup
controller/compensator that minimizes the windup effects when the input of the
system saturates producing an increasing of the integral action that deteriorates the
system performance. The controller design for this kind of systems consist in
deriving a static output feedback (SOF) control law, similar as the continuous time
counterpart (Bateman and Zongli 2002; Kwan Ho et al. 2006; Matsuda and Ohse
2006) and then the SOF gain is obtained by solving the LMI’s as an optimization
problem.

In order to achieve suitable control gains for the PID controller, it is necessary to
implement a saturation model (Li-Sheng et al. 2004; Zongli and Liang 2006;
Shuping and Boukas 2009) where sufficient conditions are established in order to
solve the LMI’s by a convex optimization problem (Shuping and Boukas 2009).
For the AWC design it is necessary to add a back calculation loop which consists in
the difference between the non saturated and saturated input signal, similar as the
continuous time counterpart, to reduce the effects of windup when the input system
saturates. Then using the saturation model (Li-Sheng et al. 2004) this nonlinearity
form is implemented to obtain the respective LMI’s solved by a convex optimi-
zation problem. Beside from the standard solution of static output feedback con-
trollers (SOF) a h∞ SOF controller synthesis is obtained by solving the required
LMI’s (Lim and Lee 2008). In this section it is proved that a discrete time PID
controller can be obtained by a static output feedback control law, simplifying the
anti windup controller design and then the PID controller gains can be found by
solving the linear matrix inequalities for SOF and H∞ SOF.

As occurs in the continuous time case, there are several numerical methods to
solve discrete time SOF problems by LMI’s so with this method an optimal solution
of the LMI’s can be found. By implementing the appropriate LMI’s and the satu-
ration nonlinearity model an optimal solution can be found by any of the algorithm
found in literature such as (Matsuda and Ohse 2006) for continuous time and
(Kwan Ho et al. 2006) for discrete time systems. The proposed anti windup PID
controller is designed taking into account the stability properties and characteristic
of the closed loop system and for the H∞ SOF problem the robustness of the closed
loop system improves the system performance and reduces the deterioration of the
system operation when a reference signal needs to be tracked.
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This section is divided in two subsections, where in the first part the design of a
PID anti windup controller is derived by adding a back calculation signal to the
controller and converting the anti windup PID controller in a static output feedback
problem and then this problem is solved by LMI’s. Another anti windup PID
controller is designed by a H∞ synthesis where the stability and robustness of the
system is considered, then the closed loop system is robust when unmodeled
dynamics and disturbances are found in the system. Finally, an illustrative example
is explained in the last subsection where the PID anti windup controller for a DC
motor is shown, where the main objective is to maintain a constant nominal angular
velocity by following a desired profile torque. With the theoretical background and
the illustrative example shown in this section a complete demonstration of a PID
anti windup control strategy for discrete time system is shown where the stability
and robustness condition are met by selecting an appropriate static output feedback
controller.

6.1 PID Anti Windup Controller Design for MIMO Discrete
Time Systems

Consider the PID antiwindup controller shown in Fig. 22.
Where G(z) is the discrete time transfer matrix, and v is the back calculation

input signal of the anti windup PID controller. Consider the transfer matrix G(z) in
state space form

x k þ 1ð Þ ¼ AxðkÞ � BrðuðkÞÞ
yðkÞ ¼ CxðkÞ ð61Þ

where x 2 <m, A is a <m�m matrix x is a <m vector, B is a <n�m and C is a <l�m

matrix. m > 0 denotes the number of states, n > 0 is the number of inputs, l is the
number of outputs and σ(·) is the saturation input. Consider the following anti
windup PID controller given by:

)(zG
r

Saturation

+

-

PID

+
-

v

Fig. 22 Anti windup PID
controller
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x k þ 1ð Þ ¼ AxðkÞ � BrðuðkÞÞ
yðkÞ ¼ CxðkÞ ð62Þ

Consider the following PID controller with anti windup compensation (Lim and
Lee 2008):

Xk�1

i¼0

yðk þ 1Þ ¼ yðkÞ þ
Xk�1

i¼0

yðkÞ � CðrðuðkÞÞ � uðkÞÞ

uðkÞ ¼ �kpyðkÞ � kI
Xk�1

i¼0

yðiÞ � kDDyðkÞ
ð63Þ

Due to
Pk�1

i¼0 yðk þ 1Þ �Pk�1
i¼0 yðkÞ ¼ yðkÞ with y(0) = 0 subtracting the cor-

rection signal CðrðuðkÞÞ � uðkÞÞ as done in the continuous time case explained in
the previous section (Cao et al. 2002). Where kp, kI, kD are diagonal matrices for the
proportional, integral and derivative parts of the PID controller, Γ is a positive
definite matrix and DyðkÞ ¼ yðkÞ � yðk � 1Þ. In order to design the PID controller
the following augmented variables are introduced to represent (62) and (63)

xaðkÞ ¼
xðkÞPk�1

i¼0
yðkÞ

yðk � 1Þ

2
6664

3
7775

yaðkÞ ¼
yðkÞPk�1

i¼0
yðkÞ

DyðkÞ

2
6664

3
7775

ð64Þ

Then the augmented system is (Lim and Lee 2008):

xðk þ 1ÞPk�1

i¼0
yðk þ 1Þ

yðkÞ

2
664

3
775 ¼

A 0 0
C I 0
C 0 0

2
4

3
5

xðkÞPk�1

i¼0
yðkÞ

yðk � 1Þ

2
664

3
775þ

�B
�C
0

2
4

3
5rðuðkÞÞ þ 0

C
0

2
4

3
5uðkÞ

ð65Þ

yaðkÞ ¼
C 0 0
0 I 0
C 0 �I

2
4

3
5xaðkÞ ð66Þ
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where

Acl ¼
A 0 0

C I 0

C 0 0

2
64

3
75

Bcl ¼
�B

�C

0

2
64

3
75

Ccl ¼
C 0 0

0 I 0

C 0 �I

2
64

3
75

Dcl ¼
0

C

0

2
64

3
75

F ¼ �kp �kI �kD½ �

ð67Þ

The saturation nonlinearity can be modeled by the following definition
(Li-Sheng et al. 2004; Zongli and Liang 2006; Shuping and Boukas 2009).

Definition 1 Let F;H 2 <m�n be given. For x 2 <n, if Hyak k1 � 1 then rðFyaÞ 2
co EjFya þ E�

j Hya : j 2 ½1; 2�
n o

where co{·} denotes the convex hull and E�
j ¼

I � Ej where Ej is the set of m × m diagonal matrices where all their elements are 1
or 0. With Definition 1 (65) can be transformed into:

xaðk þ 1Þ ¼ UxaðkÞ ð68Þ

where:

U ¼ Acl þ BclEjFCcl þ BclE
�
j HCcl þ DclFCcl ð69Þ

Considering definition 1 and the following Lyapunov function:

VðkÞ ¼ xTa ðkÞPxaðkÞ ð70Þ

where P is a positive definite function. The derivative of (70) is given by:

DVðkÞ ¼ Vðk þ 1Þ � VðkÞ
DVðkÞ ¼ xTa ðkÞUTPUxaðkÞ � xTa ðkÞPxaðkÞ

ð71Þ
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where in LMI equivalent is given by

xTa ðkÞUTPUxaðkÞ � xTa ðkÞPxaðkÞ\0 ð72Þ

For the static output feedback problem the following LMI must be solved for
P and F (Mayer et al. 2013)

P�1 U
UT P

	 

[ 0 ð73Þ

with P−1 > 0 and for the H∞ controller synthesis the following LMI must be solved
considering

T2xðzÞk k1\c ð74Þ

where γ is a robustness parameter that indicates the disturbance rejection of the
system and T2ω(z) is the discrete time transfer function of the closed loop system
(Kwan Ho et al. 2006). Then by solving for F and P in the following LMI the H∞

static output feedback PID controller can be obtained.

P 0 UTP CT
cl

0 cI 0 0
PU 0 P 0
Ccl 0 0 cI

2
664

3
775[ 0 ð75Þ

With these explanations the PID controller gains can be obtained by any of the
SOF controllers. In the next subsection an illustrative example is shown to evince
the numerical simulation of an anti windup controller for a DC motor in discrete
time.

6.2 Example 4

In this subsection a DC motor is stabilized with a PID anti windup controller in
MIMO form. The same DC motor model of example 3 is considered in this section,
so the following discretized state space model of the DC motor is obtained with a
sampling period T = 0.1 s

xðk þ 1Þ ¼ 2:774 0:1749
�1:993 0:9169

	 

xðkÞ þ 0:1749 0:1609

�0:08306 2:153

	 

rðuðkÞÞ ð76Þ

yðkÞ ¼ 1 0
0 1

	 

xðkÞ ð77Þ
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where xðkÞ ¼ ½x1ðkÞ; x2ðkÞ�T and x1(k) is the angular velocity and x2(k) is the
armature current u(k) is the input voltage.

For the discrete time SOF the following values of F and the gain matrices kp, kI
and kD are obtained by solving the LMI (73) with a Γ value of

C ¼ 0:002 0
0 0:002

	 

ð78Þ

F ¼ �3:1623 0 �3:1623 0 �3:1623 0
0 �3:1623 0 �3:1623 0 �3:1623

	 

� 108

ð79Þ

and the following PID controller gain matrices are:

kp ¼
�3:1623 0

0 �3:1623

	 

� 108

kD ¼ �1 0

0 �1

	 

� 108

kI ¼
�50 0

0 �50

	 

� 108

ð80Þ

The same PID controller gains are implemented for the system when there is no
anti windup compensation. In the case of the PID anti windup controller by H∞

synthesis the following matrix F is obtained by solving the LMI shown in (75)

F ¼ �3:1604 0 �3:1604 0 �3:1604 0
0 �3:1604 0 �3:1604 0 �3:1604

	 

� 108

ð81Þ

kp ¼
�3:1604 0

0 �3:1604

	 

� 108

kD ¼ �1:5802 0

0 �1:5802

	 

� 108

kI ¼
�1:5802 0

0 �1:5802

	 

� 108

ð82Þ

With these results, a numerical simulation of the DC motor with anti windup and
no anti windup compensation was done with the PID anti windup controller gain
matrices achieving the following outcome.

In Fig. 23 the respective angular velocities when a anti windup and no anti
windup controllers are implemented in the feedback loop of the DC motor, the
system is stabilized at the nominal speed 1,750 RPM (183.26 rad/s) when a
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disturbance torque of 10 Nm is applied to the motor. It is verified that in the case
when a SOF and H∞ SOF the performance of the system is better than when no anti
windup controller is implemented. The overshoot is smaller and a small settling
time is obtained in the first mentioned cases, in comparison when only a PID
controller, with no AW compensation, is implemented. This fact occurs due to the
better controller and compensation characteristics when a SOF and H∞ SOF PID
anti windup compensators are implemented.

In Fig. 24 the input voltages of the DC motors in the three cases are depicted,
where the voltages for the SOF and H∞ SOF yields a more regular results than
when no anti windup compensation is implemented. It can be noticed also that the
input voltages are greater in the first cases than when no AWC is implemented, but

Fig. 23 Angular velocities of the DC motor

Fig. 24 Input voltage of the DC motor
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these values reach a steady state value in comparison with the increasing values
when no AWC is implemented.

In Fig. 25 the saturated input voltages are obtained where as explained before,
these values affects the system performance when the actuator, or in this case the
DC motor input, is saturated due to the physical limits and properties of this model.

In Fig. 26 the armature currents of the DC motor are shown for the three cases in
which the expected values are reached when a disturbance input torque is applied to
the model. In Fig. 27 the mechanical torque of the model is depicted in the three
cases, so as it is noticed the final value of 10 Nm, which is the value of the
disturbance torque applied at 0 s is reached in the three cases but with a higher
undershoot when there is no anti windup compensation.

Fig. 25 DC motor saturated input voltages (v)

Fig. 26 DC motor armature current ia
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With the results obtained in this section, it is proved that a PID anti windup
controller by SOF and H∞ SOF can be derived for the control of MIMO systems
when the inputs are saturated or constrained. In the following section a discussion
of all the proposed anti windup controllers derived in this chapter are shown in
order to analyze the advantages and disadvantages of these control techniques.

7 Discussion

In this chapter four anti windup controllers for SISO and MIMO continuous and
discrete time systems are shown. For the first two cases, the anti windup controllers
derived in the respective sections, it is shown that when the plant system is rep-
resented by a first order plus time delay model, the PID anti windup internal model
controller techniques can be achieved meeting the internal stability and robustness
requirements. A back calculation filter was implemented in order to suppress the
integrator action when the input of the system is saturated, this compensation
strategy reduces the increasing of the integrator output when the system saturates
while ensuring the system stability.

It is proved that the advantages of the anti windup SISO continuous time systems
is that they reduce the unwanted effects produced by windup, obtaining better
results such as small overshoot and small settling time. It is proved that when a PID
controller is implemented with no anti windup back calculation the performance of
the system deteriorates due to the windup phenomena.

In the case of the discrete time SISO systems, a similar approach such as the
SISO continuous time system where a back calculation filter is implemented to
improve and avoid the deterioration of the system performance. The advantages of
this control strategies is that the overshoot, settling time and other characteristics of

Fig. 27 DC motor torque
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the system performances are improved due to the filter included in the additional
loop reduces the integral action when the input of the system saturates. Similar to
the continuous time counterpart, an internal model controller (IMC) is implemented
with an additional loop which includes a filter as a compensator while the internal
stability and robustness of the system are ensured to guarantee an appropriate
system performance.

In the case of the design of an anti windup controller for continuous and discrete
time MIMO systems, an anti windup compensation approach is implemented where
the saturated and non saturated signals are added by a feedback loop to the PID
controller to eliminate the windup phenomena when the input of the system is
saturated, as occurs in SISO systems. For continuous and discrete time systems, an
anti windup PID controller by static output feedback was implemented, converting
the PID controller into an static output feedback law and adding the difference of
the saturated and non saturated input to compensate the windup effects. The
advantages of the PID anti windup controller for continuous time systems, is that
the system performance is not deteriorated by the influence of windup when the
input is constrained or saturated, improving the controller action and preventing a
high overshoot, settling time and other performance properties. In the case of the
anti windup control of discrete time systems, the same advantages and properties
are proved theoretically similar as the continuous time case; the system perfor-
mance is improved by the addition of the difference of the saturated and no satu-
rated signal that improves the system performance avoiding the deterioration of the
system output by decreasing the integral action when the input of the system are
constrained or saturated.

8 Conclusions

In this chapter some anti windup control strategies for SISO and MIMO system for
discrete and continuous time models are shown. In the SISO cases an internal
model anti windup PID controller is implemented by a back calculation algorithm
in order to suppress the unwanted effects yielded by windup, when the system input
is saturated and the integral action of the PID controller is increased. It was proved
that the system performance is improved by the implementation of the back cal-
culation loop that includes a compensator filter. The performance of the system with
anti windup and no anti windup compensation was tested, and it was proved that in
the first case the system performance is not deteriorated producing a smaller
overshoot and settling time reducing the integral action in the discrete and con-
tinuous time SISO systems.

In the MIMO cases, a continuous and discrete time anti windup PID controllers
are implemented in order to eliminates the performance deterioration caused by the
integral action of the controller when the input of the system is saturated. It is
proved that in the discrete and continuous time cases, the PID controllers can be
achieved by a static output feedback control law (SOF) and by a H∞ controller
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synthesis ensuring the system stability and robustness properties of the closed loop
system. The PID controller gain matrices, in both cases, are found by solving the
respective linear matrix inequalities LMI’s in order to obtain the required gains to
stabilize the system. In both cases it is proved that the system performance is not
deteriorated by the windup phenomena when the input of the system is constrained
or saturated, then in comparison when only a PID controller is implemented, the
settling time and overshoot are smaller due to the anti windup characteristics of the
PID controller.

Appendix 1

In this appendix the internal model PID controller, explained in Sect. 3 the gain and
time constants are found with the following equations.

Define:

DðsÞ ¼ ððksþ 1Þr � P1AðsÞÞ=s ð83Þ

and

Kp ¼ p1mð0Þ ð84Þ

Then the following gain and time constants are obtained using (15) with the
following equations of the function f(s) and its derivatives (Lee et al. 1998):

f ð0Þ ¼ 1
KpDð0Þ ð85Þ

where D(0) is

Dð0Þ ¼ rk� _P1Að0Þ ð86Þ

the derivatives of D(0), _Dð0Þ and €Dð0Þ are shown in (Lee et al. 1998). Then the
derivative of f(0) is given by:

_f ð0Þ ¼ K aþ bD/

 �
a1

a0 � a� bD/
� K aþ bD/

 �
a0a1

a0 � a� bD/
 �2 � K aþ bD/

 �
a0s

a0 � a� bD/

 !
rkþ hð Þ�1K�2

p

þ 1=2r r � 1ð Þk2 � 1=2h2

Kp rkþ hð Þ2 ð87Þ

€f ð0Þ ¼ _f ð0Þ €p1mð0ÞDð0Þ þ 2 _p1mð0Þ _Dð0Þ þ Kp €Dð0Þ
_p1mð0ÞDð0Þ þ Kp _Dð0Þ

 !
þ 2_f ð0Þ=f ð0Þ

 !
ð88Þ
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Appendix 2

In this appendix the internal model PID controller, explained in Sect. 4 the gain and
time constant are found and shown in the following equations. Consider the fol-
lowing representation in Taylor series of the digital PID controller (31) based on the
analog controller design shown in (Lee et al. 1998)

GcðsÞ ¼ f ðzÞ
z� 1

¼ 1
z� 1

ðf ð1Þ þ f 0ð1Þðz� 1Þ þ f 00ð1Þ
2

ðz� 1Þ2 þ � � �Þ ð89Þ

Due to GcðsÞ ¼ f ðzÞ
z�1 the following equation can be considered:

DðzÞ ¼ ðz� aÞ � P�
cAð1� aÞz

z� 1
ð90Þ

because of (30) can be represented by:

GcðzÞ ¼
ð1� aÞzP��1

cM

ðz� aÞ � P�
cAð1� aÞz ð91Þ

The design procedure of the discrete time SISO controller is similar to the
continuous time SISO case, (Lee et al. 1998) where (90) can be represented by:

DðzÞ ¼ NðzÞ
z� 1

ð92Þ

where

NðzÞ ¼ ðz� aÞ � P�
cAð1� aÞz ð93Þ

Then by the Taylor series expansion of D(z) the following equation is obtained:

DðzÞ ¼ 1
z� 1

ðNð1Þ þ N 0ð1Þðz� 1Þ þ N 00ð1Þ
2

ðz� 1Þ2 þ N 000ð1Þ
6

ðz� 1Þ3 þ � � �Þ
ð94Þ

Considering that N(1) = 0, (94) becomes in:

DðzÞ ¼ N 0ð1Þ þ N 00ð1Þ
2

ðz� 1Þ þ N 000ð1Þ
6

ðz� 1Þ2 þ � � � ð95Þ

Expanding D(z) in Taylor series expansion as an only term, the following result
is obtained:
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DðzÞ ¼ Dð1Þ þ D0ð1Þðz� 1Þ þ D00ð1Þ
2

ðz� 1Þ2 þ � � � ð96Þ

Then associating the similar terms of (95) and (96) the following values for D(1)
and its derivatives are obtained:

Dð1Þ ¼ N 0ð1Þ
D0ð1Þ ¼ N 00ð1Þ=2
D00ð1Þ ¼ N 000ð1Þ=3

ð97Þ

the values of D(1) and its derivatives can be found by:

Dð1Þ ¼ 1þ ðN � 1Þð1� aÞ ð98Þ

D0ð1Þ ¼ ð�NðN � 1Þð1� aÞÞ=2 ð99Þ

D00ð1Þ ¼ ððN þ 1ÞNðN � 1Þð1� aÞÞ=3 ð100Þ

Then the values for f(1) and its derivatives are found by (Lee et al. 1998):

f ð1Þ ¼ 1
ðp�cMð1Þ=ð1� aÞÞDð1Þ ð101Þ

f 0ð1Þ ¼ � ðp0�cMð1Þ=ð1� aÞÞDð1Þ þ ðp�cMð1Þ=ð1� aÞÞD0ð1Þ
ððp�cMð1Þ=ð1� aÞÞDð1ÞÞ2 ð102Þ

f 00ð1Þ ¼ f 0ð1Þ ðp00�cMð1Þ=ð1� aÞÞDð1Þ þ 2ðp0�cMð1Þ=ð1� aÞÞD0ð1Þ þ ðp�cMð1Þ=ð1� aÞÞD00ð1Þ
ðp0�cMð1Þ=ð1� aÞÞDð1Þ þ ðp�cMð1Þ=ð1� aÞÞD0ð1Þ

 !
þ 2f 02ð1Þ=f ð1Þ

ð103Þ

With f(1) and its respective derivatives, the parameters of the digital PID con-
trollers can be found using (32).
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