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Introduction

Nearly 70 % of US adults are overweight or obese [1], which increases risk for 
coronary heart disease, atherosclerotic cerebrovascular disease, colorectal cancer, 
and all-cause mortality, is credited with 300,000 US deaths and $ 150 billion in 
health-related expenses yearly [2, 3]. Unfortunately, treatments almost never result 
in lasting weight loss and virtually all obesity prevention programs have not re-
duced future obesity onset [4, 5]. An improved understanding of the risk processes 
that give rise to weight gain should guide the design of more effective preventive 
programs and treatments. At present, most risk factors that predict future weight 
gain show only weak effects [6–9]. For example, the predictive effects for parental 
obesity, a well replicated risk factor for future weight gain, have only ranged from 
an r = 0.18 to 0.21 in large epidemiologic studies [e.g., 7, 9].

Theorists have focused on the role of reward circuitry in obesity because eating 
palatable food increases activation in regions implicated in reward, including the 
striatum, midbrain, amygdala, and orbitofrontal cortex (OFC) [10–12] and causes 
dopamine (DA) release in the dorsal striatum, with the amount released correlat-
ing with meal pleasantness ratings [13]. Indeed, even delivery of high-fat food di-
rectly to the gut, bypassing the oral cavity, has been shown to induce robust striatal 
dopamine release in rodents [14]. It has been posited that aberrant reward-related 
responses to food intake and/or cues override homeostatic processes of hunger and 
fullness, resulting in excess adipose tissue and weight gain [e.g., 15]. Further, data 
indicate that appetitive hormones thought to influence homeostatic determinants 
of food intake (e.g., leptin, peptide YY, glucagon-like peptide 1) act by altering 
reward value of food [16]. In support of hedonically driven food intake, direct phar-
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macological activation of the striatum prompts hyperphagia in animals, increasing 
preferential intake of high-fat/sugar foods, even in sated animals [17]. Agonist and 
antagonist experiments suggest that DA signaling plays a larger role in reward 
learning and that opioid peptide signaling plays a larger role in hedonic pleasure 
from food intake [18], though reward regions contain both DA and opioid receptors 
and opioid agonists cause DA signaling [19], implying the two neurotransmitter 
systems are tightly intertwined.

Reward Surfeit and Incentive Sensitization Theories  
of Obesity

The reward surfeit model holds that individuals who showed greater responsivity 
of reward regions to food intake, which is presumably inborn, are at elevated risk 
for overeating and consequent weight gain [20]. The incentive sensitization model 
posits that repeated intake of palatable foods results in an elevated responsivity of 
reward valuation regions to cues that are repeatedly associated with palatable food 
intake via conditioning, which prompts elevated food intake when these cues are 
encountered [18].

Consistent with these theories, obese versus lean humans show greater respon-
sivity of brain regions associated with reward and motivation (striatum, amygdala, 
OFC) to pictures of high-fat/sugar foods versus low-fat/sugar foods and control 
images [21–28] and to pictorial cues that signal impending palatable food receipt 
[20, 29]. These data are supported by studies examining acute and longer-term food 
intake. Specifically, midbrain and medial OFC activity in response to milkshake re-
ceipt positively predicted subsequent ad libitum milkshake consumption and BOLD 
response in the ventral striatum during exposure to food images positively predicts 
later snack consumption [30, 31]. Using objectively measured energy intake over 
a two-week period in lean adolescents, a positive relation was observed between 
energy intake beyond basal metabolic needs and BOLD response during cues pre-
dicting food receipt in regions thought to encode visual processing and attention 
(visual and anterior cingulate cortices), salience (precuneus), as well as the primary 
gustatory cortex (frontal operculum) and (reward/motivation) striatum [32]. Animal 
experiments indicate that firing of striatal and ventral pallidum DA neurons initially 
occurs in response to receipt of a novel palatable food, but that after repeated pair-
ings of palatable food intake and cues that signal impending receipt of that food, 
DA neurons begin to fire in response to reward-predictive cues and no longer fire in 
response to food receipt [33–35]. Theorists posit this shift during cue-reward learn-
ing acts to either update knowledge regarding the predictive cues or attribute reward 
value to the cues themselves thereby guiding behavior [36–39].

Critically, fMRI studies indicate that hyper-responsivity of reward regions 
(striatum, amygdala, OFC) to palatable food images [40, 41], palatable food 
odors [42] or cues that signal impending presentation of palatable food images 
[43] predicts future weight gain. Additionally, teens that exhibit greater striatal re-
sponse to high-fat/sugar food commercials show elevated weight gain over 1-year 
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follow-up (r = 0.47–0.51; Fig. 6.1; [44]). Elevated amygdala, midbrain, thalamus, 
hypothalamus, ventral pallidum, and nucleus accumbens responsivity to tastes of 
milkshake have also predicted weight gain over 1-year follow-up [42, 45].

Interestingly, there is evidence that the effects of hyper-responsivity of reward 
regions to food and food cues shows significantly stronger relations to future weight 
gain for individuals with a genetic propensity for greater DA signaling capacity 
in reward regions. Adolescents with elevated caudate and putamen responsivity to 
milkshake tastes who have a genetic propensity for greater DA signaling due to 
possessing an A2/A2 TaqIA allele showed significantly greater weight gain over 
1-year follow-up [46]. Likewise, teens who show elevated striatal/OFC response to 
palatable food images and who had a genetic propensity for greater DA signaling 
due to possessing an A2/A2 TaqIA allele, also showed elevated future weight gain 
[27]. Similar effects have emerged for another genotype (no seven-repeat or longer 
alleles of the DRD4 gene [DRD4-S]) that has been associated with elevated DA 
signaling [27]. Data from a large ( N = 155) ongoing study revealed that lean teens 
who showed greater OFC response to a cue that signals impending milkshake re-
ceipt were more likely to gain weight over 2-year follow-up ( r = 0.29) and that this 
relation was significantly stronger for youth with a genetic propensity for greater 
DA signaling capacity in reward circuitry as indexed by a multilocus composite that 
reflects the number of alleles associated with elevated DA signaling (Fig. 6.2). We 
examined this multilocus score because it relates more strongly to reward region 
responsivity than the individual alleles used to calculate this composite genetic risk 
score [47, 48]. Theoretically, this is because a greater number of these genotypes, 
regardless of the particular combination, are associated with greater DA signaling 
capacity. The multilocus composite was scored as follows: TaqIA A1/A1, DRD2-
141C Ins/Ins, DRD4-L, DAT1 10R/10R, and COMT Met/Met genotypes were as-
signed a score of 0 (‘low’); TaqIA A2/A2, DRD2-141C Ins/Del and Del/Del, DRD4-
S, DAT1 9R, and COMT Val/Val genotypes were assigned a score of 1 (‘high’), and 

Fig. 6.1   Partial regression plots showing the relations of a activation in the caudate (MNI coor-
dinates: 12, 14, 1) in response to food commercials > non-food commercials and b activation in 
the caudate (MNI coordinates: −9, 14, −2) in response to food commercials > television show to 
change in BMI over 1-year follow-up
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TaqIA A1/A2 and COMT Met/Val genotypes received a score of 0.5. Scores were 
summed to create the composite. Humans with the A2/A2 allele versus an A1 al-
lele of the Taq1A polymorphism and the Del allele versus Ins/Ins genotype of the 
DRD2-141C Ins/Del polymorphism show more D2 receptors [49]. Humans with the 
shorter than seven alleles ( DRD4-S) versus seven-repeat or longer allele ( DRD4-L) 
of the DRD4 genotype show greater in vitro DA functioning and stronger response 
to DA agonists [50, 51]. Humans with the nine-repeat allele ( DAT1-S) versus homo-
zygous for the ten-repeat allele ( DAT1-L) of the DAT1 show lower DAT1 expres-
sion [52], theoretically increasing synaptic DA clearance, producing lower basal 
DA levels and increased phasic DA release [53]. Val homozygotes versus Met ho-
mozygotes of the Catechol-O-methyltransferase ( COMT val158met) gene putatively 
have lower basal striatal DA levels and greater phasic DA release [54]. Individuals 
with higher multilocus scores showed greater future weight gain in three separate 
studies (Fig. 6.3; [55]), confirming that this effect is replicable.

Thus, studies from multiple independent labs have found that individuals who 
show elevated reward region responsivity to palatable food intake are more likely to 
enter a prolonged period of positive energy balance and gain weight, providing key 
behavioral data in support of the reward surfeit theory of obesity. Studies from mul-
tiple independent labs have also found that individuals who show elevated reward 
region responsivity to cues that have been associated with palatable food intake 
show elevated future weight gain, providing behavioral support for the incentive 
sensitization theory of obesity. There was also evidence that the predictive relations 
of elevated reward region responsivity to palatable food intake and food cues to 
future weight gain are stronger for individuals with a genetic propensity for greater 
DA signaling capacity in reward regions, which might be construed as further sup-
port for the reward surfeit model. These results imply that reducing habitual intake 
of high-fat and high-sugar foods should theoretically reduce the conditioning pro-
cess that leads to elevated reward region responsivity to food cues, which may be an 

Fig. 6.2   Change in BMI predicted by the interaction between the number of high DA signaling 
alleles and a OFC activation and b caudate activation in response to anticipatory milkshake receipt
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effective method of reducing risk for weight gain. However, the fact that behavioral 
weight loss programs typically result in reduced intake of such foods, typically 
leading to a 10 % weight loss on average, but do not produced sustained weight loss 
implies that it is very difficult to reduce reward region hyper-responsivity to food 
cues once it has emerged.

Reward Deficit Theory of Obesity

The reward deficit model of obesity posits that individuals with lower sensitivity of 
DA-based reward regions overeat to compensate for this deficiency [56]. Apparent-
ly consistent with this theory, obese versus lean adults show lower striatal DA D2 
receptor availability [57–59], though two other studies found no significant group 
differences [60, 61], which might have been due to the smaller samples sizes in the 
latter studies. Obese versus lean adults show lower capacity of nigrostriatal neurons 
to synthesize DA [62], and less striatal responsivity to tastes of high-fat/sugar bev-
erages [20, 46, 63–65]. Obese versus lean rats likewise have lower basal DA levels 
and D2 receptor availability and less ex vivo DA release in response to electrical 
stimulation in nucleus accumbens and dorsal striatum tissue [66–69]. Interestingly, 
a recent study in humans [58] found a positive correlation between BMI and DA 
release in the dorsal striatum and substantia nigra in response to amphetamine, sug-
gesting that D2 receptor availability may not be closely coupled with degree of DA 
response from rewarding experiences.

Although the above cross-sectional findings appear to provide some support for 
the reward deficit theory of obesity, prospective and experimental findings indicate 
that overeating contributes to reward region hypo-responsivity. Lean youth at risk 
for future obesity by virtue of parental obesity show hyper-responsivity of reward 
regions to palatable food receipt and monetary reward, rather than hypo-respon-
sivity [70]. Young women who gained weight over a 6-month period showed a 
reduction in striatal responsivity to palatable food receipt relative to women who 
remained weight stable [71]. This finding converges with experimental overfeeding 
studies involving animals; rats randomized to overeating conditions that results in 
weight gain versus control conditions show down-regulation of post-synaptic D2 
receptors, and reduced D2 sensitivity, extracellular DA levels in the nucleus accum-
bens and DA turnover, and lower sensitivity of DA reward circuitry to food intake, 
electrical stimulation, amphetamine administration, and potassium administration 
[69, 72–76]. Of note, rats that had consumed a high-fat/sugar diet continued to 
eat that food when subsequently paired with foot shocks, whereas chow-diet rats 
would not eat high-fat/sugar food when paired with foot shocks [76], suggesting 
that energy dense diets may induce compulsive eating. Further, pigs randomized to 
a weight gain intervention versus a stable weight condition showed reduced resting 
activity in the midbrain and nucleus accumbens [77]. The reduced DA signaling 
capacity appears to occur because habitual intake of high-fat diets causes decreased 
synthesis of oleoylethanolamine, a gastrointestinal lipid messenger [14]. Further, 
people who report elevated intake of particular foods show reduced striatal response 
during intake of that food, independent of BMI [78–80].
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Given that animals that habitually use drugs of abuse that produce similar down-
regulation of reward regions will work to keep DA levels in the nucleus accumbens 
above a certain level [81–83], Geiger and associated [74] speculate that rats which 
have experienced diet-induced down-regulation of DA circuitry may similarly over-
eat to increase DA signaling. However, a more recent study found that mice in 
which reduced striatal DA signaling from food intake was experimentally induced 
through intragastric feeding of high-fat food worked less for intragastric administra-
tion of high-fat food and consumed less food ad lib than control mice [14]. These 
experimental results seem incompatible with the notion that an induced down-reg-
ulation of DA reward circuitry leads to compensatory overeating. Results from the 
Tellez et al. [14] study also provided further evidence that intake of high-fat food 
can result in reduced DA response to food intake, independent of weight gain per se.

Interestingly, the relations between lower striatal response to milkshake receipt and 
weight gain over 1-year follow-up [20] and between lower putamen and OFC response 
to palatable food images and weight gain over 1-year follow-up [27] were significantly 
stronger for youth with the A1 allele, which is associated with less DA signaling, im-
plying that any reduction in DA signaling caused by overeating may have a more pro-
nounced reward deficit effect for those at genetic risk for lower DA signaling. Similar 
effects have emerged for individuals with the seven-repeat allele of the DRD4 gene, 
which is also associated with reduced DA signaling capacity [27].

Thus, studies have provided little prospective or experimental support for the 
reward deficit theory of obesity. Specifically, no prospective study has reported a 
main effect between reduced reward region responsivity to food intake or cues and 
future weight gain. Indeed, as noted, prospective studies have found that greater 
responsivity of reward circuitry, including the amygdala, midbrain, ventral palli-
dum, nucleus accumbens, and striatal, rather than reduced responsivity, to palatable 
milkshake intake predicts future weight gain [e.g., 42, 45]. And recent data found 
that inducing down-regulation of DA response to food intake resulted in less caloric 
intake and motivation for food than observed in control mice [14]. Thus, findings 
collectively suggest that the reduced DA signaling capacity of reward circuitry can 
be acquired from overeating, but provide little support for the notion that this con-
tributes to overeating and subsequent weight gain.

Translating Findings from Brain Imaging Research  
into an Obesity Prevention Program

Thus, emerging research suggests that obese versus lean individuals show elevated 
reward region responsivity to images of high-fat/high-sugar foods and that this in-
creases risk for future weight gain. Fortunately, there is evidence that prefrontal 
regions can reduce reward region responsivity to appetitive cues [84]. Cognitive 
reappraisals, such as thinking of the long-term health consequences of eating un-
healthy food when viewing images of such foods, increases inhibitory region (dlP-
FC, vlPFC, vmPFC, lateral OFC, superior and inferior frontal gyrus) activation and 
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decreases reward region (ventral striatum, amygdala, ACC, VTA, posterior insula) 
and attention region (precuneus, posterior cingulate cortex) activation relative to 
contrast conditions, such as imagined intake [85–88]. Stoeckel and associates [89] 
used real-time fMRI biofeedback to augment the effects of cognitive reappraisals in 
reducing reward region responsivity and increasing inhibitory region responsivity 
to images of palatable foods; the training resulted in significantly greater reduc-
tion in medial OFC, right ventral striatum, and right amygdala, as well as greater 
activation in an inhibitory control region (inferior frontal cortex [IFG]) in response 
to palatable food images. Thus, findings suggest that cognitive reappraisals may 
reduce hyper-responsivity of reward regions to food cues and increase inhibitory 
control region activation, which is crucial because our environment is replete with 
food images and cues (e.g., ads on TV) that contribute to overeating. For instance, 
US teens are exposed to over 5000 unhealthy food commercials yearly [90]. Indeed, 
exposure to unhealthy food commercials results in greater caloric intake of the ad-
vertised foods and other unhealthy foods [90–92]. Accordingly, we developed an 
obesity prevention program that trained participants to use cognitive reappraisals 
when confronted with unhealthy tempting foods. We hypothesize that if participants 
learn to automatically apply these cognitive reappraisals, they will show reduced 
reward and attention region responsivity and increased inhibitory region responsiv-
ity to food images and cues signaling impending delivery of a high-fat/high-sugar 
food, which should result in reduced caloric intake and weight gain.

Emerging data also suggests that obese versus lean individuals show reduced 
recruitment of reward regions during intake of high-fat/high-sugar foods, which is 
either inborn of acquired, with some evidence that this may increase risk for future 
weight gain. If overeating energy-dense food reduces reward region response to 
such food, which may prompt compensatory overeating to achieve the same sat-
isfaction experienced previously, reducing fat and sugar intake may help people 
avoid this induced-reward deficit that may contribute to obesity. Such a “palate-re-
training” intervention may also reduce preferences for high-fat/sugar foods, which 
may contribute to weight gain. Reducing intake of dietary fat decreases preferences 
and frequency of future consumption of previously preferred high-fat foods and 
increases acceptance of low-fat foods [93, 94], implying a relation between habitual 
fat intake and preferences for fat foods. Chronic intake of a high-fat diet theoreti-
cally leads to reduced oral sensitivity, prompting compensatory escalations in fat 
intake to experience same degree of reward [95]. We therefore included a palate-
retraining component to our neuroimaging-informed obesity prevention program 
wherein participants reduce fat and sugar intake to decrease taste preferences for 
high-fat/sugar foods and avoid the reduced reward region responsivity to high-fat/
sugar food intake observed in obese humans. We hypothesize that if intervention 
participants reduce overall consumption of fat and sugar, they will show an increase 
in striatal response to receipt of a high-fat/high-sugar milkshake, which may reduce 
risk for compensatory overeating.

We therefore evaluated an obesity prevention program that trained young adults 
to (a) use cognitive reappraisals when confronted with tempting palatable foods 
and (b) gradually reduce intake of fat and sugar in their diets to decrease risk for a 
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blunted striatal response to palatable food intake [96]. Young adults at risk for future 
weight gain by virtue of weight concerns ( N = 148) were randomized to this new 
Minding Health prevention program, an alternative prevention program promot-
ing participant-driven gradual reductions in caloric intake and increases in physical 
activity (the Healthy Weight intervention), or an obesity education video control 
condition, completing assessments at pre, post, and 6-month follow-up. A subset 
of Minding Health and control participants completed an fMRI scan at pre and 
post assessing neural response to images of high-fat/sugar foods and to receipt and 
anticipated receipt of a high-fat/sugar food. Minding Health participants showed 
significantly greater reductions in body fat than controls and percentage of caloric 
intake from fat and sugar than Healthy Weight participants, though these effects at-
tenuated somewhat by 6-month follow-up. However, Healthy Weight participants 
showed greater reductions in BMI and eating disorder symptoms than Minding 
Health participants. Minding Health participants showed greater activation of an 
inhibitory control region (IFG) and reduced activation of an attention/expectation 
region (mid cingulate gyrus) in response to palatable food images relative to pre-
test and controls. Although the Minding Health intervention produced some of the 
hypothesized effects, it only affected some outcomes and the effects often showed 
limited persistence.

Future Research Directions

This review highlights several important directions for future research. First, al-
though a small number of prospective brain imaging studies have investigated neu-
ral vulnerability factors that predict future weight gain, the vast majority of the 
literature reviewed herein is cross-sectional. It will therefore be important for addi-
tional large sample prospective brain imaging studies to identify neural vulnerabil-
ity factors that predict future weight gain. Second, it will be important to investigate 
environmental, social, and biological factors that amplify and mitigate the effects 
of these vulnerability factors on future weight gain. Third, it would be useful for 
additional prospective repeated-measures studies to attempt to capture the plasticity 
of reward region responsivity to food images/cues and food receipt, that appears to 
emerge secondary to overeating, which may play a role in maintaining overeating. 
If randomized experiments could be used to address these three directions for fu-
ture research, much stronger inferences regarding these etiologic processes would 
be possible. Finally, we hope that future research will continue to try to translate 
findings from brain imaging studies into prevention and treatment interventions for 
obesity. For instance, we suspect it would be useful to test whether real-time fMRI 
biofeedback could be used to enhance the efficacy of the cognitive reappraisal-
based obesity prevention program described above. It might likewise be possible 
to use non-invasive brain stimulation procedures to augment the efficacy of these 
types of obesity prevention programs.
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