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Abstract. A GPGPU accelerated evolutionary computation-based
decision support system for defining and optimizing volcanic hazard miti-
gation interventions is proposed. Specifically, the new Cellular Automata
numerical model SCIARA-fv3 for simulating lava flows at Mt Etna (Italy)
and Parallel Genetic Algorithms (PGA) have been applied for optimiz-
ing protective measures construction by morphological evolution. A case
study is considered, where PGA are applied for the optimization of the
position, orientation and extension of earth barriers built to protect a
touristic facility located near the summit of Mt. Etna (Italy) volcano
which was interested by the 2001 lava eruption. The methodology has
produced extremely positive results and, in our opinion, can be applied
within a broader risk assessment framework, having immediate and far
reaching implications both in land use and civil defense planning.

Keywords: Evolutionary computation · Parallel genetic algorithms ·
Decision support system · Cellular automata · Morphological evolution

1 Introduction

In the modelling and simulation field, Complex Cellular Automata (CCA) can
represent a valid methodology to model numerous complex non-linear phenom-
ena [1], such as lava and debris flows. CCA are an extension of classical Cellular
Automata (CA) [2], developed for overcoming some of the limitations affecting
conventional CA frames such as the modelling of large scale complex phenom-
ena. Due to their particular nature and local dynamics, CCA are very powerful
in dealing with complex boundaries, incorporating microscopic interactions and
easy parallelization of algorithms.

In lava risk mitigation, the building of artificial barriers [3,4] is fundamental
for controlling and slowing down the destructive effects of flows in volcanic areas.
Nevertheless, the proper positioning of protective measures in a specific area may
depend on many factors (viscosity of the magma, output rates, volume erupted,
steepness of the slope, topography, economic costs). As a consequence, in this
context, one of the major scientific challenges for volcanologists is to provide
efficient and effective solutions.
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Morphological Evolution (ME) is a recent development within the field of
engineering design, by which evolutionary computation techniques are used to
tackle complex design projects. This branch of evolutionary computation is also
known as evolutionary design and integrates concepts from evolutionary algo-
rithms, engineering and complex systems to solve engineering design problems
[5]. Morphological evolution has also been largely explored in evolutionary robot-
ics, for instance in the design of imaginary 3D robotics bodies [6].

Genetic Algorithms (GAs) [7] are general-purpose iterative search algorithms
inspired by natural selection and genetics and have been applied several times in
the past for optimizing CCA models (e.g., [8,9]). This work describes the appli-
cation of morphological evolution by Parallel Genetic Algorithms (PGAs) for
optimizing earth barriers construction to divert a case study lava flow, occurred
in Mt. Etna in 2001. The GA fitness function, adopted for evaluating the “good-
ness” of the protective works deviating lava flow scenarios generated by the new
SCIARA-fv3 CA lava flow model [10], has implied a massive use of the numer-
ical simulator, consisting in thousands of concurrent simulations for every GA
generation. Therefore, a GPGPU (General Purpose computation with Graphic
Processor Units) library was developed to accelerate the GA execution.

After a brief description of the new SCIARA-fv3 CA model adopted in
experiments (Sect. 2), the main characteristics of the implemented evolution-
ary algorithm and carried out experiments, together with reference to emergent
behaviors, are presented in Sect. 3. The developed Web user interface for interac-
tive visualization of results are described in Sect. 4. Eventually, Sect. 5 concludes
the paper with final comments and future works.

2 Complex Cellular Automata and the SCIARA-fv3
Lava Flow Model

As previously stated, CCA represent an extension of the classical homogeneous
CA, particularly useful for the modeling of spatially extended systems. Formally,
a CCA is a 7-tuple:

A =< R,X,Q, P, τ, L, γ >

where R, X, Q and τ are as in the homogeneous CA definition, respectively defin-
ing the CA space, cell neighborhood, set of states and the deterministic tran-
sition function applied to each cell, simultaneously and at discrete steps. How-
ever, in the CCA frame, the set Q of state of the cell is decomposed in substates,
Q1, Q2, . . . , Qr, each one representing a particular feature of the phenomenon to
be modelled. The overall state of the cell is thus obtained as the Cartesian prod-
uct of the considered substates: Q = Q1 × Q2 × . . . × Qr. A set of parameters,
P = p1, p2, . . . , pp, is furthermore considered. These allow to calibrate the model
for reproducing different dynamics. As the set of states is split in substates, also
the transition function, τ , is split in elementary processes, τ1, τ2, . . . , τs, each one
describing a particular aspect that rules the dynamics of the considered phenom-
enon. Eventually, L ∈ R is a subset of the cellular space that is subject to external
influences, as specified by the supplementary function γ. External influences are
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introduced in order to model features that are not easy to be described in terms
of “local interactions”.

2.1 The SCIARA-fv3 Lava Flow Model

SCIARA-fv3 is the latest release of the SCIARA family of Complex Cellular
Automata Models for simulating lava flows. As its predecessor, SCIARA-fv2
[11], it is based on a Bingham-like rheology. While more specific details can be
found in [10], we briefly describe the model in the following. In formal terms,
SCIARA-fv3 is defined as:

SCIARA − fv3 =< R,X,Q, P, τ, L, γ >

where:

1. R is the cellular space, i.e. the set of square cells covering the bi-dimensional
finite region where the phenomenon evolves;

2. X is the pattern of cells belonging to the adjacent eight-cell Moore neighbor-
hood that influence the cell state change;

3. Q = Qz × Qh × QT × Q−→p × Q9
f × Q9−→vf

is the finite set of states, considered
as Cartesian product of substates. Their meanings are: cell altitude a.s.l., cell
lava thickness, cell lava temperature, momentum (both x and y components),
lava thickness outflows (from the central cell toward the adjacent cells) and
flows velocities (both x and y components), respectively;

4. P = w, t0, PT , Pd, Phc, δ, ρ, ε, σ, cv is the finite set of parameters (invariant in
time and space), whose meaning can be found in [10];

5. τ : Q9 → Q is the cell deterministic transition function; it is split in “elemen-
tary processes”, which are described in the following sections;

6. L ⊆ R specifies the lava source cells (i.e. craters);
7. γ : Qh ×N → Qh specifies the emitted lava thickness from the source cells at

each step k ∈ N.

2.2 Elementary Process τ1: Lava Flows Computation

The elementary process τ1 computes lava outflows and their velocities, formally
defined as:

τ1 : Q9
z × Q9

h × Q−→p → Q9
f × Q9−→vf

Lava flows are computed by a two-step process: the first computes the CA
clock, t, i.e. the physical time corresponding to a CA computational step, while
the second the effective lava outflows, h(0,i), their velocities vf(0,i) and displace-
ments s(0,i) (i = 0, 1, . . ., 8). The elementary process τ1 is thus executed two
times, the first one in “time evaluation mode”, the second in “flow comput-
ing mode”. Both modes compute the so called “minimizing outflows”, φ(0,i),
i.e. those which minimize the unbalance conditions within the neighborhood,
besides their final velocities and displacements. In “time evaluation mode”, t is
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preliminary set to a large value, tmax, and the computed displacement, s(0,i), is
compared with the maximum allowed value, d(0,i), which is set to the distance
between the central cell and the neighbor that receives the flow. In case of over-
displacement, the time t must be opportunely reduced in order to avoid the
overflow condition (i.e., a flow going beyond the cell neighbourhood). In case no
over-displacement are obtained, t remains unchanged. Eventually, in “flow com-
puting mode”, effective lava outflows, h(0,i), are computed by adopting the CA
clock obtained in “time evaluation mode”, by guarantying no overflow condition.

Outflows Computation. In “flow computing mode”, minimizing outflows,
φ(0,i), are re-computed by considering the new CA clock t. Subsequently, lava
outflows, h(0,i), are computed proportionally to the displacement, by simply
multiplying the minimizing outflow by the ratio between the actual displacement,
s(0,i), and the maximum allowed, the cell side w:

h(0,i) = φ(0,i)

s(0,i)

w

2.3 Elementary Process τ2: Updating of Mass and Momentum

The elementary process updates lava thickness and momentum. It is formally
defined as:

τ2 : Q9
f × Q9−→vf

→ Qh × Q−→p

Once the outflows h(0,i) are known for each cell c ∈ R, the new lava thickness
inside the cell can be obtained by considering the mass balance between inflows
and outflows:

h(0) =
9∑

i=0

(h(i,0) − h(0,i))

Moreover, also the new value for the momentum can be updated by accumu-
lating the contributions given by the inflows:

−→p (0) =
9∑

i=0

h(i,0)
−→vf (i,0)

2.4 Elementary Process τ3: Temperature Variation and Lava
Solidification

τ3 : Q9
f × Q9

T → QT × Qh

As in the elementary process τ1, a two step process determines the new cell
lava temperature. In the first one, a temperature T is obtained as weighted
average of residual lava inside the cell and lava inflows from neighboring ones.
A further step updates the calculated temperature T by considering thermal
energy loss due to lava surface radiation:



Evolutionary Applications for Volcano Risk Mitigation 103

T =
T

3

√
1 + 3T

3
εσtδ

ρcvw2h

where ε, σ, t, δ, ρ, cv, w and h are the lava emissivity, the Stephan-Boltzmann
constant, the CA clock, the cooling parameter, the lava density, the specific heat,
the cell side and the lava thickness, respectively. When the lava temperature
drops below the threshold Tsol, lava solidifies. Consequently, the cell altitude
increases by an amount equal to lava thickness and new lava thickness is set to
zero. For more details on all above models specifications, please refer to [10].

3 Morphological Evolution of Protective Works

Genetic Algorithms (GAs) [7] are general-purpose iterative search algorithms
inspired by natural selection and genetics, and have been extensively applied in
many scientific fields (e.g., [12–14]). GAs simulate the evolution of a population
of candidate solutions, called phenotypes, to a specific problem by favouring
the reproduction of the best individuals. Phenotypes are codified by genotypes
whose elements are called genes. To determine the best possible solution of a
given problem, members of the initial population are evaluated by means of a
“fitness function”, determining the individuals “adaptivity” value. Best individ-
uals are chosen by means of a “selection” operator and reproduced by apply-
ing random “genetic” operators to form a new population of offspring. Typical
genetic operators are “crossover” and “mutation”: they represent a metaphor of
sexual reproduction and of genetic mutation, respectively. The overall sequence
of fitness assignment, selection, crossover, and mutation is repeated over many
generations (i.e. the GA iterations) producing new populations of individuals.

In this work, GAs were adopted in conjunction with the SCIARA-fv3 CA
model for the morphological evolution of protective works to control lava flows
in the Rifugio Sapienza area, which was indeed interested by the 2001 Nicolosi
case study and object of a set of real mitigation interventions construnction [15].

3.1 Parallel Genetic Algorithm Definition

The CA numerical model finite set of states was extended by introducing two
substates defined as:

Z ⊆ R (1)

where Z is the set of cells of the cellular automaton that specifies the Safety
Zone, which delimitates the area that has to be protected by the lava flow and

P ⊆ R,P ∩ Z = � (2)

where P is the set of CA cells that identifies the Protection Measures Zone
identifying the area in which the protection works are to be located.

The Protection work W = B1, B2, . . ., Bn was represented as a set of barriers,
where every barrier Bi = Ni1, Ni2 is composed by a pair of nodes



104 G. Filippone et al.

Fig. 1. Example of barriers encoding into a GA genotype. The height of the interme-
diate points of each barrier is obtained by connecting the work protections extremes
through a linear function.

Nij = xij , yij , zij , where xij , yij are the CA coordinates for the generic node
j of the barrier i, and zij the height (in m). The solutions were encoded into
a GA genotype as integer values (Fig. 1) and a population of 100 individuals,
randomly generated inside the Protection Measures Zone, was considered.

Two different fitness functions were considered to suitably evaluate the good-
ness of a given solution: f1, based on the areal comparison between the simulated
event and the Safety Zone (in terms of affected area) and f2, which considers the
total volume of the protection works in order to reduce intervention costs and
environmental impact. More formally, the f1 objective function is defined as:

f1 =
μ(S ∩ Z)

μ(Z)
(3)

where S and Z respectively identify the areal extent of the simulated lava event
and the Safety Zone area, with μ(S ∩Z) being the measure of their intersection.
The function f1, assumes values within the range [0, 1] where 0 occurs when the
simulated event and Safety Zone Area are completely disjointed (best possible
simulation) and 1 occurs when simulated event and Safety Zone Area perfectly
overlap (worst possible simulation).

The f2 objective function is defined as:

f2 =
∑|W |

i=1 pc · d(Bi) · h(Bi)
Vmax

(4)

where d(Bi) and h(Bi) represent the length (in meters) and the average height of
the i-th barrier, respectively. The parameter pc is the CA cell side and Vmax ∈ R
is a threshold parameter (i.e., the maximum building volume) given by experts,
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for the function normalization. Since the barriers are composed of two nodes,
the function can be written as:

f2 =
∑|W |

i=1 pc · d(Ni1, Ni2) · h̄(Ni1, Ni2)
Vmax

(5)

where h̄(Ni1, Ni2) = |zi1+zi2|
2 is considered as the average height value between

two different nodes and d(Ni1, Ni2) =
√

(xi1 − xi2)2 + (yi1 − yi2)2 identifies the
Euclidean distance between them. The final fitness function f2 is thus:

f2 =
∑|W |

i=1 pc · √
(xi1 − xi2)2 + (yi1 − yi2)2 · |zi1+zi2|

2

Vmax
(6)

The function f2 assumes values within the range [0, 1]: it is nearly 0 when the
work protection is the cheapest possible, 1 otherwise.

For the genotype fitness evaluation, a composite (aggregate) function f3 was
also introduced as follows:

f3 = f1 · ω1 + f2 · ω2 (7)

where ω1, ω2 ∈ R and (ω1 + ω2) = 1, represent weight parameters associated to
f1 and f2. Several different values where tested and the considered ones in this
work chosen on the basis of trial and error techniques.The goal for the GA is to
find a solution that minimizes the considered objective function f3 ∈ [0, 1].

In order to classify each genotype in the population, at every generation run,
the algorithm executes the following steps:

1. CA cells elevation a.s.l. are increased/decreased in height on the basis of the
genotype decoding (i.e., the barrier cells). In addition, the determination of
the cells inside the segment between the work protection extremes and f2
subsequently are computed.

2. A SCIARA-fv3 simulation is performed (about 40000 calculation steps) and
the impact of the lava thickness on Z area (f1 computation) is evaluated.

3. f3 is computed and individuals are sorted according to their fitness.

The adopted GA is a rank based and elitist model, as at each step only the best
genotypes generate off-spring. The 20 individuals which have the highest fitness
generate five off-spring each and the 20 × 5 = 100 offspring constitute the next
generation. After the rank based selection, the mutation operator is applied with
the exception of the first 5 individuals.

The complete list of GA characteristics and parameters is reported in Table 1.
Each gene mutation probability depends on its representation: pmc for genes
corresponding to coordinates value and pmh viceversa. Therefore, if during the
mutation process, a coordinate gene is chosen to be modified, the new value
will depend on the parameters xmax and ymax which represent the cell radius
within the node, the position of which can vary. The interval [hmin, hmax] is
the range within which the values of height nodes are allowed to vary (Fig. 2).
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Fig. 2. Graphical representation of the genotype mutation phase. Each gene, repre-
senting a CA coordinate, can vary within a variation radius [xmax, ymax].

This strategy ensures the possibility for the GA to provide, as output, either
protective barriers or ditches.

To ensure a better exploration of the search space and to avoid a fast con-
vergence of solutions to local optima, a n point crossover operator has been also
introduced. Two parent individuals are randomly chosen from the mating pool
and two different cutting points for each parents are selected. After the selection
portions chosen in the genotype, they are exchanged. The crossover operator is
applied according to a prefixed probability, pc, for each sub-solution encoded in
the genotype.

3.2 Experiments and Results

The fitness evaluation of a GA individual consists in an entire CA simulation,
followed by a comparison of the obtained result with the actual case study. This
phase may require several seconds, or even several hours: for example, on a
2-Quadcore Intel Xeon E5472, 3.00 GHz CPU such evaluation requires approx-
imately 10 min, as at least 40,000 CA steps are required for a simulation. For
instance, if the GA population is composed of 100 individuals, the time required
to run one seed test (100 generation steps) exceeds 69 days. Moreover, the GA
execution can grow, depending on both the extent of the considered area and
the number of different tests to run.

As a consequence, a CPU/GPU library was developed to accelerate the
GA running. Specifically, a “Master-Slave” model was adopted in which the
Host-CPU (Master) executes the GA steps (selection, population replacement,
mutation and crossover), while GPU cores (slaves) evaluate the individuals fit-
ness (i.e., a complete SCIARA-fv3 simulation). Please refer to [16–18] for more
details on the different GPGPU parallel implementations which are adopted for
speeding up the GA running.

By considering the Nicolosi lava flow event (barriers uphill from Sapienza
Zone), ten parallel GA runs (based on different random seeds) of 100 generation
steps were carried out, each one with a different initial population. The elapsed
time achieved for the ten GA runs was less than nine hours of computation
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Table 1. List of parameters of the adopted GA

GA parameters Specification Value

gl Genotype’s length 6

ps Population size 100

ng Number of generations 100

pmc Coord. gene mutation probability 0.4

xmax Gene x position variation radius 10

ymax Gene y position variation radius 10

pmh Height gene mutation probability 0.45

hmin height min variation range −5

hmax height max variation range 10

pc crossover probability 0.05

ch+ Cost to build 1

ch− Cost to dig 1

ωf1 f1 weight parameter 0.95

ωf2 f2 weight parameter 0.05

Table 2. Properties of the best barrier evolved by GA run

Barrier Length Height Base width Volume Inclination

(m) (m) (m) (m3) (degrees)

[210, 94, 3] [236, 124, 12] 397 7.5 10 24750 131

on a 10 multi-GPU GTX 680 GPU Kepler Devices Cluster (note that the same
experiment, on a sequential machine, would had lasted more than seven months).
Furthermore, during the running, a new 3D WebGL visualization system (dis-
cussed in Sect. 4) was developed, making the model fully portable and allowing
the interactive visualization and analysis phases of the results.

For this experiment, only solutions with two nodes were considered (|W | = 1),
while Z and P were chosen as in Fig. 5. The cardinality of W (Protection work)
and the gene values in which they are allowed to vary (depending of Z area),
define the search space Sr for the GA:

Sr = {[Pxmin
, Pxmax

] × [Pymin
, Pymax

] × [(hmin · ng) , (hmax · ng)]}2|W | (8)

The temporal evolution of the f3 fitness is graphically reported in Fig. 3(a),
in terms of average results over the ten considered experiments. GA experiment
parameters values are also listed in Table 1. The related CA simulation, obtained
by adopting the best individual is shown in Fig. 5.

The study, though preliminary, has produced quite satisfying results. Among
different best individuals generated by the GA for each seed test, the best one
(Table 2) consists of a barrier with an average height of 7.5 m and 397 m in
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Fig. 3. Temporal evolution of composite f3 fitness of best individual (in black) and of
average fitness of whole population (in gray) (a). Temporal evolution of average fitness
f1 (in red) and f2 (in green) of whole population (b). Fitness values were obtained as
an average of 10 GA runs, adopting different seeds for generation of random numbers
(Color figure online).

length with an inclination angle of 131◦ with respect to the direction of the lava
flow. The barrier (cf. Table 2) completely deviates the flow avoiding that the lava
reaches the inhabited and building facilities areas. The best solution provided
by GA (Fig. 5) in this work is approximately five times more efficient (in term
of total m3 volume used to keep safe tha safety areas) respect to the one applied
in the real case [15], consisting of thirteen earthen barriers.

3.3 Considerations on the GA Dynamics and Emergent Behaviors

In the executed GA experiments, individuals with high fitness evolved rapidly,
even if the initial population was randomly generated and the search space was
quite large (Eq. 8). By analyzing several individuals evolved in ten different GA
executions, similar solutions were observed. This behavior is due to the presence
of problem constraints (e.g. morphology, lava vent, emission rate, Z and P areas)
that lead the GA to search in a “region” of the solution space characterized by
a so called “local optimum”. In particular, f1 reaches the minimum value (0)
around the twentieth GA generation and the remaining 80 runs are used by GA
for the f2 optimization (cf. Fig. 3 (b)). In any case, the evolutionary process has
shown, in accordance with the opinion of the scientific community [3,19], the
ineffectiveness of barriers placed perpendicular to the lava flow direction despite
diagonally oriented solutions (130◦ − 160◦).

Furthermore, a systematic exploitation of morphological characteristics by
GA, during the evolutionary process, has emerged. To better investigate such GA
emergence behaviour, a study of nodes distribution was conducted (Fig. 4(a)).
By considering the solutions provided by GA, each node was classified on the
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Fig. 4. (a) Nodes distribution of the best 100 solutions generated by the GA. Scale
values indicates occurrence of nodes. (b) Temporal evolution of average slope proximity
values for the best individuals.

slope proximity calculation, as an average of altitude differences between node
neighborhood cells (with radius 10 cells) and the central cell. The function that
assigns to each generic node j a slope proximity value is defined as:

spj =
∑|X|

i=1 z̄i − z̄0
|X| (9)

where X is the set of cells that identifies the neighborhood of j and z̄i ∈ Qz

is the topographics altitude (index 0 represents the central cell). As shown in
Fig. 4(b), starting from the tenth GA generation, the evolutionary process has
shown an increase in slope proximity values. Therefore, after the f1 optimization
(cf. Fig. 3(b)), in order to minimize f2, there is a specific evolutionary temporal
phase (i.e., up to the 25th generation) where the algorithm generates solutions
that are located in the proximity of elevated slopes.

4 SciaraWii: The SCIARA-fv3 Web User Interface

The simulation results were visualized in real-time by means of a 3D interactive
visualization system based on WebGL, a cross-platform application program
interface used to create 3D computer graphics in Web browsers. SCIARAWii, a
Web 2.0 application, controls the simulation while the SCIARA-fv3 model runs
server-side. The application is based on HTML5 and JavaScript, which permits
its full portability. The client is able to control the basic SCIARA-fv3 simulation
functionalities thanks to asynchronous callbacks to the server.

SCIARAWii was implemented by means GWT where the interaction between
the user interface and the SCIARA-fv3 computational model is performed by
a set of client-side services which are implemented on the server. Multi-client
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Fig. 5. A screenshot of the Web user interface for SCIARA-fv3 showing 3D simulation
of 2001 Nicolosi lava flow adopting the GA best solution of the best solution. As
seen, the devised barrier (dashed line area) completely diverts the lava flow from the
considered Safety Areas (gridded areas).

connections are also possible: whenever a user logs in, an asynchronous request
is sent to the server in order to establish a connection. Here, a servlet binds the
client to an individual connection-handler, which allows multiple unambiguous
communications through HTTP requests and responses.

The SCIARAWii system architecture is the same as [20]. The computational
model, SCIARA-fv3, is implemented on the server in C++ (for efficiency reasons)
as a static library. A dynamic-link library (DLL) receives requests by Java Native
Interface (JNI) methods and provides simulation data to the application server.
Data is therefore sent to the client via HTTP and stored into the Web browser
cache memory. SCIARA-fv3 parameters are displayed in GUI controls (in which
they can also be modified), while simulation data such as the topographic surface
or the simulated lava flow, are visualized by means of the 3D WebGL rendering
engine, which runs on a HTML5 <Canvas>. Whenever the simulation produces
a lava flow, it is displayed over the surface and its dynamical behavior can
be observed. All the client-server communications are managed by means of
asynchronous JavaScript calls, which are able to provide the same usability level
of desktop applications. Figure 5 shows a screenshot of SCIARAWii.

In order to stress the system’s reliability, SCIARAWii was tested on a Local
Area Network by only considering laptops, with one acting as a Web server
and a maximum of 4 as remote clients accessing simultaneously the former.
The level of usability of the GUI resulted more than satisfactory, mainly thanks
to the asynchronous communications between client and server. Also the 3D
visualization system resulted to be surprisingly efficient, especially if compared
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with that of the first release of SCIARAWii, by making it comparable to standard
desktop applications in terms of both efficiency and usability.

5 Conclusions and Future Works

This paper has presented an evolutionary approach for devising protective mea-
sures to divert lava flows. Starting from the adoption of the latest release of the
SCIARA-fv3 Cellular Automata lava model and adoption of Parallel Genetic
Algorithms, a library was developed for executing a large number of concur-
rent lava simulations using GPGPU and a new WebGL-based 3D visualization
system implemented for the real-time result analysis.

First observations of the GA results permitted to conjecture the presence
of a local optima in the search space, probably due to problem constraints. To
better investigate GA dynamic characteristics, a study of nodes distribution was
also conducted and a systematic exploitation of morphological characteristics by
GA during the evolutionary process emerged. Nevertheless, PGAs experiments,
carried out by considering the Nicolosi case-study, demonstrated that artificial
barriers, placed at suitable positions and orientations, can successfully change
the direction of lava flow in order to protect predefined point of interests.

The study has produced extremely positive results and simulations have
demonstrated that GAs can represent a valid tool to determine protection works
construction in order to mitigate the lava flows risk. Future work will consider
the investigation of solutions consisting of multiple protective interventions and
the SCIARAWii visualization system graphical enrichment to fully exploit the
capability of the underlying computational model.
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