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Abstract. This work introduces a multithreaded implementation of
the Fish School Search (FSS) algorithm, the Multithreaded Fish School
Search (MTFSS). In this new approach, each fish has its behaviour exe-
cuted within an individual thread, of which creation, execution and death
are managed by the runtime environment and the operating system.
Five well-known benchmark functions were used in order to evaluate
the speed-up of the MTFSS in comparison with the standard FSS and
check if there are statistically significant changes in the ability of the new
algorithm to find good solutions. The experiments were carried out in a
regular personal computer as opposed to expensive set ups and the results
showed that the new version of the algorithm is able to achieve interest-
ing growing speed-ups for increasingly higher problem dimensionalities
when compared to the standard FSS. This, without losing the ability of
the original algorithm of finding good solutions and without any need of
more powerful hardware (e.g. parallel computers).

Keywords: Computational intelligence · Swarm intelligence · Fish
school search · Multithreads

1 Introduction

Optimization tasks are present in many situations where information technology
is required. Managers, for example, must take decisions aiming to maximize the
companys profit. Racing teams adjust their cars in a way that they will have the
best performance given the limits of the machine. These are just some real life
examples where optimization tasks are required. Formally, optimization should
be understood as a search in which system adjustments according to the utility
function are carried out aiming to obtain the best possible outcome (definition
extended from Engelbrecht [1]).

Optimization algorithms are computational techniques that search for solu-
tions of problems represented by an objective function. Up to the end of the
1980s, exact optimization algorithms were considered the definitive methods
for solving optimization problems. Although significant advances were made on
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these approaches, it was found that for highly dimensional real-world problems
(e.g. Supply Chain Network Planning problem [2]), these methods may take an
exponentially increasing large amount of time to be solved. Thus, some instances
can become intractable.

As an alternative, approximate approaches have been developed in order to
face this issue. These techniques do not guarantee the best output possible, but
most of time, good enough ones are normally the case.

In this context, nature inspired techniques have been developed. A successful
set of these techniques are known as population based algorithms (PBA), due
to their characteristics of using a group of artificial entities to collectively and
in a coordinated way perform the search.

Swarm Intelligence (SI) can be referred to as the property of any system
in which the interaction between very simple components generates complex
functional patterns [4]. Within the field of Computational Intelligence, many
PBAs present this most interesting behavior. These algorithms form the Swarm
Intelligence subfield. Some of the best known algorithms within SI are: Particle
Swarm Optimization (PSO) [5], Ant Colony Optimization (ACO) [6], Artificial
Bee Colony (ABC) [7], Bacterial Foraging Algorithm (BFA) [8] and Fish School
Search (FSS) [9].

The quality of the best solutions found by these algorithms depends on the
number of analyzed solutions and, consequently, on the execution time, which
means that, in order to acquire better solutions, a longer running time is neces-
sary [3]. Even for some metaheuristics, by increasing the number of dimensions
of an optimization problem, one observes an increase of its search spaces com-
plexity. Therefore, a longer running time will be needed for satisfactorily solving
these problems. This causes a significant growth in the execution time of the
whole optimization process.

Efforts have been made on the creation of parallel versions of SI algorithms.
Two main approaches were found in the literature: GPU based parallel algo-
rithms (multicore parallel algorithms), and multithread parallel algorithms. Most
of the GPU based parallel algorithms achieved outstanding speed-ups due to the
extremely high number of cores available (e.g. [10,11]).

Within the multithread parallel algorithms, two approaches were found: clus-
ter based parallel algorithms and single machine parallel algorithms. In compari-
son to the GPU based approaches, the cluster based parallel algorithms achieved
intermediate results, since there are usually a smaller number of available cores
when compared to approaches based on GPUs, besides there is a significant
adding cost due to the need of communication between processors (e.g. [3]).
Obviously, the single machine parallel algorithms have been achieved the worst
results, in terms of speed-up, among all approaches (e.g. [12,13]). However, the
main advantage of this approach is that it does not require the acquisition of a
complex to run or more expensive system in order to achieve speed-ups. More-
over, the later produces easier coding algorithms than the GPU and cluster based
approaches.
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Fish School Search (FSS), which was proposed by Bastos Filho and Lima
Neto in 2008, is, in its basic version, an unimodal optimization algorithm inspired
on the collective behavior of fish schools. The mechanisms of feeding and coor-
dinated movement were used as inspiration to create the collective search mech-
anism. The main idea is to make the fishes (i.e. candidate solutions) to swim
toward the direction of the positive gradient in order to gain weight. Collec-
tively, the heavier fishes are more influent in the search process as a whole as
the barycenter of the school gradually moves towards better places in the search
space. It was firstly designed to run in a single thread.

The first parallel version of the FSS algorithm was proposed by Lins in
2012 [10]. In this work, a GPU based approach (i.e. multicore approach) was
used in order to speed-up the execution of the FSS algorithm. In the experi-
ments, aiming to evaluate the proposed approach in different architectures, two
different machines were used: MacBook Pro with one GPU Nvidia GeForce 320M
with 48 cores and one Personal Super Computer (PSC) with 4 GPUs Tesla C2070
with 448 cores each one, all working in parallel. All GPUs used in the experi-
ments are compatible with CUDA architecture. The first one was equipped with
an Intel processor with 2 cores and the latter with 4 Intel processors with 4 cores
each one. There the authors achieved a speed-up up to 127.9006 with all GPUs
working together, besides its performance in terms of fitness of the best solution
found was significantly improved in comparison with the FSS algorithm.

This work proposes a single machine multithread version of the Fish School
Search algorithm. In this version, there is no need for a more expensive and more
complex platform in order to run the referred algorithm. The same machine
that was only able to run the standard version of the FSS was able to run the
new faster approach, presented here. This new version was specially designed
for highly dimensional problems, usually the real-world ones, due to the large
execution time needed to optimize such problems.

This paper is organized as follows: on Sect. 2 the standard Fish School Search
algorithm is explained; on Sect. 3, the Multithreaded Fish School Search is pre-
sented; on Sect. 4, the experiments performed in this work are described; on
Sect. 5, the results are showed and discussed; and finally, on Sect. 6, a conclusion
about this work is made and all future work is presented.

2 Fish School Search

Fish School Search is inspired by the collective behaviour of natural fish schools.
In fish schools, the individuals work collectively as a single organism but do
possess some local freedom. This combination accounts for fine as well as greater
granularities during their search for food.

In FSS, the success of the search process is represented by the weight of
each fish. In other words, the heavier is an individual, the better is its repre-
sented solution. The weight of the fish is updated throughout the feeding process.
A second means to encode success in FSS is the radius of the school. It is note-
worthy to mention that by contracting or expanding the radius of the school, FSS
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can automatically switches between exploitation and exploration, respectively.
The pseudo-code of FSS is provided by Algorithm 1.

P : Fish population;
All individuals are initialized;
while Stopping condition is not met do

foreach Fish f in P do run the individual movement;
foreach Fish f in P do run the feeding process;
foreach Fish f in P do run the collective instinctive movement;
Calculate the fish school’s barycenter;
foreach Fish f in P do run the collective volitive movement;

end
Return the best solution found;

Algorithm 1. Pseudo-code of FSS.

2.1 Individual Movement Operator

In the Individual Movement Operator, each fish moves randomly and indepen-
dently, but always toward the positive gradient. In other words, the fish moves
only if the new position is better than the previous one, with regards to the
objective function. This movement is described by (1), where −→x i(t + 1) in the
position vector of the individual i, −→x i(t) is its old position, rand(0, 1) is a ran-
dom value between 0 and 1 and stepind(t) is the step size on time t. The new step
size is calculated through (2), where stepindinit

and stepindfinal
are the initial

and final step sizes and iterations is the maximum number of iterations.

−→x i(t + 1) = −→x i(t) + rand(0, 1) stepind(t), (1)

stepind(t + 1) = stepind(t) − stepindinit
− stepindfinal

iterations
. (2)

2.2 Feeding Operator

As mentioned before, the feeding operator is responsible for the weight update of
all fishes. This update process is defined by (3), where Δfi is the fitness variation
after the Individual Movement of the fish i, and max(Δf) is the maximum fitness
variation in the whole population.

Wi(t + 1) = Wi(t) +
Δfi

max(Δf)
. (3)

2.3 Collective Instinctive Movement Operator

The Collective Instinctive Movement Operator is the first collective movement
in the algorithm. Every fish performs this movement by adding a vector to its
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current position, which is calculated according to (4), where N is the population
size, Δ−→x k and Δf(−→x k) are the position variation and the fitness variation of
the individual of index in the Individual Movement, being this vector common
to all fishes. The final movement is defined by (5).

−→
I =

(∑N
k=1 Δ−→x kΔf(−→x k)∑N

k=1 Δf(−→x k)

)
(4)

−→x i(t + 1) = −→x i(t) +
−→
I . (5)

2.4 Collective Volitive Movement Operator

In this step, the population must contract or expand, using as reference the
barycenter of the fish school, which is calculated according to (6), where Wi(t) is
the weight of the fish on time t. The total weight of the whole population must be
calculated in order to decide if the fish school will contract or expand. If the total
weight increased after the last Individual Movement, the school as a whole will
contract in order to execute a finer search, which means that the search process
has been successful. Otherwise, the population will expand, meaning that the
search process is not qualitatively improving. This could be due to a bad region
of the search space or the school is trapped in a local minimum (hence, it should
try to escape from it). The contraction and expansion processes are defined by
(7) and (8), respectively, where distance(−→x i(t),

−→
B j(t)), is the Euclidian distance

between the vectors −→x i(t) and
−→
B j(t)) and stepvol is the volitive step size, which

must be defined by the user.

−→
B j(t) =

∑N
i=1

−→x i(t)Wi(t)∑N
i=1 Wi(t)

, (6)

−→x i(t + 1) = −→x i(t) − stepvolrand(0, 1)
(−→x i(t) − −→

B j(t))

distance(−→x i(t),
−→
B j(t))

, (7)

−→x i(t + 1) = −→x i(t) + stepvolrand(0, 1)
(−→x i(t) − −→

B j(t))

distance(−→x i(t),
−→
B j(t))

. (8)

3 Multithreaded Fish School Search

The Multithreaded Fish School Search (MTFSS) algorithm is designed to run
a single machine, splitting the search process into parallel threads in order to
reduce the running time of the optimization task. In this algorithm, the behav-
iour of each fish in the population is executed in one individual thread. The
pseudocode of the algorithm performed by each fish is showed in Algorithm 2.
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while Stopping condition is not met do
Perform the individual movement;
Barrier1();
Perform the feeding process;
Barrier2();
Perform the collective instinctive movement;
Perform the collective volitive movement;

end
Algorithm 2. Algorithm performed by each fish (i.e. each thread).

The individual movement is performed exactly like it is made in the standard
FSS algorithm. After this operator, the fish calls a sub-routine called Barrier1.
This sub-routine is showed in Algorithm 3.

static barrier1 counter:Number of fishes that is WAITING on Barrier1();
population size:Number of fishes in the population;
if barrier1 counter<population size then

barrier1 counter = barrier1 counter+1;
wait();

else
Find maximum fitness variation and store in a global variable, which
is accessible by all fishes;
Calculate

−→
I vector for collective instinctive movement;

notifyAll();
end

Algorithm 3. Barrier1 sub-routine.

It is important to mention that algorithm was coded in Java programming
language version 7. Therefore, the considered static modifier used in the pseudo-
code of Barrier1 sub-routine makes the instance of the variable barrier1 counter
unique for all fishes. Moreover, the wait() and notifyAll() functions make the
fish that calls the sub-routine Barrier1 enter in WAITING state and wake up
all the other fishes, putting them in RUNNABLE state again, respectively. It
means that every fish that reaches this sub-routine must wait for the other ones.
The last fish to reach this barrier finds the maximum fitness variation, shares
this information with the others, calculates the vector

−→
I and wakes-up the rest

of the population.
After all fishes are in RUNNABLE state again, each one calculates its new

weight throughout the feeding operator. After the feeding operator, the Barrier2
sub-routine is called. This sub-routine is showed in Algorithm 4.

After all fishes are in RUNNABLE state again, the collective instinctive
and volitive movements are performed exactly like the standard FSS algorithm,
using the vector

−→
I , the barycentre and fish school total weight calculated by

the last fish reach- ing Barrier2 sub-routine. However, there is a small change
in the barycentre calculation, but still important: all fishes positions used for
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this purpose are the ones right after the execution of the Individual Movement,
instead of being the positions after the Insitinctive Movement.

These barriers are intended to keep a minimum synchronism among the
fishes. The only change in the algorithms rationale in comparison to the stan-
dard version is the use of the positions after the individual movement in the
calculation of the barycentre, instead of using the positions after the collective
instinctive movement. Results, which are presented in Sect. 5, proved that this
change did not produce significant changes in the algorithms ability to find good
solutions.

It is important to mention that all threads execution, creation and death are
automatically managed by the runtime environment and the operating system,
which in itself is another facilitator for the adoption of the multi-threaded version
of the FSS algorithm.

static barrier2 counter:Number of fishes that is WAITING on Barrier2();
population size:Number of fishes in the population;
if barrier2 counter<population size then

barrier2 counter = barrier2 counter+1;
wait();

else
Calculate weight sum of all fishes;
Calculate barycentre, taking into account the position of each fish
after the individual movement;
notifyAll();

end
Algorithm 4. Barrier2 sub-routine.

4 Experiments Description

This work aims to compare the running time and the ability of finding good
solutions of the MTFSS with the FSS algorithm. Five well known benchmark
functions were used for this purpose: Rastrigin, Rosenbrock, Griewank, Ackley
and Schwefel 1.2, which are described in [9]. The boundaries of the search space
of these functions were set to [−5.12, 5.12], [−30, 30], [−600, 600], [−32, 32],
[−100, 100], respectively. The initialization subspaces for each function were
set to [2.56,5.12], [15,30], [300,600], [16,32], [50,100]. The initialization subspace
defines the region in the search space in which all individuals must be initialized.

Thirty executions were performed for each experiment. For both algorithms,
the individual step size and the Wscale factor were set to 10 % of the search
space length, at the beginning of the optimization task, linearly decreasing to
0.001 %, at the end of the process, and 5000, respectively. The volitive step
size was set to twice the individual step size. For the evaluation of the best
fitness found, 30 fishes, 30 dimensions for each function and 5000 iterations were
used. For running time evaluation, the number of dimensions, individuals and
iterations were varied, as shown on Sect. 5, but only Rastrigin function was used.
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The execution time were measured in milliseconds for each execution. The speed-
up values are the average value of the speed-ups in the thirty executions for each
combination between dimensions number and population size.

All experiments were performed in a personal computer equipped with a
processor Intel Core i5 650 3.2 GHz (2 physical and 2 virtual cores), 4 GB DDR3
RAM memory. The operational system installed was Ubuntu 13.04 32-bits, with
Java version 1.7.0 25 and OpenJDK 7 Runtime Environment IcedTea 2.3.10.

5 Results and Discussion

In this section, all results acquired throughout the experiments are presented.
Figures 1, 2 and 3 show the speed-ups achieved by the MTFSS in comparison

to the running time of the FSS algorithm for 100, 1000 and 10000 iterations,
respectively. It is possible to see that for 10 and 100 dimensions, the FSS is faster
than the MTFSS. However, throughout the approximation of the linear functions
that are formed by the points that represents the results of the experiments for
100 and 1000 dimensions, it can be also perceived that the MTFSS is quite
faster than the FSS when the problem has approximately more than 203, 309
and 297 dimensions for 100, 1000 and 10000 iterations, respectively. Since there
are no results for experiments with the number of dimensions between 100 and
1000, linear functions were used in order to acquire these approximations. The
linear functions used for this purpose were: f(x) = 0.00127(x − 100) + 0.871,
f(x) = 0.00167(x − 100) + 0.65 and f(x) = 0.00165(x − 100) + 0.6746.

Since the MTFSS was designed to reduce the running time of the FSS algo-
rithm in cases where the standard version is taking too long to complete the

Fig. 1. Speed-up for 100 iterations.



94 M.G.P. de Lacerda and F.B. de Lima Neto

Fig. 2. Speed-up for 1000 iterations.

Fig. 3. Speed-up for 10000 iterations.

optimization task, which are the case of highly dimensional problems, it is pos-
sible to say that the MTFSS performs satisfactorily those tasks without any
technical or economical burden.

It is clear also that the best results were accquired in the experiments with
larger dimensions, e.g. over 1000 dimensions; continuing to improve even further
for 10,000 dimensions. It was not observed significant differences between the
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experiments with 1000 and 10000 iterations. Even though the experiments with
100 iterations presented some significantly different results from the ones for 10,
100 and 1000 dimensions, for 10000 dimensions the results were quite similar. The
three highest speed-ups were achieved in the experiments with 100 individuals
and 10000 dimensions for 100, 1000 and 10000 iterations: 2.7695, 2.7668 and
2.7234, respectively.

Figures 4, 5, 6, 7 and 8 shows comparisons between the FSS and MTFSS algo-
rithms in terms of best fitness found. The box-plot graphs represents 30 execu-
tions with the setup presented on Sect. 4 in each function. Observing these graphs
in conjunction with the Wilcoxon test results that are presented on Table 1, it can
be affirmed that there is no significant difference in terms of best fitness found
between the algorithms FSS and MTFSS. Therefore, it can be concluded that
the MTFSS is able to speed-up the FSS execution up to approximately 3 times,
without losing the ability of finding good solutions of the original algorithm.

Fig. 4. Best fitness found comparison for Rastrigin.

Fig. 5. Best fitness found comparison for Rosenbrock.
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Fig. 6. Best fitness found comparison for Griewank.

Fig. 7. Best fitness found comparison for Ackley.

Fig. 8. Best fitness found comparison for Schwefel 1.2.
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Table 1. Wilcoxon test results for best fitness found, comparison between MTFSS and
FSS. (p = 0.05)

Objective function FSS

Rastrigin +

Rosenbrock X

Griewank -

Ackley X

Schwefel 1.2 X

6 Conclusion and Future Work

In this paper, it was presented a multithreaded version of the FSS algorithm,
the Multithreaded Fish School Search algorithm (MTFSS). Differently from the
pFSS algorithm, which is the first parallel version of the FSS (GPU based imple-
mentation), the parallelism of the MTFSS is based on threads, instead of cores,
where the behaviour of each fish is run by a single thread. So that, the new app-
roach was designed to run in any personal computer with multithread processing
available, without the need for GPUs or even, of a cluster.

The results showed that the algorithm is able to achieve interesting speed-
ups in comparison to the standard FSS, without losing the ability of the original
algorithm of finding good solutions.

As future work, the authors of this work intend to test the algorithm in com-
puters with more powerful processors; test the algorithm in different operating
systems; and test the algorithm with different programming languages.

On Table 1, ‘+’, ‘-’ and ‘X’ mean that the MTFSS performed statistically
better, worse or equal to the FSS, respectively.
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