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Abstract. It is well known that traditional computers work numerically
with finite numbers only and situations where a use of infinite or infini-
tesimal quantities is required are studied mainly theoretically by human
beings. In this paper, a recently introduced computational methodology
that has been proposed with the intention to change this differentiation
is discussed. It is based on the principle ‘The part is less than the whole’
applied to all quantities (finite, infinite, and infinitesimal) and to all sets
and processes (finite and infinite). The methodology uses as a computa-
tional device the Infinity Computer (patented in USA, EU, and Russian
Federation) working numerically with infinite and infinitesimal numbers
that can be written using a numeral positional system with an infinite
base. On a number of examples it is shown that it becomes possible both
to execute computations of a new type and to simplify computations
where infinity and/or infinitesimals are required.

Keywords: Numerical infinities and infinitesimals · Infinity computer ·
Numeral systems

1 Introduction

Even though there exist codes allowing one to work symbolically with ∞ and
other symbols related to the concepts of infinity and infinitesimals, traditional
computers work numerically only with finite numbers and situations where the
usage of infinite or infinitesimal quantities is required are studied mainly the-
oretically (see [2,3,6,8,9,12,13,18,19,38] and references given therein). Many
among the approaches developed for this purpose are rather old: ancient Greeks
following Aristotle distinguished the potential infinity from the actual infinity;
John Wallis (see [38]) credited as the person who has introduced the infinity sym-
bol, ∞, has published his work Arithmetica infinitorum in 1655; the foundations
of analysis we use nowadays have been developed more than 200 years; Georg
Cantor (see [2]) has introduced his cardinals and ordinals more than 100 years
ago, as well.
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The fact that numerical manipulations with infinities and infinitesimals have
not been implemented so far on computers can be explained by several difficul-
ties. Obviously, among them we can mention the fact that arithmetics developed
for this purpose are quite different with respect to the way of computing we
use when we deal with finite quantities. For instance, there exist undetermined
operations (∞−∞, ∞

∞ , etc.) that are absent when we work with finite numbers.
There exist also practical difficulties that preclude an implementation of numer-
ical computations with infinity and infinitesimals. For example, it is not clear
how to store an infinite quantity in a finite computer memory.

A new computational methodology introduced recently (see [23,29,33]) allows
one to look at infinities and infinitesimals in a new way and to execute numer-
ical computations with infinities and infinitesimals on the Infinity Computer
patented in USA (see [27]) and other countries. Nowadays there exists a rapidly
growing international scientific community that has developed a number of inter-
esting theoretical and applied results using the new methodology in several
research areas.

Among them it is worthy to mention studies linking the new approach to
the historical panorama of ideas dealing with infinity and infinitesimals (see
[14–16,35]). Then, the new methodology has been applied for studying Euclidean
and hyperbolic geometry (see [17,20]), percolation (see [10,11,37]), fractals (see
[22,24,32,37]), numerical differentiation and optimization (see [4,25,30,40]), infi-
nite series and the Riemann zeta function (see [26,31,39]), the first Hilbert prob-
lem and Turing machines (see [28,35,36]), cellular automata (see [5]), ordinary
differential equations (see [34]), etc.

In this paper, we briefly describe the new methodology and provide a number
of examples showing how it can be used in different situations where infinities
and infinitesimals are required. An interested reader is invited to have a look at
surveys [23,29,33] and the book [21] written in a popular way.

2 A New Standpoint on Infinity and a New Numeral
System

In order to start, let us remind that there exists a distinction (being very impor-
tant for the new methodology) between numbers and numerals. A numeral is
a symbol (or a group of symbols) that represents a number. A number is a
concept that a numeral expresses. The same number can be represented by dif-
ferent numerals. For example, the symbols ‘9’, ‘nine’, ‘IIIIIIIII’, and ‘IX’ are
different numerals, but they all represent the same number. Rules used to write
down numerals together with algorithms for executing arithmetical operations
form a numeral system.

It is necessary to remind also that different numeral systems can express dif-
ferent sets of numbers and they can be more or less suitable for executing arith-
metical operations. Even the powerful positional system is not able to express,
e.g., the number π by a finite number of symbols (the finiteness is essential for
executing numerical computations) and this special numeral, π, is deliberately
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introduced to express the desired quantity. There exist many numeral systems
that are weaker than the positional one. For instance, Roman numeral system is
not able to express zero and negative numbers and such an expression as III–V
is an indeterminate form in this numeral system. As a result, before appearing
the positional numeral system and inventing zero mathematicians were not able
to create theorems involving zero and negative numbers and to execute com-
putations with them. Thus, developing new (more powerful than existing ones)
numeral systems can help a lot both in theory and practice of computations.

There exist very weak numeral systems allowing their users to express a very
limited quantity of numbers and one of them will be illuminating for our study.
This numeral systems is used by a primitive tribe, Pirahã, living in Amazonia
nowadays. A study published in Science in 2004 (see [7]) describes that these
people use an extremely simple numeral system for counting: one, two, many.
For Pirahã, all quantities larger than two are just ‘many’ and such operations
as 2 + 2 and 2 + 1 give the same result, i.e., ‘many’. Using their weak numeral
system Pirahã are not able to see, for instance, numbers 3, 4, and 5, to execute
arithmetical operations with them, and, in general, to say anything about these
numbers because in their language there are neither words nor concepts for that.
It is worthy to mention that the result ‘many’ is not wrong. It is just inaccurate.
The introduction of a numeral system having numerals for expressing numbers
3 and 4 leads to a higher accuracy of computations and allows one to distinguish
results of operations 2 + 1 and 2 + 2.

The weakness of the numeral system of Pirahã leads also to the following
results

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’, ‘many’ + ‘many’ = ‘many’

that are crucial for changing our outlook on infinity. In fact, by changing in
these relations ‘many’ with ∞ we get relations used to work with infinity in the
traditional calculus

∞ + 1 = ∞, ∞ + 2 = ∞, ∞ + ∞ = ∞.

This comparison suggests that our difficulty in working with infinity is not
connected to the nature of infinity but is a result of inadequate numeral systems
used to express infinite numbers. In order to increase the accuracy of computa-
tions with infinities, the computational methodology developed in [21,23,29] pro-
poses a new numeral system that avoids situations similar to ‘many’+1 = ‘many’
providing results ensuring that if a is a numeral written in this numeral system
then for any a (i.e., a can be finite, infinite, or infinitesimal) it follows a+1 > a.

The new numeral system works as follows. A new infinite unit of measure
expressed by the numeral ① called grossone is introduced as the number of
elements of the set, N, of natural numbers. Concurrently with the introduction
of grossone in the mathematical language all other symbols (like ∞, Cantor’s
ω, ℵ0,ℵ1, ..., etc.) traditionally used to deal with infinities and infinitesimals are
excluded from the language because ① and other numbers constructed with its
help not only can be used instead of all of them but can be used with a higher
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accuracy. Grossone is introduced by describing its properties postulated by the
Infinite Unit Axiom (see [23,29]) added to axioms for real numbers (similarly,
in order to pass from the set, N, of natural numbers to the set, Z, of integers a
new element – zero expressed by the numeral 0 – is introduced by describing its
properties).

The new numeral ① allows us to construct different numerals expressing
different infinite and infinitesimal numbers and to execute computations with
all of them. As a result, instead of the usual symbol ∞ different infinite and/or
infinitesimal numerals can be used. Indeterminate forms are not present and, for
example, the following relations hold for infinite numbers ①, ①2 and ①−1, ①−2

(that are infinitesimals), as for any other (finite, infinite, or infinitesimal) number
expressible in the new numeral system

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0,

0 · ①−1 = ①−1 · 0 = 0, ①−1 > 0, ①−2 > 0, ①−1 − ①−1 = 0,

①−1

①−1 = 1, (①−1)0 = 1, ① · ①−1 = 1, ① · ①−2 = ①−1,

①−2

①−2 = 1,
①2

①
= ①,

①−1

①−2 = ①, ①2 · ①−1 = ①, ①2 · ①−2 = 1.

The introduction of the numeral ① allows us to represent more infinite and
infinitesimal numbers in a unique framework. For this purpose a new numeral
system similar to traditional positional numeral systems was introduced in [21,23].
To construct a number C in the numeral positional system with base ①, we sub-
divide C into groups corresponding to powers of ①:

C = cpm
①pm + . . . + cp1①p1 + cp0①p0 + cp−1①p−1 + . . . + cp−k

①p−k . (1)

Then, the record

C = cpm
①pm . . . cp1①p1cp0①p0cp−1①p−1 . . . cp−k

①p−k (2)

represents the number C, where all numerals ci �= 0, they belong to a traditional
numeral system and are called grossdigits. They express finite positive or neg-
ative numbers and show how many corresponding units ①pi should be added
or subtracted in order to form the number C. Note that in order to have a
possibility to store C in the computer memory, values k and m should be finite.

Numbers pi in (2) are sorted in the decreasing order with p0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k.

They are called grosspowers and they themselves can be written in the form (2).
In the record (2), we write ①pi explicitly because in the new numeral positional
system the number i in general is not equal to the grosspower pi. This gives the
possibility to write down numerals without indicating grossdigits equal to zero.
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The term having p0 = 0 represents the finite part of C since c0①0 = c0.
Terms having finite positive grosspowers represent the simplest infinite parts of
C. Analogously, terms having negative finite grosspowers represent the simplest
infinitesimal parts of C. For instance, the number ①−1 = 1

①
mentioned above

is infinitesimal. Note that all infinitesimals are not equal to zero. In particular,
1

①
> 0 since it is a result of division of two positive numbers.
A number represented by a numeral in the form (2) is called purely finite

if it has neither infinite not infinitesimals parts. For instance, 4 is purely finite
and 4+3.5①−1 is not. All grossdigits ci are supposed to be purely finite. Purely
finite numbers are used on traditional computers and for obvious reasons have
a special importance for applications.

All of the numbers introduced above can be grosspowers, as well, giving thus
a possibility to have various combinations of quantities and to construct terms
having a more complex structure. However, in this paper we consider mainly
purely finite grosspowers.

Before we conclude this section let us mention that the new numeral sys-
tem, as all numeral systems, cannot express all numbers and give answers to
all questions. Let us consider, for instance, the set of extended natural numbers
indicated as ̂N and including N as a proper subset

̂N = {1, 2, . . . , ① − 1, ①
︸ ︷︷ ︸

Natural numbers

, ① + 1, ① + 2, . . . , ①2 − 1, ①2, ①2 + 1, . . .}. (3)

What can we say with respect to the number of elements of the set ̂N? The
introduced numeral system based on ① is too weak to give answers to this
question. It is necessary to introduce in a way a more powerful numeral system
by defining new numerals (for instance, ②, ③, etc.).

We finish this section by emphasizing that different numeral systems, if they
have different accuracies, cannot be used together. For instance, the usage of
‘many’ from the language of Pirahã in the record 4 + ‘many’ has no any sense
because for Pirahã it is not clear what 4 is and for people knowing what 4 is the
accuracy of the answer ‘many’ is too low. Analogously, the records of the type
①+ω, ①−ℵ0, ①/∞, etc. have no sense because they include numerals developed
under different methodological assumptions, in different mathematical contests,
for different purposes, and, finally, numeral systems these numerals belong to
have different accuracies.

3 Examples of Computations with Infinities
and Infinitesimals

Let us start by giving an example of multiplication of two infinite numbers A
and B written in the numeral system (1), (2) (for a comprehensive description
on arithmetical operations see [21,23]).

Example 1. Let us consider numbers A and B, where

A = 2.4①45.35.8①−7.2, B = 6.3①5.87.1①09①−4.3.
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The number A has one infinite part, 2.4①45.3, and one infinitesimal part equal
to 5.8①−7.2. The number B has one infinite part, 6.3①5.8, the finite part, 7.1
(remind that ①0 = 1), and the infinitesimal one, 9①−4.3. Their product C is
equal to

C = B · A = 15.12①51.117.04①45.321.6①4136.54①−1.441.18①−7.252.2①−11.5.

It has three infinite parts and three infinitesimal ones. �
The new approach gives the possibility to develop a new Analysis (see [26]) where
functions assuming not only finite values but also infinite and infinitesimal ones
can be studied. For all of them it becomes possible to introduce a new notion of
continuity that is closer to our modern physical knowledge. Functions assuming
finite and infinite values can be differentiated and integrated.

Example 2. The function f(x) = x2.5 has the first derivative f ′(x) = 2.5x1.5

and both f(x) and f ′(x) can be evaluated at infinite and infinitesimal x. Thus,
for infinite x = ① we obtain infinite values

f(①) = ①2.5, f ′(①) = 2.5①1.5

and for infinitesimal x = 9①−1.5 we have

f(9①−1.5) = 243①−3.75, f ′(9①−1.5) = 67.5①−2.25.

Both values, f(9①−1.5) and f ′(9①−1.5), are infinitesimal. �
We can also work with functions defined by formulae including infinite and
infinitesimal numbers.

Example 3. The function f(x) = 1

①
x2 + ①x has a quadratic term infinitesimal

and the linear one infinite. It has the first derivative f ′(x) = 2

①
x+①. For infinite

x = 4① we obtain infinite values

f(①) = 4①2 + 16①, f ′(①) = ① + 8

and for infinitesimal x = ①−1 we have

f(①−1) = 1 + ①−3, f ′(①−1) = ① + 2①−2. �

By using the new numeral system it becomes possible to measure certain infinite
sets. As we have seen above, relations of the type ‘many’ + 1 = ‘many’ are
consequences of the weakness of numeral systems applied to express numbers.
Thus, one of the principles of the new computational methodology consists of
adopting the principle ‘The part is less than the whole’ to all numbers (finite,
infinite, and infinitesimal) and to all sets and processes (finite and infinite).

Example 4. Grossone has been introduced in such a way that (see [14,28,29]
for a detailed discussion) the sets of even and odd numbers have ①/2 elements
each. The set, Z, of integers has 2①+1 elements (① positive elements, ① negative
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elements, and zero). Within the countable sets and sets having cardinality of the
continuum it becomes possible to distinguish infinite sets having different number
of elements expressible in the numeral system using grossone and to see that,
for instance,

①

2
< ① − 1 < ① < ① + 1 < 2① + 1 < 2①2 − 1 < 2①2 < 2①2 + 1 <

2①2+2 < 2①−1 < 2① < 2①+1 < 10① < ①①−1 < ①① < ①①+1. �

In order to see how the principle ‘The part is less than the whole’ agrees with our
traditional views on infinite sets, let us consider the following two examples. The
first of them is related to the one-to-one correspondence and takes its origins in
studies of Galileo Galilei.

Example 5. The traditional point of view: even numbers can be put in a one-
to-one correspondence with all natural numbers in spite of the fact that they are
a part of them:

even numbers: 2, 4, 6, 8, 10, 12, . . .
� � � � � �

natural numbers: 1, 2, 3, 4 5, 6, . . .
(4)

The usual conclusion is that both sets are countable and they have the same
cardinality ℵ0. However, now we know that when one executes the operation
of counting the accuracy of the result depends on the numeral system used for
counting. Since for cardinal numbers it follows

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 + ℵ0 = ℵ0,

these relations suggest that the accuracy of the cardinal numeral system of
Alephs is not sufficiently high to see the difference with respect to the num-
ber of elements of the two sets.

In order to look at the record (4) using the new numeral system we need the
following fact from [21]: ① is even. It is also necessary to remind that numbers
that are larger than ① are not natural, they are extended natural numbers. For
instance, ① +2 is even but not natural, it is extended natural, see (3). Since the
number of elements of the set of even numbers is equal to ①

2 , we can write down
not only initial (as it is usually done traditionally) but also the final part of (4)

2, 4, 6, 8, 10, 12, . . . ① − 4, ① − 2, ①
� � � � � � � � �
1, 2, 3, 4 5, 6, . . . ①

2 − 2, ①
2 − 1, ①

2

(5)

concluding so (4) in a complete accordance with the principle ‘The part is less
than the whole’. Both records, (4) and (5), are correct but (5) is more accurate,
since it allows us to observe the final part of the correspondence that is invisible
if (4) is used. �
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In order to become more familiar with natural and extended natural numbers
we provide one more example.

Example 6. We consider the set of natural numbers, N, and multiply each of
its elements by 2. We would like to study the resulting set, that will be called E

2

hereinafter, to calculate the number of its elements and to specify which among
its elements are natural and which ones are extended natural numbers and how
many they are.

The introduction of the new numeral system allows us to write down the set,
N, of natural numbers in the form

N = {1, 2, . . .
①

2
− 2,

①

2
− 1,

①

2
,

①

2
+ 1,

①

2
+ 2, . . . ① − 2, ① − 1, ①}.

By definition, the number of elements of N is equal to ①. Thus, after multipli-
cation of each of the elements of N by 2, the resulting set, E2, will also have
grossone elements. In particular, the number ①

2 multiplied by 2 gives us ① and
①
2 + 1 multiplied by 2 gives us ① + 2 that is even extended natural number.
Analogously, the last element of N, i.e., ①, multiplied by 2 gives us 2①. Thus,
the set of even numbers E

2 can be written as follows

E
2 = {2, 4, 6, . . . ① − 4, ① − 2, ①, ① + 2, ① + 4, . . . 2① − 4, 2① − 2, 2①},

where numbers {2, 4, 6, . . . ①−4, ①−2, ①} are even and natural (they are ①
2 )

and numbers {① + 2, ① + 4, . . . 2① − 4, 2① − 2, 2①} are even and extended
natural, they also are ①

2 . �
The last example is taken from [4]. It is related to the field of nonlinear con-
strained optimization being an important class of problems with a broad range
of scientific and engineering applications. In the literature, there exists a num-
ber of algorithms proposed for solving this kind of problems (see, e.g., [1] and
references given therein). The authors of [4] concentrate their attention on opti-
mization methods using penalty functions to reduce the original constrained
problem to an unconstrained one. Traditionally, this kind of methods requires to
solve a sequence of unconstrained minimization problems for increasing values
of a penalty parameter and it is necessary to understand what is the point the
sequence of solutions converges to. The following example shows that there exist
situations where the usage of ① as a penalty coefficient allows us to avoid the
necessity to solve such a sequence of problems.

Example 7. The authors of [4] consider the following quadratic two-dimensional
optimization problem with a single linear constraint

min
x

1
2
x2
1 +

1
6
x2
2,

subject to x1 + x2 = 1.
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The pair (x, π) is a Karush-Kuhn-Tucker point where x =
[

1/4

3/4

]

and π = − 1
4 .

Then the corresponding unconstrained optimization problem can be constructed
using a penalty coefficient P as follows

min
x

1
2
x2
1 +

1
6
x2
2 +

P

2
(1 − x1 − x2)2.

For instance, suppose that we have taken P = 20 then the first order optimality
conditions can be written as follows

{

x1 − 20(1 − x1 − x2) = 0,
1
3x2 − 20(1 − x1 − x2) = 0.

Solution to this system of linear equations is the stationary point of the uncon-
straint problem, namely, it is

x∗
1(20) =

20
81

, x∗
2(20) =

60
81

and it is not clear how to obtain the exact pair (x, π) from the pair (x∗
1(20), x∗

2(20)).
Very often people take a sequence {pk} of increasing values of P , solve the prob-
lem again and again, and try to understand where the sequence of points (x∗

1(pk),
x∗
2(pk)) converges.

To avoid the necessity to solve a sequence of problems, the authors of [4]
propose to use ① as the penalty coefficient P , i.e., to construct the following
unconstrained problem

min
x

1
2
x2
1 +

1
6
x2
2 +

①

2
(1 − x1 − x2)2.

The first order optimality conditions then are
{

x1 − ①(1 − x1 − x2) = 0
1
3x2 − ①(1 − x1 − x2) = 0

and the solution is

x∗
1(①) =

①

4①+1
, x∗

2(①) =
3①

4①+1
.

After division we have

x∗
1(①) =

1
4

− ①−1(
1
16

− 1
64

①−1 + . . .), x∗
2(①) =

3
4

− ①−1(
3
16

− 3
64

①−1 + . . .).

This means that the finite parts of x∗
1(①) and x∗

2(①) give us the exact solution
to the original constrained problem. Moreover,

−①(1 − x∗
1(①) − x∗

2(①)) = −1
4

+
4
64

①−1 + . . .

i.e., we have π = − 1
4 . �
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Thus, the main issue in this example consists of the fact that finite parts of
the results can be easily separated from infinitesimals ones. In contrast, in the
traditional approaches this is impossible since both the original problem and
parameters work with finite values only. Thus, results (x∗

1(pk), x
∗
2(pk)) provided

by traditional methods are finite numbers and, therefore, inside the results cor-
responding to the unconstrained problem one is not able to see the impact of
the parameters (perturbations) on the solution of the original problem.
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6. Gödel, K.: The Consistency of the Continuum-Hypothesis. Princeton University

Press, Princeton (1940)
7. Gordon, P.: Numerical cognition without words: Evidence from Amazonia. Science

306, 496–499 (2004)
8. Hardy, G.H.: Orders of Infinity. Cambridge University Press, Cambridge (1910)
9. Hilbert, D.: Mathematical problems: Lecture delivered before the International

Congress of Mathematicians at Paris in 1900. Bull. Am. Math. Soc. 8, 437–479
(1902)

10. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Interpretation of percolation in terms
of infinity computations. Appl. Math. Comput. 218(16), 8099–8111 (2012)

11. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Infinity computations in percolation
theory applications. Commun. Nonlinear Sci. Numer. Simul. 20(3), 861–870 (2015)

12. Leibniz, G.W., Child, J.M.: The Early Mathematical Manuscripts of Leibniz. Dover
Publications, New York (2005)

13. Levi-Civita, T.: Sui numeri transfiniti. Rend. Acc. Lincei (Series 5a) 113, 7–91
(1898)

14. Lolli, G.: Infinitesimals and infinites in the history of mathematics: A brief survey.
Appl. Math. Comput. 218(16), 7979–7988 (2012)

15. Lolli, G.: Metamathematical investigations on the theory of grossone. Appl. Math.
Comput. (2015) (to appear)

16. Margenstern, M.: Using grossone to count the number of elements of infinite sets
and the connection with bijections. p-Adic Numbers, Ultrametric. Anal. App. 3(3),
196–204 (2011)

17. Margenstern, M.: An application of grossone to the study of a family of tilings of
the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

18. Newton, I.: Method of Fluxions (1671)
19. Robinson, A.: Non-standard Analysis. Princeton University Press, Princeton (1996)
20. Rosinger, E.E.: Microscopes and telescopes for theoretical physics: How rich locally

and large globally is the geometric straight line? Prespacetime J. 2(4), 601–624
(2011)



200 Y.D. Sergeyev

21. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, CS (2003).
2d electronic edn. (2013)

22. Sergeyev, Y.D.: Blinking fractals and their quantitative analysis using infinite and
infinitesimal numbers. Chaos, Solitons Fractals 33(1), 50–75 (2007)

23. Sergeyev, Y.D.: A new applied approach for executing computations with infinite
and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

24. Sergeyev, Y.D.: Evaluating the exact infinitesimal values of area of Sierpinski’s
carpet and volume of Menger’s sponge. Chaos, Solitons Fractals 42(5), 3042–3046
(2009)

25. Sergeyev, Y.D.: Numerical computations and mathematical modelling with infinite
and infinitesimal numbers. J. Appl. Math. Comput. 29, 177–195 (2009)

26. Sergeyev, Y.D.: Numerical point of view on Calculus for functions assuming finite,
infinite, and infinitesimal values over finite, infinite, and infinitesimal domains.
Nonlin. Anal. Ser. A: Theory Methods Appl. 71(12), e1688–e1707 (2009)

27. Sergeyev, Y.D.: Computer system for storing infinite, infinitesimal, and finite quan-
tities and executing arithmetical operations with them. USA patent 7,860,914
(2010)

28. Sergeyev, Y.D.: Counting systems and the First Hilbert problem. Nonlinear Anal.
Ser. A: Theory, Methods Appl. 72(3–4), 1701–1708 (2010)

29. Sergeyev, Y.D.: Lagrange Lecture: Methodology of numerical computations with
infinities and infinitesimals. Rendiconti del Seminario Matematico dell’Università
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