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Abstract. The characterization of the generic properties underlying the
complex interplay ruling cell differentiation is one of the goals of mod-
ern biology. To this end, we rely on a powerful and general dynami-
cal model of cell differentiation, which defines differentiation hierarchies
on the basis of the stability of gene activation patterns against biologi-
cal noise.

In particular, in this work we investigate the role of the topology (i.e.
scale-free or random) and of the dynamical regime (i.e. ordered, critical
or disordered) of gene regulatory networks on the model dynamics. Two
real lineage commitment trees, i.e. intestinal crypts and hematopoietic
cells, are compared with the hierarchies emerging from the dynamics of
ensembles of randomly simulated networks.

Briefly, critical networks with random topology seem to display a
wider range of possible behaviours as compared to the others, hence sug-
gesting an intrinsic dynamical heterogeneity that may be fundamental
in defining different differentiation trees. Conversely, scale-free networks
show a generally more ordered dynamics, which limit the overall variabil-
ity, yet containing the effect of possible genomic perturbations. Interest-
ingly, a considerable number of networks across all types show emergent
trees that are biologically plausible, suggesting that a relatively wide
portion of the networks space may be suitable, without the need for a
fine tuning of the parameters.

1 Introduction

In the last years a dynamical interpretation of gene regulation has gained an
always greater attention, as a complement to the static consideration of the inter-
actions among genomic entities, as classically done through the systems-biology
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approach [17]. The focus switches from the static description of the involved enti-
ties and interactions to the analysis of the emergent collective behaviors, that
are the gene activation patterns characterizing the different phenotypic functions
of cells, such as cell types or modes. Each organism is, in fact, characterized by
a unique gene regulatory network, but is able to exhibit a broad range of dis-
tinct phenotypes. Any (phenotypic) function is determined by a specific gene
activation pattern, which is the result of the joint dynamical interaction among
genes.

Accordingly, gene regulatory networks (GRNs) can be modeled as dynam-
ical systems and the focus is on the analysis of their “attractors” [14,21,30]1.
Many different mathematical and computational models aimed at representing
the dynamics of GRNs have been developed through the years, with different
goals and applications and most of them are rooted in complex systems science
and statistical physics (see, e.g., [38] for a recent review).

In particular, we here present a study regarding a dynamical model of cell
differentiation2, introduced in [39] and based on Noisy Random Boolean Net-
works (NRBNs, [27,31]). This simplified model of gene regulation considers genes
as simply active/inactive and describes simplified regulatory interactions (not
explicitly considering the underlying biochemical machinery), focusing on the
dynamical behaviour emerging from the interaction of the genes. In line with
the complex systems approach the major goal is to investigate the generic prop-
erties of gene networks, that are those properties shared by a broad range of
systems and organisms. To this end, a powerful methodological means is that
provided by the statistical analysis of ensembles of randomly simulated networks
with specific features, in order to scan the huge space in which real networks,
on which complete information is still missing, might be found. Despite the
underlying abstractions, this modeling approach was proven fruitful in describ-
ing properties of real networks, as in, e.g.,[21,22,29,33,34,36].

The model of cell differentiation we here analyze is abstract and general, i.e.
it is not referred to any specific system or organism and it is based on two specific
dynamical properties of the attractors of GRNs: their robustness against random
or selective perturbations (i.e. genomic mutations/alterations) and their reacha-
bility, defined as the likelihood of observing a certain attractor. Starting from the
underlying hypotheses that biological noise and specific perturbations can trig-
ger transitions among the GRN attractors (i.e. the gene activation patterns) and
that higher level of noise were detected in less differentiated cells [8,10,11,13,24],

1 Given a GRN dynamical model, the long term evolution will confine the cellular
states in a specific region of the state space, i.e. an attractor, in which the values
of the variables can be fixed over time, can be characterized by oscillatory peri-
odic regimes, or even by more particular non-periodic dynamics (in non finite-states
deterministic models). Any GRN can be characterized by the presence of differ-
ent attractors, reachable from distinct initial conditions. The attractors represent
coherent activation patterns of genes.

2 Cell differentiation is the process according to which the progeny of stem cells pro-
gressively develops into different and always more specialized cell types, crossing
various intermediate stages.
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two constraints must be respected: (i) the attractors of a specific cell type must
be sufficiently robust against perturbations not to compromise the functioning
of the cell, (ii) in less differentiated cell types attractors must be sufficiently
sensitive to perturbations to account for different cell fates when differentiating.
These constraints are satisfied in our model by assuming that: (i) cell types or
modes are characterized by sets of attractors in which the GRN can wander via
noise or specific signals; (ii) the process of progressive specialization is charac-
terized by a gradual improvement of the noise-control mechanisms that hinder
the transitions, from less differentiated cells, sensitive to noise, to fully differen-
tiated stages, robust against noise. In this way it is possible to define a hierarchy
connecting the differentiation levels and cell fate decisions are then driven by
stochastic fluctuations or triggered by specific signals.

Many important features of the differentiation process are reproduced by the
model, such as: (i) the presence of different degrees of differentiation, that span
from totipotent stem cells to fully differentiated cells in a well-defined hierarchy,
which determines a lineage tree; (ii) the stochastic differentiation, according to
which populations of identical multipotent cells stochastically generate different
cell types; (iii) the deterministic differentiation, in which specific signals trigger
the progress of multipotent cells into more differentiated types, in well-specified
lineages; (iv) the limited reversibility in which, under the action of appropriate
signals, the cell can revert its lineage specification; (v) the induced pluripotency,
according to which fully differentiated cells can come back to a pluripotent state
by modifying the expression of specific genes [41]; (vi) the induced change of
cell type, in which the modification of the expression of few genes can directly
convert one differentiated cell type into another.

The emerging lineage commitment tree can be matched against real differ-
entiation trees as those in Fig. 1, through simple tree-matching algorithms. The
analysis of a large number of GRNs matching/non-matching real trees can then
provide some cues for explaining the properties ruling the complex differentiation
interplay.

Thus, the focus of this work is to analyze the influence of: (i) the topology
and of (ii) the dynamical regime of the GRNs on the key dynamical properties
and especially on their robustness and reachability, with particular regard to the
emerging differentiation hierarchy. In particular, two real differentiation trees
will be targeted by our model, intestinal crypts and hematopoietic cells.

In regard to the former analysis, classical studies on RBNs and NRBNs
involve random topologies (i.e. Erdos-Renyi-based [9]), which determine a Pois-
sonian distribution of the connection. Even though present data still do not allow
to draw definitive conclusion on the topology underlying real GRNs, it is sound
to investigate the relation that different kinds of topologies may have on the
overall emerging behaviour. In particular, scale-free networks [3] have raised a
considerable interest and were shown to approximate several networks, including
metabolic and protein networks3. Therefore, we here present the analysis of a
study comparing the behaviour of NRBNs with random and scale-free topologies.
3 Excluding the high degree exponential cutoffs due to the limited size of the networks.
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The second analysis concerns the influence that the dynamical regimes have
on the properties of the GRNs relevant to the differentiation model. In short,
the dynamical regime of a RBN is defined on the basis of the sensitivity to the
initial conditions, that is the response to small perturbations. If small perturba-
tions tend to lead to different attractors, i.e. the perturbation propagates, the
network can be considered as disorderered (sometimes refered to as chaotic) and
vice versa. Networks characterized by disordered regimes are (on the average)
characterized by a larger number of longer attractors and vice versa. It was ana-
lytically proved that by varying certain key structural parameters of RBNs it is
possible to switch across the dynamical regimes. A very interesting dynamical
region is at the boundary between disordered and ordered phase and is defined
as “critical”, sometimes referred to as the “edge of chaos” [23]. It was hypothe-
sized the biological systems, and GRNs in particular, may live and evolve in this
specific region, which would allow an optimal trade-off between robustness and
evolvibility [21]. Experimental evidences in support of this hypothesis are pro-
vided, e.g., in [29,33,36]. In this work we aim at investigating how the dynamical
regime can influence the properties of the cell differentiation model, with specific
regard to the suitability for a matching with real differentiation trees.

As specified above, the two specific biological systems that were chosen as
test beds for the model are intestinal crypts and hematopoietic cells. Intestinal
crypts are invaginations in the intestine connective tissue in which tumors are
supposed to originate from some partially known gene and pathway alterations
affecting the stem cell niche [1]. A complex differentiation process rules the
overall homeostasis, in terms of stratification of cell populations of distinct types,
coordinate migration, dynamic turnover, etc. Conversely, in hematopoietic cells,
the differentiation can be interpreted as a trajectory among attractors, involving
the transcriptome as the state space of cell populations and the miRNome as
tuning mechanism, and that starts from multipotent hematopoietic stem cells
giving rise to a hierarchy of progenitor populations with more limited lineage
potential, eventually leading to mature blood cell types [Felli et al. 2010].

In both cases we are interested in comparing the already mapped lineage
trees (Fig. 1) with the trees emerging from the dynamics of randomly generated
networks. In this way it is possible to investigate the structural and dynamical
features of the suitable networks, possibly providing hypotheses on the generic
properties of real networks.

This study is a part of a series of articles aimed at the analysis of the prop-
erties of the model of cell differentiation introduced in [39]. Other models have
been proposed in course of the time, even if with distinct modeling approaches,
e.g., [15,17,26].

In Sect. 2 the dynamical model of cell differentiation is described. In Sect. 3
the analyses concerning the topology, the dynamical regime and the lineage tree
comparison are described. Section 4 the results of the simulations are shows,
whereas Sect. 5 contains the final remarks.



Investigating the Role of Network Topology and Dynamical Regimes 155

Fig. 1. Differentiation trees in intestinal crypts and hematopoietic cells. In (A)
the crypt differentiation tree is shown, involving stem, transit amplifying stage (TA1,
TA2-A, TA2-B), Paneth (PA), Goblet (GO), enteroendocrine (EE) and enterocyte
(EC) cells [6]. In (B) the hematopoietic differentiation tree is shown, involving stem,
multipotent progenitors (MPP), common myeloid progenitors (CMP), common lym-
phoid progenitors (CLP), megakaryocyte-erythroid progenitors (MEP), granulocyte-
macrophage progenitors (GMP). The finally differentiate cells are considered only as
distinct classes of differentiated cells (D1, D2, D3) [40].

2 A Dynamical Model of Cell Differentiation

Here we will briefly outline the main features of the dynamical model of cell
differentiation introduced in [39], for a more exhaustive description please refer
to the original work.

Random Boolean Networks (RBNs, [19–21]) are an abstract model of Gene
Regulatory Network (GRN). These networks are directed graphs whose nodes
are binary variables xi that model the activation/inactivation of the associated
gene (i.e. production of a specific protein or RNA); the edges symbolize the
regulatory paths. A Boolean updating function fi is associated to each xi and the
update occurs synchronously at discrete time step for each node of the network,
according to the value of the inputs nodes at the previous time step. So, if the
state at time t of a RBN is the binary vector x(t), the i-th component of state
x(t + 1) is:

x(t + 1)i
def≡ fi(x(t)) (1)

Since the state-space is finite (i.e. there exist at most 2n vectors in {0, 1}n)
and the dynamics is fully deterministic, the system will end up in a limit cycle
from any initial condition x(0)4. Such a cycle is an attractor of the RBN and
the sequence of states from x(0) to the cycle is the transient of the attractor;
accordingly, the set of initial conditions ending up to the same attractor is named
basin of attraction. Notice that attractors correspond then to gene activation
patterns.
4 We here use the so called quenched model [21], in which both the graph and the

boolean functions do not change in time.
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Fig. 2. Example ATNs and TESs. An example of the threshold-dependent ATN
and the corresponding tree-like TES landscape. The circle nodes are attractors of an
example NRBN, the edges represent the relative frequency of transitions from one
attractor to another one, after a 1 time step-flip of a random node in a random state of
the attractor (performed an elevated number of times). In this case we show three dif-
ferent values of threshold, i.e.: δ = 0, δ = 0.15 and δ = 1. TESs, i.e. strongly connected
components in the threshold-dependent ATN with no outgoing links are represented
through dotted lines and the relative threshold is indicated in the subscripted index.
In the right diagram it is shown the tree-like representation of the TES landscape.

Considering that biological noise is known to play a role in several key cellu-
lar processes and in differentiation as well [4,8,12,16,18,24,25,28,37], an exten-
sion of RBNs accounting for stochastic fluctuations was developed, named Noisy
Random Boolean Networks, NRBN [27,31].

The key notion in the NRBN model, as presented in [39], is the definition of a
attractor transition network (ATN). The ATN is a stability matrix whose entries
represent the probability of switching among RBN attractors, as a consequence
or random flips of the value of the nodes (i.e. xi = 1 gets flipped to 0, and
vice versa) in an attractor. From another perspective, the ATN describes the
possibility of wandering among the attractors as a consequence of the smallest
perturbation which can affect a RBN, i.e. the flip. In [31] we showed that the
transition probability among attractors decreases sub-linearly with respect to
the graph size.

The definition of the ATN for a certain NRBN allows to represent the phe-
nomenon of hierarchical stochastic differentiation. The underlying biological idea
is the following: any cell type is characterize by a certain number of gene activa-
tion patterns in which the cell can wander as a consequence of random fluctua-
tions and specific signals; besides, more differentiated cells are characterized by a
better robustness against noise, because of more refined noise-control mechanism
and, consequently, can roam in smaller portion of the state space, as experimen-
tally proven by the higher level of noise in gene activation that has been detected
in undifferentiated cells [10,11,13,24].
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In our model it possible to introduce a threshold δ ∈ [0, 1] that is used to
remove the transitions that are too rare, i.e. that cannot occur within the life-
time time of a cell, so defining a threshold dependent-ATN. Intuitively, higher
thresholds represent better noise-control mechanism and are associated to pro-
gressively more differentiated cells. Each cell type of a cell is then associated
to a so-called Threshold Ergodic Set (TES), as defined in [39]: given a certain
threshold δ ∈ [0, 1] a TESδ is:

– a strongly connected component, SCC, in a threshold dependent-ATN,
– in which there are no outgoing links from any attractors belonging to the SCC

toward an external attractor

TESs represent coherent stable ways of functioning of the same genome even in
the presence of noise, i.e. cell types or modes. In this way, toti-/pluri-potent stem
cells, for instance, will be characterized by a very low values of the threshold and
will wander across various gene patterns, in order to resemble their biological
capability of differentiating in various cellular types. Conversely, differentiated
types will be associated to high thresholds. More in general, different thresholds
will be associated to different degrees of differentiation. The phenomenon of
stochastic differentiation is then defined as follows: the fate of a cell depends on
the attractor where the cell is when the cell divides and the threshold increases.
The new cell type will be that corresponding to the TES to which the attractor
belongs in correspondence of the new threshold level. This allow to define parent
and children types of cells and, accordingly, to draw a coherent a hierarchical
differentiation tree. In principle, it is possible to map any desired differentiation
tree to a partial order over thresholds (see Fig. 2).

Notice that in this case we intend to model only the stochastic differentiation
process, whereas the model is capable of representing the deterministic differen-
tiation as well5. Future analyses will investigate the repercussions of a change in
the topology and in the dynamical regimes also with respect to it.

3 The Influence of Topology and of the Dynamical
Regimes

The goal of the current work is to disentangle the effects of (i) the topology
and of (ii) the dynamical regime of a NRBN on the properties of the TESs and,
accordingly of the emerging differentiation tree. Considering that the information
on real GRNs is still partial, along the lines of the complex systems approach we
here focus on the generation of large ensembles of randomly generated networks
with specific structural feature, in order to investigate the emergent dynamical
properties of classes of networks and to relate them to the differentiation process.
5 In several processes, e.g., during the embryogenesis, cell differentiation is not stochas-

tic but it is driven towards precise, repeatable types by specific chemical signals. In
our model, it was shown that certain genes, called switch genes, if permanently per-
turbed and coupled with a change in the threshold always leads the system through
the same differentiation pathway. In other words, nodes that uniquely determine to
which TES the system will evolve, i.e. deterministic differentiation.
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Topological classes: random vs. scale-free. It was recently shown that genetic
and metabolic networks might have a different topology than the Erdos-Renyi
[9] one and, in particular, the presence of a large number of scarcely connected
nodes and of a small number of largely connected nodes (i.e. the hubs) hints
at the possible presence of an underlying power law in the distribution of the
connections [3]. If P (k) is the probability for a particular node of having k
connections, the power law is defined as:

P (k) =
1
Z

k−γ (2)

Z =
kmax∑

i=1

i−γ (3)

where k can take values from 1 to a maximum possible value kmax = N − 1
(self-coupling and multiple connections being prohibited). Z coincides with the
Riemann zeta function in the limit kmax = inf and is used as normalization
factor; the parameter γ is the scale-free exponent that characterizes the dis-
tribution. Variating γ is possible to variate the pendency of the distributions,
favoring the presence/absence of hubs. In this analysis we compare NRBNs built
with a random topology of the connections (type A) with NRBNs with scale free
topology (type B). The parameters of the simulations can be found in Table 1.

The dynamical regimes: ordered vs. critical vs. disordered. As specified in the
introduction, it was analytically proven that by varying some key structural
parameters of RBNs it is possible to characterize the emerging dynamical regime
(on average). In particular, analytical studies presented in [2] on classical RBNs
(with random topology) defined a phase diagram linking two structural parame-
ters, the average connectivity and the so-called bias, a parameter that defines
the likelihood of having a “1” output in the Boolean functions. In particular, a
parameter λ, called sensitivity [59] or Derrida exponent, allows to discriminate
the different dynamical regimes. If the Boolean functions are generated randomly
with a bias p and A is the average connectivity of the network we have:

λ = 2Ap(1 − p), (4)

Values of λ smaller than 1 are typical of ordered networks, whereas values
larger than 1 are characteristic of chaotic regime and the critical line at λ = 1
separate the two phases, indicating the critical region. The development of Eq. 4
for the critical case allows to draw a phase diagram regarding the dynamical
regimes. In detail, for each value of p there exist a critical value of the average
connectivity A such that the network is in the ordered regime for A < Akr(p)
and in the chaotic regime for A > Akr The equation is the following:

Akr = [2p(1 − p)]−1 (5)

Extending the theory for RBNs with scale-free topology, as in [32], the critical
γkr for a network with p = 0.5 can be determined according to the following
equation:
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Z(γkr − 1)
Z(γkr)

= 2 (6)

Therefore we chose three parameters settings to design: ordered (type 1),
critical (type 2), disordered (type 3) NRBNs, with both the topologies. The
parameters used in the simulations can be found in Table 1.

We here present the results of the analysis on 6 classes of NRBNs: ran-
dom topology-ordered regime (type A1), random topology-critical regime(type
A2), random topology-disordered regime (type A3), scale-free topology-ordered
regime(type B1), scale-free topology-critical regime(type B2) and scale-free
topology-disordered regime(type B3).

Tree matching. After generating random NRBNs satisfying the above mentioned
parameters we compare the outcoming differentiation tree with the two real
differentiation trees concerning intestinal crypts and hematopoietic cells in Fig. 1.

We associate totipotent stem cells with TESs at threshold 0, cells in a pluripo-
tent or multi-potent state (i.e. transit amplifying stage or intermediate state)
with TESs with a larger threshold composed by one or more attractors, while
completely differentiate cells to TESs with the highest threshold, usually com-
posed by single attractors.

Given that each ATM can be characterizer by a high number of possible
thresholds (i.e. all the distinct entries in the matrix), in order to reduce to
computational costs, we do not check all the possible combination of thresholds
in determining the outcoming tree. In particular, given an input tree of Y levels,
we define all the possible sets of Y thresholds Δx = [δ1, δ2, ..., δY ], δ1 < δ2 < ... <
δY ,Δx ⊆ [0, 0.01, 0.02, ..., 0.15]. Given a certain ATM, every set of thresholds Δx

give rise to a specific tree, which is then compared with the target tree. We chose
0.15 as the maximum threshold value, because we observed that, on average, no
further splitting of TESs is observed above that value (see the analyses below).

A measure of distance among the tree emerging from the NRBN dynamics
and the real tree is defined as a sum of histogram distances for all the levels
of the input tree [7]6. The larger this quantity is the more dissimilar the input
and the emergent trees are. On the contrary when this quantity is zero it is not
assured that the two trees completely match, but still it is a good quantitative
approximation. Considered that, given a certain NRBN, many distinct trees are
possible in correspondence of different sets of thresholds Δx, we compare the
target tree with the emerging tree showing the minimum tree distance.

Notice that since the set of constraints we are imposing is non-trivial, we do
not expect to find many “suitable” NRBNs.
6 For each level of the input tree, the algorithm compares the distribution of the

number of children of the two trees. The histogram distance is then defined as the
sum of the absolute value of the difference between the number of nodes in the first
tree with i children in the two trees, from i = 1 to the maximum number of children.
The overall distance is the sum of all the histogram distances of the distinct levels.
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Table 1. Parameters of the Noisy Random Boolean Networks.

4 Results

The first analyses regard the dynamical properties of the NRBNs in the 6 cases,
with specific regard to the landscape and the properties of the TESs. Notice that
in all the figures the left panel regard the random topology networks, the right
panel the scale-free networks, the blue lines concern ordered networks, the red
lines the critical networks and the green lines the disordered networks.

In Fig. 3 one can see the distribution of the number of distinct attractors in
the 6 cases, the left panels corresponding to the random topology case (A1, A2,
A3), the right panels to the scale-free case (B1, B2, B3)7.
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Fig. 3. Distribution of the number of distinct attractors. The distribution of
the number of distinct attractors with respect to the 6 types of simulated networks is
shown. The plot is in log-log scale and a box with the average value and the standard
deviation of the number of distinct attractors is provided.

As expected, in NRBNs with random topology ordered networks are the
most likely to have only one or a few attractors, disordered networks are the
least likely to be in such situation, whereas critical networks are in between
7 It is worth noticing that an attractor has always been reached within the simulation

time.
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the two. Conversely, despite a very high dispersion, it interesting to notice that
the average number of attractors is higher for critical networks, which are how-
ever known to display a very broad range of dynamical behaviors [5]. Scale-free
NRBNs show a similar overall trend with regard to the proportion of networks
with a low number of attractors, yet with smaller magnitudes and, above all,
with smoother differences among the three cases, hinting at slighter dynamical
differences among the regimes. Furthermore, the overall number of attractors is
lower in the scale-free case than in the random case, which suggest that scale-
free NRBNs with analogous parameters to random topology NRBNs are indeed
more ordered. This result confirms those shown in [35].

The second analysis is aimed at disentangling the effect of topology and
dynamical regime on the robustness of the attractors in presence of noise. In
particular in Fig. 4 one can observe the distribution (and the average) of the
values of the diagonal of the ATMs in the different cases, which provides an
indication on how many times a NRBN, after a single-flip perturbation, returns
to the same attractor.

It can be noticed that this indicator, with respect to both the topologies,
reflects the level of robustness expected from the three dynamical regimes, with
ordered networks being the most insensitive to perturbations (with typically
higher probabilities to remain within the same attractor), disordered networks
being instead the most sensitive to perturbations (with typically low probabilities
to remain within the same attractors) and critical network showing intermediate
behaviors. For what concerns the case of scale-free topology, although the same
ranking holds, the behaviour of disordered and critical networks is closer to the
behaviour of ordered networks with either random or scale-free topology. This
outcome provides another evidence of the more ordered dynamical behaviour of
scale-free networks when compared to random networks.

Less predictable is the likelihood of switching toward another given attrac-
tor, which is captured by non-null off-diagonal values. It is worth stressing that
this indicator differs substantially from the probability to switch toward another
attractor in general, which corresponds to the negative of the probability to
remain in the same attractor (and include null off-diagonal values)). The fre-
quency of these values for the 6 cases under study are plotted in Fig. 5. Inter-
estingly, as long as the random topology is concerned, critical networks slightly
move away from both the ordered and disordered regime (whose distributions
mainly overlap) and show significantly low levels of probability to switch to a
given attractor. This effect cannot be observed in the case of scale-free topologies
where the differences between the three distributions are nearly negligible. This
result may have important effects on the emerging lineage commitment tree. It
is reminded that the differentiation is modeled as a gradual improvement of the
noise-control mechanisms that hinder the transitions from undifferentiated to
fully differentiated cells. It might be therefore the case that, even if the proba-
bility to exit from the current attractor (which corresponds to the probability
to move to any other attractor) might be considerable, if the probability to
reach another given attractor is typically low, this switch is more subject to be
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Fig. 5. Attractor stability (II). The distribution of the probability of switching
from a random attractor toward another random attractor, i.e. the distribution of the
non-zero off-diagonal values of the ATN (bin = 0.01) is shown with regard to the 6
typologies of networks. The x-axis is in log-scale, whereas in the box the average value
is provided.

prevented by the noise control mechanism (which prevents switches that have
probability below a threshold δ).

This hypothesis can be investigated by analyzing the number of TESs, which
in our model corresponds to different cell types, as a function of the threshold δ.
It can be indeed observed in Fig. 6 that the number of TESs of critical random
network shows a steep increase in correspondence of a low δ, moving away from
both random ordered and random disordered networks, which exhibit a smoother
increase and finally stabilize at significantly lower values. Notice also that the
higher dispersion is observed in correspondence of critical network, which suggest
a larger variability in the possible behaviors and, accordingly, of differentiation
hierarchies. Consistently with the results regarding the probability to switch to
a given attractor (Fig. 5), the differences in the three regimes are less clear in
the case of scale-free topology, where the number of TESs is typically lower.
Interestingly, in the latter case, the networks showing the maximum number of
TES seem to be the disordered ones, which however show an average number of
TES that is not even half of those of critical random networks.
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Fig. 6. Variation of the number of TESs with respect to different thresholds.
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to the 6 classes of networks.
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Fig. 7. Matching with intestinal crypt tree. In the upper panels the cumulative
distribution of the minimum tree distances resulting from the comparison between the
input differentiation tree of intestinal crypts (Fig. 1) and the suitable trees emerging
from the NRBN dynamics is provided, with respect to the different classes of networks.
Only a certain number of thresholds δ in the range: δ ∈ [0 : 0.01 : 1] is considered
to compute the possible trees and for each network only the minimum distance on
all the possible trees is considered. In the boxes the average values (and the standard
deviation) of the distances are shown as well. In the lower panels the percentage of
NRBNs that originate non-suitable trees for the comparison is shown such as, e.g.,
forests or trees with a number of nodes lower than the levels of the input trees.

Hence, it is possible to expect critical random network to have typically a
considerable number of different cell types (TESs) at a given differentiation level
(corresponding to a given threshold). It is therefore meaningful to investigate
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Fig. 8. Matching with hematopoietic cells tree. The comparison is made against
the input hematopoietic cells differentiation tree (Fig. 1). See the previous caption for
the description of the Figure.

how similar the lineage tree emerging from these networks is to real ones, as
compared to ordered or disordered networks. In this regard, in Figs. 7 and 8 one
can observe the cumulative distribution of the tree distance, as defined in the
previous section, with respect to the two lineage trees of Fig. 1, in the different
cases. Because the tree distance can be calculated only when the obtained tree
is comparable with the target one, that is, when it has at least the same depth,
the fraction of NRBNs leading to at least one comparable tree is also shown in
the figures (bottom panels).

Remarkably, regardless of the considered lineage tree (crypt or hematopoi-
etic) and of the considered topology (scale-free or random) the probability to
obtain a comparable tree is always maximum for disordered networks. It is worth
noticing that the conditions that may affect the comparability of a tree are:
(i) the number of attractors, which cannot be lower of the target tree’s depth;
(ii) the possible existence of more than one TES at the level 0 (threshold 0) which
would lead to a forest. According to the distribution probabilities in Fig. 3, dis-
ordered networks have the lowest probability to have a unique or a few attractor
and therefore the lowest probability to have a tree with a smaller number of
levels than the target trees.

The interpretation of the comparison of the distribution of the tree distances
obtained in the comparable cases appears less straightforward. Let us first take
into account the intestinal crypts differentiation tree (Fig. 7): it can be observed
that the average distance does not highlight sharp differences between different
dynamical regimes or topologies, and even when comparing the distribution it
is difficult to tell which networks are actually performing better. Along similar
lines, when the target is the hemopoietic cells tree, the differences in the six cases
under study are nearly negligible. A non negligible difference can be observed
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only in the magnitude of standard deviations, which appears higher in random
critical networks than in the other cases. The distribution of the distances regard-
ing random critical nets shows indeed a long right tail, indicating that, in some
cases, the tree emerging from these networks, despite having the same number
of levels of the hemopoietic cells tree can differ substantially within each level.
High distance values might be plausibly due to the typical higher number of TES
observed in critical random nets.

It can however be noticed that the average distance in the intestinal crypt
case (Fig. 7) is typically inferior to that of hematopoietic cells and that there is
a non null probability to observe distance zero, which approximates a perfect
match, in all the dynamical regimes and topologies considered. Although a dis-
tance equal to 0 is never observed in the case of hematopoietic cells tree (Fig. 8),
it is however worth noticing that the a considerable fraction (the majority in
case of scale-free topology) of the simulated networks can have a tree within a
distance lower than 4, suggesting that the differentiation tree obtained from the
sampled random networks is not that far from biologically plausible ones.

5 Conclusion

We have investigated the influence of the topology and of the dynamical regime
of gene regulatory networks, as modeled with Noisy Random Boolean Network,
with specific regard to the properties concerning cell differentiation. In particu-
lar, we have studied the properties of scale-free and random topology networks
and in both cases we have analyzed ordered, critical and disordered networks.
Remarkable differences were highlighted in the distinct cases.

First, the dynamical regime is strongly related to the stability of the attrac-
tors, suggesting that gene activation patterns in relatively more ordered networks
are indeed more robust against random genomic mutations. Besides, scale-free
networks appear to be generally more ordered, and hence robust, than analo-
gous random-topology networks, so that even structurally disordered scale-free
networks show behaviors that are comparable to ordered (or slightly subcritical)
random networks.

A very interesting result is given by the average number and the disper-
sion of the number of TESs, which in our model represent cell types or modes.
Random-topology critical networks show the larger average number and the
highest variability, hinting at an intrinsic capability of critical network to show
a great heterogeneity in the possible behaviors and, consequently, of possible
emerging differentiation hierarchies. The hypothesis of criticality of gene net-
works was suggested by many and this could provide a further element in this
direction. Conversely, and in accordance with the conclusions above, scale-free
nets present a much ordered general behaviour, displaying a quite narrow range
of possible behaviors, as given by the number and the variability of TESs.

The comparison with two real differentiation trees, i.e. intestinal crypts and
hematopoietic cells, did not allow to achieve definitive conclusion on which net-
work type is more suitable, even though slightly disordered networks display a
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larger number of comparable emerging trees, with respect to both the topolo-
gies. All in all, a surprisingly high portion of networks, across different dynamical
regimes and topologies, originate trees that well approximate real ones, suggest-
ing that rather simple differentiation schemes such those used in this study can
be matched even through a random (not evolution-driven) generation. It is worth
stressing that, as it has been previously observed (submitted work), networks in
the slightly ordered regime can indeed exhibit behaviors that are more typical
of the critical or disordered regime. Along similar lines critical or disordered
dynamics can be observed in the slightly ordered regime. Hence, it could be
interesting to investigate wether there exist some specific features shared by
networks in the different regimes that can lead to the emergence of biologically
plausible trees. Furthermore, the analysis of ensembles of networks evolved to fit
the target trees (e.g. via bio-inspired algorithms) may unravel interesting new
general properties.
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