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Abstract. In this paper a fault detection analysis through a neural net-
works ensembling approach and statistical pattern recognition techniques
is presented. Abnormal consumption or faults are detected by analyz-
ing the residual values, which are the difference between the expected
and the real operating data. The residuals are more sensitive to faults
and insensitive to noise. In this study, first, the experimentation is car-
ried out over two months monitoring data set for the lighting energy
consumption of an actual office building. Using a fault free data set for
the training, an artificial neural networks ensemble (ANNE) is used for
the estimation of hourly lighting energy consumption in normal opera-
tional conditions. The fault detection is performed through the analysis
of the magnitude of residuals using peak outliers detection method. Sec-
ond, the fault detection analysis is also carried out through statistical
pattern recognition techniques on structured residuals of lighting power
consumption considering different influencing attributes i.e. number of
people, global solar radiation etc. Moreover the results obtained from
these methods are compared to minimize the false anomalies and to
improve the FDD process. Experimental results show the effectiveness
of the ensembling approach in automatic detection of abnormal building
lighting energy consumption. The results also indicate that statistical
pattern recognition techniques applied to residuals are useful for detect-
ing and isolating the faults as well as noise.

Keywords: Building + Energy - ANNSs residuals - Pattern recognition -
Fault detection

1 Introduction

Measuring and collecting large amount of data relevant to building energy con-
sumption and overall performance is becoming increasingly available through
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building energy management systems (BEMS). To make the best use of this big
data, it is necessary to extract relevant information useful for energy optimiza-
tion. In this paper different pattern recognition techniques i.e. classification and
clustering are used for fault detection.

First, the fault detection is performed by evaluating the magnitude of the
residuals generated by an artificial neural network ensemble (ANNE) using an
outliers detection method (peak detection). The hourly energy consumption and
maximum power for artificial lighting are monitored and used as targets (out-
puts) of the analyzed models. Second, the fault detection analysis is also per-
formed through statistical pattern recognition techniques (CART, KMeans and
DBSCAN) on structured residuals of peak power consumption for lighting con-
sidering different influencing attributes i.e. number of people, global solar radi-
ation etc. In this research the capability of ANNE approach and effectiveness of
statistical pattern recognition techniques using peak energy consumption resid-
uals for artificial lighting fault detection of a real office building are investigated.

It should be noted that the fault detection of building lighting consumption
is not a critical issue that requires a strictly real time execution. Thus, once the
ANN models are trained and the ensemble and pattern recognition models are
defined, all the simulations can be performed in minute order time. The proposed
methodology allow to perform a fault detection analysis in “near” real time,
i.e. with a shift of one hour, since an hourly timestamp was considered.

2 Motivation and Related Work

Buildings are one of the prime targets to reduce energy consumption around the
world. Almost 32 % of the total energy consumption in industrialized countries is
used for electricity, heating, ventilation, and air conditioning (HVAC) in buildings
[8]. Furthermore, building industry is not only energy-intensive, but also know-
ledge-intensive. The real data of a building contains the actual information of
building operation; and thus can reflect the building performance accurately [22].
For energy optimization, the evaluation of real time building energy consump-
tion data is a demandable and emerging area of building energy analysis. Several
studies have been published on methods for automatically detecting abnormal
energy consumption data in buildings. Seem [19] presented pattern recognition
with robust statistical outliers’ detection method to investigate abnormal energy
consumption. Liu et al. [12] used classification and regression tree method for
whole building energy abnormal behavior. Some research works, [11,18,21], pro-
vided classification methods including the box plots approach, association rule
mining and pattern recognition algorithm to detect anomalous energy consump-
tion in buildings.

Yu et al. [22] used fuzzy neural networks model for fault detection and diag-
nosis on the energy consumption of the whole building. Fault-free measured data
is used to build up the model and another measured data with a fault is used to
validate the model and test the performance of fault detection. Model is applied
on the measured data with fault of an open window in the room, and threshold
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for the fault detection is derived from the moving mean value and variance in
a certain period (24h). Dodier and Kreider [3] proposed neural network algo-
rithm to evaluate whether the energy consumption data is normal. The energy
consumption is predicted by collection of previous data by neural network. The
ratio of actual energy consumption to expected energy consumption is calcu-
lated. The data is considered abnormal when the ratio is lower or higher than
thresholds. Also, Holcomb et al. [6] proposed algorithmic techniques based on
machine learning to address the prediction of building energy consumption from
that of similar buildings in its geographical neighborhood and to localize the
faults in building sub-systems.

3 Case Study and Data Introduction

The case study selected for the fault detection analysis is an office building
located in Rome, Italy. The building is composed of three floors and is equipped
with a monitoring system aimed at collecting energy consumption (electrical
and thermal) and the environmental conditions. Moreover each room/office in
the building is equipped with a presence sensor. In the paper, experiments are
performed on a data set referred to energy consumption for artificial lighting
only for the first floor. In this floor there are 13 offices and two CED rooms. Dif-
ferent number of fluorescent lamps (each 55 W) ranging from 4 to 8 are installed
in each office/room. In the two CED rooms 12 lamps, each 55 W, are installed.
In order to identify abnormal lighting energy consumption, the features consid-
ered as dependent variables for the models are the average hourly energy con-
sumption and peak demand (maximum power). Both lighting energy and power
consumption of buildings first floor are analyzed for the months of December
and January. Furthermore, the independent variables that are recorded with an
hourly timestamp are: people presence, number of active rooms (a room is con-
sidered active if at least one person is present), global solar radiation, time, date
and day of the week. In order to verify the reliability and the effectiveness of the
proposed methods two artificial faults have been created on 24th and 25th of
January. In these days at the end of the working time with fewer people presence
between 17:30 and 18:00 all artificial lights of the offices on the first floor have
been switched on creating a peak of energy demand.

4 Brief Description of Proposed Methods

In this section a brief theoretical description of proposed methods is presented.
4.1 Consumption Modelling by Artificial Neural Network Basic
Ensembling Method

Artificial neural networks (ANNSs) [1,5] are black-box (or data-driven) models
mainly used when analytical or transparent models cannot be applied to model
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complex relationships between inputs and outputs. The basic processing units of
ANNSs are neurons: the connections between neurons define the network topol-
ogy or architecture. Among all the different types of interconnecting structures,
the feedforward one is widely used: the data processing can extend over multi-
ple (layers of) units, but no feedback connections are present, i.e., connections
extending from outputs of units to inputs of units in the same layer or previous
layers. These models are also known as multi-layer perceptrons (MLP) [17], since
the basic structure is the perceptron [16].

An “ensemble” is a group of learning models working together on the same
task to improve the performances of the constituent models. In the last years,
several ensembling methods have been carried out [10,13]. The non-generative
ensembling method seeks to combine the outputs of the models in the best way.
In the case of ANNSs, they are trained on the same data, they run together and
their outputs are combined in a single one. In particular, basic ensemble method
(BEM) [2,15], is the simplest non-generative ensembling method: it combines
the outputs of M neural networks as their arithmetic mean.

4.2 Peak Detection Method and Mzscore

In many applications, such as building energy consumption analysis and savings,
defining “peaks” in an objective way is very important for an easier identification
in a given time-series. Thus, a peak can be defined as an observation that is
inconsistent with the majority of observations of a data set.

The method considered in this work, peak detection method, calculates the
value (score) of a peak function S for every element of the given time-series [14].
A given point is a peak if its score is positive and it is greater than or equal to a
particular threshold value. Particularly, a peak function .S computes the average
of the maximum among the signed distances of a given point z; in a time-series
T from its k left neighbours and the maximum among the signed distances
from its k right neighbours. The function S is an index that allows quantifying
the severity of outliers and then provides information about the priorities for
actions to be associated with each outlier. In addition to the function .S, another
synthetic index modified zscore (M zscore) is used to determine the amount of
variation from normal observations. This index is based on the distance and
direction of each outlier compared to the average value of normal observations
(observations that do not contain outliers).

4.3 Classification and Regression Tree (CART)

The CART algorithm is based on classification and regression trees. A CART is a
binary decision tree that is constructed by splitting a parent node into two child
nodes repeatedly, beginning with the root node that contains the whole learning
sample. CART can easily handle both numerical and categorical variables and
useful in robust detection of outliers. A decision tree is constructed from the
recorded data which can easily be converted to classification rules for effective
identification of anomalies. Therefore it is particularly suitable for conducting
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analysis of fault detection in real time. CART methodology generally consists
of three parts: construction of maximum tree, choice of the right size tree and
classification of new data [20].

4.4 Clustering

The selected algorithms can be classified into two categories: (i) partitioning
methods and (ii) density-based methods. These methods require the definition of
a metric to compute distances between objects in the dataset. In the case study
analyzed, distances between objects are measured by means of the Euclidean
distance computed on normalized data.

KMeans. It belongs to partitioning category [7], is able to find spherical-shaped
clusters and is sensitive to the presence of outliers. It requires as input parameter
k, the number of partitions in which the dataset should be divided. It represents
each cluster with the mean value of the objects it aggregates, called centroid. The
algorithm is based on an iterative procedure, preceded by a set-up phase, where k
objects of the dataset are randomly chosen as the initial centroids. Each iteration
performs two steps; in the first step, each object is assigned to the cluster whose
centroid is the nearest to that object. In the second step centroids are relocated,
by computing the mean of the objects within each cluster. Iterations continue
until the & centroids do not change.

DBSCAN. It is a density-based method designed to deal with non-spherical
shaped clusters and is less sensitive to the presence of outliers. DBSCAN [4]
requires two input parameters, a real number r and an integer number min Pts,
used to define a density threshold in the data space. A high density area in the
data space is an m-dimensional sphere with radius r which contains at least
minPts objects. DBSCAN is an iterative algorithm which iterates over the
objects in the dataset, analyzing their neighborhood. The effectiveness of the
algorithm is strongly affected by the setting of parameters r» and minPts.

5 Results and Analysis

The ANN ensemble is built according to BEM, considering 10 feed-forward MLP
ANNSs, with 1 hidden layer consisting of 15 neurons, hyperbolic tangent as acti-
vation function for the hidden neurons, and linear for the output. The training
period is approximately 4 weeks and testing period approximately 1 week. Simu-
lations are performed with MATLAB R2012b through the Levenberg-Marquardt
algorithm. The reported results (see Table 1) are averaged over the 10 different
runs (standard deviation in brackets). Performance has been evaluated according
to the mean absolute error (MAE) and the maximum absolute error (MAX):

N
1 R
MAE:NZM*ZM (1)

=1
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Table 1. Experimental results (training and testing)

TRAINING | ANN BEM | TESTING ANN BEM
Active energy MAE (kWh) | 0.33(£0.01) | 0.31 | MAE (kWh) | 0.66(£0.04) | 0.63
MAX (kWh) | 1.41 1.06 | MAX (kWh) | 4.26 3.75
Maximum active power | MAE (kW) | 0.35(£0.02) | 0.33 | MAE (kW) | 0.81(%0.05) | 0.78
MAX (kW) | 1.76 14 | MAX (kW) | 4.78 4.51
MAX = max{ly; - Gil L, (2)

where y; is the real lighting consumption, g; is the output of the model (estimated
lighting consumption) and N is the size of the real data set.

As shown in Table 1, the results obtained with ANN BEM are slightly better
than those obtained with constituent ANNs. In the following sections only the
analysis performed on the maximum power for lighting is presented.

In order to estimate a normal pattern of the maximum electrical power for the
artificial lighting, the training of the ANN BEM is performed considering a fault
free data set, obtained through outlier detection. The lighting power demand is
estimated really well through the ANN BEM in the training period. In the testing
period the estimated power follow quite well the monitored power demand, with
the exception of some evident abnormal values. The magnitude of the difference
over the time between the actual and estimated power demand is analyzed for
detecting anomalous situations. To this purpose the peak detection method has
been applied to the residuals data set in the testing period. In Fig. 1 the trend of
residuals over the time is shown and the abnormal detected power demand values
are highlighted. The identified residual peaks include potential early morning
faults, for which very high power demand is observed corresponding to the only
cleaning staffs presence, and the two artificial faults. The results confirm that
the analysis of residuals generated through the ANN BEM represents a useful
and powerful technique for the peak building lighting fault detection.
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Fig. 1. Testing residuals (maximum active power) and detected peaks
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Then, the peak detection method is applied to the maximum power consump-
tion time-series. In Fig. 2 the outliers detected for testing period are shown with
the relative values of Mzscore and S function indices. It can be observed that the
method allows detecting the two artificial faults and some other real faults in
early morning. In these situations the relative severity indices correctly assume
higher value. However, the data show that power is related to other variables
i.e. people, solar radiation, day and active rooms, so it can be inferred that the
extreme values are not always definite faults. Therefore some false positives can
be found when a univariate outlier detection method is applied without taking
into account the effect of the independent variables on the consumptions.

In second part of this research, statistical pattern recognition techniques are
applied on structured residuals of lighting power consumption. The major steps
adopted for this analysis of fault detection are summarized as:

— Sensitivity analysis is carried out to identify the independent variable(s) of
greater importance on the variation of the dependent variable (maximum
power residuals), as shown in Fig. 3.

— CART is used for classification with one pruning method (number of cases in
parent and child nodes). After multiple simulations and thorough analysis of
the constructed classes, the number of cases set for parent and child nodes are
40 and 20 respectively. The independent variables considered for the classifi-
cation are day, date, time, people presence, active rooms and solar radiations.
The data are divided into 4 classes and each class has been analyzed sepa-
rately. The classes are formed with time as most influential factor which is also
evident from Fig. 3. In Fig.4a and b scatter plots for class 1 are shown high-
lighting the two artificial faults. The class 1 contains the data values of early
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Fig. 2. Maximum active power (testing period), S function values, mzscore and
detected peaks (common peaks are orange) (Color figure online)
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Fig. 4. Scatter plots for class 1 (CART) with artificial outliers encircled and for
class 4

morning (06:00-08:00) and evening (17:00) for all week. Thorough analysis of
class 1 shows that the most values are outliers including two artificial faults
as with fewer numbers of people and/or active rooms the electrical power con-
sumption for lighting is high. Classes 4, 5 and 6 are mostly pure and do not
contain abnormal values. From scatter plot of class 4 (see Fig. 4c), it can be
seen that the class contains zero number of people and most values in that
class are normal. Also the number of active rooms is always zero and the
values of global solar radiation are mostly zero or fewer in that class. Class 6
mostly consists of high number of active rooms and people (10 or more) and
high values of solar radiation.

— For clustering (KMeans and DBSCAN), in order to overcome the limitations of
the algorithms that do not allow time and day as independent variables, data
sets have been divided into the working period (07:00-18:00), the non-working
period and weekends. The approach adopted for the splitting of the data is
the experience gained from our previous work [9] for which the division of the
data set in the daytime, nighttime and weekend proved not to be particularly
effective for the nature of the fault in the type of building under investigation.
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It did not allow effectively the detection of outliers present in the early hours
of the morning and at the end of working hours. Also before performing the
clustering analysis, values of both dependent (max. power residuals) and inde-
pendent variables (people presence, active rooms and solar radiations) have
been normalized by means of standard score (z-score) method. For working,
non-working and weekends the data is divided into 3, 2 and 2 clusters respec-
tively using KMeans clustering. For DBSCAN clustering all three different
split data sets are divided into two clusters each. To set the input parameters
(r, minPts) multiple tests are carried out for each data set by using different
values for these parameters. With DBSCAN method, in all discovered clusters,
the cluster label zero contains all points identified as outliers or noise.

Tables2 and 3 show the cluster 1 (KMeans) and cluster zero (DBSCAN)
clustering respectively performed on working hours data set. The results show
that the splitting criteria used in this research has proved effective in overcoming
the limitations of cluster algorithms and produced good results. Both the clusters
are impure and contain artificial outliers with other positive outliers too. Clusters
2 and 3 (KMeans-working hours) are pure. In Fig.5a and b scatter plots for
cluster 2 (KMeans) are given. The cluster includes higher number of people and
active rooms and energy consumption can be considered as normal.

For non-working hours, both cluster 2 (KMeans) and zero cluster (DBSCAN)
have higher values of energy consumption corresponding to zero number of people
presence in the early morning (06:00 am). For weekends, the clusters are formed

Table 2. KMeans (working hours, cluster 1), artificial faults are highlighted

Day | Date Hour | Maximum power residual | Maximum power (kW) | PP | AR | SR Clu-1
Mon | 21/01/2013 7 3.07 5.45 5 5 0.83 |1
Tue |22/01/2013 7 2.88 5.41 4 4 3.80 |1
Wed | 23/01/2013 7 2.51 5.2 4 4 7.00 |1
Thu | 24/01/2013 7 3.70 5.2 1 1 2.00 |1
Thu | 24/01/2013 8 2.47 5.19 4 3 27.00 |1
Thu | 24/01/2013 | 17 3.96 5.86 4 3 2.67 |1
Thu | 24/01/2013 18 1.64 3.08 3 2 0.00 |1
Fri 25/01/2013 7 4.12 5.39 1 1 2.50 |1
Fri 25/01/2013 8 3.00 5.33 3 3 19.62 |1
Fri 25/01/2013 | 17 3.77 5.55 5 4 1.75 | 1

Table 3. DBSCAN (working hours, cluster 0), artificial faults are highlighted

Day | Date Hour | Maximum power residual | Maximum power (kW) | PP | AR |SR DBSCAN
Thu |24/01/2013 7 3.70 5.20 1 1 2.00 |cluster_0
Thu |24/01/2013 |12 0.96 3.27 6 5 476.45 | cluster_0
Thu|24/01/2013 |17 3.96 5.86 4 3 2.67 | cluster_0
Fri 25/01/2013 7 4.12 5.39 1 1 2.50 |cluster_0
Fri 25/01/2013 8 3.00 5.33 3 3 19.62 | cluster_0
Fri |25/01/2013|17 3.77 5.55 5 4 1.75 | cluster_0
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Fig. 5. Scatter plots for cluster 2 (KMeans-working hours)
Table 4. Some common outliers in all methods
Day | Date Hour | Maximum power residual | Maximum power (kW) | PP | AR | SR
Mon | 21/01/2013 6 3.45 4.17 010 0.00
Mon | 21/01/2013 | 7 | 3.07 5.45 5|5 0.83
Mon | 21/01/2013 | 8 |2.20 5.23 13 19 [19.75
Tue |22/01/2013 | 6 | 4.46 5.26 0o 0.00
Tue |22/01/2013 7 2.88 5.41 4 |4 3.80
Wed | 23/01/2013 7 2.51 5.2 4 |4 7.00
Thu 24/01/2013 6 3.26 4.2 0|0 0.00
Thu | 24/01/2013 7 3.70 5.2 1|1 2.00
Thu | 24/01/2013 8 2.47 5.19 4 |3 27.00
Thu | 24/01/2013 | 17 3.96 5.86 4 |3 2.67
Fri 25/01/2013 6 4.51 5.34 0|0 0.00
Fri 25/01/2013 7 4.12 5.39 1|1 2.50
Fri 25/01/2013 8 3.00 5.33 3 |3 19.62
Fri 25/01/2013 | 17 3.77 5.55 5 |4 1.75

with solar radiation as the most influential factor. Also the outliers detected by
each method are compared and some common outliers are presented in Table 4.
By analyzing the results obtained from each method, it can be concluded that,
in general, outliers are identified in two different periods of the day. The first
period is early morning (06:00-08:00 am). In the early morning electrical power
for lighting has the peaks at a very low presence of occupants. The second period
is related to the end of working hours (17:00), where it is observed that a decrease
in the number of occupants of the building does not correspond to a decrease in
electrical power consumption for lighting.

6 Conclusions

To achieve objectives for energy efficiency, it is necessary to evaluate information
contained in sensed building data. This paper presented a new approach by com-
bining the ANNE with statistical pattern recognition techniques for evaluating
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real energy consumption data for whole building lighting energy fault detection.
The research is aimed at investigating the potential of using ensembling tech-
niques and, additionally, usefulness of statistical pattern recognition methods
performed on structured residuals for fault detection.

The fault detection, performed through the analysis of the magnitude of resid-
uals using a peak detection method, allowed to detect the two artificial faults
and some other actual anomalous power values in the testing data set. Finally,
the results obtained through all statistical pattern recognition techniques, per-
formed on structured residuals, proved to be adequate and each method has
been able to detect artificial faults and other positive outliers.

The application of this approach can improve fault detection process by
reducing the number of false anomalies. The data set considered in this study is
relatively small and only for artificial lighting of single building. In future, the
work will consider new end-uses i.e. HVAC, plug load and exploit other data
mining techniques for fault detection.
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