
A Formalized Proof of Strong Normalization
for Guarded Recursive Types

Andreas Abel and Andrea Vezzosi

Computer Science and Engineering, Chalmers and Gothenburg University,
Rännvägen 6, 41296 Göteborg, Sweden

�����������	
����� �������
���	�������

Abstract. We consider a simplified version of Nakano’s guarded fixed-point
types in a representation by infinite type expressions, defined coinductively. Small-
step reduction is parametrized by a natural number “depth” that expresses under
how many guards we may step during evaluation. We prove that reduction is
strongly normalizing for any depth. The proof involves a typed inductive notion
of strong normalization and a Kripke model of types in two dimensions: depth
and typing context. Our results have been formalized in Agda and serve as a case
study of reasoning about a language with coinductive type expressions.

1 Introduction

In untyped lambda calculus, fixed-point combinators can be defined using self-applica-
tion. Such combinators can be assigned recursive types, albeit only negative ones. Since
such types introduce logical inconsistency, they are ruled out in Martin-Löf Type The-
ory and other systems based on the Curry-Howard isomorphism. Nakano (2000) intro-
duced a modality for recursion that allows a stratification of negative recursive types to
recover consistency. In essence, each negative recursive occurrence needs to be guarded
by the modality; this coined the term guarded recursive types (Birkedal and Møgelberg,
2013).1 Nakano’s modality has found applications in functional reactive programming
(Krishnaswami and Benton, 2011b) where it is referred to as later modality.

While Nakano showed that every typed term has a weak head normal form, in this
paper we prove strong normalization for our variant λ� of Nakano’s calculus. To this
end, we make the introduction rule for the later modality explicit in the terms by a
constructor next, following Birkedal and Møgelberg (2013) and Atkey and McBride
(2013). By allowing reduction under finitely many nexts, we establish termination ir-
respective of the reduction strategy. Showing strong normalization of λ� is a first step
towards an operationally well-behaved type theory with guarded recursive types, for
which Birkedal and Møgelberg (2013) have given a categorical model.

Our proof is fully formalized in the proof assistant Agda (2014) which is based on
intensional Martin-Löf Type Theory. 2 One key idea of the formalization is to represent

1 Not to be confused with Guarded Recursive Datatype Constructors (Xi et al., 2003).
2 A similar proof could be formalized in other systems supporting mixed induction-coinduction,

for instance, in Coq.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 140–158, 2014.
c© Springer International Publishing Switzerland 2014

Strong Normalization for Guarded Recursive Types 141

the recursive types of λ� as infinite type expressions in form of a coinductive defi-
nition. For this, we utilize Agda’s new copattern feature (Abel et al., 2013). The set
of strongly normalizing terms is defined inductively by distinguishing on the shape of
terms, following van Raamsdonk et al. (1999) and Joachimski and Matthes (2003). The
first author has formalized this technique before in Twelf (Abel, 2008); in this work we
extend these results by a proof of equivalence to the standard notion of strong normal-
ization.

Due to space constraints, we can only give a sketch of the formalization; a longer
version and the full Agda proofs are available online (Abel and Vezzosi, 2014). This
paper is extracted from a literate Agda file; all the colored code in displays is necessarily
type-correct.

2 Guarded Recursive Types and Their Semantics

Nakano’s type system (2000) is equipped with subtyping, but we stick to a simpler
variant without, a simply-typed version of Birkedal and Møgelberg (2013), which we
shall call λ�. Our rather minimal grammar of types includes product A×B and function
types A → B, delayed computations �A, variables X and explicit fixed-points μXA.

A,B,C ::= A×B | A → B |�A | X | μXA

Base types and disjoint sum types could be added, but would only give breadth rather
than depth to our formalization. As usual, a dot after a bound variable shall denote
an opening parenthesis that closes as far to the right as syntactically possible. Thus,
μX .X → X denotes μX (X → X), while μXX → X denotes (μX .X)→ X (with a free
variable X).

Formation of fixed-points μXA is subject to the side condition that X is guarded in
A, i. e., X appears in A only under a later modality �. This rules out all unguarded
recursive types like μX .A×X or μX .X → A, but allows their variants μX .�(A×X)
and μX .A×�X , and μX .�(X → A) and μX .�X → A. Further, fixed-points give rise
to an equality relation on types induced by μXA = A[μXA/X].

Γ (x) = A

Γ � x : A

Γ ,x:A � t : B

Γ � λx. t : A → B

Γ � t : A → B Γ � u : A

Γ � t u : B

Γ � t1 : A1 Γ � t2 : A2

Γ � (t1, t2) : A1 ×A2

Γ � t : A1 ×A2

Γ � fst t : A1

Γ � t : A1 ×A2

Γ � snd t : A2

Γ � t : A

Γ � next t : �A

Γ � t : �(A → B) Γ � u : �A

Γ � t ∗u : �B

Γ � t : A A = B

Γ � t : B

Fig. 1. Typing rules

142 A. Abel and A. Vezzosi

Terms are lambda-terms with pairing and projection plus operations that witness
applicative functoriality of the later modality (Atkey and McBride, 2013).

t,u ::= x | λ xt | t u | (t1, t2) | fst t | snd t | next t | t ∗u

Figure 1 recapitulates the static semantics. The dynamic semantics is induced by the
following contractions:

(λ x. t)u �→ t[u/x]
fst (t1, t2) �→ t1
snd (t1, t2) �→ t2
(next t)∗(next u) �→ next (t u)

If we conceive our small-step reduction relation −→ as the compatible closure of �→,
we obtain a non-normalizing calculus, since terms like Ω = ω (next ω) with ω =
(λ x. x∗(next x)) are typeable.3 Unrestricted reduction of Ω is non-terminating: Ω −→
next Ω −→ next (next Ω) −→ . . . If we let next act as delay operator that blocks re-
duction inside, we regain termination. In general, we preserve termination if we only
look under delay operators up to a certain depth. This can be made precise by a family
−→n of reduction relations indexed by a depth n ∈ N, see Figure 2.

t �→ t ′

t −→n t ′
t −→n t ′

λx. t −→n λx. t ′
t −→n t ′

t u −→n t ′ u
u −→n u′

t u −→n t u′

t −→n t ′

(t,u)−→n (t ′,u)
u −→n u′

(t,u)−→n (t,u′)
t −→n t ′

fst t −→n fst t ′
t −→n t ′

snd t −→n snd t ′

t −→n t ′

next t −→n+1 next t ′
t −→n t ′

t ∗u −→n t ′ ∗u

u −→n u′

t ∗u −→n t ∗u′

Fig. 2. Reduction

We should note that for a fixed depth n the relation −→n is not confluent. In fact the
term (λ z.nextn+1 z)(fst (u, t)) reduces to two different normal forms, nextn+1 (fst (u, t))
and nextn+1 u. We could remedy this situation by making sure we never hide redexes
under too many applications of next and instead store them in an explicit substitution
where they would still be accessible to −→n. Our problematic terms would then look
like nextn ((next z)[fst (u, t)/z]) and nextn ((next z)[u/z]) and the former would reduce
to the latter. However, we are not bothered by the non-confluence since our semantics
at level n (see below) does not distinguish between nextn+1u and nextn+1u′ (as in u′ =
fst (u, t)); neither u nor u′ is required to terminate if buried under more than n nexts.

To show termination, we interpret types as sets A ,B,C of depth-n strongly nor-
malizing terms. We define semantic versions �×�, �→�, and ��� of product, function

3 � Ω : A with A = μX(�X). To type ω , we use x : μY (�(Y → A)).

Strong Normalization for Guarded Recursive Types 143

space, and delay type constructor, plus a terminal (=largest) semantic type ���. Then
the interpretation �A�n of closed type A at depth n can be given recursively as follows,
using the Kripke construction at function types:

�A×B�n = �A�n �×� �B�n A �×� B = {t | fst t ∈A and snd t ∈B}
�A → B�n =

⋂
n′≤n(�A�n′ �→� �B�n′) A �→� B = {t | t u ∈B for all u ∈A }

��A�0 = ������ ��� = {t | t term}
��A�n+1 = ����A�n ���A = {next t | t ∈A }
�μXA�n = �A[μXA/X]�n (A is weak head expansion closure of A)

Due to the last equation (μ), the type interpretation is ill-defined for unguarded recur-
sive types. However, for guarded types we only return to the fixed-point case after we
have passed the case for � , which decreases the index n. More precisely, �A�n is de-
fined by lexicographic induction on (n,size(A)), where size(A) is the number of type
constructor symbols (×, →, μ) that occur unguarded in A.

While all this sounds straightforward at an informal level, formalization of the de-
scribed type language is quite hairy. For one, we have to enforce the restriction to well-
formed (guarded) types. Secondly, our type system contains a conversion rule, getting
us into the vincinity of dependent types which are still a challenge to a completely for-
mal treatment (McBride, 2010). Our first formalization attempt used kinding rules for
types to keep track of guardedness for formation of fixed-point, and a type equality
relation, and building on this, inductively defined well-typed terms. However, the com-
plexity was discouraging and lead us to a much more economic representation of types,
which is described in the next section.

3 Formalized Syntax

In this section, we discuss the formalization of types, terms, and typing of λ� in Agda.
It will be necessary to talk about meta-level types, i. e., Agda’s types, thus, we will refer
to λ�’s type constructors as ×̂, →̂, �̂ , and μ̂ .

3.1 Types Represented Coinductively

Instead of representing fixed-points as syntactic construction on types, which would re-
quire a non-trivial equality on types induced by μ̂XA = A[μ̂XA/X], we use meta-level
fixed-points, i. e., Agda’s recursion mechanism.4 Extensionally, we are implementing
infinite type expressions over the constructors ×̂, →̂, and �̂ . The guard condition on re-
cursive types then becomes an instance of Agda’s “guard condition”, i. e., the condition
the termination checker imposes on recursive programs.

4 An alternative to get around the type equality problem would be iso-recursive types, i. e., with
term constructors for folding and unfolding of μ̂XA. However, we would still have to imple-
ment type variables, binding of type variables, type substitution, lemmas about type substitu-
tion etc.

144 A. Abel and A. Vezzosi

Viewed as infinite expressions, guarded types are regular trees with an infinite num-
ber of �̂ -nodes on each infinite path. This can be expressed as the mixed coinductive(ν)-
inductive(μ) (meta-level) type

νXμY. (Y ×Y)+ (Y ×Y)+X .

The first summand stands for the binary constructor ×̂, the second for →̂, and the third
for the unary �̂ . The nesting of a least-fixed point (μ) inside a greatest fixed-point (ν)
ensures that on each path, we can only take alternatives ×̂ and →̂ a finite number of
times before we have to choose the third alternative �̂ and restart the process.

In Agda 2.4, we represent this mixed coinductive-inductive type by a datatype ��
(inductive component) mutually defined with a record ∞�� (coinductive component).

������
���� �� 	
�� ����

�×̂� 	 �a b 	 ��� → ��
�→̂� 	 �a b 	 ��� → ��
�̂� 	 �a∞ 	 ∞��� → ��

������ ∞�� 	
�� ����
�����������
����������� ������
���� ������ 	 ��

While the arguments a and b of the infix constructors ×̂ and →̂ are again in ��, the
prefix constructor �̂ expects and argument a∞ in ∞��, which is basically a wrapping5

of ��. The functions ����� and ��	
� convert back and forth between �� and ∞�� so that
both types are valid representations of the set of types of λ�.

����� : ��→ ∞��
��	
� : ∞��→ ��

However, since ∞�� is declared
����
����, its inhabitants are not evaluated until
��	
�d. This allows us to represent infinite type expressions, like ���= μ̂X(�̂X).

��� 	 ∞��
����� ��� � �̂ ���

Technically, ��� is defined by copattern matching (Abel et al., 2013); ��� is uniquely
defined by the value of its only field, ��	
� ���, which is given as �̂ ���. Agda will use
the given equation for its internal normalization procedure during type-checking. Alter-
natively, we could have tried to define ��� : �� by ��� = �̂����� ���. However, Agda
will rightfully complain here since rewriting with this equation would keep expanding
��� forever, thus, be non-terminating. In contrast, rewriting with the original equation
is terminating since at each step, one application of ��	
� is removed.

The following two defined type constructors will prove useful in the definition of
well-typed terms to follow.

5 Similar to a ������� in the functional programming language Haskell.

Strong Normalization for Guarded Recursive Types 145

�� 	 �� → ��
� a � �̂ ����� a

�⇒� 	 �a∞ b∞ 	 ∞��� → ∞��
����� �a∞ ⇒ b∞� � ����� a∞ →̂ ����� b∞

3.2 Well-Typed Terms

Instead of a raw syntax and a typing relation, we represent well-typed terms directly by
an inductive family (Dybjer, 1994). Our main motivation for this choice is the beautiful
inductive definition of strongly normalizing terms to follow in Section 5. Since it relies
on a classification of terms into the three shapes introduction, elimination, and weak
head redex, it does not capture all strongly normalizing raw terms, in particular “junk”
terms such as fst (λ xx). Of course, statically well-typed terms come also at a cost: for
almost all our predicates on terms we need to show that they are natural in the typing
context, i. e., closed under well-typed renamings. This expense might be compensated
by the extra assistance Agda can give us in proof construction, which is due to the strong
constraints on possible solutions imposed by the rich typing.

Our encoding of well-typed terms follows closely Altenkirch and Reus (1999); McBride
(2006); Benton et al. (2012). We represent typed variables x : ��	 Γ a by de Brujin in-
dices, i. e., positions in a typing context Γ : ���, which is just a list of types.

��� � ���� ��

���� ��� 	 �Γ 	 ���� �a 	 ��� →
�� ����
 ��� 	 ∀!Γ a" → ��� �a 		 Γ� a
��� 	 ∀!Γ a b" �x 	 ��� Γ a� → ��� �b 		 Γ� a

Arguments enclosed in braces, such as Γ, a, and b in the types of the constructors ��	�
and �
, are hidden and can in most cases be inferred by Agda. If needed, they can
be passed in braces, either as positional arguments (e. g., {Δ}) or as named arguments
(e. g., {Γ = Δ}). If ∀ prefixes bindings in a function type, the types of the bound vari-
ables may be omitted. Thus, ∀{Γ a} → A is short for {Γ : ���}{a : ��} → A.

Terms t : �� Γ a are indexed by a typing context Γ and their type a, guaranteeing
well-typedness and well-scopedness. In the following data type definition,�� (Γ :���)
shall mean that all constructors uniformly take Γ as their first (hidden) argument.

���� �� �Γ 	 ���� 	 �a 	 ��� →
�� ����
��� 	 ∀!a" �x 	 ��� Γ a� → �� Γ a
�#� 	 ∀!a b" �t 	 �� �a 		 Γ� b� → �� Γ �a →̂ b�
��� 	 ∀!a b" �t 	 �� Γ �a →̂ b�� �u 	 �� Γ a� → �� Γ b
���� 	 ∀!a b" �t 	 �� Γ a� �u 	 �� Γ b� → �� Γ �a ×̂ b�
��� 	 ∀!a b" �t 	 �� Γ �a ×̂ b�� → �� Γ a
��� 	 ∀!a b" �t 	 �� Γ �a ×̂ b�� → �� Γ b
���� 	 ∀!a∞" �t 	 �� Γ ������ a∞�� → �� Γ ��̂ a∞�
�∗� 	 ∀!a∞ b∞" �t 	 �� Γ ��̂�a∞ ⇒ b∞��� �u 	 �� Γ ��̂ a∞�� → �� Γ ��̂ b∞�

146 A. Abel and A. Vezzosi

The most natural typing for ���� and ∗ would be using the defined �� � �� → ��:

���� 	 ∀!a" �t 	 �� Γ a� → �� Γ �� a�
�∗� 	 ∀!a b" �t 	 �� Γ ���a →̂ b��� �u 	 �� Γ �� a�� → �� Γ �� b�

However, this would lead to indices like �̂ ����� a and unification problems Agda can-
not solve, since matching on a coinductive constructor like ����� is forbidden—it can
lead to a loss of subject reduction (McBride, 2009). The chosen alternative typing,
which parametrizes over a∞ b∞ : ∞�� rather than a b : ��, works better in practice.

3.3 Type Equality

Although our coinductive representation of λ� types saves us from type variables, type
substitution, and fixed-point unrolling, the question of type equality is not completely
settled. The propositional equality ≡ of Martin-Löf Type Theory is intensional in the
sense that only objects with the same code (modulo definitional equality) are considered
equal. Thus, ≡ is adequate only for finite objects (such as natural numbers and lists) but
not for infinite objects like functions, streams, or λ� types.

However, we can define extensional equality or bisimulation on �� as a mixed
coinductive-inductive relation ≅/∞≅ that follows the structure of ��/∞�� (hence, we
reuse the constructor names ×̂, →̂, and �̂).

������
���� �≅� 	 �a b 	 ��� →
�� ����

�×̂� 	 ∀!a a’ b b’" �a≅ 	 a ≅ a’� �b≅ 	 b ≅ b’� → �a ×̂ b� ≅ �a’ ×̂ b’�
�→̂� 	 ∀!a a’ b b’" �a≅ 	 a’ ≅ a� �b≅ 	 b ≅ b’� → �a →̂ b� ≅ �a’ →̂ b’�
�̂� 	 ∀!a∞ b∞" �a≅ 	 a∞ ∞≅ b∞� → �̂ a∞ ≅ �̂ b∞

������ �∞≅� �a∞ b∞ 	 ∞��� 	
�� ����
�����������
����������� ≅�����
���� ≅����� 	 ����� a∞ ≅ ����� b∞

��-equality is indeed an equivalence relation (we omit the standard proof).

≅��$ 	 ∀!a" → a ≅ a
≅��� 	 ∀!a b" → a ≅ b → b ≅ a
≅����� 	 ∀!a b c" → a ≅ b → b ≅ c → a ≅ c

However, unlike for ≡ we do not get a generic substitution principle for ≅, but have to
prove it for any function and predicate on ��. In particular, we have to show that we can
cast a term in �� Γ a to �� Γ b if a ≅ b, which would require us to build type equality
at least into ��	 Γ a. In essence, this would amount to work with setoids across all our
development, which would add complexity without strengthening our result. Hence, we
fall for the shortcut:

It is consistent to postulate that bisimulation implies equality, similarly to the func-
tional extensionality principle for function types. This lets us define the function
���
to convert terms between bisimilar types.

Strong Normalization for Guarded Recursive Types 147

��������� ≅%��%≡ 	 ∀ !a b" → a ≅ b → a ≡ b

���� 	 ∀!Γ a b" �eq 	 a ≅ b� �t 	 �� Γ a� → �� Γ b

We shall require
��� in uses of functorial application, to convert a type c∞ : ∞�� into
something that can be ��	
�d into a function type.

���� 	 ∀!Γ c∞ b∞ a" �eq 	 c∞ ∞≅ ������ a ⇒ b∞��
�t 	 �� Γ ��̂ c∞�� �u 	 �� Γ �� a�� → �� Γ ��̂ b∞�

���� eq t u � ���� ��̂ eq� t ∗ u

3.4 Examples

Following Nakano (2000), we can adapt the Y combinator from the untyped lambda
calculus to define a guarded fixed point combinator:

fix= λ f . (λ x. f (x∗next x)) (next (λ x. f (x∗next x))).

We construct an auxiliary type ��� a that allows safe self application, since the argument
will only be available "later". This fits with the type we want for the �� combinator,
which makes the recursive instance y in fix (λ y. t) available only at the next time slot.

�� 	 ∀!Γ a" → �� Γ ��� a →̂ a� →̂ a�

&��� 	 �� → ∞��
����� �&�� a� � �̂ &�� a →̂ a

����'�� 	 ∀!Γ a" → �� Γ ��̂ &�� a� → �� Γ �� a�
����'�� x � ���� �≅����� ≅��$� x ����� x�

�� � �#� ���� � ����� ���
����

� � ��� ���� ����
� � ��� ���
� � �#� ���� � �����'�� ���

Another standard example is the type of streams, which we can also define through
corecursion.

������

����� 	 �� → ��

����� a � a ×̂ �̂
�����∞ a

�����∞ 	 �� → ∞��
����� �
�����∞ a� �
����� a

���� 	 ∀!Γ a" → �� Γ a → �� Γ ��
����� a� → �� Γ �
����� a�
���� a s � ���� a ����� ��̂ �≅����� ≅��$�� s�

148 A. Abel and A. Vezzosi

��� 	 ∀!Γ a" → �� Γ �
����� a� → �� Γ a
��� s � ��� s

���� 	 ∀!Γ a" → �� Γ �
����� a� → �� Γ ��
����� a�
���� s � ���� ��̂ �≅����� ≅��$�� ���� s�

Note that ���� returns a stream inside the later modality. This ensures that functions
that transform streams have to be causal, i. e., can only have access to the first n elements
of the input when producing the nth element of the output. A simple example is mapping
a function over a stream.

���
 	 ∀!Γ a b" → �� Γ ��a →̂ b� →̂ �
����� a →̂
����� b��

Which is also better read with named variables.

����= λ f . �� (λ mapS. λ s. (f s, mapS∗ ���� s))

4 Reduction

In this section, we describe the implementation of parametrized reduction−→n in Agda.
As a prerequisite, we need to define substitution, which in turn depends on renaming
(Benton et al., 2012).

A renaming from context Γ to context Δ , written Δ ≤ Γ, is a mapping from variables
of Γ to those of Δ of the same type a. The function 	����� lifts such a mapping to terms.

�≤� 	 �Δ Γ 	 ���� →
��
�≤� Δ Γ � ∀ !a" → ��� Γ a → ��� Δ a

������ 	 ∀ !Γ Δ 	 ���" !a 	 ��" �η 	 Δ ≤ Γ� �x 	 �� Γ a� → �� Δ a

Building on renaming, we define well-typed parallel substitution. From this, we get
the special case of substituting de Bruijn index 0.

��#��(∀ !Γ a b" → �� Γ a → �� �a 		 Γ� b → �� Γ b

Reduction t −→n t ′ is formalized as the inductive family t 〈n〉⇒β t’ with four con-
structors β��� representing the contraction rules and one congruence rule
��� to reduce
in subterms.

���� �〈�〉⇒β� !Γ" 	 ∀ !a" → �� Γ a → N → �� Γ a →
�� ����

β 	 ∀ !n a b"!t 	 �� �a 		 Γ� b"!u"
→ ��� ��#� t� u 〈 n 〉⇒β ��#��(u t

β��� 	 ∀ !n a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ ��� ����� t u� 〈 n 〉⇒β t

β��� 	 ∀ !n a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ ��� ����� t u� 〈 n 〉⇒β u

Strong Normalization for Guarded Recursive Types 149

β� 	 ∀ !n a∞ b∞"!t 	 �� Γ ������ a∞ →̂ ����� b∞�"!u 	 �� Γ ������ a∞�"
→ ����� t ∗ ���� !�∞ � a∞" u� 〈 n 〉⇒β ����� !�∞ � b∞" ���� t u��

���) 	 ∀ !n n’ Δ a b t t’ Ct Ct’"!C 	 *β��� Δ Γ a b n n’"
→ �Ct 	 Ct ≡ C + t ,�
→ �Ct’ 	 Ct’ ≡ C + t’ ,�
→ �t⇒β 	 t 〈 n 〉⇒β t’�
→ Ct 〈 n’ 〉⇒β Ct’

The congruence rule makes use of shallow one hole contexts C, which are given by
the following grammar

C ::= λ x_ | _u | t _ | (t,_) | (_,u) | fst _ | snd _ | next_ | _∗u | t∗_.

��� says that we can reduce a term, suggestively called Ct, to a term Ct’, if (1) Ct
decomposes into C[t], a context C filled by t, and (2) Ct’ into C[t’], and (3) t reduces
to t’. As witnessed by relation Ct≡C �t�, context C : β��� Γ Δ a b n n’ produces a
term Ct : �� Γ b of depth n’ if filled with a term t : �� Δ a of depth n. The depth is
unchanged except for the case ����, which increases the depth by 1. Thus, t 〈n〉⇒β t’
can contract every subterm that is under at most n many ����s.

���� *β��� 	 �Δ Γ 	 ���� �a b 	 ��� �n n’ 	 N� →
�� ����
�#� 	 ∀!Γ n a b" → *β��� �a 		 Γ� Γ b �a →̂ b� n n
���� 	 ∀!Γ n a b" �u 	 �� Γ a� → *β��� Γ Γ �a →̂ b� b n n
���� 	 ∀!Γ n a b" �t 	 �� Γ �a →̂ b�� → *β��� Γ Γ a b n n
����� 	 ∀!Γ n a b" �u 	 �� Γ b� → *β��� Γ Γ a �a ×̂ b� n n
����� 	 ∀!Γ n a b" �t 	 �� Γ a� → *β��� Γ Γ b �a ×̂ b� n n
��� 	 ∀!Γ n a b" → *β��� Γ Γ �a ×̂ b� a n n
��� 	 ∀!Γ n a b" → *β��� Γ Γ �a ×̂ b� b n n
���� 	 ∀!Γ n a∞" → *β��� Γ Γ ������ a∞� ��̂ a∞� n �- . n�
∗�� 	 ∀!Γ n a∞ b∞" �u 	 �� Γ ��̂ a∞�� → *β��� Γ Γ ��̂ �a∞ ⇒ b∞�� ��̂ b∞� n n
∗�� 	 ∀!Γ n a∞ b∞"

�t 	 �� Γ ��̂ �a∞ ⇒ b∞��� → *β��� Γ Γ ��̂ a∞� ��̂ b∞� n n

���� �≡�+�, !n 	 N" !Γ 	 ���" 	 !n’ 	 N" !Δ 	 ���" !b a 	 ��" →
�� Γ b → *β��� Δ Γ a b n n’ → �� Δ a →
��

5 Strong Normalization

Classically, a term is strongly normalizing (sn) if there’s no infinite reduction sequence
starting from it. Constructively, the tree of all the possible reductions from an sn term
must be well-founded, or, equivalently, an sn term must be in the accessible part of the
reduction relation. In our case, reduction t 〈n〉⇒β t’ is parametrized by a depth n, thus,
we get the following family of ��-predicates.

���� �� �n 	 N� !a Γ" �t 	 �� Γ a� 	
�� ����
��� 	 �∀ !t’" → t 〈 n 〉⇒β t’ → �� n t’� → �� n t

150 A. Abel and A. Vezzosi

Van Raamsdonk et al. (1999) pioneered a more explicit characterization of strongly
normalizing terms � , namely the least set closed under introductions, formation of
neutral (=stuck) terms, and weak head expansion. We adapt their technique from lambda-
calculus to λ�; herein, it is crucial to work with well-typed terms to avoid junk like
fst(λ x.x) which does not exist in pure lambda-calculus. To formulate a deterministic
weak head evaluation, we make use of the evaluation contexts E : !���

E ::= _ u | fst _ | snd _ | _∗u | (next t)∗_.

Since weak head reduction does not go into introductions which include λ -abstraction,
it does not go under binders, leaving typing context Γ fixed.

���� /��� �Γ 	 ���� 	 �a b 	 ��� →
��
���� �≅�+�, !Γ 	 ���" 	 !a b 	 ��" → �� Γ b → /��� Γ a b → �� Γ a →
��

Et≅E�t� witnesses the splitting of a term Et into evaluation context E and hole con-
tent t. A generalization of _≅_�_� is "��� P which additionally requires that all terms
contained in the evaluation context (that is one or zero terms) satisfy predicate P. This
allows us the formulation of P-neutrals as terms of the form �E[x] for some �E[_] =
E1[. . .En[_]] and a variable x where all immediate subterms satisfy P.

���� 0��� !Γ" �P 	 ∀!c" → �� Γ c →
��� 	
∀ !a b" → �� Γ b → /��� Γ a b → �� Γ a →
�� ����

���� 	 ∀ !a b t u" �u 	 P u� → 0��� P ���� t u� ����� u� �t : �a →̂ b��
��� 	 ∀ !a b t" → 0��� P ���� t� ��� �t : �a ×̂ b��
��� 	 ∀ !a b t" → 0��� P ���� t� ��� �t : �a ×̂ b��
∗�� 	 ∀ !a∞ b∞ t u" �u 	 P u� → 0��� P �t ∗ �u : �̂ a∞� : �̂ b∞� �∗� u� t
∗�� 	 ∀ !a∞ b∞ t u" �t 	 P ����� !�∞ � a∞ ⇒ b∞" t��

→ 0��� P ������ t� ∗ �u : �̂ a∞� : �̂ b∞� �∗� t� u

���� 0*� !Γ" �P 	 ∀!c" → �� Γ c →
��� !b" 	 �� Γ b →
�� ����
��� 	 ∀ x → 0*� P ���� x�
���� 	 ∀ !a" !t 	 �� Γ a" !E Et"

→ �n 	 0*� P t� �Et 	 0��� P Et E t� → 0*� P Et

Weak head reduction (whr) is a reduction of the form �E[t]−→ �E[t ′] where t �→ t ′. It is
well-known that weak head expansion (whe) does not preserve sn, e.g., (λ x.y)Ω is not
sn even though it contracts to y. In this case, Ω is a vanishing term lost by reduction. If
we require that all vanishing terms in a reduction are sn, weak head expansion preserves
sn. In the following, we define P-whr where all vanishing terms must satisfy P.

���� �1�⇒� !Γ" �P 	 ∀!c" → �� Γ c →
��� 	
∀ !a" → �� Γ a → �� Γ a →
�� ����

β 	 ∀ !a b"!t 	 �� �a 		 Γ� b"!u"
→ �u 	 P u�
→ P 1 ���� ��#� t� u� ⇒ ��#��(u t

β��� 	 ∀ !a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ �u 	 P u�

Strong Normalization for Guarded Recursive Types 151

→ P 1 ��� ����� t u� ⇒ t

β��� 	 ∀ !a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ �t 	 P t�
→ P 1 ��� ����� t u� ⇒ u

β� 	 ∀ !a∞ b∞"!t 	 �� Γ ������ �a∞ ⇒ b∞��"!u 	 �� Γ ������ a∞�"
→ P 1 ����� t ∗ ���� !�∞ � a∞" u� ⇒ ����� !�∞ � b∞" ���� t u��

���) 	 ∀ !a b t t’ Et Et’"!E 	 /��� Γ a b"
→ �Et 	 Et ≅ E + t ,�
→ �Et’ 	 Et’ ≅ E + t’ ,�
→ �t⇒ 	 P 1 t ⇒ t’�
→ P 1 Et ⇒ Et’

The family of predicates � n is defined inductively by the following rules—we
allow ourselves set-notation at this semi-formal level:

t ∈ � n

λ xt ∈ � n

t1, t2 ∈ � n

(t1, t2) ∈ � n next t ∈ � 0

t ∈ � n

next t ∈ � (1+ n)

t ∈ � � n

t ∈ � n

t ′ ∈ � n t 〈n〉⇒ t ′

t ∈ � n

The last two rules close � under neutrals � �, which is an instance of " � with
P = � n, and level-n strong head expansion t 〈n〉⇒ t ′, which is an instance of P-whe
with also P = � n.

The � -relations are antitone in the level n. This is one dimension of the Kripke
worlds in our model (see next section).

���
* 	 ∀ !m n" → m ≤N n → ∀ !Γ a"!t 	 �� Γ a" →
* n t →
* m t

The other dimension of the Kripke worlds is the typing context; our notions are also
closed under renaming (and even undoing of renaming). Besides 	������ , we have
analogous lemmata 	������ � and 	�����⇒.

������
* 	 ∀ !n a Δ Γ" �ρ 	 Δ ≤ Γ� !t 	 �� Γ a" →

* n t →
* n ������� ρ t�

����2�����
* 	 ∀!n a Γ Δ" �ρ 	 Δ ≤ Γ� !t 	 �� Γ a" →

* n ������� ρ t� →
* n t

A consequence of �	��#������ is that t ∈ � n iff t x ∈ � n for some variable x.
(Consider t = λ y. t ′ and t x 〈n〉⇒ t ′[y/x].) This property is essential for the construction
of the function space on sn sets (see next section).

�#����
* 	 ∀!Γ a b n"!t 	 �� �a 		 Γ� �a →̂ b�" →
��� t ���� ���� ∈
* n → t ∈
* n

152 A. Abel and A. Vezzosi

6 Soundness

A well-established technique (Tait, 1967) to prove strong normalization is to model each
type a as a set A = �a� of sn terms. Each so-called semantic type A should contain the
variables in order to interpret open terms by themselves (using the identity valuation).
To establish the conditions of semantic types compositionally, the set A needs to be
saturated, i. e., contain � � (rather than just the variables) and be closed under strong
head expansion (to entertain introductions).

As a preliminary step towards saturated sets we define sets of well-typed terms in
an arbitrary typing context but fixed type, ����� a. We also define shorthands for the
largest set, set inclusion and closure under expansion.

��
�� 	 �a 	 ��� →
��1
��
�� a � !Γ 	 ���" �t 	 �� Γ a� →
��

+�, 	 ∀!a" → ��
�� a
+�, t � �

�⊆� 	 ∀!a" �AA′ 	 ��
�� a� →
��
A ⊆ A′ � ∀!Γ"!t 	 �� Γ �" → A t → A′ t

������ 	 ∀ �n 	 N� !a" �A 	 ��
�� a� →
��
������ n A � ∀!Γ"!t t’ 	 �� Γ �" → t 〈 n 〉⇒ t’ → A t’ → A t

For each type constructor we define a corresponding operation on�����s. The prod-
uct is simply pointwise through the use of the projections.

�+×,� 	 ∀!a b" → ��
�� a → ��
�� b → ��
�� �a ×̂ b�
�A +×, B� t � A ���� t� × B ���� t�

For function types we are forced to use a Kripke-style definition, quantifying over
all possible extended contexts Δ makes A �→�B closed under renamings.

�+→,� 	 ∀!a b" → ��
�� a → ��
�� b → ��
�� �a →̂ b�
�A +→, B� !Γ" t � ∀!Δ" �ρ 	 Δ ≤ Γ� → ∀ !u" → A u → B ���� ������� ρ t� u�

The ����� for the later modality is indexed by the depth. The first two constructors
are for terms in the canonical form ���� t, at depth ��	� we impose no restriction on t,
otherwise we use the given set A. The other two constructors are needed to satisfy the
properties we require of our saturated sets.

���� +�, !a∞" �A 	 ��
�� ������ a∞�� !Γ" 	 �n 	 N� → �� Γ ��̂ a∞� →
�� ����
����(∀ !t 	 �� Γ ������ a∞�" → +�, A ��� ����� t�
���� 	 ∀ !n"!t 	 �� Γ ������ a∞�" �t 	 A t� → +�, A ���� n� ����� t�
�� 	 ∀ !n"!t 	 �� Γ ��̂ a∞�" �n 	
*� n t� → +�, A n t
��� 	 ∀ !n"!t t’ 	 �� Γ ��̂ a∞�"

�t⇒ 	 t 〈 n 〉⇒ t’� �t 	 +�, A n t’� → +�, A n t

The particularity of our saturated sets is that they are indexed by the depth, which
in our case is needed to state the usual properties. In particular if a term belongs to a

Strong Normalization for Guarded Recursive Types 153

saturated set it is also a member of � , which is what we need for strong normalization.
In addition we require them to be closed under renaming, since we are dealing with
terms in a context.

������ 3�
'� �n 	 N� !a" �A 	 ��
�� a� 	
�� ����
����

���
*� 	
*� n ⊆ A
���
* 	 A ⊆
* n
���/�� 	 ������ n A
���2����� 	 ∀ !Γ Δ" �ρ 	 Δ ≤ Γ� → ∀ !t" → A t → A ������� ρ t�

������
'� �a 	 ��� �n 	 N� 	
��1 ����
����

���
�� 	 ��
�� a
���0��� 	 3�
'� n satSet

For function types we will also need a notion of a sequence of saturated sets up to a
specified maximum depth n.

'�≤ 	 �a 	 ��� �n 	 N� →
��1

'�≤ a n � ∀ !m" → m ≤N n →
'� a m

To help Agda’s type inference, we also define a record type for membership of a term
into a saturated set.

������ �∈� !a n Γ" �t 	 �� Γ a� �A 	
'� a n� 	
�� ����
����������� [U+21BF]�
���� [U+21C3]� 	 ���
�� A t

�∈〈�〉� 	 ∀ !a n Γ" �t 	 �� Γ a� !m" �m≤n 	 m ≤N n� �A 	
'�≤ a n� →
��
t ∈〈 m≤n 〉 A � t ∈ A m≤n

Given the lemmas about � shown so far we can lift our operations on ����� to
saturated sets and give the semantic version of our term constructors.

For function types we need another level of Kripke-style generalization to smaller
depths, so that we can maintain antitonicity.

��→�� 	 ∀ !n a b" �A 	
'�≤ a n� �B 	
'�≤ b n� →
'� �a →̂ b� n
A �→� B � ������

! ���
�� � λ t → ∀ m �m≤n 	 m ≤N �� → �A m≤n +→, B m≤n� t
4 ���0��� � ������

! ���
* � �
*

� ����

"
"
����

������ A �
'�≤ A
������ B �
'�≤ B
A � A 5���
��
B � B5���
��

154 A. Abel and A. Vezzosi

C 	 ��
�� �� →̂ ��
C t � ∀ m �m≤n 	 m ≤N �� → �A m≤n +→, B m≤n� t

�
* 	 C ⊆
* �
�
* t � ����2�����
* ��� ��#����
*

�B5���
* ≤N5��$ �t � ≤N5��$ ��� �A 5���
*� ≤N5��$ ���� ��������

� ����

The proof of inclusion into � first derives that ��� (����� �
 t) (��	 ��	�) is in
� through the inclusion of neutral terms into A and the inclusion of B into � , then
proceeds to strip away first (��	 ��	�) and then (����� �
), so that we are left with
the original goal � n t. Renaming t with �
 is necessary to be able to introduce the
fresh variable ��	� of type a.

The types of semantic abstraction and application are somewhat obfuscated because
they need to mention the upper bounds and the renamings.
����� � ∀ �n a b� �A � ��	≤ a n� �B � ��	≤ b n� �Γ� �t � 	
 �a �� Γ� b� →

�∀ �m� �m≤n � m ≤N n� �Δ� �ρ � Δ ≤ Γ� �u � 	
 Δ a� →
u ∈〈 m≤n 〉 A → ������ u ����� ������ ρ� t�� ∈〈 m≤n 〉B�

→ ��� t ∈ �A �→� B�
�� ����� �A � A ��B �B� t� m m≤n ρ u �
��	≤�������B m≤n �β ���	≤������ A m≤n u�� �� t m≤n ρ �� u��

����� � ∀ �n a b��A � ��	≤ a n��B � ��	≤ b n��Γ��t � 	
 Γ �a →̂ b���u � 	
 Γ a�
→ t ∈ �A �→� B� → u ∈〈 ≤N���� 〉 A → ��� t u ∈〈 ≤N���� 〉 B

����� �B �B� � � u� �� t� �� u� � ≡����� �λ t → ��� t u ∈〈 ≤N���� 〉B� �����
�� t � ≤N���� �� u�

The ����� for product types is directly saturated, inclusion into � uses a lemma
to derive � n t from � n (��� t), which follows from A ⊆ � .

��×�� 	 ∀ !n a b" �A 	
'� a n� �B 	
'� b n� →
'� �a ×̂ b� n
A �×� B � ������

! ���
�� � ���
�� A +×, ���
�� B
� ����

Semantic introduction ����	� : t1 ∈ A → t2 ∈ B → ���	 t1 t2 ∈ (A �×� B) and
eliminations ����� : t ∈ (A �×� B) → ��� t ∈ A and ����� : t ∈ (A �×� B) → ��� t ∈
B for pairs are straightforward.

The later modality is going to use the saturated set for its type argument at the pre-
ceeding depth, we encode this fact through the type �$��	��.

'����� 	 �a 	 ��� �n 	 N� →
��1

'����� a ��� � �

'����� a ���� n� �
'� a n

'�����
�� 	 !n 	 N"!a 	 ��" →
'����� a n → ��
�� a

'�����
�� ! ���" A � +�,

'�����
�� !��� n" A � ���
�� A

Strong Normalization for Guarded Recursive Types 155

Since the cases for ���� are essentially a subset of those for � , the proof of inclu-
sion into � goes by induction and the inclusion of A into � .

���� 	 ∀!n a∞" �A 	
'����� ������ a∞� n� →
'� ��̂ a∞� n
���� !n" !a∞" A � ������

! ���
�� � +�, �
'�����
�� A � n
� ����

Following Section 3 we can assemble the combinators for saturated sets into a se-
mantics for the types of λ�. The definition of ���� proceeds by recursion on the induc-
tive part of the type, and otherwise by well-founded recursion on the depth. Crucially
the interpretation of the later modality only needs the interpretation of its type parame-
ter at a smaller depth, which is then decreasing exactly when the representation of types
becomes coinductive and would no longer support recursion.

���≤ 	 �a 	 ��� !n 	 N" → ∀ !m" → m ≤N n →
'� a m

���� 	 �a 	 ��� �n 	 N� →
'� a n
� a →̂ b � n � � a �≤ !n" �→� � b �≤ !n"
� a ×̂ b � n � � a � n �×� � b � n
� �̂ a∞ � n � ��� 0 n

����
0 	 ∀ n →
'����� ������ a∞� n
0 ��� � �
0 ���� n� � � ����� a∞ � n

Well-founded recursion on the depth is accomplished through the auxiliary definition
���≤ which recurses on the inequality proof. It is however straightforward to convert
in and out of the original interpretation, or between different upper bounds.

��≤ 	 ∀ a !n m" �m≤n 	 m ≤N n� → ���
�� �� a � m� ⊆ ���
�� �� a �≤ m≤n�
���≤ 	 ∀ a !n m" �m≤n 	 m ≤N n� → ���
�� �� a �≤ m≤n� ⊆ ���
�� �� a � m�

������≤ 	 ∀ a !n n’ m" �m≤n 	 m ≤N n� �m≤n’ 	 m ≤N n’�
→ ���
�� �� a �≤ m≤n� ⊆ ���
�� �� a �≤ m≤n’�

As will be necessary later for the interpretation of ����, the interpretation of types
is also antitone. For most types this follows by recursion, while for function types anti-
tonicity is embedded in their semantics and we only need to convert between different
upper bounds.

������ 	 ∀ a !m n" → m ≤N n → ���
�� �� a � n� ⊆ ���
�� �� a � m�

Typing contexts are interpreted as predicates on substitutions. These predicates in-
herit antitonicity and closure under renaming. Semantically sound substitutions act as
environments θ. We will need !�� to extend the environment for the interpretation of
lambda abstractions.

156 A. Abel and A. Vezzosi

���� 	 ∀ Γ !n" → ∀ !Δ" �σ 	
�#�� Γ Δ � →
��
� Γ �� !n" σ � ∀ !a" �x 	 ��� Γ a� → σ x ∈ � a � n

6�� 	 ∀ !m n" → �m≤n 	 m ≤N n� →
∀ !Γ Δ" !σ 	
�#�� Γ Δ" �θ 	 � Γ �� !n" σ� → � Γ �� !m" σ

6�� m≤n θ !a" x � ���� a �∈ m≤n �θ x�

2����� 	 ∀ !n Δ Δ ’" → �ρ 	 2�� Δ Δ ’� →
∀ !Γ"!σ 	
�#�� Γ Δ" �θ 	 � Γ �� !n" σ� →
� Γ �� �ρ •� σ�

2����� ρ θ !a" x � [U+21BF] ���2����� �� a � �� ρ �[U+21C3] θ x�

/�� 	 ∀ !a n Δ Γ" !t 	 �� Δ a" → �t 	 t ∈ � a � n� →
∀ !σ 	
�#�� Γ Δ" �θ 	 � Γ �� σ� → � a 		 Γ �� �t 		� σ�

/�� t θ � ���� � t
/�� t θ ���� x� � θ x

The soundness proof, showing that every term of λ� is a member of our saturated
sets and so a member of � , is now a simple matter of interpreting each operation in
the language to its equivalent in the semantics that we have defined so far.

����� � ∀ �n a Γ� 	t �
� Γ a� �Δ� �σ � ���� Γ Δ� →
	θ � � Γ �� �n� σ� → ����� σ t ∈ � a � n

����� 	��� x� θ � θ x
����� 	��� t� θ � ����� �� � t� λ m≤n ρ u →
� ��≤ � m≤n 	� ����� t 	��� 	� ���≤ � m≤n 	� u�� 	������ ρ 	��� m≤n θ����

����� 	��� t u� θ � ����� 	����� t θ� 	����� u θ�
����� 	���� t u� θ � ������ 	����� t θ� 	����� u θ�
����� 	��� t� θ � ����� 	����� t θ�
����� 	��� t� θ � ����� 	����� t θ�
����� 	t ∗ u� θ � �∗� 	����� t θ� 	����� u θ�
����� ������ 	���� t� θ � � �����
����� ��� n� 	���� t� θ � � 	���� 	� ����� t 	��� �≤�� θ���

The interpretation of ���� depends on the depth, at ��	� we are done, at �
 n we
recurse on the subterm at depth n, using antitonicity to %�� the current environment to
depth n as well. In fact without ���� we would not have needed antitonicity at all since
there would have been no way to embed a term from a smaller depth into a larger one.

7 Conclusions

In this paper, we presented a family of strongly-normalizing reduction relations for
simply-typed lambda calculus with Nakano’s modality for recursion. Using a similar
stratification, Krishnaswami and Benton (2011a) have shown weak normalization using
hereditary substitutions, albeit for a system without recursive types.

Strong Normalization for Guarded Recursive Types 157

Our Agda formalization uses a saturated sets semantics based on an inductive notion
of strong normalization. Herein, we represented recursive types as infinite type expres-
sions and terms as intrinsically well-typed ones.

Our treatment of infinite type expressions was greatly simplified by adding an exten-
sionality axiom for the underlying coinductive type to Agda’s type theory. This would
not have been necessary in a more extensional theory such as Observational Type The-
ory (Altenkirch et al., 2007) as shown in (McBride, 2009). Possibly Homotopy Type
Theory (UnivalentFoundations, 2013) would also address this problem, but there the
status of coinductive types is yet unclear.

For the future, we would like to investigate how to incorporate guarded recursive
types into a dependently-typed language, and how they relate to other approaches like
coinduction with sized types, for instance.

Acknowledgments. Thanks to Lars Birkedal, Ranald Clouston, and Rasmus Møgel-
berg for fruitful discussions on guarded recursive types, and Hans Bugge Grathwohl,
Fabien Renaud, and some anonymous referees for useful feedback on the Agda de-
velopment and a draft version of this paper. The first author acknowledges support by
Vetenskapsrådet framework grant 254820104 (Thierry Coquand). This paper has been
prepared with Stevan Andjelkovic’s Agda-to-LaTeX converter.

References

Agda Wiki. Chalmers and Gothenburg University, 2.4 edn. (2014),
�����������������	����	������������

Abel, A.: Normalization for the simply-typed lambda-calculus in Twelf. In: Logical Frame-
works and Metalanguages (LFM 2004). Electronic Notes in Theoretical Computer Science,
vol. 199C, pp. 3–16. Elsevier (2008)

Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: Programming infinite structures
by observations. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2013, Rome, Italy, January 23-25, pp. 27–38. ACM Press
(2013)

Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded recursive types
(long version and Agda sources) (August 2014),
������������������	������������	�����	������������	���	���

Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: Proceedings of the
ACM Workshop Programming Languages meets Program Verification, PLPV 2007, Freiburg,
Germany, October 5, pp. 57–68. ACM Press (2007)

Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive
types. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 453–468.
Springer, Heidelberg (1999)

Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: Proc. of the 18th
ACM SIGPLAN Int. Conf. on Functional Programming, ICFP 2013, pp. 197–208. ACM Press
(2013)

Benton, N., Hur, C.K., Kennedy, A., McBride, C.: Strongly typed term representations in Coq.
Journal of Automated Reasoning 49(2), 141–159 (2012)

http://wiki.portal.chalmers.se/agda
http://www.cse.chalmers.se/~abela/publications.html#aplas14

158 A. Abel and A. Vezzosi

Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types qua fixed
points on universes. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, pp. 213–222. IEEE Computer Society Press
(2013)

Dybjer, P.: Inductive families. Formal Aspects of Computing 6(4), 440–465 (1994)
Joachimski, F., Matthes, R.: Short proofs of normalization. Archive of Mathematical Logic 42(1),

59–87 (2003)
Krishnaswami, N.R., Benton, N.: A semantic model for graphical user interfaces. In: Proceed-

ing of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP
2011, Tokyo, Japan, September 19-21, pp. 45–57. ACM Press (2011a)

Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In: Proceedings
of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, Toronto,
Ontario, Canada, June 21-24, pp. 257–266. IEEE Computer Society Press (2011b)

McBride, C.: Type-preserving renaming and substitution, unpublished draft (2006),
�������������	�����������������!������"

McBride, C.: Let’s see how things unfold: Reconciling the infinite with the intensional (Extended
abstract). In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp.
113–126. Springer, Heidelberg (2009)

McBride, C.: Outrageous but meaningful coincidences: Dependent type-safe syntax and evalua-
tion. In: Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP 2010,
Baltimore, MD, USA, September 27-29, pp. 1–12. ACM Press (2010)

Nakano, H.: A modality for recursion. In: Proceedings of the 15th Annual IEEE Symposium on
Logic in Computer Science (LICS 2000), Santa Barbara, California, USA, June 26-29, pp.
255–266. IEEE Computer Society Press (2000)

van Raamsdonk, F., Severi, P., Sørensen, M.H., Xi, H.: Perpetual reductions in lambda calculus.
Information and Computation 149(2), 173–225 (1999)

Tait, W.W.: Intensional interpretations of functionals of finite type I. The Journal of Symbolic
Logic 32(2), 198–212 (1967)

Univalent Foundations: Homotopy type theory: Univalent foundations of mathematics. Tech. rep.
Institute for Advanced Study (2013), �����������������������������������

Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: Proceedings of the 30th
ACM SIGPLAN Symposium on Principles of Programming Languages, New Orleans, pp.
224–235 (2003)

http://strictlypositive.org/ren-sub.pdf
http://homotopytypetheory.org/book/

	A Formalized Proof of Strong Normalization for Guarded Recursive Types
	1 Introduction
	2 Guarded Recursive Types and Their Semantics
	3 Formalized Syntax
	3.1 Types Represented Coinductively
	3.2 Well-Typed Terms
	3.3 Type Equality
	3.4 Examples

	4 Reduction
	5 Strong Normalization
	6 Soundness
	7 Conclusions
	References

