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Abstract. We present an algebraic view on logic programming, related
to proof theory and more specifically linear logic and geometry of
interaction. Within this construction, a characterization of logspace (de-
terministic and non-deterministic) computation is given via a syntactic
restriction, using an encoding of words that derives from proof theory.

We show that the acceptance of a word by an observation (the
counterpart of a program in the encoding) can be decided within
logarithmic space, by reducing this problem to the acyclicity of a graph.
We show moreover that observations are as expressive as two-ways multi-
head finite automata, a kind of pointer machine that is a standard model
of logarithmic space computation.
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1 Introduction

Proof Theory and Implicit Computational Complexity. Very generally,
the aim of implicit computational complexity (ICC) is to describe complexity
classes with no explicit reference to cost bounds: through a type system or
a weakened recursion scheme for instance. The last two decades have seen
numerous works relating proof theory (more specifically linear logic [15]) and
ICC, the basic idea being to look for restricted substructural logics [19] with an
expressiveness that corresponds exactly to some complexity class.

This has been achieved by various syntactic restrictions, which entail a less
complex1 cut-elimination procedure: control over the modalities [31,10], type
assignments [14] or stratification properties [5], to name a few.

Geometry of Interaction. In recent years, the cut-elimination procedure and
its mathematical modeling has become a central topic in proof theory. The aim
of the geometry of interaction research program [16] is to provide the tools for
such a modeling [1,25,32].
∗ This work was partly supported by the ANR-10-BLAN-0213 Logoi and the ANR-11-
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As for complexity theory, these models allow for a more synthetic and abstract
study of the resources needed to compute the normal form of a program, leading
to some complexity characterization results [6,20,2].

Unification. Unification is one of the key-concepts of theoretical computer
science: it is a classical subject of study for complexity theory and a tool with
a wide range of applications, including logic programming and type inference
algorithms.

Unification has also been used to build syntactic models of geometry of inter-
action [18,6,21] where first-order terms with variables allow for a manipulation
of infinite sets through a finite language.

Logic Programming. After the work of Robinson [29] on the resolution
procedure, logic programming has emerged as a new computation paradigm
with concrete realizations such as the languages Prolog and Datalog.

On the theoretical side, constant efforts have been provided to clarify expres-
siveness and complexity issues [11]: most problems arising from logic program-
ming are undecidable in their most general form and some restrictions must be
introduced in order to make them tractable. For instance, the notion of finitely
ground program [9] is related to our approach.

Pointer Machines. Multi-head finite automata provide an elegant character-
ization of logarithmic space computation, in terms of the (qualitative) type of
memory used rather than the (quantitative) amount of tape consumed. Since
they can scan but not modify the input, they are usually called “pointer
machines”, even if this nomenclature can be misleading [8].

This model was already at the heart of previous works relating geometry of
interaction and complexity theory [20,3,2].

Contribution and Outline. We begin by exposing the idea of relating
geometry of interaction and logic programming, already evoked [18] but never
really developed, and by recalling the basic notions on unification theory needed
for this article and some related complexity results.

We present in Sect. 2 the algebraic tools used later on to define the encoding of
words and pointer machines. Section 2.2 and Sect. 2.3 introduce the syntactical
restriction and associated tools that allow us to characterize logarithmic space
computation. Note that, compared to earlier work [2], we consider a much wider
class of programs while preserving bounded space evaluation: we switch from
representation of permutations to a class defined by a syntactical restriction on
height of variables, which contains permutations as a strict subset.

The encoding of words enabling our results, which comes from the classical
(Church) encoding of lists in proof theory, is given in Sect. 3. It allows to define
the counterpart of programs, and a notion of acceptance of a word by a program.

Finally, Sect. 4 makes use of the tools introduced earlier to state and prove
our complexity results. While the expressiveness part is quite similar to earlier
presentations [3,2], the proof that acceptance can be decided within logarithmic



Logic Programming and Logarithmic Space 41

space has been made more modular by reducing this problem to the standard
problem of cycle search in a graph.

1.1 Geometry of Interaction and Logic Programming

The geometry of interaction program (GoI), started in 1989 [17], aims at
describing the dynamics of computation by developing a fully mathematical
model of cut-elimination. The original motivations of GoI must be traced back,
firstly, to the Curry-Howard correspondence between sequent calculus derivations
and typed functional programs: it is on the basis of this correspondence
that cut-elimination had been proposed by proof-theorists as a paradigm of
computation; secondly, to the finer analysis of cut-elimination coming from
linear logic [15] and the replacement of sequent calculus derivations with
simpler geometrical structures (proof-nets), more akin to a purely mathematical
description.

In the first formulation of GoI [16], derivations in second order intuitionistic
logic LJ2 (which can be considered, by Curry-Howard, as programs in System F)
are interpreted as pairs (U, σ) of elements (called wirings) of a C∗-algebra, U
corresponding to the axioms of the derivation and σ to the cuts.

The main property of this interpretation is nilpotency, i.e. if there exists
an integer n such that (σU)n = 0. The cut-elimination (equivalently, the
normalization) procedure is then interpreted by the application of an execution
operator

EX(U, σ) =
∑

k

(σU)k

From the viewpoint of proof theory and computation, nilpotency corresponds
to the strong normalization property: the termination of the normalization
procedure with any strategy.

Several alternative formulations of geometry of interaction have been proposed
since 1989 (see for instance [1,25,32]); in particular, wirings can be described as
logic programs [18,6,21] made of particular clauses called flows, which will be
defined in Sect. 2.1.

In this setting the resolution rule induces a notion of product of wirings
(Theorem 8) and in turn a structure of semiring: the unification semiring U ,
which can replace the C∗-algebras of the first formulations of GoI2.

The EX(.) operator of wirings can be understood as a way to compute the
fixed point semantics of logic programs. The nilpotency property of wirings
means then that the fixed point given by EX(.) is finite, which is close to the
notion of boundedness3 [11] of logic programs.

2 By adding complex scalar coefficients, one can actually extend U into a C
∗-

algebra [18].
3 A program is bounded if there is an integer k such that the fixed point computation

of the program is stable after k iterations, independently of the facts input.
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In definitive, from the strong normalization property for intuitionistic second
order logic (or any other system which enjoys a GoI interpretation), one obtains
through the GoI interpretation a family of bounded (nilpotent) logic programs
computing the recursive functions typable in System F.

This is quite striking in view of the fact that to decide whenever a program
is bounded is – even with drastic constraints – an undecidable problem [22], and
that in general boundedness is a property that is difficult to ensure.

1.2 Unification and Complexity

We recall in the following some notations and some of the numerous links between
complexity and unification, and by extension logic programming.

Notations. We consider a set of first-order terms T, assuming an infinite number
of variables x, y, z, . . . ∈ V, a binary function symbol • (written in infix notation),
infinitely many constant symbols a, b, c, . . . including the (multipurpose) dummy
symbol � and, for any n ∈ N∗, at least one n-ary function symbol An.

Note that the binary function symbol • is not associative. However, we will
write it by convention as right associating to lighten notations: t •u •v := t •(u •v).

For any t ∈ T, we write Var(t) the set of variables occurring in t (a term is
closed when Var(t) = ∅) and h(t) the height of t: the maximal distance from the
root to any leaf in the tree structure of t.

The height of a variable occurrence in a term t is its distance from the root
in the tree structure of the term. A substitution θ is a mapping from variables
to terms such that xθ = x for all but finitely many x ∈ V. A renaming is a
substitution α mapping variables to variables and that is bijective. A term t′ is
a renaming of t if t′ = tα for some renaming α.

Definition 1 (unification, matching and disjointness). Two terms t, u are
• unifiable if there exists a substitution θ, called a unifier of t and u, such that

tθ = uθ. A unifier θ such that any other unifier of t and u is an instance of
θ is called a most general unifier (MGU) of t and u,

• matchable if t′, u′ are unifiable, where t′, u′ are renamings of t, u such that
Var(t′) ∩ Var(u′) = ∅,

• disjoint if they are not matchable.

A fundamental result [29] of the theory of unification is that two unifiable
terms indeed have a MGU and that it can be computed.

More specifically, the problem of deciding whether two terms are unifiable is
Ptime-complete [12, Theorem 1], which implies that parallel algorithms for this
problem do not improve much on serial ones. Finding classes of terms where the
MGU research can be efficiently parallelized is a real challenge.

It has been proven that this problem remains Ptime-complete even if the arity
of the function symbols or the height of the terms is bounded [27, Theorems 4.2.1
and 4.3.1], if both terms are linear or if they do not share variables [12,13]. More
recently [7], an innovative constraint on variables helped to discover an upper
bound of the unification classes that are proven to be in NC.
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Regarding space complexity, the result stating that the matching problem is
in DLogspace [12] (recalled as Theorem 36) will be used in Sect. 4.2.

2 The Unification Semiring

This section presents the technical setting of this work, the unification semiring:
an algebraic structure with a composition law based on unification, that can be
seen as an algebraic presentation of a fragment of logic programming.

2.1 Flows and Wirings

Flows can be thought of as very specific Horn clauses: safe (the variables of the
head must occur in the body) clauses with exactly one atom in the body.

As it is not relevant to this work, we make no technical difference between
predicate symbols and function symbols, for it makes the presentation easier.
Anyway, to retrieve the connection with logic programming, simply assume a
class of function symbols called “predicate symbols” (written in boldface) that
can only occur at the root of a term.

Definition 2 (flows). A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).
Flows are considered up to renaming: for any renaming α, t ↼ u = tα ↼ uα.

An example of flow that indeed is a clause of logic programming would be for
instance colored(x) ↼ blue(x) which states that if x is blue, then it is colored.

Facts, which are usually defined as ground (using only closed terms) clauses
with an empty body, can still be represented as a special kind of flows.

Definition 3 (facts). A fact is a flow of the form t ↼ �.

Remark 4. Note that this implies that t is closed.
Following on the example above, blue(c) ↼ � would be the fact stating that

the object c is blue.
The main interest of the restriction to flows is that it yields an algebraic

structure: a semigroup with a partially defined product.

Definition 5 (product of flows). Let u ↼ v and t ↼ w be two flows. Suppose
we have representatives of the renaming classes such that Var(v) ∩ Var(w) = ∅.
The product of u ↼ v and t ↼ w is defined if v, t are unifiable with MGU θ as
(u ↼ v)(t ↼ w) := uθ ↼ wθ.

Remark 6. The condition on variables ensures that facts form a “left ideal” of
the set of flows: if u is a fact and f a flow, then fu is a fact when it is defined.

Example 7. (f(x) ↼ x)(f(x) ↼ g(x)) = f(f(x)) ↼ g(x)
(x •d ↼ (y •y) •x)((c •c) •x ↼ y •x) = x •d ↼ y •x
(f(x •c) ↼ x •d)(d •d ↼ �) = f(d •c) ↼ �
(x ↼ g(h(x)))(g(y) ↼ y) = x ↼ h(x)
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The product of flows corresponds to the resolution rule in the following sense:
given two flows f = u ↼ v and g = t ↼ w and a MGU θ of v and t, then the
resolution rule applied to f and g would yield fg.

To finish with our logic programming example, the product of the flows
colored(x) ↼ blue(x) and blue(c) ↼ � would yield colored(c) ↼ �.

Wirings then correspond to logic programs (sets of clauses) and the nilpotency
condition can be seen as an algebraic variant of the notion of boundedness of
these programs.

Definition 8 (wirings). Wirings are finite sets of flows. The product of wirings
is defined as FG := { fg | f ∈ F, g ∈ G, fg defined }.

We write U for the set of wirings and refer to it as the unification semiring.

The set of wirings U has the structure of a semiring. We use an additive
notation for sets of flows to stress this point:

• The symbol + will be used in place of ∪.
• We write sets as the sum of their elements: { f1, . . . , fn } := f1 + · · · + fn.
• We write 0 for the empty set.
• The unit is I := x ↼ x.

We will call semiring any subset A of U such that
• 0 ∈ A,
• if F ∈ A and G ∈ A then FG ∈ A.
• if F, G ∈ A, then F + G ∈ A,

A subset satisfying only the first two conditions will be called a semigroup.

Definition 9 (nilpotency). A wiring F is nilpotent if F n = 0 for some n ∈ N.
We may use the notation Nil(F ) to express the fact that F is nilpotent.

As mentioned in Sect. 1.1, nilpotency is related with the notion of bound-
edness [11] of a logic program. Indeed, if we have a wiring F and a finite set
of facts U, let us consider the set of facts that can be obtained through F ,
{ u | u ∈ F nU for some n } which can also be written as (I +F +F 2 + · · · )U or
EX(F )U (where EX(.) is the execution operator of Sect. 1.1). If F is nilpotent,
one needs to compute the sum only up to a finite rank that does not depend on
U, which implies the boundedness property.

Among wirings, those that can produce at most one fact from any fact will be
of interest when considering deterministic vs. non-deterministic computation.

Definition 10 (deterministic wirings). A wiring F is deterministic if given
any fact u, card(Fu) ≤ 1. We will write Ud the set of deterministic wirings.

It is clear from the definition that Ud forms a semigroup. The lemma below
gives us a class of wirings that are deterministic and easy to recognize, due to
its more syntactic definition.

Lemma 11. Let F =
∑

i ui ↼ ti. If the ti are pairwise disjoint (Theorem 1),
then F is deterministic.
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Proof. Given a closed term t there is at most one of the ti that matches t,
therefore F (t ↼ �) is either a single fact or 0. ��

2.2 The Balanced Semiring

In this section, we study a constraint on variable height of flows which we call
balance. This syntactic constraint can be compared with similar ones proposed
in order to get logic programs that are finitely ground [9]: balanced wirings are
a special case of argument-restricted programs in the sense of [26].

We will be able to decide the nilpotency of balanced wirings in a space-efficient
way, thanks to the results of Sect. 2.3.

Definition 12 (balance). A flow f = t ↼ u is balanced if for any variable
x ∈ Var(t) ∪ Var(u), all occurrences of x in either t or u have the same height
(recall notations p. 42) which we write hf(x), the height of x in f . A wiring F
is balanced if it is a sum of balanced flows.

We write Ub for the set of balanced wirings and refer to it as the balanced
semiring.

In Theorem 7, only the second line shows the product of balanced flows.
The basic idea behind the notion of balance is that it forbids variations of

height which may be used to store information “above” a variable. Typically,
the flow f(x) ↼ x is not balanced.

Definition 13 (height). The height h(f) of a flow f = t ↼ u is max{h(t), h(u)}.
The height h(F ) of a wiring F is the maximal height of flows in it.

The following lemma summarizes the properties that are preserved by the
product of balanced flows. It implies in particular that Ub is indeed a semiring.

Lemma 14. When it is defined, the product fg of two balanced flows f and g
is still balanced and its height is at most max{h(f), h(g)}.

Proof (sketch). By showing that the variable height condition and the global
height are both preserved by the basic steps of the unification procedure. ��

2.3 The Computation Graph

The main tool for a space-efficient treatment of balanced wirings is an associated
notion of graph. This section focuses on the algebraic aspects of this notion,
proving various technical lemmas, and leaves the complexity issues to Sect. 4.2.

A separating space can be thought of as a finite subset of the Herbrand
universe associated with a logic program, containing enough information to
decide the problem at hand.

Definition 15 (separating space). A separating space for a wiring F is a set
of facts S such that
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• For all u ∈ S, Fu ⊆ S.
• F nu = 0 for all u ∈ S implies F n = 0.

We can define such a space for balanced wirings with Theorem 14 in mind:
balanced wirings behave well with respect to height of terms.

Definition 16 (computation space). Given a balanced wiring F , we define
its computation space Comp(F ) as the set of facts of height at most h(F ), built
using only the symbols appearing in F and the constant symbol �.

Lemma 17 (separation). If F is balanced, then Comp(F ) is separating for F .

Proof. By Theorem 14, F (u ↼ �) is of height at most max{h(F ), h(u)} ≤ h(F )
and it contains only symbols occurring in F and u, therefore if u ∈ Comp(F )
we have Fu ⊆ Comp(F ).

By Theorem 14 again, F n is still of height at most h(F ). If (F n)u = 0 for all
u ∈ Comp(F ), it means the flows of F n do not match any closed term of height
at most h(F ) built with the symbols occurring in F (and eventually �). This is
only possible if F n contains no flow, ie. F n = 0. ��

As F is a finite set, thus built with finitely many symbols, Comp(F ) is also
a finite set. We can be a little more precise and give a bound to its cardinality.

Proposition 18 (cardinality). Let F be a balanced wiring, A the maximal
arity of function symbols occurring in F and S the set of symbols occurring in F ,
then card(Comp(F )) ≤ (card(S)+1)Ph(F)(A), where Pk(X) = 1+X + · · ·+Xk.

Proof. The number of terms of height h(F ) built over the set of symbols S ∪ {�}
of arity bounded by A is at most as large as the number of complete trees of
degree A and height h(F ) (that is, trees where nodes of height less than h(F )
have exactly A childs), with nodes labeled by elements of S ∪ {�}. ��

Then, we can encode in a directed graph4 the action of the wiring on its
computation space.

Definition 19 (computation graph). If F is a balanced wiring, we define its
computation graph G(F ) as the directed graph:

• The vertices of G(F ) are the elements of Comp(F ).
• There is an edge from u to v in G(F ) if v ∈ Fu.

We state finally that the computation graph of a wiring contains enough
information on the latter to determine its nilpotency. This is a key ingredient
in the proof of Theorem 35, as the research of paths and cycles in graphs are
problems that are well-known [24] to be solvable within logarithmic space.

Lemma 20. A balanced wiring F is nilpotent (Theorem 9) iff G(F ) is acyclic.
4 Here by directed graph we mean a set of vertices V together with a set of edges

E ⊆ V × V . We say that there is an edge from e ∈ V to f ∈ V when (e, f) ∈ E.
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Proof. Suppose there is a cycle of length n in G(F ), and let u be the label of a
vertex which is part of this cycle. By definition of G(F ), u ∈ (F n)ku for all k,
which means that (F n)k 	= 0 for all k and therefore F cannot be nilpotent.

Conversely, suppose there is no cycle in G(F ). As it is a finite graph, this
entails a maximal length N of paths in G(F ). By definition of G(F ), this means
that F N+1u = 0 for all u ∈ Comp(F ) and with Theorem 17 we get F N+1 = 0.

��
Moreover, the computation graph of a deterministic (Theorem 10) wiring has

a specific shape, which in turn induces a deterministic procedure in this case.

Lemma 21. If F is a balanced and deterministic wiring, G(F ) has an out-
degree (the maximal number of edges a vertex can be the source of) bounded by
1.

Proof. It is a direct consequence of the definitions of G(F ) and determinism. ��

2.4 Tensor Product and Other Semirings

Finally, we list a few other semirings that will be used in the next section, where
we define the notions of representation of a word and observation.

The binary function symbol • can be used to define an operation that is similar
to the algebraic notion of tensor product.

Definition 22 (tensor product). Let u ↼ v and t ↼ w be two flows. Sup-
pose we have chosen representatives of their renaming classes that have disjoint
sets of variables. We define their tensor product as (u ↼ v) ⊗̇ (t ↼ w) := u •t ↼
v •w. The operation is extended to wirings by (

∑
i fi) ⊗̇ (

∑
j gj) :=

∑
i,j fi ⊗̇ gj.

Given two semirings A, B, we define A ⊗̇ B := { ∑
i Fi ⊗̇ Gi | Fi ∈ A , Gi ∈ B }.

The tensor product of two semirings is easily shown to be a semiring.

Example 23. (f(x) • y ↼ y •x) ⊗̇ (x ↼ g(x)) = (f(x) • y) •z ↼ (y •x) •g(z)

Notation. As the symbol • , the ⊗̇ operation is not associative. We carry on the
convention for • and write it as right associating: A ⊗̇ B ⊗̇ C := A ⊗̇ (B ⊗̇ C).

Semirings can also naturally be associated to any set of closed terms or to the
restriction to a certain set of symbols.

Definition 24. Given a set of closed terms E, we define the following semiring
E↼ := { ∑

i ti ↼ ui | ti, ui ∈ E }. If S is a set of symbols and A a semiring, we
write A\S the semiring of wirings of A , that do not use the symbols in S.

This operation yields semirings because composition of flows made of closed
terms involves no actual unification: it is just equality of terms and therefore
one never steps out of E↼.

Finally, the unit I = x ↼ x of U yields a semiring.

Definition 25 (unit semiring). The unit semiring is defined as I := { 0 , I }.
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3 Words and Observations

We define in this section the global framework that will be used later on to obtain
the characterization of logarithmic space computation. In order to discuss the
contents of this section, let us first define two specific semirings.

Definition 26 (word and observation semirings). We fix two (disjoint)
infinite sets of constant symbols P and S, and a unary function symbol M. We
denote by M(P) the set of terms M(p) with p ∈ P. We define the following two
semirings that are included in Ub:

• The word semiring is the semiring W := I ⊗̇ I ⊗̇ M(P)↼.
• The observation semiring is the semiring O := S↼ ⊗̇ Ub

\P.

Remark 27. The expression I ⊗̇ I ⊗̇ M(P)↼ may seem odd at first sight, as the
intuition from algebra is that I ⊗̇ I � I. But remember that we are here in
a syntactical context and therefore we need to be careful with things that can
usually be treated “up to isomorphism”, as it may cause some unifications to
fail where they should not.

These two semirings will be used as parameters of a construction MΣ (.) over
an alphabet Σ (we suppose � 	∈ Σ), that will define the representation of words
and a notion of abstract machine, that we shall call observations.

Definition 28. We fix the set of constant symbols LR := {L, R}.
Given a set of constant symbols Σ and a semiring A we define the semiring

MΣ (A) := (Σ ∪ {�})↼ ⊗̇ LR↼ ⊗̇ A.

In the following of this section, we will show how to represent lists of elements
of Σ by wirings in the semiring MΣ (W). Then, we will explain how the semiring
MΣ (O) captures a notion of abstract machine. In the last section of the paper
we will explain further how observations and words interact, and prove that this
interaction captures logarithmic space computation.

3.1 Representation of Words

We now show how one can represent words by wirings in MΣ (W). We recall
this semiring is defined as

(
(Σ ∪ {�})↼ ⊗̇ LR↼

) ⊗̇ I ⊗̇ I ⊗̇ M(P)↼.
The part (Σ ∪ {�})↼ ⊗̇ LR↼ deals with, and is dependent on, the alphabet Σ

considered; this is where the input and the observation will interact. The two
instances of the unit semiring I correspond to the fact that the word cannot
affect parts of the observation that correspond to internal configurations. The
last part, namely the semiring M(P)↼, will contain the position constants of the
representation of words.

Notation. We write t � u for t ↼ u + u ↼ t.
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Definition 29 (word representations). Let W = c1, . . . , cn be a word over
an alphabet Σ and p = p0, p1, . . . , pn be pairwise distinct constant symbols.

Writing pn+1 = p0 and c0 = cn+1 = �, we define the representation of W
associated with p0, p1, . . . , pn as the following wiring:

W̄p =
n∑

i=0
ci •R •x •y •M(pi) � ci+1 •L •x •y •M(pi+1) (1)

We will write R(W ) the set of representations of a given word W .
To better understand this representation, consider that each symbol in the

alphabet Σ comes in two “flavors”, left and right. Then, one can easily construct
the “context” W̄ =

∑n
i=0 ci •R •x •y •M([ ]i) � ci+1 •L •x •y •M([ ]i+1) from the list

as the sums of the arrows in the following picture (where x and y are omitted):

� •R•L
M([ ]0)

c1 •R•L
(M[ ]1)

c2 •R•L
M([ ]2)

. . . cn •R•L
M([ ]n)

Then, choosing a set p = p0, . . . , pn of position constants, intuitively represent-
ing physical memory addresses, the representation W̄p of a word associated with
p is obtained by filling, for all i = 0, . . . , n, the hole [ ]i by the constant pi.

This abstract representation of words is not an arbitrary choice. It is inspired
by the interpretation of lists in geometry of interaction.

Indeed, in System F, the type of binary lists corresponds to the formula
∀X (X ⇒ X) ⇒ (X ⇒ X) ⇒ (X ⇒ X). Any lambda-term in normal
form of this type can be written as λf0f1x. fc1fc2 · · · fckx, where c1 · · · ck is
a word over {0, 1}. The GoI representation of such a lambda-term yields the
abstract representation just defined5. Notice that the additional symbol � used
to represent words corresponds to the variable x in the preceding lambda-term.
Note also the fact that the representation of integer is cyclic, and that the symbol
� serves as a reference for the starting/ending point of the word.

Let us finally stress that the words are represented as deterministic wirings.
This implies that the restriction to deterministic observations will correspond to
restricting ourselves to deterministic pointer machines. The framework, however,
allows for a number of generalization and variants. For instance, one can define a
representation of trees by adapting Theorem 29 in such a way that every vertex
is related to its descendants; doing so would however yield non-deterministic
wirings. In the same spirit, a notion of “one-way representations of words”,
defined by replacing the symbol � by the symbol ↼ in Eq. 1 of Theorem 29,
could be used to characterize one-way multi-head automata.

3.2 Observations
We now define observations. We will then explain how these can be thought of
as a kind of abstract machines. An observation is an element of the semiring

MΣ (O) = (Σ ∪ {�})↼ ⊗̇ LR↼ ⊗̇ (S↼ ⊗̇ Ub
\P)

5 A thorough explanation can be found in previous work by Aubert and Seiller [3].
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Once again, the part of the semiring (Σ ∪ {�})↼ ⊗̇ LR↼ is dependent on the
alphabet Σ considered and represents the point of interaction between the words
and the machine. The semiring S↼ intuitively corresponds to the states of the
observation, while the part Ub

\P forbids the machine to act non-trivially on
the position constants of the representation of words. The fact that the machine
cannot perform any operation on the memory addresses – the position constants –
of the word representation explains why observations are naturally thought of
as a kind of pointer machines.

Definition 30 (observation). An observation is any element O of MΣ (O).

We can define the language associated to an observation. The condition of
acceptance will be represented as the nilpotency of the product OW̄p where
W̄p ∈ R(W ) represents a word W and O is an observation.

Definition 31 (language of an observation). Let O be an observation on
the alphabet Σ. We define the language accepted by O as

L(O) :=
{

W ∈ Σ∗ ∣∣ ∀p, Nil(OW̄p)
}

One important point is that the semirings MΣ (W) and MΣ (O) are not
completely disjoint, and therefore allow for non-trivial interaction of observations
and words. However, they are sufficiently disjoint so that this computation does
not depend on the choice of the representative of a given word.

Lemma 32. Let W be a word, and W̄p, W̄q ∈ R(W ). For every observation
O ∈ MΣ (O), Nil(OW̄p) if and only if Nil(OW̄q).

Proof. As we pointed out, the observation cannot act on the position constants
of the representations W̄p and W̄q. This implies that for all integer k the wirings
(OW̄p)k and (OW̄q)k are two instances of the same context, i.e. they are equal
up to the interchange of the positions constants p0, . . . , pn and q0, . . . , qn. This
implies that (OW̄p)k = 0 if and only if (OW̄q)k = 0. ��

Corollary 33. Let O be an observation on the alphabet Σ. The set L(O) can
be equivalently defined as the set

L(O) =
{

W ∈ Σ∗ ∣∣ ∃p, Nil(OW̄p)
}

This result implies that the notion of acceptance has the intended sense and
is finitely verifiable: whether a word W is accepted by an observation O can be
checked without considering all representations of W .

This kind of situation where two semirings W and O are disjoint enough
to obtain Theorem 33 can be formalized through the notion of normative pair
considered in earlier works [20,3,2].
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4 Logarithmic Space

This section starts by explaining the computation one can perform with the
observations, and prove that it corresponds to logarithmic space computation
by showing how pointer machines can be simulated. Then, we will prove how
the language of an observation can be decided within logarithmic space.

This section uses the complexity classes DLogspace and coNLogspace , as
well as notions of completeness of a problem and reduction between problems.
We use in Sect. 4.2 the classical theorem of coNLogspace -completeness of
the acyclicity problem in directed graphs, and in Sect. 4.1 a convenient model
of computation, two-ways multi-head finite automata [23], a generalization of
automata also called “pointer machine”. Note that the non-deterministic part of
our results concerns coNLogspace , or equivalently NLogspace by the famous
Immerman-Szelepcsényi theorem.

4.1 Completeness: Observations as Pointer Machines

Let h0, x, y ∈ V, p0, p1, A0 constants and Σ = {0, 1}, the excerpt of a dialogue in
Figure 1 between an observation O = o1 + o2 + · · · and the representation of a
word W̄p = w1 + w2 + · · · should help the reader to grasp the mechanism.

� •R • init•A0 •M(h0) ↼ � •L • init•A0 •M(h0) (o1)
1 •L •x •y •M(p1) ↼ � •R •x •y •M(p0) (w1)

1 •L •b •A0 •M(h0) ↼ 1 •L •init •A0 •M(h0) (o2)
� •R •x •y •M(p0) ↼ 1 •L •x •y •M(p1) (w2)

By unification,
1 •L • init•A0 •M(p1) ↼ � •L • init•A0 •M(p0) (w1o1)

1 •L •b •A0 •M(p1) ↼ � •L • init•A0 •M(p0) (o2w1o1)
� •R •b •A0 •M(p0) ↼ � •L • init•A0 •M(p0) (w2o2w1o1)

This can be understood as the small following dialogue:

o1: [Is in state init] “I read � from left to right, what do I read now?”
w1: “Your position was p0, you are now in position p1 and read 1.”
o2: [Change state to b] “I do an about-turn, what do I read now?”
w2: “You are now in position p0 and read �.”

Fig. 1. The beginning of a dialogue between an observation and the representation of
a word

We just depicted two transitions corresponding to an automata that reads the
first bit of the word, and if this bit is a 1, goes back to the starting position,
in state b. We remark that the answer of w1 differs from the one of w2: there
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is no need to clarify the position (the variable argument of M), since h0 was
already replaced by p1. Such an information is needed only in the first step of
the computation: after that, the updates of the position of the pointer take place
on the word side. We remark that neither the state nor the constant A0 is an
object of dialogue.

Note also that this excerpt corresponds to a deterministic computation. In
general, several elements of the observation could get unified with the current
configuration, yielding non-deterministic transitions.

Multiple Pointers and Swapping. We now add some computational power
to our observations by adding the possibility to handle several pointers. The
observations will now use a k-ary function Ak that allows to “store” k additional
positions in the variables h1, . . . , hk. This part of the observation is not affected
by the word, which means that only one head (the main pointer) can move.
The observation can exchange the position of the main pointer and the position
stored in Ak: we therefore refer to the arguments of Ak as auxiliary pointers that
can become the main pointer at some point of the computation. This is of course
strictly equivalent to having several heads with the ability to move.

Consider the following flow, that encodes the transition “if the observation
reads 1 •R in state s, it stores the position of the main pointer (the variable h0)
at the i-th position in Ak and start reading the input with a new pointer”:

� •R •s′ •Ak(h1, . . . , h0, . . . , hk) •M(hi) ↼ 1 •R •s •Ak(h1, . . . , hi, . . . , hk) •M(h0)

Suppose that later on, when reading 0 •L in state r, we want to give back to that
pointer the role of main pointer. That means to swap again the position of the
variables h0 and hi, in order to store the position that was currently read and
to restore the position that was “frozen” in Ak.

_ •L •r′ •Ak(h1, . . . , hi, . . . , hk) •M(h0) ↼ 0 •L •r •Ak(h1, . . . , h0, . . . , hk) •M(hi)

The occurrence of L in the head of the previous flow reflects that we want to read
the input from left to right, but the “_” slot cannot be a free variable, for that
would break the safety of our clauses, the fact that all the variable of the head
(the left-member) appears in the body (the right-member). So this slot should
be occupied by the last value read by the pointer represented by the variable h0,
an information that should be encoded in the state r6.

Acceptance and Rejection. Remember (Theorem 33) that the language of an
observation is the set of words such that the wiring composed of the observation
applied to a representation of the word is nilpotent. So one could add a flow
with the body corresponding to the desired situation leading to acceptance, and
the head being some constant accept that appears in the body of no other flow,
thus ending computation when it is reached. But in fact, it is sufficient not to
add any flow: doing nothing is accepting!
6 That is, we should have states r�, r0 and r1, and flows accordingly.
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The real challenge is to reject a word: it means to loop. We cannot simply add
the unit (I := x ↼ x) to our observation, since that would make our observation
loop for any input. So we have to be more clever than that, and to encode
rejection as a re-initialization of the observation: we want the observation to put
all the pointers on � and to go back to an init state. So, a rejection is in fact a
“perform for ever the same computation”.

Suppose the main pointer was reading from right to left, that we are in state
b and that we want to re-initialize the computation. Then, for every c ∈ Σ, it
is enough to add the transitions (go-back-c) and (re-init) to the observation,

c •L •b •A(h1, . . . , hk) •M(h0) ↼ c •R •b •A(h1, . . . , hk) •M(h0) (go-back-c)
� •R •init•A(h0, . . . , h0) •M(h0) ↼ � •R •b •A(h1, . . . , hk) •M(h0) (re-init)

Once the main pointer is back on �, (re-init) re-initializes all the positions of
the auxiliary pointers to the position of � and changes the state for init.

There is another justification for this design: as the observation and the
representation of the word are sums, and as the computation is the application,
any transition that can be applied will be applied, i.e. if the body of a flow of our
observation and the head of a flow of the word can be unified, the computation
will start in a possibly “wrong” initialization. That some of these incorrect runs
accept for incorrect reason is no trouble, since only rejection is “meaningful” due
to the nilpotency criterion. But, with this framework, an incorrect run will be
re-initialized to the “right” initialization, and perform the correct computation:
in that case, it will loop if and only if the input is rejected.

Two-Ways Multi-Heads Finite Automata and Completeness. The
model we just developed has clearly the same expressivity as two-ways multi-
head finite automata, a model of particular interest to us for it is well studied,
tolerant to a lot of enhancements or restrictions7 and gives an elegant character-
ization of DLogspace and NLogspace [23,28].

Then, by a plain and uniform encoding of two-ways multi-head finite automata,
we get Theorem 34. That acceptance and rejection in the non-deterministic case
are “reversed” (i.e. all path have to accept for the computation to accept) makes
us characterize coNLogspace instead of NLogspace.

Note that encoding a deterministic automaton yields a wiring of the form of
Theorem 11, which would be therefore a deterministic wiring.

Theorem 34. If L ∈ coNLogspace, then there is an observation O such that
L(O) = L. If moreover L ∈ DLogspace, then O can be chosen deterministic.

7 In fact, most of the variations (the automata can be one-way, sweeping, rotating,
oblivious, etc.) are studied in terms of number of states and additional heads needed
to simulate a variation with another, but most of the time they keep characterizing
the same complexity classes.
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4.2 Soundness of Observations

We now use the results of Sect. 2.3 and Sect. 3.2 to design a procedure that
decides whether a word belongs to the language of an observation within
logarithmic space. This procedure will reduce this problem to the problem
of testing the acyclicity of a graph, that is well-known to be tractable with
logarithmic space resources.

First, we show how the computation graph of the product of the observation
and the word representation can be constructed deterministically using only
logarithmic space; then, we prove that testing the acyclicity of such a graph can
be done within the same bounds. Here, depending on the shape of the graph
(which is dependent in itself of determinism of the wiring, recall Theorem 21),
the procedure will be deterministic or non-deterministic.

Finally, using the fact that logarithmic space algorithms can be composed [30,
Fig. 8.10], Theorem 20 and Theorem 33, we will obtain the expected result:

Theorem 35. If O is an observation, then L(O) ∈ coNLogspace. If moreover
O is deterministic, then L(O) ∈ DLogspace.

A Foreword on Word and Size. Given a word W over Σ, to build a
representation W̄p as in Theorem 29 is clearly in DLogspace: it is a plain matter
of encoding. By Theorem 32, it is sufficient to consider a single representation.
So for the rest of this procedure, we consider given W̄p ∈ R(W ) and write
F := OW̄p. The size of Σ is a constant, and it is clear that the maximal arity
and the height of the balanced wiring F remain fixed when W varies. The only
point that fluctuates is the cardinality of the set of symbols that occurs in F ,
and it is linearly growing with the length of W , corresponding to the number
of position constants. In the following, any mention to a logarithmic amount of
space is to be completed by “relatively to the length of W ”.

Building the Computation Graph. We need two main ingredients to build
the computation graph (Theorem 19) of F : to enumerate the computation space
Comp(F ) (recall Theorem 16), and to determine whether there is an edge
between two vertices.

By Theorem 18, card(Comp(F )) is polynomial in the size of W . Hence, given
a balanced wiring F , a logarithmic amount of memory is enough to enumerate
the members of Comp(F ), that is the vertices of G(F ).

Now the second part of the construction of G(F ) is to determine if there is an
edge between two vertices. Remember that there is an edge from u = u ↼ � to
v = v ↼ � in G(F ) if v ∈ Fu. So one has to scan the members of F = OW̄p: if
there exists (t1 ↼ t2)(t′

1 ↼ t′
2) ∈ F such that (t1 ↼ t2)(t′

1 ↼ t′
2)(u ↼ �) = v ↼

�, then there is an edge from u to v. To list the members of F is in DLogspace,
but unification in general is a difficult problem (see Sect. 1.2). The special case
of matching can be tested with a logarithmic amount of space:

Theorem 36 (matching is in DLogspace [12, p. 49]). Given two terms
t and u such that either t or u is closed, deciding if they are matchable is in
DLogspace.
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Actually, this result relies on a subtle manipulation of the representation of
the terms as simple directed acyclic graphs [4], where the variables are “shared”.
Translations between this representation of terms and the usual one can be
performed in logarithmic space [12, p. 38].

Deciding if G(F ) is Acyclic We know thanks to Theorem 20 that answering
this question is equivalent to deciding if F is nilpotent. We may notice that G(F )
is a directed, potentially unconnected graph of size card(Comp(F )).

It is well-know that testing for acyclicity of a directed graph is a coNLog-
space [24, p. 83] problem. Moreover, if F is deterministic (which is the case
when O is), then G(F ) has out-degree bounded by 1 (Theorem 21) and one
can test its acyclicity without being non-deterministic: it is enough to list the
vertices of Comp(F ), and for each of them to follow card(Comp(F )) edges and
to test for equality with the vertex picked at the beginning. If a loop is found,
the algorithm rejects, otherwise it accepts after testing the last vertex. Only
the starting vertex and the current vertex need to be stored, which fits within
logarithmic space, and there is no need to do any non-deterministic transitions.

5 Conclusion

We presented the unification semiring, a construction that can be used both as
an algebraic model of logic programming and as a setting for a dynamic model
of logic. Within this semiring, we were able to identify a class of wirings that
have the exact expressive power of logarithmic space computation.

If we try to step back a little, we can notice that the main tool in the
soundness proof (Sect. 4.2) is the computation graph, defined in Sect. 2.3. More
precisely, the properties of this graph, notably its cardinality (that turns out to
be polynomial in the size of the input), allow to define a decision procedure that
needs only logarithmic space. The technique is modular, hence not limited to
logarithmic space: identifying other conditions on wirings that ensure size bounds
on the computation graph would be a first step towards the characterization of
other space complexity classes.

Concerning completeness, the choice of encoding pointer machines (Sect. 4.1)
rather than log-space bounded Turing machines was quite natural. Balanced
wirings correspond to the idea of computing with pointers: manipulation of data
without writing abilities, and thus with no capacity to store any information
other than a fixed number of positions on the input.

By considering other classes of wirings or by modifying the encoding it might
be possible to capture other notions of machines characterizing some complexity
classes: we already mentioned at the end of Sect. 3.1 a modification of the
representation of the word that would model one-way finite automata.

The relation with proof theory needs to be explored further: the approach of
this paper seems indeed to suggest a sort of “Curry-Howard” correspondence for
logic programming.
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As Sect. 1.1 highlighted, there are many notions that might be transferable
from one field to the other, thanks to a common setting provided by geometry of
interaction and the unification semiring. Most notably, the notion of nilpotency
(on the proof-theoretic side: strong normalization) corresponds to a variant of
boundedness of logic programs, a property that is usually hard to ensure.

Another direction could be to look for a proof-system counterpart of this work:
a corresponding “balanced” logic of logarithmic space.

Acknowledgments. The authors would like to thank the anonymous referees
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