
A Method for Scalable and Precise Bug Finding

Using Program Analysis and Model Checking

Manuel Valdiviezo, Cristina Cifuentes, and Padmanabhan Krishnan

Oracle Labs
Brisbane Australia

{manuel.valdiviezo,cristina.cifuentes,paddy.krishnan}@oracle.com

Abstract. This paper presents a technique for defect detection in large
code bases called model-based analysis. It incorporates ideas and tech-
niques from program analysis and model checking. Model checking, while
very precise, is unable to handle large code bases that are in the millions
of lines of code. Thus we create a number of abstract programs from the
large code base which can all be model checked. In order to create these
abstract programs, we first identify potential defects quickly via static
analysis. Second we create a program slice containing one potential de-
fect. Each slice is then abstracted using a combination of automatic data
and predicate abstraction. This abstracted model is then model checked
to verify the existence or absence of the defect. By applying model check-
ing to a large number of small models instead of one single large model
makes our approach scalable without compromising on precision.

We have applied our analysis to detect memory leaks and implemented
it using aspects of the Parfait static code analysis tool and the SPIN
model checker. Results show that our approach scales to large code bases
and has good precision: the analysis runs over 1 million lines of non-
commented C++ OpenJDKTM source code in 1 hour and 19 minutes,
with a precision of 84.5%. Further, our analysis found 62.2% more de-
fects when compared to the dataflow approach used by Oracle Parfait’s
memory leak checker.

1 Introduction

In this paper we present a technique that combines abstraction and software
model checking (SMC), which enables us to detect defects in large code bases.
The motivation for this research is the need to develop automated defect finding
techniques that are more accurate than purely static analysers and can be made
to scale systems consisting of 1 million lines of uncommented code. The technique
must also be able to report the results in a few hours on standard desktop
machines. To be realistic, we do not demand completeness; thus the technique
might miss a few defects. Hence we do not aim to verify the original program.
But we require high precision (viz., a low false positive rate) as demanded by
the consumers of our results. Our aim is to have a precision of more than 80%.

As we are looking for automated techniques, model checking is a potential
starting point. Software model checking (SMC) technology is suitable for the

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 196–215, 2014.
c© Springer International Publishing Switzerland 2014

A Method for Scalable and Precise Bug Finding 197

verification of small/medium code bases, up to the low thousands of lines of
code. However, it cannot handle large code bases that have millions of lines of
code [1].

The TACAS 2013 and 2014 competitions on software verification
(http://sv-comp.sosy-lab.org/2013/results/ and http://sv-comp.sosy-

lab.org/2014/results/) identify model-checkers that perform well on various
benchmarks. All the benchmarks used in the competition are relatively small
when compared with our needs. We were unable to use tools identified by them
(such as LLBMC [2] or CBMC [3]) on our real code bases which have more than
one million lines of uncommented code.

Abstraction [4,1] and bounded model checking [3] are two of the possible
techniques to get a handle on such large code bases. In this paper we describe and
demonstrate an effective abstraction (also called model generation) technique
that can be combined with SMC. Our data and predicate abstraction is totally
automatic unlike Bandera [4] which requires manual processing which is just not
feasible on our large code bases. The main reason for the efficacy of our approach
is the generation of multiple models for a given property. We ensure that each
model has only one potential defect. Thus each model will be small enough to
be verified using model checking very quickly. This is based on the observation
that model checking works very well on small program and our aim is to run
many invocations of the model checker on small models. To achieve this we use
a defect-driven slicing and abstraction process.

The key steps in our approach are as follows.

1. Given a desired property, we identify all statements where a defect could
occur. These statements form the list of potential defects.

2. For each potential defect we create a slice of the program that has only the
relevant variables and conditions we want to check for.

3. Each slice is converted into a specialised abstraction using automatic data
abstraction (i.e., discarding irrelevant values, or converting a range of values
to a single value related to the property being checked for). Where auto-
matic data abstraction is not possible, a suitable predicate abstraction (i.e.,
replacing predicates with boolean variables) is used. By using predicate ab-
straction only in limited contexts, we reduce the cost of predicate solving.
This results in small models that are constructed quickly.

4. The resulting models are then verified against the desired property using a
model checker.

The novel aspects in our approach include the use of automatic data and
predicate abstraction to generate a number of, potentially small, models that
can be model checked, and at the same time keeping sufficient information in
the model so as to not require refinement based on any counter-example after
the model-checking process.

While our approach is general, we use memory leaks as an example to demon-
strate the generation of the set of abstractions. In order to handle other defect
types, one has to specify a customised abstraction algorithm. This customisation
can be based on our technique of using data and predicate abstraction.

http://sv-comp.sosy-lab.org/2013/results/
http://sv-comp.sosy-lab.org/2014/results/
http://sv-comp.sosy-lab.org/2014/results/

198 M. Valdiviezo, C. Cifuentes, and P. Krishnan

The rest of the paper is organised as follows. In Section 2, we survey some
related work. In Section 3, we present an example that illustrates our approach.
In Section 4, we explain the technical details of our approach while in Section 5,
we outline our implementation. In Section 6, we present our experimental results
and conclude in Section 7.

2 Related Work

From a performance view point static analysers can be very effective at detecting
defects; they often trade speed for accuracy. However, it is often the case that
complex analyses are not scalable. ESP [5] represents a general techniques that
could be applied to the detection of memory leaks. It uses property simulation
to prune the number of paths explored by the analysis. It relies on encoding
of temporal safety properties and, in principle, can be used to detect memory
leaks. However, the results reported [6] appear to indicate that the approach is
very sensitive to the input program. In the context of memory leaks, Sparrow [7]
uses interprocedural but non-path-sensitive analysis. Sparrow took about 2 hours
to process binutils-2.13.1, a small to medium sized program. Saber [8] uses
sparse value-flow graph to represent def-use chains and value flows via assign-
ments. Leaks are detected by performing a reachability analysis on this graph.
The authors state that Saber is faster than Sparrow and also works on large
systems such as wine-0.9.24. Unfortunately, these tools are not available and
we have been unable to use them in our experimentation.

The idea of using slicing to reduce the complexity of analysis to speed up the
verification process has been explored in recent times [9]. The scalability of such
techniques is very much an open question, especially as they slice models which
by definition are compact. Similarly [10] attempt to verify aspects of operating
systems after code slicing. But they admit that they can use model checking
only within a limited scope.

It is also possible to use SMT solvers on the slicing to remove false alarms (i.e.,
verify that the defect is not possible) [11]. However, the results provided by the
authors indicate that SMT solvers are unlikely to scale. None of the programs
considered are really large. In some cases the SMT solver did not terminate and
in other cases it took more than 30 minutes. This appears to be related to the
complexity of the path constraints that need to be solved.

SANTE [12] combines static and dynamic analysis to reduce the number of
false positives. This is aimed mainly at test generation and they do not use
model checking for defect detection. The key idea, like ours, is that slicing can
reduce the size of the program that needs to be analysed.

There are numerous approaches to model checking and we summarise a few
key ones here. Bandera is a SMC that allows the verification of user-defined
properties in Java programs [4]. The checking process applies slicing to the pro-
gram, user-guided data abstraction over the slice and the resulting abstracted
version of the program is model checked. The major drawback of this approach
is that user input is required for the data abstraction. Such a manual process is
tedious and impossible to apply in practice in large code bases.

A Method for Scalable and Precise Bug Finding 199

The Static Driver Verifier (SDV) [1], based on SLAM is an SMC for verifying
user-defined properties on sequential C programs. C programs are abstracted
using predicate abstraction with an initial set of predicates derived from the
property. SDV then employs iterative counter-example guided abstraction refine-
ment (CEGAR) to determine if the user-defined property is satisfied. However,
the authors state that: “SLAM is unable to handle very large programs (with
hundreds of thousands of lines of code)” [1].

Similar to SDV, the Berkeley Lazy Abstraction Software verification Tool
(BLAST), is a SMC for verifying properties in C programs [13]. It applies a
technique called lazy abstraction during the refinement process. While this im-
proves the scalability of the CEGAR approach, we have been unable to use it
for our work.

The C–Bounded Model Checker (CBMC) [3] and Low-level Bounded Model
Checker (LLBMC) [2] verify properties in C programs via bounded model check-
ing. In CBMC, the C program is abstracted once by unwinding the loop struc-
tures (including backward goto statements) according to the ‘unwind’ parameter.
Function calls are also inlined. Optionally, slicing can be applied on the C pro-
gram. LLBMC uses the bit code representation of the C program to perform
bounded model checking.

The main drawback of such approaches is their sensitivity to the ‘unwind’
parameter. A small value can reduce the accuracy of the verification, but a
large value can increase the runtime unnecessarily. Determining what is the best
value needs significant experimentation and determining this value a-priori is
not possible for large code bases.

3 Illustrative Example

Memory leak is a common defect in programs written in C. A memory leak
happens when memory that has been previously allocated (via ‘malloc’ or similar
memory allocation function in C), is not deallocated (via ‘free’ or similar) prior
to the program ending.

Figure 1 shows a small C program for motivation purposes. At line 3, 128 bytes
are allocated and the starting address of those 128 bytes is stored in pointer ‘p’.
At lines 14 and 19, memory pointed to by ‘p’ is deallocated. At lines 17–22, the
memory pointed to by ‘p’ is deallocated only when ‘retval’ is equal to -1 and ‘p’
is not equal to NULL. Thus the case when ‘retval’ is equal to -2 is not taken
into account and ‘free’ is not called. Therefore, memory leaks at the end of this
function.

Figure 2 presents the control flow graph for the example C function using SSA
form [14]. In SSA form, each variable is defined exactly once; existing variables
are split into separate versions, and a ‘phi’ function is used at merge points.
For example, variable ‘retval’ is assigned values at lines 5 and 10. Both of these
constant values reach the ‘end’ basic block, therefore, the first intermediate state-
ment in that basic block (statement ‘P11’) is the definition of ‘retval’ as the ‘phi’
function between values -1 and -2. ‘P11’ states that the value of ‘retval’ is either

200 M. Valdiviezo, C. Cifuentes, and P. Krishnan

1 int f oo {
2 int r e t v a l = 0 ;
3 char ∗p = mal loc (128) ;
4 i f (p == NULL) {
5 r e t v a l = −1;
6 goto end ;
7 }
8 FILE ∗ f = fopen (” t e s t . c”

, ” ro ”) ;
9 i f (f == NULL) {

10 r e t v a l = −2;
11 goto end ;
12 }

13 f c l o s e (f) ;
14 f r e e (p) ;
15 return 0 ;
16 end :
17 i f (r e t v a l == −1) {
18 i f (p != NULL) {
19 f r e e (p) ;
20 p = NULL;
21 }
22 }
23 return r e t v a l ;
24 }

Fig. 1. Motivating Example with a Memory Leak

-1 or -2 depending on which path was followed. Other statements of interest
include ‘P0’ which does the allocation of memory, ‘P9’ and ‘P16’ which do the
deallocation of memory, and both ‘P10’ and ‘P18’ which are exit points for this
function.

As part of our analysis we make use of program slicing [9]. A program slice
is the set of statements in a program that may affect the value of a variable at
some point of interest; commonly referred to as the slicing criterion. If we use
‘P18’ as our slicing criterion, we are interested in all statements that may affect
the value of ‘retval’.

The slice therefore includes the branches into ‘bb7’, namely ‘P17’, ‘P15’ and
‘P13’ and their dependencies, ‘P11’, ‘P12’ and ‘P14’, and the dependencies of
these three basic blocks, namely, ‘P3’, ‘P7’, ‘P13’ and ‘P15’ (these last two
already in the set), and so on.

In this case the slice contains all statements in the example except for those
in the shaded basic block ‘bb4’; i.e., the slice of slicing criterion ‘P18’ are all
statements that are not shaded.

We now describe some of the key steps in the abstraction process for this
example. As part of the data abstraction process for pointers, we use the val-
ues ‘NULL ADDR’, ‘MEM ALLOC’ and ‘OTHER’ to indicate a null pointer,
a pointer pointing to an allocated block of memory and a pointer pointing to
other addresses respectively. The slice in our example has 4 predicates: ‘P1: p
== NULL’, ‘P5: f == NULL’, ‘P12: retval == -1’ and ‘P14: p != NULL’. Three
of the four predicates can be effectively represented using data abstraction, viz.,
using ‘NULL ADDR’ . As a result, only one boolean variable (say ’b’) needs to
be created to keep track of the predicate ‘retval == -1’. For this predicate, the
instruction at ‘P11’ defines ‘retval’. The instructions ‘b = true’ and ‘b = false’
are added to predecessor basic blocks ‘bb’ and ‘bb3’, respectively, prior to the
last branching instruction, to abstract the incoming values of the phi function
(-1 and -2, respectively). Thus by using data abstraction first, we reduce the
number of extra variables that need to be introduced for predicate abstraction.

A Method for Scalable and Precise Bug Finding 201

Fig. 2. Control Flow Graph in SSA Form for the Example of Figure 1

To handle the memory allocation at ‘P0’, two abstracted instructions are
created. The first is a declaration of a variable that keeps track of the pointer ‘p’,
and the second is noting that the result of invoking an external library function
(‘malloc’) can return one of two values; the newly allocated address or NULL
if there is not enough memory available. This indecisive result is expressed by
using a non-deterministic selection statement which covers the two cases ‘p =
NULL’ and ‘p = MEM ALLOC’. Similarly the call to ‘fopen’ at ‘P4’ defines the
value of variable ‘f’. We assume that the ‘fopen’ can only return either ‘NULL’
(which indicates failure) or ‘OTHER’ (which indicates success) since the return
value is a pointer and there is no memory allocation involved.

Although, not present in the above example, we show how integer values
are handled. For instance, a particular data abstraction rule could define that
some integers can be abstracted to the range {‘below1’, ‘between1&9’, ‘above9’}.
Based on this, a control predicate ‘x<1’ can be expressed as ‘x==below1’; there-
fore, ‘x’ can be data abstracted and no extra boolean variable needs to be added
to the model. On the other hand, the control predicates like ‘y==5’ requires a
new boolean variable since it cannot be represented using the earlier data ab-
straction rule. To reiterate, data abstraction followed by predicated abstraction
reduces the introduction of extra variables.

In the next section we describe our analysis that combines program analysis
and model checking techniques. The description of the specialised abstraction
will explain how the values used in the above example arise.

In the next section we describe our analysis that combines program analysis
and model checking techniques. The description of the specialised abstraction
will explain how the values used in the above example arise.

202 M. Valdiviezo, C. Cifuentes, and P. Krishnan

4 Model-Based Analysis

Recall that the aim of our model-based analysis is to use model checking tech-
niques to find defects such as memory leaks in large C code bases effectively.
That is, the analysis should take only a few hours to complete code that has
around a million lines. In contrast to most SMCs, where one model is generated
per program, we generate multiple models per program. We use a specialised
abstraction that aims to reduce the size of the models. Model checking is then
performed separately over each model resulting in reduction in the search space.

Given a defect type (e.g., memory leak), we use a demand-driven approach
to identify all statements in the program where that defect may happen. We
call these locations “potential defects”. The list of potential defects is created
by using a static analyser that runs very quickly. For each potential defect, we
create a model using a specialised abstraction that is checked by a model checker.

Program With
Potential Defects

Specialised
Abstraction

Specialised
Abstraction

Defect

Slicer and
Abstractor

A Model
Checker

No
Defect

Specialised
Abstraction

Potential
Defect

Is Finite State Model
Has violation

Is verified

Times-out

Is Too Complex

Fig. 3. Architecture of the Model-based Analysis Approach

Figure 3 illustrates our approach to model-based analysis: for each potential
defect we first determine all the other statements in the program that are depen-
dent on the statement of the potential defect; this step effectively creates a slice
of the program starting at the potential defect statement, taking into account
only variables and conditions that are relevant for the analysis to be applied. We
then reduce the slice to a specialised abstraction which in turn is transformed
into a finite state model that is fed into a model checker.

Automatic data abstraction is used to discard irrelevant ranges of values un-
related to the property to be checked. We also use predicate abstraction on
statements when it is not possible to use data abstraction, resulting also in
smaller abstracted models. This combination of data and predicate abstractions
alleviates the expensive predicate solving, and reduces the complexity of the
resulting model; again, improving performance of the analysis.

A Method for Scalable and Precise Bug Finding 203

Owing to the use of automatic abstraction techniques it is possible that an
abstraction proves too complex to transform into a model. In such cases the
particular potential defect is not analysed further. The complex abstractions
result because of the presence of unsupported operations for the data abstraction
mechanism and also because of limitations in the predicate solver. In contrast to
the CEGAR approach, where multiple iterations of generation of an abstraction
may happen, we only abstract once. We generate simpler models by specialising
the property (i.e., the defect type in our case) to be checked. Thus our technique
is faster than CEGAR based approaches but less accurate. This tradeoff enables
us to handle large code bases without reducing the value of the reported defects.

Once the model is run through the model checker, either a counterexample is
generated; in which case the potential defect violates the property being checked
for and is therefore a defect, or no property violation happens; in which case the
potential defect is not a defect.

Algorithm 1. High Level Algorithm

procedure DefectSpecificModelCheck(program)
potentialDefects := GetPotentialDefectsList(program)
defects := ∅
for each pd in potentialDefects do

slice := Slicing(program,pd)
if slice is executable then

model := SpecialisedAbstraction(slice, pd)
if model is not empty then

result := ModelCheck(model, fixedProperty)
if fixedProperty is not satisfied then

defects := defects ∪ { pd }
end if
potentialDefects := potentialDefects \ { pd }

end if
end if

end for
Print(defects)

end procedure

The Procedure DefectSpecificModelCheck in Algorithm 1 depicts our
model-based analysis at a high level. First a list of ‘potentialDefects’ is gen-
erated for the program. This is a simple static analysis pass. For each potential
defect, a slice of the code is obtained. If the resulting slice is a self-contained
piece of code that can be executed, a model of it is generated via specialised
abstraction. If a non-empty model is generated, it is run by a model checker and
determined to be safe or unsafe; unsafe results are placed in the ‘defects’ list.
Other cases lead to the potential defect remaining in the list of potential defects.
The slicing and model checking components of the algorithm are standard. We
explain our specialised abstraction in the next section.

204 M. Valdiviezo, C. Cifuentes, and P. Krishnan

4.1 Specialised Abstraction

As mentioned earlier, our specialised abstraction for defect types makes use of
data abstraction and predicate abstraction. Procedure SpecialisedAbstraction

in Algorithm 2 describes the specialised abstraction for a given slice ‘slice’ and
a potential defect ‘pd’. The algorithm keeps track of a set of boolean variables
(‘boolVariables’) and a set of data variables (‘dataVariables’), as well as a list of
abstracted instructions (‘model’).

Algorithm 2. Specialised Abstraction Algorithm

function SpecialisedAbstraction(slice,pd)
boolVariables := ∅; dataVariables := ∅
predicates := GetControlStatementPredicates(slice)
for each pred in predicates do

if pred cannot be expressed using DataAbstraction then
boolVar := CreateBoolVariable(pred)
boolVariables := boolVariables ∪ { boolVar}

end if
end for
model := <>

for each inst in slice do
modelInst, dataVariables := ApplyDefectSpecificAbstraction(inst,

pd, boolVariables, dataVariables)
if modelInst is empty then

return empty
else

model := model � modelInst
end if

end for
return model

end function

For a given slice, we first determine all predicates in the control statements.
If the predicate cannot be expressed using the specific defect data abstraction,
a boolean variable is created for it and added to the set ‘boolVariables’.

Each instruction in the slice is processed by ‘ApplyDefectSpecificAbstraction’
to generate the abstracted instruction (‘modelInst’) and update the set of data
variables ‘dataVariables’. Predicate abstraction is applied to predicates associ-
ated with boolean variables (i.e., in the set ‘boolVariables’). If the instruction is
too complex for the abstraction at hand, an empty model is returned. Otherwise
the model is extended (� is just concatenation) with the model representing
the current instruction (inst) being processed.

Next we explain the details of the data and predicate abstraction (denoted by
‘ApplyDefectSpecificAbstraction’) for finding memory leak defects. Recall that
we will create one model per potential defect. We consider a potential memory
leak a pair of memory allocation and return statements. Thus each model will

A Method for Scalable and Precise Bug Finding 205

have only one allocation that may leak at exactly one exit point. For memory leak
detection, the ‘dataVariables’ of interest are pointers. A pointer value is repre-
sented by its abstracted address, address space and its offset. The abstracted ad-
dress, used in the data abstraction process, can either be NULL (‘NULL ADDR’),
point to the allocatedmemory in question (‘MEM ALLOC ADDR’), or point else-
where (‘OTHER ADDR’). The address space attribute keeps track of relevant in-
formation of the memory contained in the address of the pointer; there are three
possible values. Pointers that point to memory containing an address to an al-
located memory are marked as ‘PARENT ALLOC ADDR’. For example, a dou-
ble pointer ‘p’ (i.e.,‘void **p’) will be flagged as ‘PARENT ALLOC ADDR’ if
the memory it points to (i.e.,‘*p’) includes a memory allocation (e.g., ‘*p = mal-
loc(..)’). This information allows for the detection of indirect deallocations or es-
capes of ‘MEM ALLOC ADDR’. In cases where a pointer address is reachable
from outside the function being analysed (e.g., argument passed by reference),
it is marked as ‘ESCAPE ADDR’. This way it is possible to identify when the
‘MEM ALLOC ADDR’ escapes. If the pointer does not point to a parent com-
pound data type and does not escape, its value is ‘NONE’. Last, the offset of the
pointer is stored as an integer, which is needed for supporting arithmetic opera-
tions.

The arithmetic operations that can be represented by this abstraction are
limited to additions and subtractions between pointers and integers. As a result,
only the offset section of pointers is affected in these operations. In the case of
logical operations, our approach only supports equals and not equals predicates.
The address space attribute is ignored when computing comparisons as they do
not represent the value of the address itself. The particular case of comparing
between two pointers evaluating to ‘OTHER ADDR’ is handled by assigning
‘true or false’ non-deterministically.

The address space attribute of pointers is modified as a side effect of defi-
nitions of external pointers, memory writes and memory copies. First, when a
pointer is defined externally (e.g., a pointer returned by a library function),
the address space of that pointer is set to ‘ESCAPE ADDR’. Secondly, we
need to propagate the address space attribute when a ‘child’ pointer is stored
in a memory pointed by a ‘parent’ pointer. The ‘parent’ pointer is flagged as
‘PARENT ALLOC ADDR’ if the ‘child’ pointer address is a memory allocation
or it is marked as ‘PARENT ALLOC ADDR’. On the other hand, the ‘ES-
CAPE ADDR’ flag is propagated to the ‘child’ pointer from the ‘parent’ pointer
if it is the case. Finally, memory copies (e.g., using memcpy(...)) sets the desti-
nation pointer as ‘PARENT ALLOC ADDR’ if the source pointer is marked as
such. In all of the three cases stated above, our algorithm declares that memory
leak is not possible and defines an end state in the model when a pointer address
space needs to be set to ‘PARENT ALLOC ADDR’ and ‘ESCAPE ADDR’ at
the same time.

The address and address space abstractions are summarised in Figure 4.

206 M. Valdiviezo, C. Cifuentes, and P. Krishnan

Address ∈ {NULL ADDR, MEM ALLOC ADDR, OTHER ADDR}

AddressSpace ∈ {NONE, PARENT ALLOC ADDR, ESCAPE ADDR}

Offset ∈ Z

Fig. 4. Address data abstraction

Concretely, we represent pointers as integers: the address, address space and
offset of the abstracted representation of pointers. They are extracted by using
arithmetic modulus operations as defined in Figure 5.

pointerAddress(ptr) ≡ (| ptr | MOD 10) MOD 3

pointerAddressSpace(ptr) ≡ (| ptr |— MOD 10) DIV 3

pointerOffset(ptr) ≡ ptr DIV 10

Fig. 5. Operations to extract elements from pointers represented as integers

There are two limitations to using specialised abstraction. First, it does not
support the analysis of user-defined properties, and second, the resulting model
cannot be guaranteed to be non spurious. It may be inaccurate due to predicates
that may be missing in the model. The first limitation results from the fact that
each property needs a particular algorithm for the analysis. However, this is
not a requirement in our case as we are interested in checking for known types
of defects for which effective algorithms have been developed. To minimise the
effects of the second limitation, the analysis accepts this fact and just leaves the
potential defect as a potential defect, rather than attempting to generate a more
accurate model.

4.2 Example Revisited

We now show the working of the memory leak abstraction technique on our
running example presented in Figure 1. Recall that the slice for the criterion ‘P18’
is all the statements in non-shaded basic blocks. This slice has 4 predicates: ‘P1: p
== NULL’, ‘P5: f == NULL’, ‘P12: retval == -1’ and ‘P14: p != NULL’. Three
of the four predicates can be effectively represented using our data abstraction,
since ‘NULL ADDR’ is a possible abstracted value. As indicated earlier, only
one boolean variable needs to be created to keep track of the predicate ‘retval
== -1’.

We illustrate the processing of a couple of instructions. The instruction at
‘P0’ allocates memory via ‘malloc’ and stores the result in ‘p’. This instruction

A Method for Scalable and Precise Bug Finding 207

is modelled by two abstracted instructions: a declaration of a variable that keeps
track of the pointer ‘p’, and the result of invoking an external library function
that can return one of two values; the newly allocated address or NULL if there
is not enough memory available. This indecisive result is expressed by using a
non-deterministic selection statement which covers the two cases ‘p = NULL’
and ‘p = MEM ALLOC’. This is shown in the first if – fi statement in Figure 6.

The instruction at ‘P11’ defines the variable ‘retval’; this variable affects the
boolean variable associated with predicate ‘retval == -1’. Assume the boolean
variable is named ‘b’. The instructions ‘b = true’ and ‘b = false’ are added to
basic blocks ‘bb’ and ‘bb3’, respectively, prior to the last branching instruction,
to abstract the incoming values of the phi function (-1 and -2, respectively).

The instruction at ‘P4’ is a call to the library function ‘fopen’ and defines
the value of variable ‘f’. This instruction generates a non-deterministic selection
statement to represent the result of ‘fopen’ and an assignment that makes ‘f’
an escape address. In the first construct, we assume that the ‘fopen’ can only
return either ‘OTHER’ or ‘NULL’ since the return value is a pointer and there is
no memory allocation involved. The address is flagged as ‘ESCAPE ADDR’ for
safety as we assume that this address can be potentially reached interprocedu-
rally. This last statement is not relevant in this particular example as there is no
memory write to this address. However, it prevents other cases from reporting
false positives.

4.3 Function Summaries and Interprocedural Support

We conclude the discussion of our approach by noting our use of standard func-
tion summaries to handle interprocedural analysis [15]. That is, function sum-
maries of each function are created and then used at each calling site. A function
summary is a collection of pre and post conditions that encapsulates how the
inputs and outputs of a function are affected in the context of a function call.
These predicates can represent relevant effects for the memory leak detection
analysis such as pointer escapes, memory copies, memory allocations and deal-
locations. The summaries of functions from external library functions can be
defined in a configuration file. In particular, summaries of common functions of
the C library, such as ‘malloc’ and ‘free’, are used in the analysis.

Whenever a function summary is missing for a given (external) function, the
algorithm makes use of the worst case scenario for the defect at hand. For ex-
ample, for memory leak defects, we can safely assume that every pointer input
is escaped and that every pointer output is in an escaped abstracted address
space. Further, the return value is non-deterministically defined in this case to
avoid missing defects that are not directly related with such calls.

5 Implementation

We have implemented our model-based analysis for detecting memory leaks using
the Parfait static code analysis tool [16] and the SPIN [17] model checker. Given

208 M. Valdiviezo, C. Cifuentes, and P. Krishnan

our abstraction technique, the model checker we use need not have support for
memory leaks.

Our slicing implementation is performed in two passes: a backward pass to
calculate the control and data dependencies from the exit point back to the point
of interest (the allocation), and a forward pass to track the uses of the allocation
statement. This implementation makes use of Parfait’s pointer alias analysis.

To implement predicate abstraction, we make use of Parfait’s predicate mod-
ule. When this module cannot determine the value of an abstracted boolean
variable, e.g., the predicate is too complex for the module to solve, we assign a
value non-deterministically. This module is fast but less precise than a theorem
prover, again, as a tradeoff between precision and scalability.

Our implementation has some limitations in the abstraction and the interpro-
cedural support. Our specialised abstraction method is occasionally unable to
generate a model because of the use of a simple predicate solver. For instance, it
is not able to express boolean variables, representing predicates, in terms of other
boolean variables, and it cannot resolve predicates containing floating point val-
ues. Our interprocedural support is not complete. As explained in Section 4.3,
we rely on Parfait’s existing function summaries for detecting interprocedural
defects. We have not extended Parfait to fully support our model-based anal-
ysis needs. So, some information is not considered in the generation of these
summaries and, therefore, our algorithm can miss relevant information for the
analysis.

We translate our specialised abstraction into the Promela which is the input
language to the SPIN model checker. There are two features of the Promela
language that deserve explanation as they differ from traditional programming
languages. Promela’s control flow is based on whether a statement is executable
or not [17]. A statement is executable if it evaluates to a non-zero integer value;
therefore, every statement in Promela returns a value. A statement can be an
expression on its own, and expressions like ‘0;’ are not executable as they do not
evaluate to a non-zero value. We take advantage of this property of the language
and use non-executable statements to specify end states. This combined with
Promela’s modelling of non-determinism using guarded statements enables us to
represent different behaviours.

The generated Promela model for our memory leak example shown in Fig-
ure 1 is presented in Figure 6. It has been slightly modified to aid readability. The
model contains only one active process, ‘myProcess’, which is enough for evalu-
ating sequential properties such as memory leak. Two auxiliary global boolean
variables are included in the construction of the model: ‘memoryLeak’ and ‘exit’.
The ‘memoryLeak’ variable will evaluate to true when the memory in question
is allocated and has not been either freed nor escaped. The ‘exit’ variable is
set to true in the block containing the exit statement in the potential defect.
As a result, the logical temporal logic (LTL) property that expresses memory
leak freedom is represented as [](exit -> !memoryLeak), which means “at any
state in the model, if exit holds true, memoryLeak is false”.

A Method for Scalable and Precise Bug Finding 209

bool memoryLeak = fa l se ;

bool e x i t = fa l se ;

a c t i v e proctype myProcess () {
int p ; // pointer p
int f ; // pointer f
bool b ; // represent ing

// r e t v a l == −1
bool pred0 , pred1 ;

bool pred2 , pred3 ;

entry :

i f
: : true −>

memoryLeak = true ;

p = MEMALLOC;

: : true −> p = NULL;

f i ;
pred0 = addrSpace (p) == NULL;

i f
: : (pred0) −> goto bb ;

: : else −> goto bb2 ;

f i ;
bb : b = true ; // r e t v a l = −1;
goto end ;

bb2 :

i f
: : true −> f = OTHER;

: : true −> f = NULL;

f i ;
f = setAddrSpace (f , ESCAPE ADDR) ;

pred1 = addrSpace (f) == NULL;

i f
: : (pred1) −> goto bb3 ;

: : else −> 0 ;

f i ;
bb3 : b = fa l se ; // r e t v a l = −2;
goto end ;

end :

pred2 = b ;

i f
: : (pred2) −> goto bb5 ;

: : else −> goto bb7 ;

f i ;
bb5 : pred3 = addrSpace (p) != NULL;

i f
: : (pred3) −> goto bb6 ;

: : else −> goto bb7 ;

f i ;
bb6 :

i f
: : addrSpace (p) == MEMALLOC −>

memoryLeak = fa l se ; 0 ;

: : else −> skip ;

f i ;
goto bb7 ;

bb7 : e x i t = true ;

0 ;

}

Fig. 6. Promela model for example of Figure 1

The Promela model is then passed to SPIN to perform the model checking.
If SPIN reports an error, the memory leak is reported as such. We make use
of a timeout in case the SPIN processing time takes too long. In practice, test
runs indicate that 10 seconds is sufficient time prior to timeout for the size and
complexity of the models our analysis generates.

6 Experimental Results

We measure the effectiveness of our technique and report both precision and
recall [18]. We evaluated our approach by running two sets of experiments. The
first measured the precision and recall of the results against existing benchmarks
from the program analysis community. The second measured precision and per-
formance against a large open source code base. For this case it is not possible
to measure recall as the list of all defects in the large code base is not known.
We also compare the results produced by the LLBMC model-checker [2] and re-
sults produced by a purely static-analysis approach using Parfait [16]. We chose
LLBMC because, unlike other model-checkers for C, it supports the detection of
memory leaks.

210 M. Valdiviezo, C. Cifuentes, and P. Krishnan

6.1 Evaluation of Precision and Recall Against Benchmarks

We use the subset of memory leak benchmarks available in the NIST SA-
MATE [19] suite and the Error Detection Test Suite from Iowa State Univer-
sity [20]. These suites contains small benchmarks (the average number of lines
of code without comments/blank lines is also shown) with known memory leaks.
Furthermore each program has one defect per benchmark. Knowing the location
of the defect in the code allows us to determine whether the results of our analysis
are correct (hence a true positive), incorrect (hence a false positive) or whether
defects were missed all together (hence a false negative). Precision and recall
are then computed based on these values. It should be noted that we are not
including benchmarks with allocation to global pointers as our implementation
does not consider those cases as memory leaks.

Table 1. Small Benchmark Results

Benchmark Total Avg Tool True False False Precision Recall Time
Defects LOC + + - (sec)

SAMATE
50

22
Model-based 44 0 6 100% 88% 34
LLBMC 39 0 11 100% 86.67% 6.38
Parfait 44 0 6 100% 88% 6.53

IOWA 25 35
Model-based 17 0 8 100% 68% 20.44
LLBMC 22 0 3 100% 88% 7.67
Parfait 13 0 12 100% 52% 1.05

Table 1 shows the results of this evaluation. For each benchmark suite we
list the total number of defects in the benchmarks, the reported true positives,
the number of false positives and false negatives, and compute the precision and
recall for the analysis results. As can be seen, all reports produced by the analysis
in both benchmarks are correct, hence a false positive rate of 0 and therefore
precision of 100%.

The false negatives for the model-based approach in these benchmarks are
mostly due to the incomplete function summaries. Thus, our algorithm is unable
to process relevant statements or has to be more conservative when abstracting
calls to those functions; e.g., assume that every parameter in the call escapes.
LLBMC also suffers from a similar problem. More than half the number of false
negatives are because LLBMC does not recognise strdup as allocating memory
or because of exceptions. LLBMC ran out of memory on three of the programs in
the SAMATE suite. In terms of runtime, our model-based approach will generate
models for all potential memory leaks in the code, whereas the LLBMC approach
will stop when it first encounters a memory leak defect.

Our model-based approach generates 125 potential defects for the various pro-
grams in SAMATE. For these 125 potential defects 122 models were generated,
i.e., 3 models were too complex. The model-checking process is able to prove
violations in 44 of the 122 models. Thus it missed finding 6 defects. Similarly,

A Method for Scalable and Precise Bug Finding 211

for the IOWA data set, our approach generates 37 potential defects for which 32
models were generated with 5 models being too complex. The model-checking
process verified 17 out of the 32 models.

Parfait will also process all potential memory leaks in the program, however,
it uses less expensive data flow techniques which have been optimised over the
years. Thus its performance on small benchmarks is excellent both in terms of
accuracy and run-time.

The main conclusion we wish to draw from this experiment is that model
checking does work for small programs. There is no advantage in generating
models on small programs as shown by the significantly larger time taken by the
model-based analysis. The model checking process (using LLBMC) is effective
although in the case of the benchmarks from the SAMATE set, Parfait is much
better than LLBMC. The next section evaluates the effectiveness of slicing and
the specialised abstraction technique as applied to a large system.

6.2 Evaluation Using OpenJDK

We ran our analysis over the OpenJDK 7 build 136, on a Sun Ultra24 machine
with Core2Duo 3.3Ghz with 6GB RAM of memory. The OpenJDK version has
more than 1.4 million lines of non-commented C/C++ code. We used version
5.2.2 of the SPIN model checker. For this system we compare our approach
with only the dataflow analysis built into Parfait. Unfortunately LLBMC was
unable to run successfully on the above system; thus we are unable to present
any results for it. Also tools such as Sparrow and Saber were not available for
our experimentation. So no comparison with their approaches can be made.

Although our implementation uses Parfait, the memory leak detection in Par-
fait is a separate pass that can be run in stand-alone mode. These features of
Parfait are independent from each other and hence the comparison does not
suffer from any internal biases.

Since neither us nor the authors of the code know where all memory leaks
are in the OpenJDK code base, we can only measure precision of the results
produced by the analysis, as measuring recall requires knowledge of the location
of all memory leaks. Precision is measured by manually inspecting each report
produced by the analysis and determining whether the report is correct (i.e., true
positive) or incorrect (i.e., false positive). Given the industrial nature of the code
base, and its size we used this code base to measure the runtime performance of
the analysis.

Table 2. OpenJDK Benchmark Results

Tool Total Reports True False Relative Precision Performance
Positive Positive False Negative

Parfait 38 37 1 25 97.37% 55 sec

Model-based 71 60 11 2 84.5% 1:19 hr

212 M. Valdiviezo, C. Cifuentes, and P. Krishnan

Table 2 shows the results of this evaluation. Of the 71 defects reported by
the analysis, 60 are correct and 11 are false positives, leading to a precision of
84.5%. The precision in this case is less when compared to the SAMATE and
IOWA benchmarks. This is because the latter benchmarks are small and not
necessarily fully representative of real code, i.e., they lack in complexity of the
code. The false positives included in this test were caused by limitation in the
implementation of the slicing module. In some cases our slicing algorithm fails
to include uses of parent pointers in the slice and, thus, relevant escapes are not
added to the model. We also measure the relative false negative for both tools
based on the true positive results. For each true positive, we determine whether
the other tool reports it or not; if it does not, then it is a false negative. 35 reports
were found by both tools. So Parfait missed 25 memory leaks reported by model-
based analysis, whereas our approach only missed 2 reported by Parfait. That
is, 62.2% more defects were correctly reported.

These results were expected as the model-based approach is more exhaustive
and thus more computationally expensive than the data flow technique. The
extra performance runtime is still within acceptable time for scaling the analysis
to millions of lines of code.

Although the general algorithm reduces the number of model construction
cancellations by making safe assumptions and using non-deterministic assign-
ments, we are still forced to abandon the analysis in several of these cases.
We also found some data and predicate abstraction clashes; e.g., operations
composed of both predicate and data abstracted variables. These instances are
handled by discarding predicate abstraction and applying data abstraction on
the fly when possible. Otherwise the analysis is cancelled. For example for the
OpenJDK code base, we only generate models for 67% of the potential defects.

We also examined the minimum, maximum and average number of states of
the models generated by the analysis. The smallest model had 7 states while the
largest model had close to 1.8 million states. The average size of the model was
about 92,000 states. For models that had a defect, the smallest model had 12
states and the largest model had about 800,000 states and the average size was
14,000 states. Of the 4,186 models generated only 13 models timeout given the
10 second limit. We can therefore conclude that model checking was, in general,
effective. We are investigating if there is any correlation between the number of
states in the models and the overall performance. Intuitively, large models which
do not have a defect lead to reduction in performance as all states need to be
examined. However, a large model which has a defect that can be found without
computing the entire space will not affect performance.

6.3 Threats to Validity

We now discuss a few threats to validity. The first is related to the selection of
benchmarks. We have chosen IOWA and SAMATE as representative of small
programs and OpenJDK for a large system. Experimenting with other sys-
tems may yield different results. In our evaluation we have converted the spe-
cialised abstraction to Promela and used the SPIN model checker. We could have

A Method for Scalable and Precise Bug Finding 213

translated the abstraction to C (and used CBMC [3]) or to LLVM bit code (and
used LLBMC). While the exact timing will vary, in all these cases we do not
think that this would change the overall validity of our approach. The initial list
of the potential defects has a significant influence on the process. That is, larger
the list the more abstractions that need to be created. If one can use a more
sophisticated (and hence potentially more expensive) static analyser, our results
could be improved. But the identification of the optimal point is an open ques-
tion. Also we are using the function summaries from Parfait. This results in a
fair comparison for OpenJDK but also points to an area that could be improved.

7 Conclusion and Future Work

In this paper we have presented our model-based analysis approach to finding de-
fects, which makes use of model checking techniques in conjunction with program
analysis. The aim of our approach was to develop a defect detection mechanism
that can scale to thousands and millions of lines of code, without loss in pre-
cision, at the expense of missing some defects. Our approach has been applied
to a version OpenJDK that has approximately 1.4 million lines of code which is
much larger than programs used in the TACAS 2013 and 2014 benchmarks and
tools such as Saber [8].

The key to our analysis is the use of a specialised abstraction that relies on
both data and predicate abstraction and the use of multiple models (one per
potential defect) to generate a number of small models each of which can be
model checked. Thus we are able to leverage the strengths of program analysis
and model checking. As our abstraction process limits the size of the models and
hence could have false negatives.

Our implementation results for memory leak detection show that the analysis
scales well to large code bases without detracting from precision, at the expense
of missing some defects. When compared to data flow analysis, our analysis was
much slower but reported 62% more defects. The runtime performance of our
analysis is reasonable to include this analysis in a static code analysis tool that
runs over millions of lines of code.

There are two main avenues for further research. The first is a more detailed
comparison. For instance, we could compare our approach with other techniques
developed for memory leak (e.g., if we get access to Saber). Second, we believe
that our analysis can be applied to other types of defects which needs validation.

Acknowledgements. Initial work was conducted by the first author under
Prof. Hayes’s supervision. We thank Daniel Wainwright and Matthew Johnson
for their assistance with our experiments.

214 M. Valdiviezo, C. Cifuentes, and P. Krishnan

References

1. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Communications of the ACM 54, 68–76 (2011)

2. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded model checking of C and C++ pro-
grams using a compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012)

3. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

4. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Hongjun, Z.: Bandera: Extracting finite-state models from Java source code. In:
Proceedings of the International Conference on Software Engineering, pp. 439–448
(2000)

5. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: Proceedings of the Conference on Programming Language Design
and Implementation (PLDI), pp. 57–68. ACM Press (June 2002)

6. Dor, N., Adams, S., Das, M., Yang, Z.: Software validation via scalable path-
sensitive value flow analysis. In: Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), pp. 12–22. ACM (2004)

7. Jung, Y., Yi, K.: Practical memory leak detector based on parameterized proce-
dural summaries. In: Proceedings of the 7th International Symposium on Memory
Management (ISMM), pp. 131–140 (2008)

8. Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse value-flow
analysis. In: Proceedings of the 2012 International Symposium on Software Testing
and Analysis (ISSTA), pp. 254–264. ACM (2012)

9. Yatapanage, N., Winter, K., Zafar, S.: Slicing behavior tree models for verification.
In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 125–139.
Springer, Heidelberg (2010)

10. Park, M., Byun, T., Choi, Y.: Property-based code slicing for efficient verifica-
tion of OSEK/VDX operating systems. In: Proceedings of the First International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS), pp. 69–84
(2012)

11. Kim, Y., Lee, J., Han, H., Choe, K.M.: Filtering false alarms of buffer overflow
analysis using SMT solvers. Information and Software Technology 52(2), 210–219
(2010)

12. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: Proceedings of
the ACM Symposium on Applied Computing (SAC), pp. 1284–1291 (2012)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003)

14. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

15. Hampapuram, H., Yang, Y., Das, M.: Symbolic path simulation in path-sensitive
dataflow analysis. In: Proceeding of PASTE, pp. 52–58. ACM Press (2005)

A Method for Scalable and Precise Bug Finding 215

16. Cifuentes, C., Keynes, N., Li, L., Hawes, N., Valdiviezo, M., Browne, A., Zim-
mermann, J., Craik, A., Teoh, D., Hoermann, C.: Static deep error checking in
large system applications using Parfait. In: Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, pp. 432–435. ACM (2011)

17. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2011)

18. Anderson, P.: The use and limitations of static-analysis tools to improve software
quality. CrossTalk: The Journal of Defense Software Engineering, 18–21 (2008)

19. NIST: National Institute of Standards and Technology SAMATE Reference
Dataset (SRD) project (January 2006), http://samate.nist.gov/SRD

20. Luecke, G.R., Coyle, J., Hoekstra, J., Kraeva, M., Li, Y., Taborskaia, O., Wang,
Y.: A survey of systems for detecting serial run-time errors. Concurrency and
Computation – Practice and Experience 18(15), 1885–1907 (2006)

http://samate.nist.gov/SRD

	A Method for Scalable and Precise Bug FindingUsing Program Analysis and Model Checking
	1 Introduction
	2 Related Work
	3 Illustrative Example
	4 Model-Based Analysis
	4.1 Specialised Abstraction
	4.2 Example Revisited
	4.3 Function Summaries and Interprocedural Support

	5 Implementation
	6 Experimental Results
	6.1 Evaluation of Precision and Recall Against Benchmarks
	6.2 Evaluation Using OpenJDK
	6.3 Threats to Validity

	7 Conclusion and Future Work
	References

