
Jacques Garrigue (Ed.)

 123

LN
CS

 8
85

8

12th Asian Symposium, APLAS 2014
Singapore, Singapore, November 17–19, 2014
Proceedings

Programming
Languages
and Systems

Lecture Notes in Computer Science 8858
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jacques Garrigue (Ed.)

Programming
Languages
and Systems
12th Asian Symposium, APLAS 2014
Singapore, Singapore, November 17-19, 2014
Proceedings

13

Volume Editor

Jacques Garrigue
Nagoya University, Graduate School of Mathematics
Chikusa-ku, Nagoya 464-8602, Japan
E-mail: garrigue@math.nagoya-u.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-12735-4 e-ISBN 978-3-319-12736-1
DOI 10.1007/978-3-319-12736-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014951872

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 12th Asian Symposium on Pro-
gramming Languages and Systems (APLAS 2014), held in Singapore, during
November 17–19, 2014. APLAS aims at stimulating programming language re-
search by providing a forum for the presentation of the latest results and the
exchange of ideas in topics concerned with programming languages and systems.
APLAS is based in Asia, but is an international forum that serves the worldwide
programming language community. Past APLAS symposia were successfully held
in Melbourne (2013), Kyoto (2012), Kenting (2011), Shanghai (2010), Seoul
(2009), Bangalore (2008), Singapore (2007), Sydney (2006), Tsukuba (2005),
Taipei (2004), and Beijing (2003) after three informal workshops.

The topics covered in the conference include, but are not limited to, seman-
tics, logics, and foundational theory; design of languages, type systems and foun-
dational calculi; domain-specific languages; compilers, interpreters, and abstract
machines; program derivation, synthesis, and transformation; program analysis,
verification, and model-checking; software security; concurrency and parallelism;
and tools and environments for programming, verification, and implementation.

This year, 57 papers were submitted to APLAS. Each submission was re-
viewed by three or more Program Committee members. After thoroughly evalu-
ating the relevance and quality of each paper, the committee chose to accept 24
papers for presentation at the conference.

This year’s program also continued the APLAS tradition of invited talks by
distinguished researchers:

– Zhenjiang Hu (NII) on“What Is the Essence of Bidirectional Programming?”

– Julien Verlaguet (Facebook) on “Incremental Adoption of Static-Typing”

– Dexter Kozen (Cornell University) on “NetKAT: A Formal System for the
Verification of Networks”

This program would not have been possible without the unrelenting efforts
of several people, whom we would like to thank. First, the Program Committee
and additional reviewers for the hard work put in toward ensuring the high
quality of the proceedings. Our thanks also go to the Asian Association for
Foundation of Software (AAFS), founded by Asian researchers in cooperation
with many researchers from Europe and the USA, for sponsoring and supporting
APLAS. We would like to warmly thank the Steering Committee in general
and Wei-Ngan Chin and Cristian Gherghina for their support in organizing the
conference and the poster session. Finally, we are grateful to Andrei Voronkov
whose EasyChair system eased the processes of submission, paper selection, and
proceedings compilation.

September 2014 Jacques Garrigue

Organization

Program Committee

Xiaojuan Cai Shanghai Jiao Tong University, China
James Chapman IoC, Tallinn University of Technology, Estonia
Jacques Garrigue Nagoya University, Japan
Cristian Gherghina Singapore University of Technology and Design
Eric Goubault CEA, France
Fei He Tsinghua University, China
Gerwin Klein NICTA and UNSW, Australia
Raghavan Komondoor Indian Institute of Science, Bangalore, India
Paddy Krishnan Oracle, Australia
Daan Leijen Microsoft Research, USA
Yasuhiko Minamide University of Tsukuba, Japan
Shin-Cheng Mu Academia Sinica, Taiwan
Sungwoo Park Pohang University of Science and Technology,

South Korea
Julian Rathke University of Southampton, UK
Sukyoung Ryu KAIST, South Korea
Alexandra Silva Radboud University Nijmegen,

The Netherlands
Martin Sulzmann Hochschule Karlsruhe, Germany
Munehiro Takimoto Tokyo University of Science, Japan
Jan Vitek Northeastern University, USA
Hongwei Xi Boston University, USA

Additional Reviewers

Andronick, June
Athaiya, Snigdha
Basold, Henning
Boyland, John
Chuang, Tyng-Ruey
Clairambault, Pierre
Costea, Andreea
Cristescu, Ioana
Danish, Matthew
Fahrenberg, Uli
Fernandez, Matthew
Ferrara, Pietro

Geuvers, Herman
Hage, Jurriaan
He, Chaodong
Im, Hyeonseung
Jeannin, Jean-Baptiste
Jongmans, Sung-Shik T.Q.
K.R., Raghavendra
Krebbers, Robbert
Laird, James
Lewis, Corey
Liang, Hongjin
Liangze, Yin

VIII Organization

Liu, Jiaxiang
Lopes, Antónia
Mackie, Ian
Mcbride, Conor
Mimram, Samuel
Miné, Antoine
Moy, Yannick
Murray, Toby
Oh, Hakjoo
Petri, Gustavo
Pouzet, Marc
Pérez, Jorge A.
Rama, Girish Maskeri
Ren, Zhiqiang
Robert, Thomas

Roux, Pierre
Sammartino, Matteo
Santosa, Andrew
Sato, Haruhiko
Schöpp, Ulrich
Sewell, Thomas
Sharma, Asankhaya
Sneyers, Jon
Ta, Quang Trung
Taghdiri, Mana
Tzevelekos, Nikos
Vazou, Niki
Voigtländer, Janis
Wang, Bow-Yaw

Invited Presentations

What Is the Essence

of Bidirectional Programming?

Zhenjiang Hu

National Institute of Informatics, Japan

hu@nii.ac.jp

Bidirectional transformations [8, 4, 13] provide a novel mechanism for synchro-
nizing and maintaining the consistency of information between input and output.
The idea of bidirectional transformations is originated from the view updating
mechanism in the database community [1, 5, 9], and has been attracting a lot of
attention from a wide range of communities, including programming languages,
software engineering and databases, which has motivated the proposal of a vast
number of bidirectional approaches aiming to solve the problems of different
bidirectional applications.

A bidirectional transformation basically consists of a pair of transformations:
the forward transformation get s is used to produce a target view v from a source
s , while the putback transformation put s v is used to reflect modifications on
the view v to the source s . These two transformations should be well-behaved in
the sense that they satisfy the following round-tripping laws.

put s (get s) = s GetPut

get (put s v) = v PutGet

The GetPut property requires that no change in the view shall be reflected as
no change in the source, while the PutGet property requires all changes in the
view to be completely reflected to the source so that the changed view can be
computed again by applying the forward transformation to the changed source.

Bidirectional programming is to develop well-behaved bidirectional transfor-
mations in order to solve various synchronization problems. A straightforward
approach to bidirectional programming is to write two unidirectional transfor-
mations. Although this solution provides full control over both get and putback
transformations and can be realized using standard programming languages,
the programmer needs to show that the two transformations satisfy the well-
behavedness laws, and a modification to one of the transformations requires an
adaptation of the other transformation as well as a new well-behavedness proof.

It should be preferable to write just a single program that can denote both
transformations, in order to ease and enable maintainable bidirectional program-
ming. Then what should this single program be? Most existing bidirectional pro-
gramming languages are to aid programmers in writing a forward transformation
get and deriving a backward transformation put for free [8, 3, 2, 11, 12, 16, 20, 15,
19, 10]. However, the maintainability offered by such languages comes at the cost
of expressiveness and (more importantly) predictability because the ambiguity

XII Z. Hu

of synchronization handled by the putback transformation is solved by default
strategies over which programmers have little control.

One interesting but less known fact is that while get usually loses information
when mapping from a source to a view, put must preserve information when
putting back from the view to the source, according to the PutGet property.
Furthermore, it has been shown in [7, 6] that, for a putback transformation put ,
if there exists a forward transformation get then such get is uniquely determined
by put . In other words, the essence of bidirectional programming is nothing but
to write putback transformation.

In this talk, I will report our recent progress on putback-baesd bidirectional
programming, explaining how to design user-friendly languages for supporting
putback-based bidirectional programming [17, 18], showing how to systematically
check whether the definition of a put is in a valid form that guarantees that the
corresponding unique get exists [14], demonstrating how to apply putback-based
bidirectional programming to solve practical problems [6, 21], and highlighting
important issues and challenges for future work.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557–575 (1981)

2. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: POPL 2008, pp. 407–419. ACM (2008)

3. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for up-
datable views. In: PODS 2006, pp. 338–347. ACM (2006)

4. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.:
Bidirectional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.)
ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

5. Dayal, U., Bernstein, P.: On the correct translation of update operations on rela-
tional views. ACM Transactions on Database Systems 7, 381–416 (1982)

6. Fischer, S., Hu, Z., Pacheco, H.: “Putback” is the Essence of Bidirectional Pro-
gramming, GRACE Technical Report 2012-08, National Institute of Informatics,
36 p. (2012)

7. Foster, J.: Bidirectional Programming Languages. Ph.D. thesis, University of Penn-
sylvania (December 2009)

8. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(2007)

9. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems 13(4), 486–524 (1988)

10. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing
graph transformations. In: ICFP 2010, pp. 205–216. ACM (2010)

11. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011, pp.
371–384. ACM (2011)

12. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: POPL 2012, pp. 495–508.
ACM (2012)

What Is the Essence of Bidirectional Programming? XIII

13. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Dagstuhl Seminar on Bidirectional
Transformations (BX). SIGMOD Record 40(1), 35–39 (2011)

14. Hu, Z., Pacheco, H., Fischer, S.: Validity checking of putback transformations in
bidirectional programming. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 1–15. Springer, Heidelberg (2014)

15. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP 2007, pp. 47–58. ACM (2007)

16. Pacheco, H., Cunha, A., Hu, Z.: Delta lenses over inductive types. BX 2012. Elec-
tronic Communications of the EASST 49 (2012)

17. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “putback” style bidirec-
tional programming. In: PEPM 2014, pp. 39–50. ACM (2014)

18. Pacheco, H., Zan, T., Hu, Z.: BiFluX: A bidirectional functional update language
for XML. In: PPDP 2014. ACM (2014)

19. Voigtländer, J.: Bidirectionalization for free! (pearl). In: POPL 2009, pp. 165–176.
ACM (2009)

20. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE 2007, pp. 164–173.
ACM (2007)

21. Zan, T., Pacheco, H., Hu, Z.: Writing bidirectional model transformations as in-
tentional updates. In: ICSE 2014 (NIER Track), pp. 488–491. ACM (2014)

Incremental Adoption of Static-Typing

Julien Verlaguet

Facebook

Over the last year, Facebook migrated nearly its entire PHP codebase to Hack: a
gradually typed language that interoperates seamlessly with PHP. At Facebook’s
scale, it would have been difficult to completely transition to Hack right away.
To make this transition successful, the language and its type-system had to be
designed with interoperability in mind. In this talk, we will review the design
decisions that were made during the conception of the language. We will discuss
the tradeoffs that had to be considered to find a balance between ease of use and
safety.

Hack is an interesting case study of retrofitted static-typing into a dynamic
language. Some parts are specific to PHP, but we are hopeful that the lessons
learnt will be valuable to anyone interested in dynamic languages and type-
systems in general.

NetKAT — A Formal System

for the Verification of Networks

Dexter Kozen

Cornell University, Ithaca, NY 14853-7501, USA
kozen@cs.cornell.edu

http://www.cs.cornell.edu/∼kozen

Abstract. This paper presents an survey of recent work in the develop-
ment of NetKAT, a formal system for reasoning about packet switching
networks, and its role in the emerging area of software-defined network-
ing.

Keywords: Kleene algebra, Kleene algebra with tests, NetKAT,
software defined networking, packet switching, OpenFlow, Frenetic.

Table of Contents

Invited Presentation

NetKAT — A Formal System for the Verification of Networks 1
Dexter Kozen

Regular Papers

Optimized Compilation of Multiset Rewriting with Comprehensions 19
Edmund Soon Lee Lam and Iliano Cervesato

Logic Programming and Logarithmic Space . 39
Clément Aubert, Marc Bagnol, Paolo Pistone, and Thomas Seiller

Automatic Memory Management Based on Program Transformation
Using Ownership . 58

Tatsuya Sonobe, Kohei Suenaga, and Atsushi Igarashi

The Essence of Ruby . 78
Katsuhiro Ueno, Yutaka Fukasawa, Akimasa Morihata,
and Atsushi Ohori

Types for Flexible Objects . 99
Zachary Palmer, Pottayil Harisanker Menon,
Alexander Rozenshteyn, and Scott Smith

A Translation of Intersection and Union Types for the λμ-Calculus 120
Kentaro Kikuchi and Takafumi Sakurai

A Formalized Proof of Strong Normalization for Guarded Recursive
Types . 140

Andreas Abel and Andrea Vezzosi

Functional Pearl: Nearest Shelters in Manhattan . 159
Shin-Cheng Mu and Ting-Wei Chen

Suppl: A Flexible Language for Policies . 176
Robert Dockins and Andrew Tolmach

A Method for Scalable and Precise Bug Finding Using Program
Analysis and Model Checking . 196

Manuel Valdiviezo, Cristina Cifuentes, and Padmanabhan Krishnan

Model-Checking for Android Malware Detection . 216
Fu Song and Tayssir Touili

XVIII Table of Contents

Necessary and Sufficient Preconditions via Eager Abstraction 236
Mohamed Nassim Seghir and Peter Schrammel

Resource Protection Using Atomics: Patterns and Verification 255
Afshin Amighi, Stefan Blom, and Marieke Huisman

Resource Analysis of Complex Programs with Cost Equations 275
Antonio Flores-Montoya and Reiner Hähnle

Simple and Efficient Algorithms for Octagons . 296
Aziem Chawdhary, Ed Robbins, and Andy King

Compositional Entailment Checking for a Fragment of Separation
Logic . 314

Constantin Enea, Ondřej Lengál, Mihaela Sighireanu,
and Tomáš Vojnar

Automatic Constrained Rewriting Induction towards Verifying
Procedural Programs . 334

Cynthia Kop and Naoki Nishida

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 354
Taku Terao and Naoki Kobayashi

Inferring Grammatical Summaries of String Values 372
Se-Won Kim, Wooyoung Chin, Jimin Park, Jeongmin Kim,
and Sukyoung Ryu

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 392
Shigeyuki Sato and Akimasa Morihata

Address Chain: Profiling Java Objects without Overhead
in Java Heaps . 408

Xiaohua Shi, Junru Xie, and Hengyang Yu

Call-by-Value in a Basic Logic for Interaction . 428
Ulrich Schöpp

A Precise and Abstract Memory Model for C Using Symbolic Values . . . 449
Frédéric Besson, Sandrine Blazy, and Pierre Wilke

Hereditary History-Preserving Bisimilarity: Logics and Automata 469
Paolo Baldan and Silvia Crafa

Author Index . 489

NetKAT — A Formal System

for the Verification of Networks

Dexter Kozen

Cornell University, Ithaca, NY 14853-7501, USA
kozen@cs.cornell.edu

http://www.cs.cornell.edu/∼kozen

Abstract. This paper presents a survey of recent work in the develop-
ment of NetKAT, a formal system for reasoning about packet switching
networks, and its role in the emerging area of software-defined network-
ing.

Keywords: Kleene algebra, Kleene algebra with tests, NetKAT,
software defined networking, packet switching, OpenFlow, Frenetic.

1 Introduction

NetKAT is a relatively new language and logic for reasoning about packet switch-
ing networks. The system was introduced quite recently by Anderson et al. [1]
and further developed by Foster et al. [10]. The present paper provides an ac-
cessible self-contained introduction to the NetKAT language, some examples of
things one can do with it, and a flavor of ongoing work. All the results described
here have appeared previously [1, 10].

1.1 Software-Defined Networking

Traditional network architecture is fairly low-level, consisting of routers and
switches that do little besides maintaining routing tables and forwarding pack-
ets. The components of the network are typically configured locally, making it
difficult to implement end-to-end routing policies and optimizations that require
a global perspective. This state of affairs is ill-suited to modern data centers and
cloud-based applications that require a higher degree of coordination among
network components to function effectively.

Software-defined networking (SDN) is a relatively new paradigm for network
management. The main idea behind SDN is to permit centralized control of
the network in the form of a controller that communicates with the individual
network components. As the Open Networking Foundations’s 2012 white paper
“Software-Defined Networking: The New Norm for Networks” [11] describes it,

In the SDN architecture, the control and data planes are decoupled,
network intelligence and state are logically centralized, and the under-
lying network infrastructure is abstracted from the applications. As a

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014

2 D. Kozen

result, enterprises and carriers gain unprecedented programmability, au-
tomation, and network control, enabling them to build highly scalable,
flexible networks that readily adapt to changing business needs.

One can think of a centralized controller or set of controllers that have global
knowledge of the topology of the network over which they exercise control and
can interact with individual network components via a standardized communica-
tion interface. The controller can receive traffic flow information and operational
status from the components and can reconfigure them on the fly if necessary to
balance load, reroute traffic to circumvent failures, or implement security poli-
cies.

1.2 NetKAT

NetKAT is a new domain-specific language and logic for specifying and verifying
network packet-processing functions that fits well with the SDN paradigm. It is
part of the Frenetic suite of network management tools [9, 12, 28, 29]. NetKAT
is based on Kleene algebra with tests (KAT), a generic algebraic system for
reasoning about partial correctness that has been studied since the 1990’s [23].
KAT, in turn, is based on Kleene algebra (KA), the algebra of regular expressions
[19]. NetKAT is essentially KAT with primitives for modifying and testing packet
headers and encoding network topologies along with axioms for reasoning about
those constructs.

One might at first be skeptical about the expressive power of regular expres-
sions in this context, but in fact regular expressions are sufficient to encode
network topology and express many common reachability and security queries,
which can now be verified automatically. In §3 we give some examples of the
types of queries one can express with NetKAT. This expressive power, coupled
with NetKAT’s formal mathematical semantics, complete deductive system, and
decision procedure, make NetKAT a viable tool for SDN programming and ver-
ification.

2 NetKAT Basics

In this section we describe the syntax and semantics of NetKAT. This requires
us to say a few words about Kleene algebra (KA) [19] and Kleene algebra with
tests (KAT) [23] on which NetKAT is based.

2.1 Kleene Algebra (KA)

Kleene algebra is the algebra of regular expressions. Regular expressions are
normally interpreted as regular sets of strings, but there are many other useful
interpretations: binary relation models used in programming language seman-
tics, the (min,+) algebra used in shortest path algorithms, models consisting
of convex sets used in computational geometry. Perhaps surprisingly, a formal
model of packet-switching networks can also be added to this list.

NetKAT — A Formal System for the Verification of Networks 3

Abstractly, a Kleene algebra is any structure

(K,+, ·,∗ , 0, 1)

where K is a set, + and · are binary operations on K, ∗ is a unary operation on
K, and 0 and 1 are constants, satisfying the following axioms:

p + (q + r) = (p + q) + r p(qr) = (pq)r

p + q = q + p 1 · p = p · 1 = p

p + 0 = p+ p = p p · 0 = 0 · p = 0

p(q + r) = pq + pr (p+ q)r = pr + qr

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x

1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x

where we define p ≤ q iff p + q = q. The axioms above not involving ∗ are
succinctly stated by saying that the structure is an idempotent semiring under
+, ·, 0, and 1, the term idempotent referring to the axiom p+ p = p. Due to this
axiom, the ordering relation ≤ is a partial order. The axioms for ∗ together say
that p∗q is the ≤-least solution of q + px ≤ x and qp∗ is the ≤-least solution of
q + xp ≤ x.

One of the nice things about KA is that all properties are expressed as equa-
tions and equational implications (Horn formulas), and reasoning is purely equa-
tional. No specialized syntax or rules are needed, only the axioms and rules of
classical equational logic. This is also true of KAT and NetKAT.

2.2 Kleene Algebra with Tests (KAT)

To get KAT from KA, we add Boolean tests. Formally, a KAT is a two-sorted
structure (K,B,+, ·,∗ , , 0, 1), where B ⊆ K and

– (K,+, ·,∗ , 0, 1) is a Kleene algebra

– (B,+, ·, , 0, 1) is a Boolean algebra

– (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).

The elements of B are called tests. Note that the semiring operations +, ·, 0, 1 are
heavily overloaded, but this does not create any conflict. On tests, + and · behave
as Boolean disjunction and conjunction, respectively, and 0 and 1 stand for
falsity and truth, respectively. The overline is the Boolean negation operator,
sometimes written as a prefix operator ¬.

The axioms of Boolean algebra are

a+ bc = (a + b)(a+ c) ab = ba

a+ 1 = 1 a+ a = 1

aa = 0 aa = a

4 D. Kozen

in addition to the axioms of KA above. KAT can model standard imperative
programming constructs

p ; q = pq

if b then p else q = bp+ bq

while b do p = (bp)∗b

as well as Hoare partial correctness assertions {b} p {c}, which can be written in
any one of three equivalent ways:

bp ≤ pc bp = bpc bpc = 0.

Hoare-style rules become universal Horn sentences in KAT. For example, the
Hoare while-rule

{bc} p {c}
{c}while b do p {bc}

becomes the universal Horn sentence

bcp ≤ pc ⇒ c(bp)∗b ≤ (bp)∗bbc.

For purposes of program verification, KAT expressions are typically inter-
preted in binary relation models. Each expression is interpreted as a binary
relation on the set of program states, the input/output relation of the program.
The tests are interpreted as subidentities, subsets of the identity relation on
states; a test acts as a guard that either passes the state through unaltered or
fails with no output state.

2.3 NetKAT

NetKAT, in its simplest form, is a version of KAT in which the atomic actions
and tests take a particular network-specific form, along with some additional
axioms for reasoning about programs built using those primitives. The atomic
actions are for modifying, duplicating, and forwarding packets, and the atomic
tests are for filtering packets based on values of fields.

Formally, the atomic actions and tests are

– x ← n (assignment)
– x = n (test)

– dup (duplication)

We also use pass and drop for 1 and 0, respectively.
We will describe the formal semantics below, but intuitively, a NetKAT ex-

pression is a program that transforms input packets to output packets. The
assignment x ← n assigns the constant value n to the field x in the current

NetKAT — A Formal System for the Verification of Networks 5

packet. The test x = n tests whether the current value of the field x of the
current packet is n and drops the packet if not. For example, the expression

switch = 6 ; port = 8 ; dest ← 10.0.1.5 ; port ← 5

expresses the command: “For all packets incoming on port 8 of switch 6, set the
destination IP address to 10.0.1.5 and send the packet out on port 5.”

The NetKAT axioms consist of the following equations in addition to the KAT
axioms:

x ← n ; y ← m = y ← m ;x ← n (x �= y) (2.1)

x ← n ; y = m = y = m ;x ← n (x �= y) (2.2)

x = n ; dup = dup ;x = n (2.3)

x ← n ;x = n = x ← n (2.4)

x = n ;x ← n = x = n (2.5)

x ← n ;x ← m = x ← m (2.6)

x = n ;x = m = 0 (n �= m) (2.7)

(
∑

n x = n) = 1 (2.8)

These equations have the following intuitive interpretations:

(2.1) Assignments to distinct fields may be done in either order.
(2.2) An assignment to a field does not affect the value of a different field.
(2.3) When a packet is duplicated, the field values are preserved.
(2.4) An assignment of a value to a field causes that field to have that value.
(2.5) An assignment to a field of a value that the field already has is redun-
dant.

(2.6) With two assignments to the same field, the second assignment erases
the effect of the first.

(2.7) A field may have no more than one value.
(2.8) A field must have at least one value.

2.4 Semantics

The standard model of NetKAT is a packet-forwarding model. Operationally, a
NetKAT expression describes a process that maps an input packet to a set of
output packets. However, in order to reason about packet trajectories, we need
to keep track of changes to the packet as it moves through the network. Thus the
standard semantics interprets an expression as a function that maps an input
packet history to a set of output packet histories.

Formally, a packet π is a record with constant values n assigned to fields x.
A packet history is a nonempty sequence of packets

π1 :: π2 :: · · · :: πk.

6 D. Kozen

The head packet is π1, which represents the current values of the fields. The re-
maining packets π2, . . . , πk describe the previous values from youngest to oldest.

Every NetKAT expression e denotes a function:

�e� : H → 2H

where H is the set of all packet histories. The function �e� takes an input packet
history σ ∈ H and produces a set of output packet histories �e�(σ) ⊆ H .

The semantics of expressions is compositional and is defined inductively. For
the primitive actions and tests,

�x ← n�(π :: σ) = {π[n/x] :: σ}

�x = n�(π :: σ) =

{
{π :: σ} if π(x) = n

∅ if π(x) �= n

�dup�(π :: σ) = {π :: π :: σ}

where π[n/x] denotes the packet π with the field x rebound to the value n. Thus
the assignment x ← n rebinds the value of x to n in the head packet; the test
x = n simply drops the packet (logically, the entire history) if the test is not
satisfied and passes it through unaltered if it is satisfied, thus behaving as a
packet filter; and dup simply duplicates the head packet. The KAT operations
are interpreted as follows:

�p+ q�(σ) = �p�(σ) ∪ �q�(σ)

�pq�(σ) =
⋃

τ∈�p�(σ)

�q�(τ)

�p∗�(σ) =
⋃
n

�pn�(σ)

�1�(σ) = �pass�(σ) = {σ}
�0�(σ) = �drop�(σ) = ∅

�¬b�(σ) =

{
{σ} if �b�(σ) = ∅

∅ if �b�(σ) = {σ}

To compose p and q sequentially, the action p is done first, producing a set
of packet histories �p�(σ), then q is performed on each of the resulting histories
individually and the results accumulated. This is often called Kleisli composition.

The operation + simply accumulates the actions of the two summands. Thus
the expression (port ← 8) + (port ← 9) describes the behavior of a switch
that sends copies of the packet to ports 8 and 9. This is a departure from the
usual Kleene interpretation of + as nondeterministic choice—NetKAT treats
+ as conjunctive in the sense that both operations are performed, rather than
disjunctive, in which one of the two operations would be chosen nondeterminis-
tically. Nevertheless, the axioms of NetKAT are sound and complete over this
interpretation [1].

NetKAT — A Formal System for the Verification of Networks 7

3 Examples

In this section we show some useful things that can be done with NetKAT. These
examples are all from [1, 10], except some minor improvements have been made
in some cases. We will show how various reachability and security properties can
be represented as equations between NetKAT terms, thus can be checked auto-
matically by NetKAT’s bisimulation-based decision procedure [10]. Specifically,
we show how to encode the following queries:

– Reachability: Can host A communicate with host B? Can every host com-
municate with every other host?

– Security: Does all untrusted traffic pass through the intrusion detection sys-
tem located at C?

– Loop detection: Is it possible for a packet to be forwarded around a cycle in
the network?

Several automated tools already exist for answering such questions [16, 17, 27].
Many of these encode the topology and policy as a logical structure, then trans-
late the query into a Boolean formula and hand it to a SAT solver. In contrast,
NetKAT expresses such properties as equations between NetKAT terms, which
can then be decided by the NetKAT decision procedure.

3.1 Encoding Network Topology

The topology of the network can be specified by a directed graph with nodes rep-
resenting hosts and switches and directed edges representing links. In NetKAT,
the topology is expressed as a sum of expressions that encode the behavior of
each link. To model a link, we use an expression

switch = A ; port = n ; switch ← B ; port ← m

where A and n are the switch name and output port number of
the source of the link and B and m are the switch name and input port number
of the target of the link. This expression filters out all packets not located at the
source end of the link, then updates the switch and port fields to the location of
the target of the link, thereby capturing the effect of sending the packet across the
link.

3.2 Switch Policies

Each switch may modify and forward packets that it receives on its input ports.
The policy for switch A is specified by a NetKAT term

switch = A ; pA

where pA specifies what to do with packets entering switch A. For example, if a
packet with IP address a entering on port n should have its IP address modified
to b and sent out on ports m and k, this behavior would be expressed by

port = n ; ip = a ; (port ← m+ port ← k) ; ip ← b

8 D. Kozen

and pA is the sum of all such behaviors for A.
Let t be the sum of all link expressions and p the sum of all switch policies. The

product pt describes one step of the network in which each switch processes its
packets, then sends them along links to the next switch. Axioms (2.4) and (2.7)
guarantee that cross terms in the product vanish, thus the expression correctly
captures the linkage. The expression (pt)∗ describes the multistep behavior of
the network in which the single-step behavior is iterated.

3.3 Reachability

To encode the question of whether it is possible for any packet to travel from
an output port of switch A to an input port of switch B given the topology and
the switch policies, we can ask whether the expression

switch = A ; t(pt)∗ ; switch = B (3.1)

is equivalent to 0 (drop). Intuitively, the prefix switch = A filters out histories
whose head packet does not satisfy switch = A, and the postfix switch = B
filters out histories whose head packet does not satisfy switch = B.

However, more can be said. Using the axioms (2.1)–(2.8), it can be shown
that (3.1) is equivalent to a sum of terms of the form

switch = A ;x1 = n1 ; · · · ;xk = nk ;x1 ← m1 ; · · · ;xk ← mk ; switch = B

and each such nonzero term describes initial conditions under which a packet
can travel from A to B. Note that only the initial and final values of the fields
appear; the intermediate values vanish due to axioms (2.4), (2.6), and (2.7). We
can retain the intermediate values using dup if we wish; an example of this is
given below.

3.4 All-Pairs Reachability

We may wish to check whether every host in the network can physically com-
municate with every other host. To test this, we use the switch policies

switch = A ;
∑
n

port = n ;
∑
m

port ← m (3.2)

where the first sum is over all the active input ports n of node A and the second
is over all the active output ports m of A. This expression simply tests whether
the packet is currently located at an input port of A and if so forwards it out
over all active output ports unaltered. This is a little different from the query of
§3.3 in that the switch policies of §3.2, which can modify packets and thus affect
traffic flow, are not taken into account, but only the physical network topology.

Let q be the sum of all policies (3.2) over all A. Then q performs this action
for all A. Let t be the encoding of the topology as described in §3.1. Consider
the equation

(qt)∗ =
∑
A

(switch = A ;
∑
n

port = n) ;
∑
B

(switch ← B ;
∑
m

port ← m)

NetKAT — A Formal System for the Verification of Networks 9

where n ranges over all active input ports of A and m ranges over all active input
ports of B. The expression qt represents a program that forwards all packets from
the input port of any node along all outgoing links to an input port of a node
that is reachable in one step. The left-hand expression (qt)∗ is the multistep
version of this; it starts at an input port of any node A and forwards to all
input ports of all nodes reachable from A. The right-hand expression represents
a program that, given any packet located a some input port of some node, no
matter where it is located, immediately forwards to all input ports of all possible
nodes. The left-hand side is contained in the right, since intermediate nodes in a
path are elided by axiom (2.6); and if there are A, n,B,m such that input port
m of B is not reachable from input port n of A, then

switch = A ; port = n ; switch ← B ; port ← m

will be contained in the right-hand side but not the left.

3.5 Waypointing

A waypoint W between A to B is a location that all packets must traverse
enroute from A to B. It may be important for security purposes to ensure that
all traffic of a certain type traverse a waypoint; for example, we may wish to
ensure that all traffic from an untrusted external source to a trusted internal
destination traverse a firewall.

We can do this by modifying the switch policy to duplicate the head packet
in the firewall component F . That is, the expression switch = F ; pF in the sum
p is replaced by switch = F ; dup ; pF . This is a way to mark traffic through F .
Now we ask whether

switch = A ; t(pt)∗ ; switch = B

≤ switch = A ; t(pt)∗ ; switch = F ; dup ; pF ; t(pt)∗ ; switch = B

which holds if and only if all output packet histories contain a dup generated by
traversing F (assuming F �∈ {A,B}).

The solution to this problem presented in [1] inserted a dup in all switch
policies; however, the complexity of the decision procedure of [10] is exponential
in the number of occurrences of dup, so for performance reasons it is desirable
to minimize this quantity. The solution given here has four occurrences.

3.6 Forwarding Loops

A network has a forwarding loop if some packet would endlessly traverse a cycle
in the network. Forwarding loops are a frequent source of error and have caused
outages in both local area networks and on the Internet [15]. They are usually
handled by introducing a TTL (time-to-live) field, a runtime mechanism in which
a counter is decremented at each hop and the packet is dropped when the counter
hits 0.

10 D. Kozen

We can use NetKAT to check for loops by checking whether there is a packet
that visits the same state twice. This is done by checking

α ; pt(pt)∗ ;α = 0

for each valuation α such that

in ; (pt)∗ ;α

does not vanish. Here α represents a valid assignment to all fields and in repre-
sents a set of initial conditions on packets. The set of α that need to be checked
is typically sparse. This algorithm has been used to check for loops in networks
with topologies containing thousands of switches and configurations with thou-
sands of forwarding rules on each switch.

3.7 Other Applications

The papers [1, 10] present a few other important applications: traffic isolation,
access control, and correctness of a compiler that maps a NetKAT expression
to a set of individual flow tables that can be deployed on the switches. It is
interesting that so much can be done with regular expressions.

4 Soundness and Completeness

Let
 denote provability in ordinary equational logic, assuming the NetKAT
axioms (the axioms of KAT plus (2.1)–(2.8)) as premises.

Theorem 1 ([1]). The NetKAT axioms are sound and complete with respect to
the packet-switching semantics of §2.4. That is,
 p = q if and only if �p� = �q�.

The completeness proof is quite interesting. It introduces a language model for
NetKAT that is isomorphic to the packet-switching model of §2.4. The language
model also plays a role in the decision procedure of [10]. The language model
consists of the regular sets of reduced strings of the form

αp0 dup p1 dup p2 · · · pn−1 dup pn, n ≥ 0, (4.1)

where α is a complete test x1 = n1 ; · · · ;xk = nk, the pi are complete assignments
x1 ← n1 ; · · · ;xk ← nk, and x1, . . . , xk are all of the fields occurring in the
expressions of interest in some arbitrary but fixed order. Every string of atomic
actions and tests is equivalent to a reduced string modulo the NetKAT axioms.
The set of reduced strings is described by the expression At · P · (dup · P)∗,
where At is the set of complete tests and P the set of complete assignments. The
complete tests are the atoms (minimal nonzero elements) of the Boolean algebra
generated by the primitive tests. Complete tests and complete assignments are
in one-to-one correspondence as determined by the sequence of values n1, . . . , nk.

NetKAT — A Formal System for the Verification of Networks 11

The standard interpretation over this model is the map G that assigns a
regular set of reduced strings to each NetKAT expression:

G(x ← n) = {αpα[x ← n] | α ∈ At}
G(x = n) = {αpα | α ∈ At, x = n appears in α}

G(dup) = {αpα dup pα | α ∈ At}
G(p + q) = G(p) ∪G(q)

G(pq) = {xy | ∃β xpβ ∈ G(p), βy ∈ G(q)}

G(p∗) =
⋃
n≥0

G(pn)

where p[x ← n] denotes the complete assignment p with the assignment to
x replaced by x ← n, αp is the complete test corresponding to the complete
assignment p, and pβ is the complete assignment corresponding to the complete
test β.

It follows that for p ∈ P and α ∈ At,

G(p) = {αp | α ∈ At} G(α) = {αpα}.

The NetKAT axioms (2.1)–(2.8) take a simpler form for reduced strings:

α dup = dupα pαp = p αpα = α

αα = α αβ = 0, α �= β qp = p
∑

α∈At α = 1.

5 NetKAT Coalgebra and a Decision Procedure

Coalgebra is a general framework for modeling and reasoning about state-based
systems [3, 4, 31, 33, 35]. A central aspect of coalgebra is the characterization of
equivalence in terms of bisimulation. The bisimulation-based decision procedure
for NetKAT presented in [10] was inspired by similar decision procedures for
KA and KAT [3, 4, 31]. However, to apply these techniques to NetKAT, it is
necessary to develop the coalgebraic theory to provide the basis of the algorithm
and establish correctness.

5.1 NetKAT Coalgebra

Formally, a NetKAT coalgebra consists of a set of states S along with continu-
ation and observation maps

δαβ : S → S εαβ : S → 2

for α, β ∈ At. A deterministic NetKAT automaton is a NetKAT coalgebra with
a distinguished start state s ∈ S. The inputs to the automaton are the NetKAT

12 D. Kozen

reduced strings (4.1); that is, elements of the set N = At ·P ·(dup ·P)∗ consisting
of strings of the form

αp0 dup p1 dup · · · dup pn

for some n ≥ 0. Intuitively, δαβ attempts to consume αpβ dup from the front
of the input string and move to a new state with a residual input string. This
succeeds if and only if the reduced string is of the form αpβ dup x for some x ∈
(P · dup)∗ ·P , in which case the automaton moves to a new state as determined by
δαβ with residual input string βx. The observation map εαβ determines whether
the reduced string αpβ should be accepted in the current state.

Formally, acceptance is determined by a coinductively defined predicate
Accept : S ×N → 2:

Accept(t, αpβ dup x) = Accept(δαβ(t), βx)

Accept(t, αpβ) = εαβ(t).

A reduced string x ∈ N is accepted by the automaton if Accept(s, x), where s is
the start state.

5.2 The Brzozowski Derivative

The Brzozowski derivative for NetKAT comes in two versions: semantic and
syntactic. The semantic version is defined on subsets of N and gives a coalgebra
(2N , δ, ε) that is a final coalgebra for the NetKAT signature.

δαβ : 2N → 2N εαβ : 2N → 2

δαβ(A) = {βx | αpβ dup x ∈ A} εαβ(A) =

{
1 if αpβ ∈ A,

0 if αpβ �∈ A.

One can show that this is the final coalgebra for the NetKAT signature by
showing that bisimilarity implies equality.

There is also a syntactic derivative

Dαβ : Exp→ Exp Eαβ : Exp→ 2,

where Exp is the set of reduced NetKAT expressions. The syntactic derivative
also gives a coalgebra (Exp, D,E). The maps D and E are defined inductively:

Dαβ(p) = 0 Dαβ(b) = 0 Dαβ(dup) = α ·
{
1 if α = β,

0 if α �= β.

Dαβ(e1 + e2) = Dαβ(e1) + Dαβ(e2)

Dαβ(e1e2) = Dαβ(e1) · e2 +
∑
γ

Eαγ(e1) ·Dγβ(e2)

Dαβ(e
∗) = Dαβ(e) · e∗ +

∑
γ

Eαγ(e) ·Dγβ(e
∗)

NetKAT — A Formal System for the Verification of Networks 13

Eαβ(p) =

{
1 if p = pβ ,

0 if p �= pβ
Eαβ(b) =

{
1 if α = β ≤ b,

0 otherwise

Eαβ(dup) = 0 Eαβ(e1 + e2) = Eαβ(e1) + Eαβ(e2)

Eαβ(e1e2) =
∑
γ

Eαγ(e1) · Eγβ(e2)

Eαβ(e
∗) =

∑
γ

Eαγ(e) · Eγβ(e
∗) +

{
1 if α = β,

0 if α �= β.

Note that the definitions for ∗ are circular, but both are well defined if we take
the least fixpoint of the resulting system of equations.

The standard language interpretation G : Exp → 2N is the unique coalgebra
morphism to the final coalgebra.

5.3 Matrix Representation

By currying, one can view the signature of NetKAT coalgebra as

δ : X → XAt×At ε : X → 2At×At

and observe that XAt×At and 2At×At are isomorphic to the families of square
matrices over X and 2, respectively, with rows and columns indexed by At.
Moreover, as the reader may have noticed, many of the operations used to define
the syntactic derivative Dαβ, Eαβ closely resemble matrix operations. Indeed, we
can view δ(t) as an At×At matrix over X and ε(t) as an At×At matrix over 2.
Moreover, if X is a KAT, then the family of At×At matrices over X again forms
a KAT, denoted Mat(At, X), under the standard matrix operations [7]. Thus we
have

δ : X → Mat(At, X) ε : X → Mat(At, 2).

With this observation, the syntactic coalgebra defined in §5.2 takes the following
concise form:

D(p) = 0 D(b) = 0 D(dup) = J D(e1 + e2) = D(e1) + D(e2)

D(e1e2) = D(e1) · I(e2) + E(e1) ·D(e2) D(e∗) = E(e∗) ·D(e) · I(e∗),

where I(e) is the diagonal matrix with e on the main diagonal and 0 elsewhere
and J is the matrix with α on the main diagonal in position αα and 0 elsewhere;
and

E(dup) = 0 E(e1 + e2) = E(e1) + E(e2)

E(e1e2) = E(e1) · E(e2) E(e∗) = E(e)∗.

In this form E becomes a KAT homomorphism from Exp to Mat(At, 2).

14 D. Kozen

Likewise, we can regard the set-theoretic coalgebra presented in §5.2 as having
matrix type

δ : 2N → Mat(At, 2N) ε : 2N → Mat(At, 2).

Again, in this form, ε becomes a KAT homomorphism.
This matrix representation is exploited heavily in the implementation of the

decision procedure of [10] described below in §6.

5.4 Kleene’s Theorem for NetKAT

The correctness of the bisimulation algorithm hinges on the relationship between
the coalgebras described in §5.1 and the packet-switching and language models
described in §2.4 and §4, respectively. This result is the generalization to NetKAT
of Kleene’s theorem relating regular expressions and finite automata.

Theorem 2 ([10]). A set of NetKAT reduced strings is the set accepted by
some finite-state NetKAT automaton if and only if it is G(e) for some NetKAT
expression e.

Given a NetKAT expression e, an equivalent finite NetKAT automaton can be
constructed from the derivatives of e modulo associativity, commutativity, and
idempotence (ACI), with e as the start state. The continuation and observation
maps are the syntactic derivative introduced in §5.2. A careful analysis shows
that the number of states is at most |At|·2�, where
 is the number of occurrences
of dup in e.

6 Implementation

The paper [10] describes an implementation of the decision procedure for NetKAT
term equivalence. It converts two NetKAT terms to automata using Brzozowski
derivatives, then tests bisimilarity. The implementation comprises roughly 4500
lines of OCaml and includes a parser, pretty printer, and visualizer. The imple-
mentation has been integrated into the Frenetic SDN controller platform and
has been tested on numerous benchmarks with good results.

The bisimilarity algorithm is fairly standard. Given two NetKAT terms, all
derivatives are calculated, and the E matrices of corresponding pairs are checked
for equality. The procedure fails immediately if they are not. This coinductive
algorithm can be implemented in almost linear time in the combined size of
the automata using the union-find data structure of Hopcroft and Karp [13] to
represent the bisimilarity classes.

6.1 Optimizations

The implementation incorporates a number of important enhancements and op-
timizations to avoid combinatorial blowup. It uses a symbolic representation that

NetKAT — A Formal System for the Verification of Networks 15

exploits symmetry and sparseness to reduce the size of the state space. Interme-
diate values that do not contribute to the final outcome are aggressively pruned.
To further improve performance, the implementation incorporates a number of
other optimizations: hash-consing and memoization, sparse multiplication, base
compaction, fast computaton of fixpoints. These enhancements are described in
detail in [10].

Although the algorithm is still necessarily exponential in the worst case (the
problem is PSPACE-complete), the tool tends to be fast in practice due to the
constrained nature of real-world problems.

7 Related Work

Software-defined networking (SDN) has emerged in recent years as the dominant
paradigm for network programming. A number of SDN programming languages
and verification tools have appeared [2,5,8,9,12,16–18,26,28–30,34,36–39], and
SDN is being actively deployed in industry [14, 20, 21].

NetKAT [1, 10] was developed as a part of the Frenetic project [9, 12, 28,
29]. Compared to other tools, NetKAT is unique in its focus on algebraic and
coalgebraic structure of network programs. NetKAT largely inherits its syntax,
semantics, and application methodology from these earlier efforts but adds a
complete deductive system and PSPACE decision procedure.

The algebraic and coalgebraic theories of KA and KAT and related sys-
tems have been studied extensively [6, 22–25, 33, 35]. This work has uncov-
ered strong relationships between the algebraic/logical view of systems and the
combinatorial/automata-theoretic view. These ideas have figured prominently in
the development of NetKAT.

The implementation uses many ideas and optimizations from the coalgebraic
implementations of KA and KAT and other related systems [3, 4, 31] to provide
enhanced performance, making automated decision feasible even in the face of
PSPACE completeness.

8 Conclusion

This paper surveys recent work on NetKAT, a relatively new language and logic
for specifying and verifying network packet-processing functions. NetKAT was
introduced in [1] and further developed in [10]. We have attempted to make the
presentation self-contained and accessible, but a more comprehensive treatment
can be found in the original papers.

NetKAT consists of Kleene algebra with tests [23] with specialized primitives
for expressing properties of networks, along with equational axioms for reason-
ing with those constructs. The standard semantics is a packet-switching model
that interprets NetKAT expressions as functions from packet histories to sets of
packet histories. There is also a language model that is isomorphic to the packet-
switching model and a coalgebraic model that is related to the other two models
via a version of Kleene’s theorem. The NetKAT axioms are sound and complete

16 D. Kozen

over these interpretations. The coalgebraic model admits a bisimulation-based
decision procedure that is efficient in many cases of practical interest, although
the general problem is PSPACE-complete. There is a full implementation in
OCaml that is efficient in practice and compares favorably with the state of the
art. Several applications of interest have also been described.

Acknowledgments. Special thanks to my coauthors Carolyn Jane Ander-
son, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Matthew Milano, Cole
Schlesinger, Alexandra Silva, Laure Thompson, and David Walker for their kind
permission to include results from [1, 10] in this survey. Thanks also to Kon-
stantinos Mamouras, Andrew Myers, Mark Reitblatt, Ross Tate, and the rest of
the Cornell PLDG group for many insightful discussions and helpful comments.

References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: Semantic foundations for networks. In: Proc. 41st ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages (POPL 2014),
San Diego, California, USA, pp. 113–126. ACM (January 2014)

2. Ball, T., Bjorner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: Vericon: Towards verifying controller programs in software-
defined networks. In: PLDI (to appear, 2014)

3. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proc. 40th ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages, POPL 2013, pp. 457–468. ACM (2013)

4. Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Logical Methods in Com-
puter Science 8(1:16), 1–42 (2012)

5. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A NICE way to test
OpenFlow applications. In: NSDI (2012)

6. Chen, H., Pucella, R.: A coalgebraic approach to Kleene algebra with tests. Elec-
tronic Notes in Theoretical Computer Science 82(1) (2003)

7. Cohen, E., Kozen, D., Smith, F.: The complexity of Kleene algebra with tests.
Technical Report TR96-1598, Computer Science Department, Cornell University
(July 1996)

8. Ferguson, A.D., Guha, A., Liang, C., Fonseca, R., Krishnamurthi, S.: Participatory
networking: An API for application control of SDNs. In: SIGCOMM (2013)

9. Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A.,
Walker, D.: Frenetic: A network programming language. In: ICFP (September
2011)

10. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. Technical Report, Computing and Information Science,
Cornell University (March 2014), http://hdl.handle.net/1813/36255, POPL
2015 (to appear)

11. Open Networking Foundation. Software-defined networking: The new norm
for networks. White paper (2012), https://www.opennetworking.org/images/

stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

12. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In: PLDI
(June 2013)

http://hdl.handle.net/1813/36255
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

NetKAT — A Formal System for the Verification of Networks 17

13. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical Report 71-114. University of California (1971)

14. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
Experience with a globally-deployed software defined WAN. In: SIGCOMM (2013)

15. Katz-Bassett, E., Scott, C., Choffnes, D.R., Cunha, Í., Valancius, V., Feamster, N.,
Madhyastha, H.V., Anderson, T., Krishnamurthy, A.: Lifeguard: Practical repair
of persistent route failures. In: SIGCOMM (2012)

16. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking
for networks. In: NSDI (2012)

17. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: VeriFlow: Verifying
network-wide invariants in real time. In: NSDI (2013)

18. Kim, H., Feamster, N.: Improving network management with software defined net-
working. IEEE Communications Magazine 51(2), 114–119 (2013)

19. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton (1956)

20. Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A., Fulton, B.,
Ganichev, I., Gross, J., Gude, N., Ingram, P., Jackson, E., Lambeth, A., Lenglet,
R., Li, S.-H., Padmanabhan, A., Pettit, J., Pfaff, B., Ramanathan, R., Shenker, S.,
Shieh, A., Stribling, J., Thakkar, P., Wendlandt, D., Yip, A., Zhang, R.: Network
virtualization in multi-tenant datacenters. In: NSDI (2014)

21. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ra-
manathan, R., Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: A distributed
control platform for large-scale production networks. In: OSDI (2010)

22. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput. 110(2), 366–390 (1994)

23. Kozen, D.: Kleene algebra with tests. Transactions on Programming Languages
and Systems 19(3), 427–443 (1997)

24. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. Technical
Report. Computing and Information Science, Cornell University (March 2008),
http://hdl.handle.net/1813/10173

25. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability.
In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259.
Springer, Heidelberg (1997)

26. Loo, B.T., Hellerstein, J.M., Stoica, I., Ramakrishnan, R.: Declarative routing:
Extensible routing with declarative queries. In: SIGCOMM (2005)

27. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B., King, S.T.: Debug-
ging the data plane with Anteater. In: SIGCOMM (2011)

28. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and run-time system
for network programming languages. In: POPL (January 2012)

29. Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D.: Composing software-
defined networks. In: NSDI (April 2013)

30. Nelson, T., Guha, A., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: A balance of
power: Expressive, analyzable controller programming. In: HotSDN (2013)

31. Pous, D.: Relational algebra and KAT in Coq (February 2013),
http://perso.ens-lyon.fr/damien.pous/ra

32. Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theoretical Computer
Science 249, 3–80 (2000)

http://hdl.handle.net/1813/10173
http://perso.ens-lyon.fr/damien.pous/ra

18 D. Kozen

33. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218.
Springer, Heidelberg (1998)

34. Scott, R.C., Wundsam, A., Zarifis, K., Shenker, S.: What, Where, and When: Soft-
ware Fault Localization for SDN. Technical Report UCB/EECS-2012-178, EECS
Department, University of California, Berkeley (2012)

35. Silva, A.: Kleene Coalgebra. PhD thesis, University of Nijmegen (2010)
36. Voellmy, A., Hudak, P.: Nettle: Functional reactive programming of OpenFlow

networks. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp.
235–249. Springer, Heidelberg (2011)

37. Voellmy, A., Wang, J., Yang, Y.R., Ford, B., Hudak, P.: Maple: Simplifying SDN
programming using algorithmic policies. In: SIGCOMM (2013)

38. Xie, G.G., Zhan, J., Maltz, D.A., Zhang, H., Greenberg, A.G., Hjálmtýsson, G.,
Rexford, J.: On static reachability analysis of IP networks. In: INFOCOM (2005)

39. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: Automatic test packet gen-
eration. In: CoNEXT (2012)

Optimized Compilation of Multiset Rewriting
with Comprehensions�

Edmund Soon Lee Lam and Iliano Cervesato

Carnegie Mellon University, Qatar Campus, Doha, Qatar
sllam@qatar.cmu.edu, iliano@cmu.edu

Abstract. We extend the rule-based, multiset rewriting language CHR with mul-
tiset comprehension patterns. Multiset comprehension provides the programmer
with the ability to write multiset rewriting rules that can match a variable num-
ber of entities in the state. This enables implementing algorithms that coordinate
large amounts of data or require aggregate operations in a declarative way, and
results in code that is more concise and readable than with pure CHR. We call
this extension CHRcp . In this paper, we formalize the operational semantics of
CHRcp and define a low-level optimizing compilation scheme based on join or-
dering for the efficient execution of programs. We provide preliminary empirical
results that demonstrate the scalability and effectiveness of this approach.

1 Introduction

CHR is a declarative logic constraint programming language based on pure forward-
chaining and committed choice multiset rewriting. This provides the user with a highly
expressive programming model to implement complex programs in a concise and declar-
ative manner. Yet, programming in a pure forward-chaining model is not without its
shortfalls. Expressive as it is, when faced with algorithms that operate over a dynamic
number of constraints (e.g., finding the minimum value satisfying a property or finding
all constraints in the store matching a particular pattern), a programmer is forced to
decompose his/her code over several rules, as a CHR rule can only match a fixed num-
ber of constraints. Such an approach is tedious, error-prone and leads to repeated in-
stances of boilerplate code, suggesting the opportunity for a higher form of abstraction.
This paper develops an extension of CHR with multiset comprehension patterns [11,2].
These patterns allow the programmer to write multiset rewriting rules that can match
dynamically-sized constraint sets in the store. They enable writing more readable, con-
cise and declarative programs that coordinate large amounts of data or use aggregate
operations. We call this extension CHRcp .

In previous work [7], we presented an abstract semantics for CHRcp and concretized
it into an operational semantics. This paper defines a compilation scheme for CHRcp

rules that enables an optimized execution for this operational semantics. This compila-
tion scheme, based on join ordering [4,6], determines an optimized sequence of oper-
ations to carry out the matching of constraints and guards. This ordering is optimized
in that it utilizes the most effective supported indexing methodologies (e.g., hash map

� This paper was made possible by grant NPRP 09-667-1-100, Effective Programming for Large
Distributed Ensembles, from the Qatar National Research Fund (a member of the Qatar Foun-
dation). The statements made herein are solely the responsibility of the authors.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 19–38, 2014.
c© Springer International Publishing Switzerland 2014

20 E.S.L. Lam and I. Cervesato

indexing, binary tree search) for each constraint pattern and schedules guard condition
eagerly, thereby saving potentially large amounts of computation by pruning unsatisfi-
able branches as early as possible. The key challenge of this approach is to determine
such an optimized ordering and to infer the set of lookup indices required to execute the
given CHRcp program with the best possible asymptotic time complexity. Our work
augments the approach from [6] to handle comprehension patterns, and we provide a
formal definition of this compilation scheme and an abstract machine that implements
the resulting compiled CHRcp programs.

Altogether, this paper makes the following contributions: We define a scheme that
compiles CHRcp rules into optimized join orderings. We formalize the corresponding
CHRcp abstract matching machine. We prove the soundness of this abstract machine
with respect to the operational semantics. We provide preliminary empirical results to
show that a practical implementation of CHRcp is possible.

The rest of the paper is organized as follows: Section 2 introduces CHRcp by exam-
ples and Section 3 gives its syntax. In Section 4, we describe an operational semantics
for CHRcp and define our compilation scheme in Section 5. Section 6 builds optimized
join orderings of CHRcp rules. Section 7 defines the abstract state machine and Sec-
tion 8 establishes correctness results. In Section 9 we present preliminary empirical
results. Section 10 situates CHRcp in the literature and Section 11 outlines directions
of future work.

2 A Motivating Example

In this section, we illustrate the benefits of comprehension patterns in multiset rewrit-
ing with an example. A comprehension pattern �p(�t) | g��x∈t represents a multiset of
constraints that match the atomic constraint p(�t) and satisfy guard g under the bindings
of variables �x that range over the elements of the comprehension domain t.

Consider the problem of two agents wanting to swap data that they each possess on
the basis of a pivot value P . We express an integer datum I belonging to agent X by
the constraint data(X , I). The state of this dynamic system is represented by a multiset
of ground constraints, the constraint store. Given agents X and Y and a value P , we
want all of X’s data with value I less than or equal to P to be transferred to Y and all
of Y ’s data J such that J is greater than or equal to P to be transferred to X . Notice
that the value P satisfies the conditions both for I and J . The following CHRcp rule
implements this swap procedure:

selSwap @
swap(X ,Y ,P)�data(X , I) | I ≤ P�I∈Xs�data(Y , J) | J ≥ P�J∈Ys

⇐⇒ �data(Y , I)�I∈Xs�data(X , J)�J∈Ys

The swap is triggered by the constraint swap(X ,Y ,P) in the rule head on the left of
⇐⇒. All of X’s data I such that I ≤ P are identified by the comprehension pattern
�data(X , I) | I ≤ P�I∈Xs . Similarly, all Y ’s data J such that J ≥ P are identified by
�data(Y , J) | J ≥ P�J∈Ys . The instances of I and J matched by each comprehen-
sion pattern are accumulated in the comprehension domains Xs and Ys, respectively.
Finally, these collected bindings are used in the rule body on the right of ⇐⇒ to com-
plete the rewriting by redistributing all of X’s selected data to Y and vice versa. The
CHRcp semantics enforces the property that each comprehension pattern captures a

Optimized Compilation of Multiset Rewriting with Comprehensions 21

maximal multiset of constraints in the store, thus guaranteeing that no data that is to be
swapped is left behind.

Comprehension patterns allow the programmer to easily write rules that manipulate
dynamic numbers of constraints. By contrast, consider how the above program would
be written in pure CHR (without comprehension patterns). To do this, we are forced to
explicitly implement the operation of collecting a multiset of data constraints over sev-
eral rules. We also need to introduce an accumulator to store bindings for the matched
facts as we retrieve them. A possible implementation of this nature is as follows:

init @ swap(X ,Y ,P) ⇐⇒ grab1 (X ,P ,Y , []), grab2 (Y ,P ,X , [])

gIter1 @ grab1 (X ,P ,Y , Is), data(X , I) ⇐⇒ I ≤ P | grab1 (X ,P ,Y , [I | Is])
gEnd1 @ grab1 (X ,P ,Y , Is) ⇐⇒ unrollData(Y , Is)
gIter2 @ grab2 (Y ,P ,X , Js), data(Y , J)⇐⇒ J ≥ P | grab2 (Y ,P ,X , [J | Js])
gEnd2 @ grab2 (Y ,P ,X , Js) ⇐⇒ unrollData(X , Js)

unrollIter @ unrollData(L, [D | Ds]) ⇐⇒ unrollData(L,Ds), data(L,D)
unrollEnd @ unrollData(L, []) ⇐⇒ true

In a CHR program with several subroutines of this nature, such boilerplate code
gets repeated over and over, making the program verbose. Furthermore, the use of list
accumulators and auxiliary constraints (e.g., grab1 , grab2 , unrollData) makes the code
less readable and more prone to errors. Most importantly, the swap operation as written
in CHRcp is atomic while the above CHR code involves many rewrites, which could
be interspersed by applications of other rules that operate on data constraints. Observe
also that this pure CHR implementation assumes a priority semantics [3]: rule gEnd1
is to be used only when rule gIter1 is not applicable, and similarly for rules gEnd2
and gIter2 . Rule priority guarantees that all eligible data constraints participate in the
swap. We may be tempted to implement the swap procedure as follows in standard
CHR:

swap1 @ swap(X ,Y , I),data(X , I) ⇐⇒ I ≤ P | swap(X ,Y , I),data(Y , I)

swap2 @ swap(X ,Y , J), data(Y , J)⇐⇒ J ≥ P | swap(X ,Y , J), data(X , J)

swap3 @ swap(X ,Y ,D) ⇐⇒ true

This, however, does not work in general. This is because the matching conditions of
swap1 and swap2 are potentially overlapping: if we have data(X ,P) in the constraint
store, applying swap1 to it will produce data(Y ,P), which will inevitably be reversed
by an application of swap2 , thereby locking the execution in a non-terminating cycle.
This code is however correct were the conditions on X’s and Y ’s values to be comple-
mentary (e.g., I < P and J ≥ P). But it is still non-atomic and relies on prioritization
as the last rule should be triggered only when neither of the first two is applicable.
By contrast, multiset comprehensions in CHRcp provides a high-level abstraction that
relinquishes all these technical concerns from the programmer’s hands.

3 Syntax and Notations

In this section, we define the abstract syntax of CHRcp and highlight the notations used
throughout this paper. We write ō for a multiset of syntactic objects o, with ∅ indicating
the empty multiset. We write �ō1, ō2� for the union of multisets ō1 and ō2, omitting the
brackets when no ambiguity arises. The extension of multiset ō with syntactic object
o is similarly denoted �ō, o�. Multiset comprehension at the meta-level is denoted by

22 E.S.L. Lam and I. Cervesato

Variables: x Predicates: p Rule names: r Primitive terms: tα Occurrence index: i

Terms: t ::= tα | t̄ | �t | g��x∈t

Guards: g ::= t = t | t ∈̇ t | t < t | t ≤ t | t > t | t ≥ t | g ∧ g

Atomic Constraints: A ::= p(�t)
Comprehensions: M ::= �A | g��x∈t

Rule Constraints: C,B ::= A | M

Head Constraints: H ::= C : i
Rules: R ::= r @ H̄ ⇐⇒ g | B̄

Programs: P ::= R̄

Fig. 1. Abstract Syntax of CHRcp

�o | Φ(o)�, where o a meta object and Φ(o) is a logical statement on o. We write �o for a
comma-separated tuple of o’s. A list of objects o is also denoted by �o and given o, we
write [o | �o] for the list with head o and tail �o. The empty list is denoted by []. We
will explicitly disambiguate lists from tuples where necessary. Given a list �o, we write
�o[i] for the ith element of �o, with �o[i] = ⊥ if i is not a valid index in �o. We write
o ∈ �o if �o[i] �= ⊥ for some i. The set of valid indices of the list �o is denoted range(�o).
The concatenation of list �o1 with �o2 is denoted �o1++�o2. We abbreviate a singleton list
containing o as [o]. Given a list �o, we write ��o� to denote the multiset containing all
(and only) the elements of �o. The set of the free variables in a syntactic object o is
denoted FV (o). We write [�t/�x]o for the simultaneous replacement within object o of
all occurrences of variable xi in �x with the corresponding term ti in �t. When traversing
a binding construct (e.g., a comprehension pattern), substitution implicitly α-renames
variables to avoid capture. It will be convenient to assume that terms get normalized
during substitution. The composition of substitutions θ and φ is denoted θφ.

Figure 1 defines the abstract syntax of CHRcp . An atomic constraint p(�t) is a pred-
icate symbol p applied to a tuple �t of terms. A comprehension pattern �A | g��x∈t rep-
resents a multiset of constraints that match the atomic constraint A and satisfy guard g
under the bindings of variables �x that range over t. We call �x the binding variables and
t the comprehension domain. The variables �x are locally bound with scope A and g. We
implicitly α-rename binding variables to avoid capture. The development of CHRcp

is largely agnostic to the language of terms [7]. In this paper however, we assume for
simplicity that tα are arithmetic terms (e.g., 10, x+4). We also include tuples and mul-
tisets of such terms. Term-level multiset comprehension �t | g�x∈m filters multiset m
according to guard g and maps the result as specified by t.

A CHR head constraint C : i is a constraint C paired with an occurrence index i. As
in CHR, a CHRcp rule r @ H̄ ⇐⇒ g | B̄ specifies the rewriting of the head constraints
H̄ into the body B̄ under the conditions that guards g are satisfied; r is the name of the
rule.1 If the guard g is always satisfied (i.e., true), we drop that rule component entirely.
All free variables in a CHRcp rule are implicitly universally quantified at the head of
the rule. A CHR program is a set of CHR rules and we require that each head constraint
has a unique occurrence index i. For simplicity, we assume that a rule body is grounded
by the head constraints and that guards do not appear in the rule body.

1 CHR rules traditionally have a fourth component, the propagation head, which we omit in the
interest of space as it does not fundamentally impact the compilation process or our abstract
machine. See [7] for a treatment of comprehension patterns in propagation heads.

Optimized Compilation of Multiset Rewriting with Comprehensions 23

Matching: C̄ �lhs St C �lhs St

C̄ �lhs St C �lhs St ′�C̄, C� �lhs �St ,St ′� (lmset-1)
∅ �lhs ∅

(lmset-2)
A �lhs A

(latom)

[�t/�x]A �lhs A
′ |= [�t/�x]g �A | g��x∈ts �lhs St�A | g��x∈�ts,�t� �lhs �St , A′� (lcomp-1) �A | g��x∈∅ �lhs ∅

(lcomp-2)

Residual Non-matching: C̄ �¬
lhs St C �¬

lhs St

C̄ �¬
lhs St C �¬

lhs St�C̄, C� �¬
lhs St

(l¬mset-1)
∅ �¬

lhs St
(l¬mset-2)

A �¬
lhs St

(l¬atom)
A �	lhs M M �¬

lhs St

M �¬
lhs �St , A� (l¬comp-1)

M �¬
lhs ∅

(l¬comp-2)

Subsumption: A 	lhs �A′ | g��x∈ts iff A = θA′ and |= θg for some θ = [�t/�x]

Fig. 2. Semantics of Matching in CHRcp

4 Operational Semantics of CHRcp

This section recalls the operational semantics of CHRcp [7]. Without loss of generality,
we assume that atomic constraints in a rule have the form p(�x), including in comprehen-
sion patterns. This simplified form pushes complex term expressions and computations
into the guard component of the rule or the comprehension pattern. The satisfiability of
a ground guard g is modeled by the judgment |= g; its negation is written �|= g.

Similarly to [5], this operational semantics defines a goal-based execution of aCHRcp

programP that incrementally processes store constraints against rule instances inP . By
“incrementally”, we mean that goal constraints are added to the store one by one, as we
process each for potential match with the head constraints of rules in P . We present the
operational semantics in two sub-sections: Section 4.1 describes in isolation, the pro-
cessing of a rule’s left-hand side (semantics of matching) and right-hand-side execution.
Section 4.2 presents the overall operational semantics. We assume that the constraint
store contains only ground facts, a property that is maintained during execution. This
entail that matching (as opposed to unification) suffices to guarantee the completeness
of rule application.

4.1 Semantics of Matching and Rule Body Execution

The semantics of matching, specified in Figure 2, identifies applicable rules in a CHRcp

program by matching their head with the constraint store. The matching judgment
C̄ �lhs St holds when the constraints in the store fragment St match completely
the multiset of constraint patterns C̄. It will always be the case that C̄ is ground (i.e.,
FV (C̄) = ∅). Rules (lmset-∗) iterate rules (latom) and (lcomp-∗) on St , thereby par-
titioning it into fragments matched by these rules. Rule (latom) matches an atomic
constraint A to the singleton store A. Rules (lcomp-∗) match a comprehension pattern

24 E.S.L. Lam and I. Cervesato

Rule Body: C̄ ≫rhs St C ≫rhs St

C̄ ≫rhs St C ≫rhs St ′�C̄, C� ≫rhs �St ,St ′� (rmset-1)
∅ ≫rhs ∅

(rmset-2)
A ≫rhs A

(ratom)

|= [�t/�x]g [t/�x]A ≫rhs A
′ �A | g��x∈ts ≫rhs A

′

�A | g��x∈�ts,�t� ≫rhs �St , A′� (rcomp-1)

�|= [�t/�x]g �A | g��x∈ts ≫rhs St�A | g��x∈�ts,�t� ≫rhs St
(rcomp-2) �A | g��x∈∅ ≫rhs ∅

(rcomp-3)

Residual Non-unifiability: P �¬
unf B̄ g � H̄ �¬

unf B̄

g � H̄ �¬
unf B̄ P �¬

unf B̄

P, (r @ H̄ ⇐⇒ g | C̄b) �¬
unf B̄

(u¬
prog-1)

∅ �¬
unf B̄

(u¬
prog-2)

g � H̄ �¬
unf B̄ g � C �¬

unf B̄

g � �H̄, C : i� �¬
unf B̄

(u¬
mset-1)

g �∅ �¬
unf B̄

(u¬
mset-2)

g �A �¬
unf B̄

(u¬
atom)

g �B �	unf M g �M �¬
unf B̄

g �M �¬
unf �B̄, B� (u¬

comp-1)
g �M �¬

unf ∅
(u¬

comp-2)

g �A 	unf �A′ | g′��x∈ts iff θA ≡ θA′, |= θg′, |= θg for some θ

g′′ � �A | g��x∈ts 	unf �A′ | g′��x′∈ts′ iff θA ≡ θA′, |= θg′′, |= θg′, |= θg for some θ

Fig. 3. Rule Body Application and Unifiability of Comprehension Patterns

�A | g��x∈ts . If the comprehension domain is empty (x ∈ ∅), the store must be empty
rule (lcomp-2). Otherwise, rule (lcomp-1) binds �x to an element �t of the comprehension
domain ts, matches the instance [�t/�x]A of the pattern A with a constraint A′ in the
store if the corresponding guard instance [�t/�x]g is satisfiable, and continues with the
rest of the comprehension domain. To guarantee the maximality of comprehension pat-
terns, we test a store for residual matchings using the residual non-matching judgment
C̄ �¬

lhs St (Also shown in Figure 2). For each comprehension pattern �A′ | g��x∈ts in
C̄, this judgment checks that no constraints in St matches A′ satisfying g.

Once a CHRcp rule instance has been identified, we need to unfold the comprehen-
sion patterns in its body into a multiset of atomic constraints that will be added to the
store. The judgment C̄ ≫rhs St does this unfolding: given C̄ , this judgment holds if
and only if St is the multiset of all (and only) constraints found in C̄, after comprehen-
sion patterns in C̄ have been unfolded. Figure 3 defines this judgment.

An important property of CHR is monotonicity: if a rule instance r transforms store
Ls to Ls ′, then r transforms �Ls ,Ls ′′� to �Ls ′,Ls ′′� for any Ls ′′. This property allows
for incremental processing of constraints ([5]) that is sound w.r.t. the abstract seman-
tics of CHR. Monotonicity does not hold in CHRcp . We showed in [7] that to guar-
antee the sound incremental goal-based execution of a CHRcp program P , we must
identify those rule body constraints are monotone, and only incrementally store mono-
tone constraints, while non-monotone constraints are immediately stored. A monotone

Optimized Compilation of Multiset Rewriting with Comprehensions 25

Goal Constraint G ::= init B̄ | lazy A | eager A#n | act A#n i

Goal Stack Gs ::= [] | [G | Gs] Store Ls ::= ∅ | �Ls, A#n� State σ ::= 〈Gs ; Ls〉
dropIdx (C : i) ::= C getIdx (C : i) ::= {i} dropLabels(A#n) ::= A getLabels(A#n) ::= {n}

newLabels(Ls, A) ::= A#n such that n /∈ getLabels(Ls)

P[i] ::= if R ∈ P and i ∈ getIdx (R) then R else ⊥

Fig. 4. Execution States and Auxiliary Meta-operations

constraint in programP is a constraint A that can never be matched by a comprehension
head constraint of any rule in P . To test that a comprehension pattern M has no match
in a store Ls (i.e., M �¬

lhs Ls), it suffices to test M against the subset of Ls containing
just its non-monotone constraints (see [7] for proofs). We call this property of CHRcp

conditional monotonicity. Given a CHRcp program P , for each rule body constraint B
in P , if for every head constraint comprehension pattern M : j and rule guard g in P ,
B is not unifiable with M while satisfying g (denoted g�M �unf B), then we say that
B is monotone w.r.t. program P , denoted by P �¬

unf B. These judgments are defined
in the bottom half of Figure 3.

4.2 Operational Semantics

In this section, we define the overall operational semantics of CHRcp . This semantics
explicitly supports partial incremental processing of constraints that are monotone to a
given CHRcp program. Execution states, defined in Figure 4, are pairs σ = 〈Gs ; Ls〉
where Gs is the goal stack and Ls is the labeled store. Store labels n allow us to
distinguish between copies of the same constraint in the store and to uniquely associate a
goal constraint with a specific stored constraint. Each goal in a goal stack Gs represents
a unit of execution and Gs itself is a list of goals to be executed. Goal labels init,
lazy, eager and act identify the various types of goals.

Figure 4 defines several auxiliary operations that either retrieve or drop occurrence of
indices and store labels: dropIdx (H) and getIdx (H) deal with indices, dropLabels()
and getLabels() with labels. We inductively extend getIdx () to multisets of head
constraints and CHRcp rules, to return the set of all occurrence indices that appear
in them. We similarly extend dropLabels() and getLabels() to be applicable with
labeled stores. As a means of generating new labels, we also define the operation
newLabels(Ls , A) that returns A#n such that n does not occur in Ls . Given program
P and occurrence index i, P [i] denotes the rule R ∈ P in which i occurs, or ⊥ if i does
not occur in any of P’s rules. We implicitly extend the matching judgment (�lhs) and
residual non-matching judgment (�¬

lhs) to annotated entities.
The operational semantics of CHRcp is defined by the judgment P � σ �→ω σ′,

where P is a CHRcp program and σ, σ′ are execution states. It describes the goal-
oriented execution of the CHRcp program P . Execution starts in an initial execution
state σ of the form 〈[init B̄] ; ∅〉 where B̄ is the initial multiset of constraints. Fig-
ure 5 shows the transition rules for this judgment. Rule (init) applies when the leading
goal has the form init B̄. It partitions B̄ into B̄l and B̄e, both of which are unfolded
into St l and Ste respectively (via rule body application, Section 4.1). B̄l contains the
multiset of constraints which are monotone w.r.t. to P (i.e., P �¬

unf B̄l). These con-
straints are not added to the store immediately, rather we incrementally process them

26 E.S.L. Lam and I. Cervesato

(init)

P � 〈[init �B̄l, B̄e� | Gs] ; Ls〉 �→ω 〈lazy(St l)++eager(Lse)++Gs ; �Ls,Lse�〉
such that P �¬

unf B̄l B̄e ≫rhs Ste B̄l ≫rhs St l Lse = newLabels(Ls,Ste)

where eager(�Ls, A#n�) ::= [eager A#n | eager(Ls)] eager(∅) ::= []

lazy(�Stm, A�) ::= [lazy A | lazy(Stm)] lazy(∅) ::= []

(lazy-act)
P � 〈[lazy A | Gs] ; Ls〉 �→ω 〈[act A#n 1 | Gs] ; �Ls, A#n�〉
such that �A#n� = newLabels(Ls, �A�)

(eager-act) P � 〈[eager A#n | Gs] ; �Ls, A#n�〉 �→ω 〈[act A#n 1 | Gs] ; �Ls, A#n�〉
(eager-drop) P � 〈[eager A#n | Gs] ; Ls〉 �→ω 〈Gs ; Ls〉 if A#n /∈ Ls

(act-apply)

P � 〈[act A#n i | Gs] ; �Ls,Lsh,Lsa, A#n�〉 �→ω 〈[init θB̄ | Gs] ; Ls〉
if P[i] = (r @ �H̄h, C : i� ⇐⇒ g | B̄), there exists some θ such that
|= θg θC �lhs �Lsa, A#n� θH̄h �lhs Lsh θH̄h �¬

lhs Ls θC �¬
lhs Ls

(act-next)
P � 〈[act A#n i | Gs] ; Ls〉 �→ω 〈[act A#n (i+ 1) | Gs] ; Ls〉
if (act-apply) does not applies.

(act-drop) P � 〈[act A#n i | Gs] ; Ls〉 �→ω 〈Gs ; Ls〉 if P[i] = ⊥

Fig. 5. Operational Semantics of CHRcp

by only adding them into the goal as ‘lazy‘ goals (lazily stored). Constraints B̄e are
not monotone w.r.t. to P , hence they are immediately added to the store and added to
the goals as ‘eager’ goals (eagerly stored). Rule (lazy-act) handles goals of the form
lazy A: we initiate active matching on A by adding it to the store and adding the new
goal act A#n 1. Rules (eager-act) and (eager-drop) deal with goals of the form
eager A#n. The former adds the goal ‘act A#n 1’ if A#n is still present in the
store; the later simply drops the leading goal otherwise. The last three rules deal with
leading goals of the form act A#n i: rule (act-apply) handles the case where the
active constraint A#n matches the ith head constraint occurrence of P . If this match
satisfies the rule guard, matching partners exist in the store and the comprehension max-
imality condition is satisfied, we apply the corresponding rule instance. These matching
conditions are defined by the semantics of matching of CHRcp (Figure 2). Note that the
rule body instance θB̄ is added as the new goal init B̄. This is because it potentially
contains non-monotone constraints: we will employ rule (init) to determine the storage
policy of each constraint. Rule (act-next) applies when the previous two rules do not,
hence we cannot apply any instance of the rule with A#n matching the ith head con-
straint. Finally, rule (act-drop) drops the leading goal if occurrence index i does not
exist in P . The correctness of this operational semantics w.r.t. a more abstract semantics
for CHRcp is proven in [7].

5 Compiling CHRcp Rules

While Figures 2–5 provide a formal operational description of the overall multiset
rewriting semantics of CHRcp , they are high-level in that they keep multiset match-
ing abstract. Specifically, the use of judgments�lhs and �¬

lhs in rule (act-apply) hides
away crucial details of how a practical implementation is to conduct these expensive op-
erations. In this section, we describe a scheme that compiles CHRcp head constraints
into a lower-level representation optimized for efficient execution, without using �lhs

or �¬
lhs. This compilation focuses on CHRcp head constraints (left-hand side), where

the bulk of execution time (and thus most optimization opportunities) comes from.

Optimized Compilation of Multiset Rewriting with Comprehensions 27

p1 (E ,Z) : 1�p2 (Y ,C ,D) | D ∈̇Ws,C > D�(C ,D)∈Ds : 2
p3 (X ,Y ,F ,Z) : 3
p4 (Z ,Ws) : 4�p5 (X ,P) | P ∈̇Ws�P∈Ps : 5

⇐⇒
E ≤ F
Ws �= ∅
Ps �= ∅

...

i. Active p1 (E ,Z) : 1
ii. LookupAtom 〈true; {Z}〉 p4 (Z ,Ws) : 4
iii. CheckGuardWs �= ∅
iv. LookupAtom 〈E ≤ F ; {Z}〉 p3 (X ,Y ,F ,Z) : 3
v. LookupAll 〈P ∈̇Ws; {X}〉 p5 (X ,P) : 5

vi. CompreDomain 5 P Ps
vii. CheckGuard Ps �= ∅
viii. LookupAll 〈D ∈̇Ws; {Y }〉 p2 (Y ,C ,D) : 2
ix. FilterGuard 4 C ≥ D
x. CompreDomain 4 (C,D) Ds

Fig. 6. Optimized Join Ordering for p1 (E ,Z) : 1

As described in Section 4, an active constraint act A#n i is matched against an
occurrence of head constraint Hi in a rule r, and all other head constraints Hk in r are
matched against distinct constraints in the store. We call Hi the active head constraint
and the other Hk partner head constraints (or simply, active pattern and partners re-
spectively). Computing complete matches for the multiset of constraint patterns is a
combinatorial search problem. In general, any ordering of partners leads to the com-
putation of intermediate data that may ultimately be discarded, resulting in redundant
storage and processing time. Therefore, we want to determine an optimized ordering
of partners that minimizes this intermediate data. Join ordering [4,6] leverages the de-
pendencies among rule heads and rule guards to do precisely this. This allows prun-
ing search branches early and utilizing lookup methods (e.g., indexing on hash maps,
balanced trees) that provide the best possible asymptotic time complexity. Our work
extends traditional approaches to CHR compilation [6] to handle comprehension head
constraints and augments them with optimizations specific to them. In particular, our
approach is an extension of static join-ordering techniques (e.g., [4]) that relies on a
heuristic cost model to determine optimized orderings at compile-time.

5.1 Introducing CHRcp Join Ordering

The top of Figure 6 shows an example rule with five head constraints. In this example,
all predicates are different, hence each head constraint will always match distinct con-
straints from the store (in Section 5.3, we discuss the case where different rule heads
match the same constraint). To better appreciate the benefits of join ordering, consider
an example constraint store Ls of the form:

p1(tE1, tZ1),

n2⊎

i=1

p2(tY i, tCi, tDi),

n3⊎

i=1

p3(tXi, tY i, tFi, tZi),

n4⊎

i=1

p4(tZi, tWsk),

n5⊎

i=1

p5(tXi, tPi)

where
⊎n

i=1p(�ti) denotes a store fragment containing n ground constraints of the form
p(�ti). Hence n2, n3, n4 and n5 are the number of constraints in the store for the pred-
icates p2, p3, p4 and p5, respectively. As we carry out this analysis, we optimistically
assume that each of the n2 instances of p2 has a different term tY i in its first argument,
and similarly for each argument position and predicate.

Consider a naive execution of the rule in Figure 6 in the textual order with active
constraint act p1(tE1, tZ1)#n i for some n and i, so that p1(E,Z) : 1 is the active
pattern. This binds variables E and Z to terms tE1 and tZ1 respectively. Next, we iden-
tify all constraints p2(tY i, tCi, tDi) such that C > D, and for each bindings tY i for Y ,
we build the comprehension rangeDs from the tCi’s and tDi’s. Since this pattern shares

28 E.S.L. Lam and I. Cervesato

no common variables with the active pattern and variable Ws is not ground, to build the
above match we have no choice but examining all n2 constraints for p2 in the store. Fur-
thermore, the guard D ∈Ws would have to be enforced at a later stage, after p4(Z,Ws)
is matched, as a post comprehension filter. We next seek a match for p3(X,Y, F, Z) : 3.
Because it shares variables Y and Z with patterns 1 and 2, we can find matching candi-
dates in constant time, if we have the appropriate indexing support (p3(, Y, , Z)). The
next two patterns (p4(Z,Ws) : 4 and �p5(X,P) | P ∈̇Ws�P∈Ps : 5) are matched in
a similar manner and finally Ps �= ∅ is checked at the very end. This naive execution
has two main weaknesses: first, scheduling partner 2 first forces the lower bound of the
cost of processing this rule to be O(n2), even if we find matches to partners 3 and 4 in
constant time. Second, suppose we fail to find a match for partner 5 such that Ps �= ∅,
then the execution time spent computing Ds of partner 2, including the time to search
for candidates for partners 3 and 4, was wasted.

Now consider the join ordering for the active pattern p1(E,Z) : 1 shown in Figure 6.
It is an optimized ordering of the partner constraints in this instance: Task (i) announces
that p1 (E ,Z) : 1 is the constraint pattern that the active constraint must match. Task
(ii) dictates that we look up the constraint p4(Z,Ws). This join task maintains a set
of possible constraints that match partner 4 and the search proceeds by exploring each
constraint as a match to partner 4 until it finds a successful match or fails; the indexing
directive I = 〈true; {Z}〉 mandates a hash multimap lookup for p4 constraints with
first argument value of Z (i.e., p4(Z,)). This allows the retrieval of all matching candi-
date constraints from Ls in amortized constant time (as oppose to linear O(n4)). Task
(iii) checks the guard condition Ws �= ∅: if no such p4(Z,Ws) exists, execution of
this join ordering can terminate immediately at this point (a stark improvement from the
naive execution). Task (iv) triggers the search for p3(X,Y, F, Z) with the indexing di-
rective 〈E ≤ F ; {Z}〉. This directive specifies that candidates of partner 3 are retrieved
by utilizing a two-tiered indexing structure: a hash table that maps p3 constraints in
their fourth argument (i.e., p3 (, , ,Z)) to a binary balance tree that stores constraints
in sorted order of the third argument (i.e., p3 (, ,F ,), E ≤ F). The rule guard E ≤ F
can then be omitted from the join ordering, since its satisfiability is guaranteed by this
indexing operation. Task (v) initiates a lookup for constraints matching p5 (X ,P) : 5
which is a comprehension. It differs from Tasks (ii) and (iv) in that rather than branch-
ing for each candidate match to p5 (X ,P) : 5 , we collect the set of all candidates as
matches for partner 5. The multiset of constraints matching this partner is efficiently
retrieved by the indexing directive 〈P ∈̇ Ws ; {X}〉. Task (vi) computes the compre-
hension domain Ps by projecting the multiset of instances of P from the candidates of
partner 5. The guard Ps �= ∅ is scheduled at Task (vii), pruning the current search im-
mediately if Ps is empty. Tasks (viii−x) represent the best execution option for partner
2, given that composite indexing (D ∈̇Ws and C ≤ D) is not yet supported in our im-
plementation: Task (viii) retrieves candidates matching p2 (Y ,C ,D) : 2 via the index-
ing directive 〈D ∈̇ Ws ; {Y }〉, which specifies that we retrieve candidates from a hash
multimap that indexes p2 constraints on the first and third argument (i.e., p2 (Y , ,D));
values of D are enumerated from Ws. Task (ix) does a post-comprehension filter, re-
moving candidates of partner 2 that do not satisfy C ≤ D. Finally, task (x) computes
the comprehension domain Ds. While we still conduct a post comprehension filtering
(Task (ix)), this filters from a small set of candidates (i.e., p2 (Y , ,D) where D ∈̇Ws)
and hence is likely more efficient than linear enumeration and filtering on the store (i.e.,
O(|Ws |) vs O(n2)).

Optimized Compilation of Multiset Rewriting with Comprehensions 29

i. Active p2 (Y ,C ,D) : 2

ii. CheckGuard C > D

iii. LookupAtom 〈true; {Z}〉 p4 (Z ,Ws) : 4

iv. CheckGuard Ws 	= ∅, D ∈̇ Ws

v. LookupAtom 〈E ≤ F ; {Z}〉 p3 (X ,Y ,F ,Z) : 3

vi. Bootstrap {C,D} 2

... (Similar to Tasks v − x of Figure 6)

Fig. 7. Optimized Join Ordering for �p2 (Y ,C ,D) | D ∈̇Ws,C > D�(C ,D)∈Ds : 2

Such optimized join orderings are statically computed by our compiler and the con-
straint store is compiled to support the set of all indexing directives that appears in
the join orderings. In general, our implementation always produces join orderings that
schedule comprehension partners after all atom partners. This is because comprehen-
sion lookups (LookupAll) never fail and hence do not offer any opportunity for early
pruning. However, orderings within each of the partner categories (atom or comprehen-
sion) are deliberate. For instance, p4(Z,Ws) : 4was scheduled before p3(X ,Y ,F ,Z) :
3 since it is more constrained: it has fewer free variables and Ws �= ∅ restricts it. Com-
prehension partner 5 was scheduled before 2 because of guard Ps �= ∅ and also that
2 is considered more expensive because of the post lookup filtering (Task (ix)). Cost
heuristics are discussed in Section 6.

5.2 Bootstrapping for Active Comprehension Head Constraints

In the example in Figure 6, the active pattern is an atomic constraint. Our next exam-
ple illustrates the case where the active pattern Hi is a comprehension. In this case,
the active constraint A#n must be part of a match with the comprehension rule head
Hi = �A′ | g�x∈xs : i. While the join ordering should allow early detection of failure to
match A with A′ or to satisfy comprehension guard g, it must also avoid scheduling com-
prehension rule head Hi before atomic partner constraints are identified. Our implemen-
tation uses bootstrapping to achieve this balance: Figure 7 illustrates this compilation
for the comprehension head constraint �p2(Y,C,D) | D ∈̇Ws , C > D�(C,D)∈Ds : 2
from Figure 6 playing the role of the active pattern. The key components of bootstrapping
are highlighted in boxes: Task (i) identifies p2(Y,C,D) as the active pattern, treating it
as an atom. The match for atom partners proceeds as in the previous case (Section 5.1)
with the difference that the comprehension guards of partner 2 (D ∈̇ Ws , C > D) are
included in the guard pool. This allows us to schedule them early (C > D in Task (ii)
and D ∈̇Ws in Task (iv)) or even as part of an indexing directive to identify compatible
partner atom constraints that support the current partial match. Once all atomic partners
are matched, at Task (vi), Bootstrap {C,D} 5, clears the bindings imposed by the
active constraint, while the rest of the join ordering executes the actual matching of the
comprehension head constraint similarly to Figure 6.

5.3 Uniqueness Enforcement

In general, a CHRcp rule r may have overlapping head constraints, i.e., there may be
a store constraint A#n that matches both Hj and Hk in r’s head. Matching two head
constraints to the same object in the store is not valid in CHRcp . We guard against
this by providing two uniqueness enforcing join tasks: If Hj and Hk are atomic head
constraints, join task NeqHead j k (figure 9) checks that constraints A#m and A#p

30 E.S.L. Lam and I. Cervesato

r @ p(D0) : 1 , q(P) : 2 , �p(D1) | D1 > P�D1∈Xs : 3 , �p(D2) | D2 ≤ P�D2∈Ys : 4 ⇐⇒ . . .

i. Active p(D0) : 1
ii. LookupAtom 〈true; ∅〉 q(P) : 2
iii. LookupAll 〈D1 > P ;∅〉 p(D1) : 3
iv. FilterHead 3 1
v. CompreDomain 3D1 Xs

vi. LookupAll 〈D2 ≤ P ;∅〉 p(D2) : 4
vii. FilterHead 4 1

viii. FilterHead 4 3
ix. CompreDomain 4D2 Ys

Fig. 8. Uniqueness Checks: Optimized Join Ordering for p(D0) : 1

matching Hj and Hk respectively are distinct (i.e., m �= p). If either Hj or Hk (or both)
is a comprehension, the join ordering must include a FilterHead join task.

Figure 8 illustrates filtering for active pattern p(D0) : 1 . Task (iv) FilterHead 3 1
states that we must filter constraint(s) matched by rule head 1 away from constraints
matched by partner 3. For partner 4, we must filter from 1 and 3 (Tasks (vii − viii)).
Notice that partner 2 does not participate in any such filtering, since its constraint has
a different predicate symbol and filtering is obviously not required. However, it is less
obvious that task (viii), highlighted, is in fact not required as well: because of the com-
prehension guards D1 > P and D2 ≤ P , partners 3 and 4 always match distinct sets
of p constraints. Our implementation uses a more precise check for non-unifiability of
head constraints (�unf) to determine when uniqueness enforcement is required.

6 Building Join Orderings

In this section, we formalize join orderings for CHRcp , as illustrated in the previous
section. We first construct a valid join ordering for a CHRcp rule r given a chosen
sequencing of partners of r and later discuss how this sequence of partners is chosen.
Figure 9 defines the elements of join orderings, join tasks and indexing directives. A
list of join tasks �J forms a join ordering. A join context Σ is a set of variables. Atomic
guards are as in Figure 1, however we omit equality guards and assume that equality
constraints are enforced as non-linear variable patterns in the head constraints. For sim-
plicity, we assume that conjunctions of guards g1 ∧ g2 are unrolled into a multiset of
guards ḡ = �g1, g2�, with |= ḡ expressing the satisfiability of each guard in ḡ. An index-
ing directive is a tuple 〈g; �x〉 such that g is an indexing guard and �x are hash variables.
The bottom part of Figure 9 defines how valid index directives are constructed. The
relation Σ;A � t �→ x states that from the join context Σ, term t connects to atomic
constraint A via variable x. Term t must be either a constant or a variable that appears in
Σ and x ∈ FV (A). The operation idxDir(Σ,A, g) returns a valid index directive for a
given constraint A, the join context Σ and the atomic guard g. This operation requires
that Σ be the set of all variables that have appeared in a prefix of a join ordering. It is
defined as follows: If g is an instance of an order relation and it acts as a connection
between Σ and A (i.e., Σ;A � ti �→ tj where ti and tj are its arguments), then the
operation returns g as part of the index directive, together with the set of variables that
appear in both Σ and A. If g is a membership relation t1 ∈̇ t2, the operation returns g
only if Σ;A � t2 �→ t1. Otherwise, g cannot be used as an index, hence the operation
returns true. Finally, allIdxDirs(Σ,A, ḡ) defines the set of all such indexing derivable
from idxDir (Σ,A, g) where g ∈ ḡ.

Optimized Compilation of Multiset Rewriting with Comprehensions 31

Join Context Σ ::= �x Index Directive I ::= 〈g; �x〉
Join Task J ::= ActiveH | LookupAtom I H | LookupAll I H

| Bootstrap �x i | CheckGuard ḡ | FilterGuard i ḡ
| NeqHead i i | FilterHead i i | CompreDomain i �x x

Σ;A � t �→ x iff t is a constant or t is a variable such that t ∈ Σ and x ∈ FV (A)

idxDir(Σ,A, g) ::=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈g;Σ ∩ FV (A)〉

{
if g = t1 op t2 and op ∈ {≤, <,≥, >}
and Σ;A � ti �→ tj for {i, j} = {1, 2}

〈g;Σ ∩ FV (A)〉 if g = t1 ∈̇ t2 and Σ;A� t2 �→ t1

〈true ;Σ ∩ FV (A)〉 otherwise

allIdxDirs(Σ,A, ḡ) ::= �idxDir(Σ,A, g) | for all g ∈ ḡ ∪ true�
Fig. 9. Join Tasks and Indexing Directives

An indexing directive 〈g; �x〉 for a constraint pattern p(�t) determines what type of
indexing method can be exploited for the given constraint type. For example, 〈true; �x〉
where �x �= ∅ states that we can store constraints p(�t) in a hash multimap that indexes the
constraints on argument positions of �t where variables �x appear, supporting amortized
O(1) lookups. For 〈x ∈̇ ts ; �x〉, we store p(�t) in the same manner, but during lookup
we enumerate the values of x from ts, hence we get amortized O(m) lookups, where
m is size of ts. Directive 〈x op y; ∅〉 specifies binary tree storage and binary search
lookups, while 〈x op y; �x〉 specifies a composite structure: a hash map with binary trees
as contents. The default indexing directive is 〈true; ∅〉, that corresponds to a linear
iteration lookup on p(�t). For full details, refer to [8].

Figure 10 defines the operation compileRuleHead(Hi, �Ha, �Hm, ḡ) which compiles
an active pattern Hi, a particular sequencing of partners, and rule guards of a CHRcp

rule (i.e., r @ � �Ha, �Hm, Hi� ⇐⇒ ḡ | B̄) into a valid join ordering for this sequence.
A join-ordering �J is valid w.r.t. to a CHR rule r if and only if it possesses certain
well-formedness properties (See [8] for details of these properties) that allows for its
sound execution of the abstract matching machine (Section 7). The topmost definition
of compileRuleHead in Figure 10 defines the case for Hi being an atomic constraint,
while the second definition handles the case for a comprehension. The auxiliary oper-
ation buildJoin(�H,Σ, ḡ, �Hh) iteratively builds a list of join tasks from a list of head
constraints �H , the join context Σ and a multiset of guards ḡ, the guard pool, with a list
of head constraints �Hh, the prefix head constraints. The join context contains the vari-
ables that appear in the prefix head constraints, while the guard pool contains guards g
that are available for either scheduling as tests or as indexing guards. The prefix head
constraints contain the list of atomic constraint patterns observed thus far in the com-
putation. If the head of �H is atomic A : j, the join ordering is constructed as follows:
the subset ḡ1 of ḡ that are grounded by Σ are scheduled at the front of the order-
ing (CheckGuard ḡ1). This subset is computed by the operation scheduleGrds(Σ, ḡ)
which returns the partition of ḡ such that ḡ1 contains guards grounded by Σ and ḡ2
contains all other guards. This is followed by the lookup join task for atom A : j (i.e.,
LookupAtom 〈gi; �x〉 A : j) and uniqueness enforcement join tasks neqHs(A : j, �Hh)

which returns a join tasks NeqHead j k for each occurrence in �Hh that has the same

32 E.S.L. Lam and I. Cervesato

compileRuleHead(A : i, �Ha, �Hm, ḡ) ::= [Active A : i | Ja]++Jm++checkGrds(ḡ′′)
where (Ja, Σ, ḡ′) = buildJoin(�Ha,FV (Ai), ḡ,[]) and (Jm, Σ′, ḡ′′) = buildJoin(�Hm, Σ, ḡ′, �Ha)

compileRuleHead(�A | ḡm��x∈xs : i, �Ha, �Hm, ḡ)
::= [Active A : i | Ja]++[Bootstrap FV (A)− FV (�x) i | Jm]++checkGrds(ḡ′′)
where (Ja, Σ, ḡ′) = buildJoin(�Ha,FV (Ai), ḡ ∪ ḡm,[])

(Jm, Σ′, ḡ′′) = buildJoin([�Ai | ḡm��x∈xs | �Hm], Σ − �x, ḡ′, �Ha)

buildJoin([A : j | �H], Σ, ḡ, �Hh)

::= ([CheckGuard ḡ1,LookupAtom 〈gi; �x〉 A : j]++neqHs(A : j, �Hh)++�J , Σ, ḡr)
where (ḡ1, ḡ2) = scheduleGrds(Σ, ḡ) and 〈gi; �x〉 ∈ allIdxDirs(Σ,A, ḡ2)

(�J , Σ′, ḡr) = buildJoin(�H,Σ ∪ FV (A), ḡ2 − gi, �Hh++[A : j])

buildJoin([�A | ḡm��x∈xs : j | �H], Σ, ḡ, �Hh)
:= ([CheckGuard ḡ1,LookupAll 〈gi; �x′〉 A : j,FilterGuard (ḡm − {gi})]

++filterHs(�A | ḡm��x∈xs : j, �Hh)++[CompreDomain j �x xs | �J], Σ, ḡr)
where (ḡ1, ḡ2) = scheduleGrds(Σ, ḡ) and 〈gi; �x′〉 ∈ allIdxDirs(Σ,A, ḡ2 ∪ ḡm)

(�J , Σ′, ḡr) = buildJoin(H̄,Σ ∪ FV (A), ḡ2 − gi, �Hh++[�A | ḡm��x∈xs : j])

buildJoin([], Σ, ḡ, �Hh) ::= ([], Σ, ḡ)

scheduleGrds(Σ, ḡ) ::= ({g | g ∈ ḡ,FV (g) ⊆ Σ}, {g | g ∈ ḡ,FV (g) �⊆ Σ})
neqHs(p() : j, p′() : k) ::= if p = p′ then [NeqHead j k] else []
filterHs(C : j, C′ : k) ::= if true � C′ 	unf C then [FilterHead j k] else []

Fig. 10. Building Join Ordering from CHRcp Head Constraints

predicate symbol as A. The rest of the join ordering �J is computed from the tail of �H .
Note that the operation picks one indexing directive 〈gi; �x〉 from the set of all available
indexing directives (allIdxDirs(Σ,A, ḡ2)). Hence from a given sequence of partners,
compileRuleHead defines a family of join orderings for the same inputs, modulo in-
dexing directives. If the head of �H is a comprehension, the join ordering is constructed
similarly, with the following differences: 1) a LookupAll join tasks in created in
the place of LookupAtom; 2) the comprehension guards ḡm are included as pos-
sible indexing guards (allIdxDirs(Σ,A, ḡ2 ∪ ḡm)); 3) immediately after the lookup
join task, we schedule the remaining of comprehension guards as filtering guards (i.e.,
FilterGuard ḡm − gi); 4) FilterHead uniqueness enforcement join tasks are
deployed (filterHs(C : j, C′ : k)) as described in Section 5.3; 5) We conclude the
comprehension partner with CompreDomain �x xs.

We briefly highlight the heuristic scoring function we have implemented to deter-
mine an optimized join ordering for each rule occurrence Hi of a CHRcp program
(refer to [8] for more details). This heuristic augments [6] to handle comprehensions.
While we do not claim that such heuristics always produce optimal join-orderings, in
practice it produces join-orderings that perform generally better than arbitrary order-
ing (see Section 9). Given a join ordering, we calculate a numeric score for the cost
of executing �J : a weighted sum value (n − 1)w1 + (n − 2)w2 + ... + wn for a join
ordering with n partners, such that wj is the join cost of the jth partner Hj . Since
earlier partners have higher weight, this scoring rewards join orderings with the least
expensive partners scheduled earlier. The join cost wj for a partner constraint C : j is
a tuple (vf , vl) where vf is the degree of freedom and vl is the indexing score. The
degree of freedom vf counts the number of new variables introduced by C, while the
indexing score vl is the negative of the number of common variables between C and
all other partners matched before it. In general, we want to minimize vf since a higher
value indicates larger numbers of candidates matching C, hence larger branching factor

Optimized Compilation of Multiset Rewriting with Comprehensions 33

Matching Context Θ ::= 〈A#n; �J ;Ls〉
Matching State M ::= 〈J ; pc; �Br ; θ;Pm〉

Backtrack Branch Br ::= (pc, θ,Pm)
Candidate Match U ::= (θ,A#n)
Partial Match Pm ::= Pm, i �→ Ū | ∅

match(A,A′) ::= if exists φ such that φA = A′ then φ else ⊥
lookupCands(Ls, A′, 〈g; �x′〉) ::= �(φ,A#n) | for all A#n ∈ Ls s.t. match(A,A′) = φ and φ �= ⊥ and |= g�

Fig. 11. LHS Matching States and Auxiliary Operations

for LookupAtom join tasks, and larger comprehension multisets for LookupAll join
tasks. Our heuristics also accounts for indexing guards and early scheduled guards: a
lookup join tasks for C : j receives a bonus modifier to wj if it utilizes an indexing
directive 〈gα; 〉 where gα �= true and for each guard (CheckGuard g) scheduled im-
mediately after it. This rewards join orderings that heavily utilizes indexing guards and
schedules guards earlier. The filtering guards of comprehensions (FilterGuard) are
treated as penalties instead, since they do not prune the search tree.

For each rule occurrence Hi and partner atomic constraints and comprehensions H̄a

and H̄c and guards ḡ, we compute join orderings from all permutations of sequences of
H̄a and H̄c. For each such join ordering, we compute the weighted sum score and select
an optimized ordering based on this heuristic. Since CHRcp rules typically contain a
small number of constraints, join ordering permutations can be practically computed.

7 Executing Join Orderings

In this section, we define the execution of join orderings by means of an abstract state
machine. The CHRcp abstract matching machine takes an active constraint A#n, the
constraint store Ls and a valid join ordering �J for a CHRcp rule r, and computes an
instance of a head constraint match for r in Ls .

Figure 11 defines the elements of this abstract machine. The inputs of the machine
are the matching context Θ, A#n, a join ordering �J and the constraint store Ls . A
matching state M is a tuple consisting of the current join task J , a program counter
pc, a list of backtracking branches �Br, the current substitution θ and the current partial
matchPm . A partial match is a map from occurrence indices i to multisets of candidates
U , which are tuples (θ, A#n). We denote the empty map as ∅ and the extension of
Pm with i �→ U as (Pm , i �→ U). We extend the list indexing notation Pm[j] to
retrieve the candidates that Pm maps j to. We define two auxiliary meta-operations:
match(A,A′) returns a substitution φ such that φA = A′ if it exists and ⊥ otherwise;
lookupCands(Ls , A′, 〈g; �x〉) retrieves the multiset of candidates A#n in store Ls that
match pattern A′ and satisfy g for indexing directive 〈g; �x〉.

Given an execution context Θ = 〈A#n; �J ;Ls〉, the state transition operation, de-
noted Θ � M �lhs M′, defines a transition step of this abstract machine. Figure 12
defines its transition rules: rule (active) executes Active A′ : i by matching the ac-
tive constraint A#n with A′ (φ = match(A, θA′)). If this match is successful (φ �=
⊥), the search proceeds. Rule (lookup-atom) executes LookupAtom 〈g; �x′〉 A′ : j
by retrieving (lookupCands(Ls, θA, 〈θg; �x〉)) constraints in Ls that match A′ : j. If
there is at least one such candidate (φ,A′′#m), the search proceeds with it as the
match to partner j and all other candidates as possible backtracking branches (Br ′).
This is the only type of join task where the search branches. Rule (check-guard)

34 E.S.L. Lam and I. Cervesato

(active)
Θ � 〈Active A′ : i; pc;Br ; θ;Pm〉 �lhs 〈�J[pc]; pc+1;Br ; θφ;Pm, i �→ (φ,A#n)〉
if φ = match(A, θA′) and φ �= ⊥

(lookup-atom)

Θ � 〈LookupAtom 〈g; �x〉 A′ : j; pc;Br ; θ;Pm〉
�lhs 〈�J[pc]; pc+1;Br ′++Br ; θφ;Pm, j �→ (φ,A′′#m)〉

if �Ū ,(φ,A′′#m)� = lookupCands(Ls, θA′, 〈θg; �x〉)
Br ′ = �(pc, θφ,Pm, j �→ (φ,A′′#m)) | for all (φ,A′′#m) ∈ Ū�

(check-guard) Θ � 〈CheckGuard ḡ; pc;Br ; θ;Pm〉 �lhs 〈�J[pc]; pc+1;Br ; θ;Pm〉 if |= θḡ

(lookup-all)
Θ � 〈LookupAll 〈g; �x〉 A′ : j; pc;Br ; θ;Pm〉 �lhs 〈�J[pc]; pc+1;Br ; θ;Pm, j �→ Ū〉
where Ū = lookupCands(Ls, θA′, 〈θg; �x〉)

(filter-guard)
Θ � 〈FilterGuard j ḡ; pc;Br ; θ;Pm, j �→ Ū〉 �lhs 〈�J[pc]; pc+1;Br ; θ;Pm, j �→ Ū ′〉
where Ū ′ = �(φ′, C) | for all (φ′, C) ∈ Ū s.t. |= θφ′ḡ�

(neq-head)
Θ � 〈NeqHead j k; pc;Br ; θ;Pm〉 �lhs 〈�J[pc]; pc+1;Br ; θ;Pm〉
if Pm[j] = (, A′#m) and Pm[k] = (, A′#n) such that m �= n

(filter-head)

Θ � 〈FilterHead j k; pc;Br ; θ;Pm, j �→ Ū , k �→ Ū ′〉
�lhs 〈�J[pc]; pc+1;Br ; θ;Pm, j �→ Ū ′′, k �→ Ū ′〉

where Ū ′′ = �(φ,A′′#m) | for all (φ,A′′#m) ∈ Ū s.t. ¬∃(, A′′#m) ∈ Ū ′�
(compre-dom)

Θ � 〈CompreDomain j �x xs; pc;Br ; θ;Pm〉 �lhs 〈�J[pc]; pc+1;Br ; θφ;Pm〉
where Pm[j] and φ = [�φ′�x | for all (φ′,) ∈ Ū�/xs]

(bootstrap) Θ � 〈Bootstrap �x j; pc;Br ; θ[/�x];Pm, j �→ 〉 �lhs 〈�J[pc]; pc+1;Br ; θ;Pm〉

(backtrack)
Θ � 〈 ; pc;[(pc′, θ′,Pm ′) | Br]; θ;Pm〉 �lhs 〈�J[pc′]; pc′+1;Br ; θ′;Pm ′〉
if neither (lookup-atom), (check-guard) nor (neq-head) applies.

(fail-match)
Θ � 〈 ; pc;∅; θ;Pm〉 �lhs ⊥
if neither (active), (lookup-atom), (check-guard), (neq-head) nor (backtrack) applies.

Fig. 12. Execution of CHRcp Join Ordering

executes CheckGuard ḡ by continuing the search only if all guards ḡ are satisfi-
able under the current substitution (|= θḡ). Rule (lookup-all) defines the case for
LookupAll 〈g; �x〉 A′ : j, during which candidates matching A′ are retrieved (Ū =
lookupCands(Ls, θA, 〈θg; �x〉)). But rather than branching, the search proceeds by ex-
tending the partial match with all candidates (i.e., j �→ Ū). Rule (filter-guard) de-
fines the case for FilterGuard j ḡ, in which the search proceeds by filtering from
Pm[j] candidates that do not satisfy the guard conditions ḡ. Rule (neq-head) de-
fines the case for NeqHead j k: if Pm[j] and Pm[k] maps to unique constraints,
the search proceeds. Rule (filter-head) executes FilterHead j k by filtering from
Pm[j] any candidates that appear also in Pm[k]. Rule (compre-dom) executes
CompreDomain j �x xs by extending the current substitution θ with φ = [ps/xs]
where ps is the multiset of projections of �x extracted from each candidate of Pm[j].
Rule (bootstrap) executes Bootstrap �x j by removing mappings of j from cur-
rent partial matches and mappings of �x from the current substitution. Rule (backtrack)
backtracks when rules (lookup-atom), (check-guard) and (neq-head) are not ap-
plicable. Backtracking is achieved by accessing the head of the backtracking branches
(pc′, θ′,Pm ′), and restoring the execution state to that particular state: the current join
task becomes �J[pc ′], the program counter pc′ + 1, the current substitution θ′ and the
partial matches Pm ′. If there are no more backtracking options, rule (fail-match) de-
clares failure to find a match. Execution of this machine implicitly terminates when pc

reaches an index outside the join ordering (i.e., �J[pc] = ⊥).

Optimized Compilation of Multiset Rewriting with Comprehensions 35

8 Correctness of CHRcp Abstract Matching Machine

In this section, we highlight the correctness results of the CHRcp abstract matching
machine. Specifically, we show that our abstract machine always terminates for a valid
matching context 〈A#n; �J ;Ls〉. By valid, we mean that Ls is finite, that A#n ∈ Ls ,
and that �J is a join ordering constructed by compileRuleHead . We also show that
it produces sound results w.r.t. the CHRcp operational semantics. Finally, we show
that it is complete for a class of CHRcp rules that are not selective on comprehension
patterns. We assume that matching (match(A,A′)) and guard satisfiability tests (|= g)
are decidable procedures. Proofs and details for these results can be found in [8].

We denote the exhaustive transition of the CHRcp abstract matching machine as
Θ � M �∗

lhs M′. There, M′ is a terminal state of the form 〈⊥; ; ; ; 〉: ⊥ since
the program counter has gone past the last index of �J . An initial state has the form
〈�J[0]; 1;∅; ·;∅〉. For our CHRcp abstract matching machine to be effective, we need
some guarantees that if we run it on a valid join ordering �J and a finite constraint store
Ls , execution either terminates at some terminal state (i.e., 〈⊥; ; ; ; 〉), or returns⊥.

Theorem 1 (Termination of the CHRcp Abstract Matching Machine). For any
valid Θ = 〈A#n; �J ;Ls〉, we have Θ � 〈�J[0]; 1;∅; ·;∅〉 �∗

lhs M such that either
M = 〈⊥; ; ; θ;Pm〉 or M = ⊥.

The CHRcp abstract matching machine is also sound w.r.t. the semantics of match-
ing of CHRcp : in the final state of a valid execution, θ and Pm corresponds to head
constraint match as specified by the semantics of matching of CHRcp (Figure 2). The
operation constr(Pm , i) returns the multiset of all constraints in partial match Pm
mapped by i.

Theorem 2 (Soundness of the CHRcp Abstract Matching Machine). For any
CHRcp head constraints C : i, �Ha, �Hm and ḡ, such that �J = compileRuleHead(C :

i, �Ha, �Hm, ḡ), given a constraint store Ls and an active constraint A#n, if
〈A#n; �J ;Ls〉 � 〈�J[0]; 1;∅; ·;∅〉 �∗

lhs 〈 ; ; ; θ;Pm〉, then for some Lsact,
Lspart, Lsrest such that Ls = �Lsact,Lspart,Lsrest� and Lsact = constr(Pm , i)

and Lspart = constr(Pm , getIdx (� �Ha, �Hm�)), we have 1) |= θg, 2) C : i �lhs Lsact,
3) θ� �Ha, �Hm� �lhs Lspart, and 4) θ� �Ha, �Hm, C : i� �¬

lhs Lsrest.

However, our CHRcp abstract matching machine is not complete in general. Incom-
pleteness stems from the fact that it greedily matches comprehension patterns: com-
prehensions that are scheduled early consume all matching constraints in the store Ls .
Consider a rule r with guard g, a comprehension head constraint M : i and another head
constraint C : j with i and j unifiable. If guards g is satisfiable only for some particular
partitions of i and j, we call r a comprehension selective rule. Our abstract machine
will not necessary be able to identify this partitioning: suppose that a join ordering ex-
ecutes j before i, then the join task FilterHead i j always forces all constraints that
can match either with i or j to be in j. The abstract matching machine is complete for
CHRcp rules that are non-selective on comprehensions.

Theorem 3 (Completeness of the CHRcp Abstract Matching Machine). Let r be
any CHRcp rule that is non-selective on comprehension rule heads. Let its head con-
straints be C : i, �Ha, �Hm and ḡ with �J = compileRuleHead(C : i, �Ha, �Hm, ḡ). If

36 E.S.L. Lam and I. Cervesato

Program Standard rules only With comprehensions Code reduction (lines)
Swap 5 preds 7 rules 21 lines 2 preds 1 rule 10 lines 110%
GHS 13 preds 13 rules 47 lines 8 preds 5 rules 35 lines 34%

HQSort 10 preds 15 rules 53 lines 7 preds 5 rules 38 lines 39%

Program Input Size Orig +OJO
+OJO
+Bt

+OJO
+Mono

+OJO
+Uniq

All Speedup

(40, 100) 241 vs 290 121 vs 104 vs 104 vs 103 vs 92 vs 91 33%
Swap (200, 500) 1813 vs 2451 714 vs 681 vs 670 vs 685 vs 621 vs 597 20%

(1000, 2500) 8921 vs 10731 3272 vs 2810 vs 2651 vs 2789 vs 2554 vs 2502 31%
(100, 200) 814 vs 1124 452 vs 461 vs 443 vs 458 vs 437 vs 432 5%

GHS (500, 1000) 7725 vs 8122 3188 vs 3391 vs 3061 vs 3290 vs 3109 vs 3005 6%
(2500, 5000) 54763 vs 71650 15528 vs 16202 vs 15433 vs 16097 vs 15835 vs 15214 2%

(8, 50) 1275 vs 1332 1117 vs 1151 vs 1099 vs 1151 vs 1081 vs 1013 10%
HQSort (16, 100) 5783 vs 6211 3054 vs 2980 vs 2877 vs 2916 vs 2702 vs 2661 15%

(32, 150) 13579 vs 14228 9218 vs 8745 vs 8256 vs 8617 vs 8107 vs 8013 15%

Execution times (ms) for various optimizations on programs with increasing input size.

Fig. 13. Preliminary Experimental Results

〈A#n; �J ;Ls〉 � 〈�J[0]; 1;∅; ·;∅〉 �∗
lhs ⊥ for a constraint store Ls and an active

constraint A#n, then there exists no applicable rule instance of r from Ls .

9 Prototype and Preliminary Empirical Results
In this section, we report preliminary experimental results of our CHRcp implementa-
tion. We have implemented a prototype (available for download at https://github
.com/sllam/chrcp) that utilizes a source-to-source compilation of CHRcp pro-
grams: our compiler is written in Python and translates CHRcp programs into a se-
quence of join orderings. Then, it generates C++ code that implements multiset rewrit-
ing as specified by the operational semantics of CHRcp . To support unifiability analysis
for constraint monotonicity (Section 4.1), we have deployed a conservative implemen-
tation of the relation test routine �unf , discussed in [9].

We have conducted preliminary experiments aimed at assessing the performance
of standard CHR programs (without comprehension patterns), CHRcp programs with
comprehension patterns and also to investigate the effects of the optimizations described
in this paper: OJO optimized join ordering (Section 6), Bt bootstrapping of active
comprehension head constraints (Section 5.2), Mono incremental storage for mono-
tone constraints (Section 4.1) andUniq non-unifiability test for uniqueness enforcement
(Section 5.3). When OJO is omitted, join ordering are of arbitrary matching ordering
(e.g., textual order). When Bt is omitted, an active comprehension pattern aggressively
collects all matching constraints and filters non-matches away in later stages of the join
ordering execution. When Mono is omitted, all goals are treated as eager goals, hence
eagerly stored and forsaking any opportunity of incremental processing. Finally, when
Uniq is omitted, join ordering produced conservatively (exhaustively) include unique-
ness enforcement tasks for each pairs of rule head constraints. Optimization OJO is
not specific to comprehension patterns: we use it to investigate the performance gains
for programs with comprehension patterns relative to standard CHR variants. All other
optimizations are specific to comprehension patterns, and hence we do not anticipate
any performance gains for standard CHR programs. We have analyzed performance
on three CHRcp programs of varying sizes (refer to [8] for codes): swap is the swap-
ping data example (Section 2) with input size (s, d) where s is number of swaps and

https://github.com/sllam/chrcp
https://github.com/sllam/chrcp

Optimized Compilation of Multiset Rewriting with Comprehensions 37

d is number of data constraints. GHS is a simulation of the GHS distributed minimal
spanning tree algorithm with input sizes (v, e) where v is number of vertices and e is
number of edges. Finally, HQSort is a simulation of the hyper-quicksort algorithm with
input sizes (n, i) where n is number of nodes and i number of integers in each node.

Figure 13 displays our experimental results. All experiments were conducted on an
Intel i7 quad-core processor with 2.20 GHz CPUs and 4 Gb of memory. All execution
times are averages from ten runs of the same experiments. The column Orig contains
results for runs with all optimizations turned off, while All contains results with all opti-
mizations. In between, we have results for runs with optimized join ordering and at least
one optimization specific to comprehension patterns. For Orig and +OJO , we show
two values, n vs m, where n is the execution time for the program implemented with
standard rules and m for code using comprehension patterns. Relative gains demon-
strated in Orig and +OJO comes at no surprise: join ordering and indexing benefit
both forms of programs. For the Swap example, optimization +Uniq yields the largest
gains, with +Bt for GHS . +Mono yields the least gains across the board and we be-
lieve that this is because, for programs in this benchmark, constraints exclusively appear
as atomic constraint patterns or in comprehension patterns. The last column shows the
speedup of the CHRcp code with all optimizations turned on w.r.t. the standard CHR
code with join ordering. Our experiments, although preliminary, show very promising
results: comprehensions not only provide a common abstraction by reducing code size,
but, maybe more surprisingly, we get significant performance gains over CHR.

10 Related Work

Compilation optimization for CHR has received a lot of attention. Efficient imple-
mentations are available in Prolog, HAL [6], Java [13] and even in hardware (via
FPGA) [12]. Join-ordering in pure CHR are extensively studied in [4,6]. The mul-
tiset matching technique implemented in these systems are based on the LEAPS al-
gorithm [1]. Our work implements a variant of this algorithm, augmented to handle
matching of comprehension patterns. These systems utilize optimization techniques
(e.g., join ordering, index selection) that resemble query optimization in databases. The
main difference is that in the multiset rewriting context we are interested in finding one
match, while relational queries return all matches. Two related extensions to CHR have
been proposed: negated head constraints allows encoding of a class of comprehension
patterns[14], while an extension that allows computation of limited form of aggregates
is discussed in [11]. Like the present work, both extensions introduce non-monotonicity
into the semantics. By contrast, we directly address the issue of incrementally process-
ing of constraints in the presence of non-monotonicity introduced by comprehension
patterns. The logic programming language LM (Linear Meld) [2] offers features like
aggregates and comprehension patterns, that are very similar to our work here. By con-
trast, comprehension patterns discussed here are more generalized: aggregates in LM
can be expressed in CHRcp as term-level comprehension and reduce operations.

38 E.S.L. Lam and I. Cervesato

11 Conclusion and Future Works

In this paper, we introduced CHRcp , an extension of CHR with multiset comprehen-
sion patterns. We highlighted an operational semantics forCHRcp , followed by a lower-
level compilation scheme into join orderings. We defined an abstract machine that ex-
ecutes these join orderings, and proved its soundness with respect to the operational
semantics. We have implemented a prototype CHRcp system and have demonstrated
promising results in preliminary experimentation. In future work, we intend to further
develop our prototype implementation of CHRcp by investigating the possibility of
adapting other orthogonal optimization techniques found in [6,13,12]. Next, we intend
to expand on our empirical results, testing our prototype with a larger benchmark and
also testing its performance against other programming frameworks. We also intend to
extend CHRcp with some result form prior work in [10].

References

1. Batory, D.: The LEAPS Algorithm. Technical report, University of Texas at Austin (1994)
2. Cruz, F., Rocha, R., Copen Goldstein, S., Pfenning, F.: A linear logic programming language

for concurrent programming over graph structures. CoRR, abs/1405.3556 (2014)
3. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for chr. In: PPDP

2007, pp. 25–36. ACM, New York (2007)
4. De Koninck, L., Sneyers, J.: Join ordering for constraint handling rules. In: CHR (2007)
5. Duck, G.J., Stuckey, P.J., Garcı́a de la Banda, M., Holzbaur, C.: The Refined Operational

Semantics of Constraint Handling Rules. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004.
LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

6. Holzbaur, C., de la Banda, M.G., Stuckey, P.J., Duck, G.J.: Optimizing compilation of con-
straint handling rules in HAL. CoRR, cs.PL/0408025 (2004)

7. Lam, E.S.L., Cervesato, I.: Constraint Handling Rules with Multiset Comprehension Pat-
terns. In: CHR 2014 (2014)

8. Lam, E.S.L., Cervesato, I.: Optimized Compilation of Multiset Rewriting with Comprehen-
sions (Full-Version). Technical Report CMU-CS-14-119, Carnegie Mellon (June 2014)

9. Lam, E.S.L., Cervesato, I.: Reasoning about Set Comprehension. In: SMT 2014 (2014)
10. Lam, E.S.L., Cervesato, I.: Decentralized Execution of Constraint Handling Rules for En-

sembles. In: PPDP 2013, Madrid, Spain, pp. 205–216 (2013)
11. Sneyers, J., Van Weert, P., Schrijvers, T., Demoen, B.: Aggregates in Constraint Handling

Rules. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 446–448. Springer,
Heidelberg (2007)

12. Triossi, A., Orlando, S., Raffaetà, A., Frühwirth, T.W.: Compiling CHR to parallel hardware.
In: PPDP 2012, pp. 173–184 (2012)

13. Van Weert, P., Schrijvers, T., Demoen, B., Leuven, K.U.: JCHR: A user-friendly, flexible and
efficient CHR system for Java. In: CHR 2005, pp. 47–62 (2005)

14. Weert, P.V., Sneyers, J., Schrijvers, T., Demoen, B.: Extending CHR with Negation as Ab-
sence. In: CHR 2006, pp. 125–140 (2006)

Logic Programming and Logarithmic Space

Clément Aubert1, Marc Bagnol1, Paolo Pistone1, and Thomas Seiller2,∗

1 Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373
13453 Marseille, France

2 I.H.É.S., Le Bois-Marie, 35, Route de Chartres, 91440 Bures-sur-Yvette, France

Abstract. We present an algebraic view on logic programming, related
to proof theory and more specifically linear logic and geometry of
interaction. Within this construction, a characterization of logspace (de-
terministic and non-deterministic) computation is given via a syntactic
restriction, using an encoding of words that derives from proof theory.

We show that the acceptance of a word by an observation (the
counterpart of a program in the encoding) can be decided within
logarithmic space, by reducing this problem to the acyclicity of a graph.
We show moreover that observations are as expressive as two-ways multi-
head finite automata, a kind of pointer machine that is a standard model
of logarithmic space computation.

Keywords: Implicit Complexity, Unification, Logic Programming, Log-
arithmic Space, Proof Theory, Pointer Machines, Geometry of Interac-
tion, Automata.

1 Introduction

Proof Theory and Implicit Computational Complexity. Very generally,
the aim of implicit computational complexity (ICC) is to describe complexity
classes with no explicit reference to cost bounds: through a type system or
a weakened recursion scheme for instance. The last two decades have seen
numerous works relating proof theory (more specifically linear logic [15]) and
ICC, the basic idea being to look for restricted substructural logics [19] with an
expressiveness that corresponds exactly to some complexity class.

This has been achieved by various syntactic restrictions, which entail a less
complex1 cut-elimination procedure: control over the modalities [31,10], type
assignments [14] or stratification properties [5], to name a few.

Geometry of Interaction. In recent years, the cut-elimination procedure and
its mathematical modeling has become a central topic in proof theory. The aim
of the geometry of interaction research program [16] is to provide the tools for
such a modeling [1,25,32].
∗ This work was partly supported by the ANR-10-BLAN-0213 Logoi and the ANR-11-

BS02-0010 Récré.
1 Any function provably total in second-order Peano Arithmetic [15] can be encoded

in second-order linear logic.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 39–57, 2014.
c© Springer International Publishing Switzerland 2014

40 C. Aubert et al.

As for complexity theory, these models allow for a more synthetic and abstract
study of the resources needed to compute the normal form of a program, leading
to some complexity characterization results [6,20,2].

Unification. Unification is one of the key-concepts of theoretical computer
science: it is a classical subject of study for complexity theory and a tool with
a wide range of applications, including logic programming and type inference
algorithms.

Unification has also been used to build syntactic models of geometry of inter-
action [18,6,21] where first-order terms with variables allow for a manipulation
of infinite sets through a finite language.

Logic Programming. After the work of Robinson [29] on the resolution
procedure, logic programming has emerged as a new computation paradigm
with concrete realizations such as the languages Prolog and Datalog.

On the theoretical side, constant efforts have been provided to clarify expres-
siveness and complexity issues [11]: most problems arising from logic program-
ming are undecidable in their most general form and some restrictions must be
introduced in order to make them tractable. For instance, the notion of finitely
ground program [9] is related to our approach.

Pointer Machines. Multi-head finite automata provide an elegant character-
ization of logarithmic space computation, in terms of the (qualitative) type of
memory used rather than the (quantitative) amount of tape consumed. Since
they can scan but not modify the input, they are usually called “pointer
machines”, even if this nomenclature can be misleading [8].

This model was already at the heart of previous works relating geometry of
interaction and complexity theory [20,3,2].

Contribution and Outline. We begin by exposing the idea of relating
geometry of interaction and logic programming, already evoked [18] but never
really developed, and by recalling the basic notions on unification theory needed
for this article and some related complexity results.

We present in Sect. 2 the algebraic tools used later on to define the encoding of
words and pointer machines. Section 2.2 and Sect. 2.3 introduce the syntactical
restriction and associated tools that allow us to characterize logarithmic space
computation. Note that, compared to earlier work [2], we consider a much wider
class of programs while preserving bounded space evaluation: we switch from
representation of permutations to a class defined by a syntactical restriction on
height of variables, which contains permutations as a strict subset.

The encoding of words enabling our results, which comes from the classical
(Church) encoding of lists in proof theory, is given in Sect. 3. It allows to define
the counterpart of programs, and a notion of acceptance of a word by a program.

Finally, Sect. 4 makes use of the tools introduced earlier to state and prove
our complexity results. While the expressiveness part is quite similar to earlier
presentations [3,2], the proof that acceptance can be decided within logarithmic

Logic Programming and Logarithmic Space 41

space has been made more modular by reducing this problem to the standard
problem of cycle search in a graph.

1.1 Geometry of Interaction and Logic Programming

The geometry of interaction program (GoI), started in 1989 [17], aims at
describing the dynamics of computation by developing a fully mathematical
model of cut-elimination. The original motivations of GoI must be traced back,
firstly, to the Curry-Howard correspondence between sequent calculus derivations
and typed functional programs: it is on the basis of this correspondence
that cut-elimination had been proposed by proof-theorists as a paradigm of
computation; secondly, to the finer analysis of cut-elimination coming from
linear logic [15] and the replacement of sequent calculus derivations with
simpler geometrical structures (proof-nets), more akin to a purely mathematical
description.

In the first formulation of GoI [16], derivations in second order intuitionistic
logic LJ2 (which can be considered, by Curry-Howard, as programs in System F)
are interpreted as pairs (U, σ) of elements (called wirings) of a C∗-algebra, U
corresponding to the axioms of the derivation and σ to the cuts.

The main property of this interpretation is nilpotency, i.e. if there exists
an integer n such that (σU)n = 0. The cut-elimination (equivalently, the
normalization) procedure is then interpreted by the application of an execution
operator

EX(U, σ) =
∑

k

(σU)k

From the viewpoint of proof theory and computation, nilpotency corresponds
to the strong normalization property: the termination of the normalization
procedure with any strategy.

Several alternative formulations of geometry of interaction have been proposed
since 1989 (see for instance [1,25,32]); in particular, wirings can be described as
logic programs [18,6,21] made of particular clauses called flows, which will be
defined in Sect. 2.1.

In this setting the resolution rule induces a notion of product of wirings
(Theorem 8) and in turn a structure of semiring: the unification semiring U ,
which can replace the C∗-algebras of the first formulations of GoI2.

The EX(.) operator of wirings can be understood as a way to compute the
fixed point semantics of logic programs. The nilpotency property of wirings
means then that the fixed point given by EX(.) is finite, which is close to the
notion of boundedness3 [11] of logic programs.

2 By adding complex scalar coefficients, one can actually extend U into a C∗-
algebra [18].

3 A program is bounded if there is an integer k such that the fixed point computation
of the program is stable after k iterations, independently of the facts input.

42 C. Aubert et al.

In definitive, from the strong normalization property for intuitionistic second
order logic (or any other system which enjoys a GoI interpretation), one obtains
through the GoI interpretation a family of bounded (nilpotent) logic programs
computing the recursive functions typable in System F.

This is quite striking in view of the fact that to decide whenever a program
is bounded is – even with drastic constraints – an undecidable problem [22], and
that in general boundedness is a property that is difficult to ensure.

1.2 Unification and Complexity

We recall in the following some notations and some of the numerous links between
complexity and unification, and by extension logic programming.

Notations. We consider a set of first-order terms T, assuming an infinite number
of variables x, y, z, . . . ∈ V, a binary function symbol • (written in infix notation),
infinitely many constant symbols a, b, c, . . . including the (multipurpose) dummy
symbol � and, for any n ∈ N∗, at least one n-ary function symbol An.

Note that the binary function symbol • is not associative. However, we will
write it by convention as right associating to lighten notations: t •u •v := t •(u •v).

For any t ∈ T, we write Var(t) the set of variables occurring in t (a term is
closed when Var(t) = ∅) and h(t) the height of t: the maximal distance from the
root to any leaf in the tree structure of t.

The height of a variable occurrence in a term t is its distance from the root
in the tree structure of the term. A substitution θ is a mapping from variables
to terms such that xθ = x for all but finitely many x ∈ V. A renaming is a
substitution α mapping variables to variables and that is bijective. A term t′ is
a renaming of t if t′ = tα for some renaming α.

Definition 1 (unification, matching and disjointness). Two terms t, u are
• unifiable if there exists a substitution θ, called a unifier of t and u, such that

tθ = uθ. A unifier θ such that any other unifier of t and u is an instance of
θ is called a most general unifier (MGU) of t and u,

• matchable if t′, u′ are unifiable, where t′, u′ are renamings of t, u such that
Var(t′) ∩ Var(u′) = ∅,

• disjoint if they are not matchable.

A fundamental result [29] of the theory of unification is that two unifiable
terms indeed have a MGU and that it can be computed.

More specifically, the problem of deciding whether two terms are unifiable is
Ptime-complete [12, Theorem 1], which implies that parallel algorithms for this
problem do not improve much on serial ones. Finding classes of terms where the
MGU research can be efficiently parallelized is a real challenge.

It has been proven that this problem remains Ptime-complete even if the arity
of the function symbols or the height of the terms is bounded [27, Theorems 4.2.1
and 4.3.1], if both terms are linear or if they do not share variables [12,13]. More
recently [7], an innovative constraint on variables helped to discover an upper
bound of the unification classes that are proven to be in NC.

Logic Programming and Logarithmic Space 43

Regarding space complexity, the result stating that the matching problem is
in DLogspace [12] (recalled as Theorem 36) will be used in Sect. 4.2.

2 The Unification Semiring

This section presents the technical setting of this work, the unification semiring:
an algebraic structure with a composition law based on unification, that can be
seen as an algebraic presentation of a fragment of logic programming.

2.1 Flows and Wirings

Flows can be thought of as very specific Horn clauses: safe (the variables of the
head must occur in the body) clauses with exactly one atom in the body.

As it is not relevant to this work, we make no technical difference between
predicate symbols and function symbols, for it makes the presentation easier.
Anyway, to retrieve the connection with logic programming, simply assume a
class of function symbols called “predicate symbols” (written in boldface) that
can only occur at the root of a term.

Definition 2 (flows). A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).
Flows are considered up to renaming: for any renaming α, t ↼ u = tα ↼ uα.

An example of flow that indeed is a clause of logic programming would be for
instance colored(x) ↼ blue(x) which states that if x is blue, then it is colored.

Facts, which are usually defined as ground (using only closed terms) clauses
with an empty body, can still be represented as a special kind of flows.

Definition 3 (facts). A fact is a flow of the form t ↼ �.

Remark 4. Note that this implies that t is closed.
Following on the example above, blue(c) ↼ � would be the fact stating that

the object c is blue.
The main interest of the restriction to flows is that it yields an algebraic

structure: a semigroup with a partially defined product.

Definition 5 (product of flows). Let u ↼ v and t ↼ w be two flows. Suppose
we have representatives of the renaming classes such that Var(v) ∩ Var(w) = ∅.
The product of u ↼ v and t ↼ w is defined if v, t are unifiable with MGU θ as
(u ↼ v)(t ↼ w) := uθ ↼ wθ.

Remark 6. The condition on variables ensures that facts form a “left ideal” of
the set of flows: if u is a fact and f a flow, then fu is a fact when it is defined.

Example 7. (f(x) ↼ x)(f(x) ↼ g(x)) = f(f(x)) ↼ g(x)
(x •d ↼ (y •y) •x)((c •c) •x ↼ y •x) = x •d ↼ y •x
(f(x •c) ↼ x •d)(d •d ↼ �) = f(d •c) ↼ �
(x ↼ g(h(x)))(g(y) ↼ y) = x ↼ h(x)

44 C. Aubert et al.

The product of flows corresponds to the resolution rule in the following sense:
given two flows f = u ↼ v and g = t ↼ w and a MGU θ of v and t, then the
resolution rule applied to f and g would yield fg.

To finish with our logic programming example, the product of the flows
colored(x) ↼ blue(x) and blue(c) ↼ � would yield colored(c) ↼ �.

Wirings then correspond to logic programs (sets of clauses) and the nilpotency
condition can be seen as an algebraic variant of the notion of boundedness of
these programs.

Definition 8 (wirings). Wirings are finite sets of flows. The product of wirings
is defined as FG := { fg | f ∈ F, g ∈ G, fg defined }.

We write U for the set of wirings and refer to it as the unification semiring.

The set of wirings U has the structure of a semiring. We use an additive
notation for sets of flows to stress this point:

• The symbol + will be used in place of ∪.
• We write sets as the sum of their elements: { f1, . . . , fn } := f1 + · · · + fn.
• We write 0 for the empty set.
• The unit is I := x ↼ x.

We will call semiring any subset A of U such that
• 0 ∈ A,
• if F ∈ A and G ∈ A then FG ∈ A.
• if F, G ∈ A, then F + G ∈ A,

A subset satisfying only the first two conditions will be called a semigroup.

Definition 9 (nilpotency). A wiring F is nilpotent if F n = 0 for some n ∈ N.
We may use the notation Nil(F) to express the fact that F is nilpotent.

As mentioned in Sect. 1.1, nilpotency is related with the notion of bound-
edness [11] of a logic program. Indeed, if we have a wiring F and a finite set
of facts U, let us consider the set of facts that can be obtained through F ,
{ u | u ∈ F nU for some n } which can also be written as (I +F +F 2 + · · ·)U or
EX(F)U (where EX(.) is the execution operator of Sect. 1.1). If F is nilpotent,
one needs to compute the sum only up to a finite rank that does not depend on
U, which implies the boundedness property.

Among wirings, those that can produce at most one fact from any fact will be
of interest when considering deterministic vs. non-deterministic computation.

Definition 10 (deterministic wirings). A wiring F is deterministic if given
any fact u, card(Fu) ≤ 1. We will write Ud the set of deterministic wirings.

It is clear from the definition that Ud forms a semigroup. The lemma below
gives us a class of wirings that are deterministic and easy to recognize, due to
its more syntactic definition.

Lemma 11. Let F =
∑

i ui ↼ ti. If the ti are pairwise disjoint (Theorem 1),
then F is deterministic.

Logic Programming and Logarithmic Space 45

Proof. Given a closed term t there is at most one of the ti that matches t,
therefore F (t ↼ �) is either a single fact or 0. ��

2.2 The Balanced Semiring

In this section, we study a constraint on variable height of flows which we call
balance. This syntactic constraint can be compared with similar ones proposed
in order to get logic programs that are finitely ground [9]: balanced wirings are
a special case of argument-restricted programs in the sense of [26].

We will be able to decide the nilpotency of balanced wirings in a space-efficient
way, thanks to the results of Sect. 2.3.

Definition 12 (balance). A flow f = t ↼ u is balanced if for any variable
x ∈ Var(t) ∪ Var(u), all occurrences of x in either t or u have the same height
(recall notations p. 42) which we write hf(x), the height of x in f . A wiring F
is balanced if it is a sum of balanced flows.

We write Ub for the set of balanced wirings and refer to it as the balanced
semiring.

In Theorem 7, only the second line shows the product of balanced flows.
The basic idea behind the notion of balance is that it forbids variations of

height which may be used to store information “above” a variable. Typically,
the flow f(x) ↼ x is not balanced.

Definition 13 (height). The height h(f) of a flow f = t ↼ u is max{h(t), h(u)}.
The height h(F) of a wiring F is the maximal height of flows in it.

The following lemma summarizes the properties that are preserved by the
product of balanced flows. It implies in particular that Ub is indeed a semiring.

Lemma 14. When it is defined, the product fg of two balanced flows f and g
is still balanced and its height is at most max{h(f), h(g)}.

Proof (sketch). By showing that the variable height condition and the global
height are both preserved by the basic steps of the unification procedure. ��

2.3 The Computation Graph

The main tool for a space-efficient treatment of balanced wirings is an associated
notion of graph. This section focuses on the algebraic aspects of this notion,
proving various technical lemmas, and leaves the complexity issues to Sect. 4.2.

A separating space can be thought of as a finite subset of the Herbrand
universe associated with a logic program, containing enough information to
decide the problem at hand.

Definition 15 (separating space). A separating space for a wiring F is a set
of facts S such that

46 C. Aubert et al.

• For all u ∈ S, Fu ⊆ S.
• F nu = 0 for all u ∈ S implies F n = 0.

We can define such a space for balanced wirings with Theorem 14 in mind:
balanced wirings behave well with respect to height of terms.

Definition 16 (computation space). Given a balanced wiring F , we define
its computation space Comp(F) as the set of facts of height at most h(F), built
using only the symbols appearing in F and the constant symbol �.

Lemma 17 (separation). If F is balanced, then Comp(F) is separating for F .

Proof. By Theorem 14, F (u ↼ �) is of height at most max{h(F), h(u)} ≤ h(F)
and it contains only symbols occurring in F and u, therefore if u ∈ Comp(F)
we have Fu ⊆ Comp(F).

By Theorem 14 again, F n is still of height at most h(F). If (F n)u = 0 for all
u ∈ Comp(F), it means the flows of F n do not match any closed term of height
at most h(F) built with the symbols occurring in F (and eventually �). This is
only possible if F n contains no flow, ie. F n = 0. ��

As F is a finite set, thus built with finitely many symbols, Comp(F) is also
a finite set. We can be a little more precise and give a bound to its cardinality.

Proposition 18 (cardinality). Let F be a balanced wiring, A the maximal
arity of function symbols occurring in F and S the set of symbols occurring in F ,
then card(Comp(F)) ≤ (card(S)+1)Ph(F)(A), where Pk(X) = 1+X + · · ·+Xk.

Proof. The number of terms of height h(F) built over the set of symbols S ∪ {�}
of arity bounded by A is at most as large as the number of complete trees of
degree A and height h(F) (that is, trees where nodes of height less than h(F)
have exactly A childs), with nodes labeled by elements of S ∪ {�}. ��

Then, we can encode in a directed graph4 the action of the wiring on its
computation space.

Definition 19 (computation graph). If F is a balanced wiring, we define its
computation graph G(F) as the directed graph:

• The vertices of G(F) are the elements of Comp(F).
• There is an edge from u to v in G(F) if v ∈ Fu.

We state finally that the computation graph of a wiring contains enough
information on the latter to determine its nilpotency. This is a key ingredient
in the proof of Theorem 35, as the research of paths and cycles in graphs are
problems that are well-known [24] to be solvable within logarithmic space.

Lemma 20. A balanced wiring F is nilpotent (Theorem 9) iff G(F) is acyclic.
4 Here by directed graph we mean a set of vertices V together with a set of edges

E ⊆ V × V . We say that there is an edge from e ∈ V to f ∈ V when (e, f) ∈ E.

Logic Programming and Logarithmic Space 47

Proof. Suppose there is a cycle of length n in G(F), and let u be the label of a
vertex which is part of this cycle. By definition of G(F), u ∈ (F n)ku for all k,
which means that (F n)k 	= 0 for all k and therefore F cannot be nilpotent.

Conversely, suppose there is no cycle in G(F). As it is a finite graph, this
entails a maximal length N of paths in G(F). By definition of G(F), this means
that F N+1u = 0 for all u ∈ Comp(F) and with Theorem 17 we get F N+1 = 0.

��
Moreover, the computation graph of a deterministic (Theorem 10) wiring has

a specific shape, which in turn induces a deterministic procedure in this case.

Lemma 21. If F is a balanced and deterministic wiring, G(F) has an out-
degree (the maximal number of edges a vertex can be the source of) bounded by
1.

Proof. It is a direct consequence of the definitions of G(F) and determinism. ��

2.4 Tensor Product and Other Semirings

Finally, we list a few other semirings that will be used in the next section, where
we define the notions of representation of a word and observation.

The binary function symbol • can be used to define an operation that is similar
to the algebraic notion of tensor product.

Definition 22 (tensor product). Let u ↼ v and t ↼ w be two flows. Sup-
pose we have chosen representatives of their renaming classes that have disjoint
sets of variables. We define their tensor product as (u ↼ v) ⊗̇ (t ↼ w) := u •t ↼
v •w. The operation is extended to wirings by (

∑
i fi) ⊗̇ (

∑
j gj) :=

∑
i,j fi ⊗̇ gj.

Given two semirings A, B, we define A ⊗̇ B := { ∑
i Fi ⊗̇ Gi | Fi ∈ A , Gi ∈ B }.

The tensor product of two semirings is easily shown to be a semiring.

Example 23. (f(x) • y ↼ y •x) ⊗̇ (x ↼ g(x)) = (f(x) • y) •z ↼ (y •x) •g(z)

Notation. As the symbol • , the ⊗̇ operation is not associative. We carry on the
convention for • and write it as right associating: A ⊗̇ B ⊗̇ C := A ⊗̇ (B ⊗̇ C).

Semirings can also naturally be associated to any set of closed terms or to the
restriction to a certain set of symbols.

Definition 24. Given a set of closed terms E, we define the following semiring
E↼ := { ∑

i ti ↼ ui | ti, ui ∈ E }. If S is a set of symbols and A a semiring, we
write A\S the semiring of wirings of A , that do not use the symbols in S.

This operation yields semirings because composition of flows made of closed
terms involves no actual unification: it is just equality of terms and therefore
one never steps out of E↼.

Finally, the unit I = x ↼ x of U yields a semiring.

Definition 25 (unit semiring). The unit semiring is defined as I := { 0 , I }.

48 C. Aubert et al.

3 Words and Observations

We define in this section the global framework that will be used later on to obtain
the characterization of logarithmic space computation. In order to discuss the
contents of this section, let us first define two specific semirings.

Definition 26 (word and observation semirings). We fix two (disjoint)
infinite sets of constant symbols P and S, and a unary function symbol M. We
denote by M(P) the set of terms M(p) with p ∈ P. We define the following two
semirings that are included in Ub:

• The word semiring is the semiring W := I ⊗̇ I ⊗̇ M(P)↼.
• The observation semiring is the semiring O := S↼ ⊗̇ Ub

\P.

Remark 27. The expression I ⊗̇ I ⊗̇ M(P)↼ may seem odd at first sight, as the
intuition from algebra is that I ⊗̇ I � I. But remember that we are here in
a syntactical context and therefore we need to be careful with things that can
usually be treated “up to isomorphism”, as it may cause some unifications to
fail where they should not.

These two semirings will be used as parameters of a construction MΣ (.) over
an alphabet Σ (we suppose � 	∈ Σ), that will define the representation of words
and a notion of abstract machine, that we shall call observations.

Definition 28. We fix the set of constant symbols LR := {L, R}.
Given a set of constant symbols Σ and a semiring A we define the semiring

MΣ (A) := (Σ ∪ {�})↼ ⊗̇ LR↼ ⊗̇ A.

In the following of this section, we will show how to represent lists of elements
of Σ by wirings in the semiring MΣ (W). Then, we will explain how the semiring
MΣ (O) captures a notion of abstract machine. In the last section of the paper
we will explain further how observations and words interact, and prove that this
interaction captures logarithmic space computation.

3.1 Representation of Words

We now show how one can represent words by wirings in MΣ (W). We recall
this semiring is defined as

(
(Σ ∪ {�})↼ ⊗̇ LR↼

) ⊗̇ I ⊗̇ I ⊗̇ M(P)↼.
The part (Σ ∪ {�})↼ ⊗̇ LR↼ deals with, and is dependent on, the alphabet Σ

considered; this is where the input and the observation will interact. The two
instances of the unit semiring I correspond to the fact that the word cannot
affect parts of the observation that correspond to internal configurations. The
last part, namely the semiring M(P)↼, will contain the position constants of the
representation of words.

Notation. We write t � u for t ↼ u + u ↼ t.

Logic Programming and Logarithmic Space 49

Definition 29 (word representations). Let W = c1, . . . , cn be a word over
an alphabet Σ and p = p0, p1, . . . , pn be pairwise distinct constant symbols.

Writing pn+1 = p0 and c0 = cn+1 = �, we define the representation of W
associated with p0, p1, . . . , pn as the following wiring:

W̄p =
n∑

i=0
ci •R •x •y •M(pi) � ci+1 •L •x •y •M(pi+1) (1)

We will write R(W) the set of representations of a given word W .
To better understand this representation, consider that each symbol in the

alphabet Σ comes in two “flavors”, left and right. Then, one can easily construct
the “context” W̄ =

∑n
i=0 ci •R •x •y •M([]i) � ci+1 •L •x •y •M([]i+1) from the list

as the sums of the arrows in the following picture (where x and y are omitted):

� •R•L
M([]0)

c1 •R•L
(M[]1)

c2 •R•L
M([]2)

. . . cn •R•L
M([]n)

Then, choosing a set p = p0, . . . , pn of position constants, intuitively represent-
ing physical memory addresses, the representation W̄p of a word associated with
p is obtained by filling, for all i = 0, . . . , n, the hole []i by the constant pi.

This abstract representation of words is not an arbitrary choice. It is inspired
by the interpretation of lists in geometry of interaction.

Indeed, in System F, the type of binary lists corresponds to the formula
∀X (X ⇒ X) ⇒ (X ⇒ X) ⇒ (X ⇒ X). Any lambda-term in normal
form of this type can be written as λf0f1x. fc1fc2 · · · fckx, where c1 · · · ck is
a word over {0, 1}. The GoI representation of such a lambda-term yields the
abstract representation just defined5. Notice that the additional symbol � used
to represent words corresponds to the variable x in the preceding lambda-term.
Note also the fact that the representation of integer is cyclic, and that the symbol
� serves as a reference for the starting/ending point of the word.

Let us finally stress that the words are represented as deterministic wirings.
This implies that the restriction to deterministic observations will correspond to
restricting ourselves to deterministic pointer machines. The framework, however,
allows for a number of generalization and variants. For instance, one can define a
representation of trees by adapting Theorem 29 in such a way that every vertex
is related to its descendants; doing so would however yield non-deterministic
wirings. In the same spirit, a notion of “one-way representations of words”,
defined by replacing the symbol � by the symbol ↼ in Eq. 1 of Theorem 29,
could be used to characterize one-way multi-head automata.

3.2 Observations
We now define observations. We will then explain how these can be thought of
as a kind of abstract machines. An observation is an element of the semiring

MΣ (O) = (Σ ∪ {�})↼ ⊗̇ LR↼ ⊗̇ (S↼ ⊗̇ Ub
\P)

5 A thorough explanation can be found in previous work by Aubert and Seiller [3].

50 C. Aubert et al.

Once again, the part of the semiring (Σ ∪ {�})↼ ⊗̇ LR↼ is dependent on the
alphabet Σ considered and represents the point of interaction between the words
and the machine. The semiring S↼ intuitively corresponds to the states of the
observation, while the part Ub

\P forbids the machine to act non-trivially on
the position constants of the representation of words. The fact that the machine
cannot perform any operation on the memory addresses – the position constants –
of the word representation explains why observations are naturally thought of
as a kind of pointer machines.

Definition 30 (observation). An observation is any element O of MΣ (O).

We can define the language associated to an observation. The condition of
acceptance will be represented as the nilpotency of the product OW̄p where
W̄p ∈ R(W) represents a word W and O is an observation.

Definition 31 (language of an observation). Let O be an observation on
the alphabet Σ. We define the language accepted by O as

L(O) :=
{

W ∈ Σ∗ ∣∣ ∀p, Nil(OW̄p)
}

One important point is that the semirings MΣ (W) and MΣ (O) are not
completely disjoint, and therefore allow for non-trivial interaction of observations
and words. However, they are sufficiently disjoint so that this computation does
not depend on the choice of the representative of a given word.

Lemma 32. Let W be a word, and W̄p, W̄q ∈ R(W). For every observation
O ∈ MΣ (O), Nil(OW̄p) if and only if Nil(OW̄q).

Proof. As we pointed out, the observation cannot act on the position constants
of the representations W̄p and W̄q. This implies that for all integer k the wirings
(OW̄p)k and (OW̄q)k are two instances of the same context, i.e. they are equal
up to the interchange of the positions constants p0, . . . , pn and q0, . . . , qn. This
implies that (OW̄p)k = 0 if and only if (OW̄q)k = 0. ��

Corollary 33. Let O be an observation on the alphabet Σ. The set L(O) can
be equivalently defined as the set

L(O) =
{

W ∈ Σ∗ ∣∣ ∃p, Nil(OW̄p)
}

This result implies that the notion of acceptance has the intended sense and
is finitely verifiable: whether a word W is accepted by an observation O can be
checked without considering all representations of W .

This kind of situation where two semirings W and O are disjoint enough
to obtain Theorem 33 can be formalized through the notion of normative pair
considered in earlier works [20,3,2].

Logic Programming and Logarithmic Space 51

4 Logarithmic Space

This section starts by explaining the computation one can perform with the
observations, and prove that it corresponds to logarithmic space computation
by showing how pointer machines can be simulated. Then, we will prove how
the language of an observation can be decided within logarithmic space.

This section uses the complexity classes DLogspace and coNLogspace , as
well as notions of completeness of a problem and reduction between problems.
We use in Sect. 4.2 the classical theorem of coNLogspace -completeness of
the acyclicity problem in directed graphs, and in Sect. 4.1 a convenient model
of computation, two-ways multi-head finite automata [23], a generalization of
automata also called “pointer machine”. Note that the non-deterministic part of
our results concerns coNLogspace , or equivalently NLogspace by the famous
Immerman-Szelepcsényi theorem.

4.1 Completeness: Observations as Pointer Machines

Let h0, x, y ∈ V, p0, p1, A0 constants and Σ = {0, 1}, the excerpt of a dialogue in
Figure 1 between an observation O = o1 + o2 + · · · and the representation of a
word W̄p = w1 + w2 + · · · should help the reader to grasp the mechanism.

� •R • init•A0 •M(h0) ↼ � •L • init•A0 •M(h0) (o1)
1 •L •x •y •M(p1) ↼ � •R •x •y •M(p0) (w1)

1 •L •b •A0 •M(h0) ↼ 1 •L •init •A0 •M(h0) (o2)
� •R •x •y •M(p0) ↼ 1 •L •x •y •M(p1) (w2)

By unification,
1 •L • init•A0 •M(p1) ↼ � •L • init•A0 •M(p0) (w1o1)

1 •L •b •A0 •M(p1) ↼ � •L • init•A0 •M(p0) (o2w1o1)
� •R •b •A0 •M(p0) ↼ � •L • init•A0 •M(p0) (w2o2w1o1)

This can be understood as the small following dialogue:

o1: [Is in state init] “I read � from left to right, what do I read now?”
w1: “Your position was p0, you are now in position p1 and read 1.”
o2: [Change state to b] “I do an about-turn, what do I read now?”
w2: “You are now in position p0 and read �.”

Fig. 1. The beginning of a dialogue between an observation and the representation of
a word

We just depicted two transitions corresponding to an automata that reads the
first bit of the word, and if this bit is a 1, goes back to the starting position,
in state b. We remark that the answer of w1 differs from the one of w2: there

52 C. Aubert et al.

is no need to clarify the position (the variable argument of M), since h0 was
already replaced by p1. Such an information is needed only in the first step of
the computation: after that, the updates of the position of the pointer take place
on the word side. We remark that neither the state nor the constant A0 is an
object of dialogue.

Note also that this excerpt corresponds to a deterministic computation. In
general, several elements of the observation could get unified with the current
configuration, yielding non-deterministic transitions.

Multiple Pointers and Swapping. We now add some computational power
to our observations by adding the possibility to handle several pointers. The
observations will now use a k-ary function Ak that allows to “store” k additional
positions in the variables h1, . . . , hk. This part of the observation is not affected
by the word, which means that only one head (the main pointer) can move.
The observation can exchange the position of the main pointer and the position
stored in Ak: we therefore refer to the arguments of Ak as auxiliary pointers that
can become the main pointer at some point of the computation. This is of course
strictly equivalent to having several heads with the ability to move.

Consider the following flow, that encodes the transition “if the observation
reads 1 •R in state s, it stores the position of the main pointer (the variable h0)
at the i-th position in Ak and start reading the input with a new pointer”:

� •R •s′ •Ak(h1, . . . , h0, . . . , hk) •M(hi) ↼ 1 •R •s •Ak(h1, . . . , hi, . . . , hk) •M(h0)

Suppose that later on, when reading 0 •L in state r, we want to give back to that
pointer the role of main pointer. That means to swap again the position of the
variables h0 and hi, in order to store the position that was currently read and
to restore the position that was “frozen” in Ak.

_ •L •r′ •Ak(h1, . . . , hi, . . . , hk) •M(h0) ↼ 0 •L •r •Ak(h1, . . . , h0, . . . , hk) •M(hi)

The occurrence of L in the head of the previous flow reflects that we want to read
the input from left to right, but the “_” slot cannot be a free variable, for that
would break the safety of our clauses, the fact that all the variable of the head
(the left-member) appears in the body (the right-member). So this slot should
be occupied by the last value read by the pointer represented by the variable h0,
an information that should be encoded in the state r6.

Acceptance and Rejection. Remember (Theorem 33) that the language of an
observation is the set of words such that the wiring composed of the observation
applied to a representation of the word is nilpotent. So one could add a flow
with the body corresponding to the desired situation leading to acceptance, and
the head being some constant accept that appears in the body of no other flow,
thus ending computation when it is reached. But in fact, it is sufficient not to
add any flow: doing nothing is accepting!
6 That is, we should have states r�, r0 and r1, and flows accordingly.

Logic Programming and Logarithmic Space 53

The real challenge is to reject a word: it means to loop. We cannot simply add
the unit (I := x ↼ x) to our observation, since that would make our observation
loop for any input. So we have to be more clever than that, and to encode
rejection as a re-initialization of the observation: we want the observation to put
all the pointers on � and to go back to an init state. So, a rejection is in fact a
“perform for ever the same computation”.

Suppose the main pointer was reading from right to left, that we are in state
b and that we want to re-initialize the computation. Then, for every c ∈ Σ, it
is enough to add the transitions (go-back-c) and (re-init) to the observation,

c •L •b •A(h1, . . . , hk) •M(h0) ↼ c •R •b •A(h1, . . . , hk) •M(h0) (go-back-c)
� •R •init•A(h0, . . . , h0) •M(h0) ↼ � •R •b •A(h1, . . . , hk) •M(h0) (re-init)

Once the main pointer is back on �, (re-init) re-initializes all the positions of
the auxiliary pointers to the position of � and changes the state for init.

There is another justification for this design: as the observation and the
representation of the word are sums, and as the computation is the application,
any transition that can be applied will be applied, i.e. if the body of a flow of our
observation and the head of a flow of the word can be unified, the computation
will start in a possibly “wrong” initialization. That some of these incorrect runs
accept for incorrect reason is no trouble, since only rejection is “meaningful” due
to the nilpotency criterion. But, with this framework, an incorrect run will be
re-initialized to the “right” initialization, and perform the correct computation:
in that case, it will loop if and only if the input is rejected.

Two-Ways Multi-Heads Finite Automata and Completeness. The
model we just developed has clearly the same expressivity as two-ways multi-
head finite automata, a model of particular interest to us for it is well studied,
tolerant to a lot of enhancements or restrictions7 and gives an elegant character-
ization of DLogspace and NLogspace [23,28].

Then, by a plain and uniform encoding of two-ways multi-head finite automata,
we get Theorem 34. That acceptance and rejection in the non-deterministic case
are “reversed” (i.e. all path have to accept for the computation to accept) makes
us characterize coNLogspace instead of NLogspace.

Note that encoding a deterministic automaton yields a wiring of the form of
Theorem 11, which would be therefore a deterministic wiring.

Theorem 34. If L ∈ coNLogspace, then there is an observation O such that
L(O) = L. If moreover L ∈ DLogspace, then O can be chosen deterministic.

7 In fact, most of the variations (the automata can be one-way, sweeping, rotating,
oblivious, etc.) are studied in terms of number of states and additional heads needed
to simulate a variation with another, but most of the time they keep characterizing
the same complexity classes.

54 C. Aubert et al.

4.2 Soundness of Observations

We now use the results of Sect. 2.3 and Sect. 3.2 to design a procedure that
decides whether a word belongs to the language of an observation within
logarithmic space. This procedure will reduce this problem to the problem
of testing the acyclicity of a graph, that is well-known to be tractable with
logarithmic space resources.

First, we show how the computation graph of the product of the observation
and the word representation can be constructed deterministically using only
logarithmic space; then, we prove that testing the acyclicity of such a graph can
be done within the same bounds. Here, depending on the shape of the graph
(which is dependent in itself of determinism of the wiring, recall Theorem 21),
the procedure will be deterministic or non-deterministic.

Finally, using the fact that logarithmic space algorithms can be composed [30,
Fig. 8.10], Theorem 20 and Theorem 33, we will obtain the expected result:

Theorem 35. If O is an observation, then L(O) ∈ coNLogspace. If moreover
O is deterministic, then L(O) ∈ DLogspace.

A Foreword on Word and Size. Given a word W over Σ, to build a
representation W̄p as in Theorem 29 is clearly in DLogspace: it is a plain matter
of encoding. By Theorem 32, it is sufficient to consider a single representation.
So for the rest of this procedure, we consider given W̄p ∈ R(W) and write
F := OW̄p. The size of Σ is a constant, and it is clear that the maximal arity
and the height of the balanced wiring F remain fixed when W varies. The only
point that fluctuates is the cardinality of the set of symbols that occurs in F ,
and it is linearly growing with the length of W , corresponding to the number
of position constants. In the following, any mention to a logarithmic amount of
space is to be completed by “relatively to the length of W ”.

Building the Computation Graph. We need two main ingredients to build
the computation graph (Theorem 19) of F : to enumerate the computation space
Comp(F) (recall Theorem 16), and to determine whether there is an edge
between two vertices.

By Theorem 18, card(Comp(F)) is polynomial in the size of W . Hence, given
a balanced wiring F , a logarithmic amount of memory is enough to enumerate
the members of Comp(F), that is the vertices of G(F).

Now the second part of the construction of G(F) is to determine if there is an
edge between two vertices. Remember that there is an edge from u = u ↼ � to
v = v ↼ � in G(F) if v ∈ Fu. So one has to scan the members of F = OW̄p: if
there exists (t1 ↼ t2)(t′

1 ↼ t′
2) ∈ F such that (t1 ↼ t2)(t′

1 ↼ t′
2)(u ↼ �) = v ↼

�, then there is an edge from u to v. To list the members of F is in DLogspace,
but unification in general is a difficult problem (see Sect. 1.2). The special case
of matching can be tested with a logarithmic amount of space:

Theorem 36 (matching is in DLogspace [12, p. 49]). Given two terms
t and u such that either t or u is closed, deciding if they are matchable is in
DLogspace.

Logic Programming and Logarithmic Space 55

Actually, this result relies on a subtle manipulation of the representation of
the terms as simple directed acyclic graphs [4], where the variables are “shared”.
Translations between this representation of terms and the usual one can be
performed in logarithmic space [12, p. 38].

Deciding if G(F) is Acyclic We know thanks to Theorem 20 that answering
this question is equivalent to deciding if F is nilpotent. We may notice that G(F)
is a directed, potentially unconnected graph of size card(Comp(F)).

It is well-know that testing for acyclicity of a directed graph is a coNLog-
space [24, p. 83] problem. Moreover, if F is deterministic (which is the case
when O is), then G(F) has out-degree bounded by 1 (Theorem 21) and one
can test its acyclicity without being non-deterministic: it is enough to list the
vertices of Comp(F), and for each of them to follow card(Comp(F)) edges and
to test for equality with the vertex picked at the beginning. If a loop is found,
the algorithm rejects, otherwise it accepts after testing the last vertex. Only
the starting vertex and the current vertex need to be stored, which fits within
logarithmic space, and there is no need to do any non-deterministic transitions.

5 Conclusion

We presented the unification semiring, a construction that can be used both as
an algebraic model of logic programming and as a setting for a dynamic model
of logic. Within this semiring, we were able to identify a class of wirings that
have the exact expressive power of logarithmic space computation.

If we try to step back a little, we can notice that the main tool in the
soundness proof (Sect. 4.2) is the computation graph, defined in Sect. 2.3. More
precisely, the properties of this graph, notably its cardinality (that turns out to
be polynomial in the size of the input), allow to define a decision procedure that
needs only logarithmic space. The technique is modular, hence not limited to
logarithmic space: identifying other conditions on wirings that ensure size bounds
on the computation graph would be a first step towards the characterization of
other space complexity classes.

Concerning completeness, the choice of encoding pointer machines (Sect. 4.1)
rather than log-space bounded Turing machines was quite natural. Balanced
wirings correspond to the idea of computing with pointers: manipulation of data
without writing abilities, and thus with no capacity to store any information
other than a fixed number of positions on the input.

By considering other classes of wirings or by modifying the encoding it might
be possible to capture other notions of machines characterizing some complexity
classes: we already mentioned at the end of Sect. 3.1 a modification of the
representation of the word that would model one-way finite automata.

The relation with proof theory needs to be explored further: the approach of
this paper seems indeed to suggest a sort of “Curry-Howard” correspondence for
logic programming.

56 C. Aubert et al.

As Sect. 1.1 highlighted, there are many notions that might be transferable
from one field to the other, thanks to a common setting provided by geometry of
interaction and the unification semiring. Most notably, the notion of nilpotency
(on the proof-theoretic side: strong normalization) corresponds to a variant of
boundedness of logic programs, a property that is usually hard to ensure.

Another direction could be to look for a proof-system counterpart of this work:
a corresponding “balanced” logic of logarithmic space.

Acknowledgments. The authors would like to thank the anonymous referees
for helpful suggestions and comments.

References

1. Asperti, A., Danos, V., Laneve, C., Regnier, L.: Paths in the lambda-calculus. In:
LICS, pp. 426–436. IEEE Computer Society (1994)

2. Aubert, C., Bagnol, M.: Unification and logarithmic space. In: Dowek, G. (ed.)
RTA-TLCA 2014. LNCS, vol. 8560, pp. 77–92. Springer, Heidelberg (2014)

3. Aubert, C., Seiller, T.: Characterizing co-nl by a group action. Arxiv preprint
abs/1209.3422 (2012)

4. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)

5. Baillot, P., Mazza, D.: Linear logic by levels and bounded time complexity. Theoret.
Comput. Sci. 411(2), 470–503 (2010)

6. Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fund.
Inform. 45(1-2), 1–31 (2001)

7. Bellia, M., Occhiuto, M.E.: N-axioms parallel unification. Fund. Inform. 55(2), 115–
128 (2003)

8. Ben-Amram, A.M.: What is a “pointer machine"? Science of Computer Program-
ming 26, 88–95 (1995)

9. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory
and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

10. Dal Lago, U., Hofmann, M.: Bounded linear logic, revisited. Log. Meth. Comput.
Sci. 6(4) (2010)

11. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

12. Dwork, C., Kanellakis, P.C., Mitchell, J.C.: On the sequential nature of unification.
J. Log. Program. 1(1), 35–50 (1984)

13. Dwork, C., Kanellakis, P.C., Stockmeyer, L.J.: Parallel algorithms for term
matching. SIAM J. Comput. 17(4), 711–731 (1988)

14. Gaboardi, M., Marion, J.Y., Ronchi Della Rocca, S.: An implicit characterization
of pspace. ACM Trans. Comput. Log. 13(2), 18:1–18:36 (2012)

15. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)
16. Girard, J.Y.: Geometry of interaction 1: Interpretation of system F. Studies in

Logic and the Foundations of Mathematics 127, 221–260 (1989)
17. Girard, J.Y.: Towards a geometry of interaction. In: Gray, J.W., Ščedrov, A. (eds.)

Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held, June
14-20. Categories in Computer Science and Logic, vol. 92, pp. 69–108. AMS (1989)

Logic Programming and Logarithmic Space 57

18. Girard, J.Y.: Geometry of interaction III: Accommodating the additives. In: Girard,
J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Math. Soc.
Lecture Note Ser., vol. 222, pp. 329–389. CUP (1995)

19. Girard, J.Y.: Light linear logic. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960,
pp. 145–176. Springer, Heidelberg (1995)

20. Girard, J.Y.: Normativity in logic. In: Dybjer, P., Lindstrm, S., Palmgren, E.,
Sundholm, G. (eds.) Epistemology versus Ontology. Logic, Epistemology, and the
Unity of Science, vol. 27, pp. 243–263. Springer (2012)

21. Girard, J.Y.: Three lightings of logic. In: Ronchi Della Rocca, S. (ed.) CSL. LIPIcs,
vol. 23, pp. 11–23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2013)

22. Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Undecidable
boundedness problems for datalog programs. J. Log. Program. 25(2), 163–190
(1995)

23. Holzer, M., Kutrib, M., Malcher, A.: Multi-head finite automata: Characterizations,
concepts and open problems. In: Neary, T., Woods, D., Seda, A.K., Murphy, N.
(eds.) CSP. EPTCS, vol. 1, pp. 93–107 (2008)

24. Jones, N.D.: Space-bounded reducibility among combinatorial problems. J.
Comput. Syst. Sci. 11(1), 68–85 (1975)

25. Laurent, O.: A token machine for full geometry of interaction (extended abstract).
In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 283–297. Springer,
Heidelberg (2001)

26. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 489–493. Springer,
Heidelberg (2009)

27. Ohkubo, M., Yasuura, H., Yajima, S.: On parallel computation time of unification
for restricted terms. Tech. rep., Kyoto University (1987)

28. Pighizzini, G.: Two-way finite automata: Old and recent results. Fund. In-
form. 126(2-3), 225–246 (2013)

29. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1), 23–41 (1965)

30. Savage, J.E.: Models of computation - exploring the power of computing. Addison-
Wesley (1998)

31. Schöpp, U.: Stratified bounded affine logic for logarithmic space. In: LICS, pp.
411–420. IEEE Computer Society (2007)

32. Seiller, T.: Interaction graphs: Multiplicatives. Ann. Pure Appl. Logic 163, 1808–
1837 (2012)

Automatic Memory Management Based

on Program Transformation Using Ownership

Tatsuya Sonobe, Kohei Suenaga, and Atsushi Igarashi

Kyoto University, Kyoto, Japan

Abstract. We present a type-based program transformation for an im-
perative programming language with manual memory-management prim-
itives (e.g., malloc and free in C). Our algorithm, given a program with
potential memory leaks, inserts memory-deallocating instructions to the
program so that the resulting program does not contain memory leaks.
We design the algorithm as type reconstruction for an extension of the
ownership-based type system by Suenaga and Kobayashi.

Keywords: Memory leaks, Type system, Program transformation.

1 Introduction

Memory leaks are one of the most serious bugs in the programming languages
with manual memory management (e.g., C language [11] and C++ [21]). It
is hard to find via testing because it is the result of illegal inaction (i.e., not
appropriately deallocating an allocated memory cell), not the result of illegal
action that can be detected instantly.

Various approaches to this problem have been proposed [8, 9, 10, 14, 23]. We
henceforth focus on static verification, in which a verifier analyzes source code
at compile time to verify memory-leak freedom.

A difficulty in using static verification consists in pinpointing errors. A verifier
warns possibility of a memory leak if the verification fails. In order to determine
why the warning is issued, a programmer often needs to understand how the
verifier works. However, this is in general difficult especially if the verifier is
based on highly mathematical theory.

To address this problem, the current paper proposes automated correction of
a program with memory leaks. If verification of a program fails, our algorithm
inserts a call to the memory deallocation instruction free to the program; the
resulting program is guaranteed to be memory-leak free. Figure 1 exemplifies
the proposed transformation; our algorithm, given the program that contains
a memory leak (Figure 1a), inserts a memory-deallocating instruction free(x)
producing a memory-leak free program (Figure 1b).

Our algorithm is based on the type system proposed by Suenaga and
Kobayashi [23]. Before describing our algorithm, we first review that type sys-
tem. Inspired by several type systems [2, 10, 24], they augment the pointer-type

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 58–77, 2014.
c© Springer International Publishing Switzerland 2014

Automatic Memory Management Based on Program Transformation 59

(a)

let x = malloc() in
let y = malloc() in
∗x ← y;
free(y)

(b)

let x = malloc() in
let y = malloc() in
∗x← y;
free(x);

free(y)

Fig. 1. Example of transformation. (a) Input program that may causes a memory leak.
(b) Result of transformation of (a).

constructor τ ref with a fractional ownership1 (or, simply an ownership) f . A
fractional ownership is a member of {x ∈ Q | 0 ≤ x ≤ 1} where Q is the set of
rational numbers. A fractional ownership describes how each pointer should be
and can be used. Hence, a reference type in the type system is of the form τ ref f .

We explain how ownerships work in our type system; for more intuitive ex-
planation, we refer one to Suenaga and Kobayashi [23] and Suenaga, Fukuda,
and Igarashi [22].

First, we note that the type system is designed to be a flow-sensitive one so
that different types can be assigned to different occurrences of a variable. The
type system assigns the ownership 1 to a pointer, say x, at the program point
where x is bound to a fresh memory cell; we write ∗x for the memory cell pointed
to by x. Then, suppose that a pointer x has a type int ref f at a certain program
point2. Then, the usage of x at the program point should respect the following
rules.

1. Rule on deallocation: The memory cell pointed to by x should be deallocated
eventually if f > 0.

2. Rules on accesses:
(a) Read on ∗x is allowed only if f > 0 at the program point of the read.
(b) Write on ∗x is allowed only if f = 1 at the program point of the write.
(c) free(x) is allowed only if f = 1; the ownership f is set to 0 at the

program point just after the free(x).
3. Rule on ownership passing: If it is statically known that x is an alias of y

at a program point (i.e., x is a must-alias of y at the program point), then
ownerships can be transferred between x and y.

An important invariant of the rules above is that, for each memory cell, the sum
of the ownerships of the pointers to the cell is exactly equal to 1. Therefore,

1 Our use of the term ownership is different from that of the ownership types [3].
By ownership, we intend to denote information about obligation and permission in
accessing a memory cell whereas ownership types are used to control permission to
access an object.

2 Although the formalization of their type system and the current paper does not
contain the type of integers int, we use it here for explanation; extension of the
frameworks with integers is straightforward.

60 T. Sonobe, K. Suenaga, and A. Igarashi

Program

0 :
1 : let x = malloc() in
2 : let y = malloc() in
3 : ∗x ← y;
4 : free(x);
5 : free(y)

Type env. after each instruction

/ ∗ ∅ ∗ /
/ ∗ x : int ref1 ∗ /
/ ∗ x : int ref1, y : int ref1 ∗ /
/ ∗ x : int ref1, y : int ref1 ∗ /
/ ∗ x : int ref0, y : int ref1 ∗ /
/ ∗ x : int ref0, y : int ref0 ∗ /

Fig. 2. Example of typing

by forcing that no ownership is left at the end of a program, we can guarantee
memory-leak freedom. Moreover, the rule 2c guarantees that the deallocated cell
is not accessed since there is no pointer to the cell that has a positive ownership
after the deallocation. Suenaga and Kobayashi [23] proved that a well-typed
program does not lead to a memory leak.

Figure 2 shows an example of typing; the figure includes a program and the
type of each variable at each program point. The types of x and y at Lines 1
and 2, respectively, show that the ownership 1 is assigned just after memory
allocation. The ownership 1 of x at Line 3 allows the write on ∗x (Rule 2b).
The instructions free(x) and free(y) at Line 4 and 5, respectively, are allowed
because of the ownership 1 of x and y (Rule 2c). There is no ownership left at
Line 5; hence, Rule 1 is satisfied.

Suenaga and Kobayashi formalized the type system, proposed a constraint-
based type inference algorithm. They also conducted an experiment using an
implementation of the verification algorithm [23].

Their verifier, if verification fails, reports the failure with little supplemental
information. Then, understanding the cause of verification failure requires the
knowledge about the type system. To address this problem, the extension pro-
posed in the current paper enables the verifier to insert memory-deallocating
instructions. Even if a given program contains a memory leak, the verifier tries
to transform it to a well-typed program by inserting calls to the instruction free
to appropriate locations and, if it succeeds, returns the transformed programs.

Our main idea is to consider missing deallocations as implicit type conver-
sions. Then, insertion of free is a procedure that makes the implicit conversions
explicit. This procedure is essentially type reconstruction for a type system with
subtyping.

To this end, we introduce a pseudo instruction called a cast 〈Γ1 � Γ2〉 to
the framework where Γ1 and Γ2 are type environments. A cast 〈Γ1 � Γ2〉 is
interpreted as a shorthand for instructions that coerce the type environment Γ1

at a program point to Γ2; the typing rule for cast instructions is designed so that
a well-typed program admits such interpretation. The transformation algorithm,
given a program, first inserts a cast template (e.g., a cast whose ownership parts
are left unknown) to every program point, and then conducts type inference to
the program. After fixing the unknown ownerships, the algorithm replaces each
cast with its interpretation.

Automatic Memory Management Based on Program Transformation 61

Consider the program in Figure 1a. Given this program, our algorithm inserts
cast templates to every location3.

let x = malloc() in 〈x : int refϕ1 � x : int refϕ2〉;
let y = malloc() in 〈x : int refϕ3 , y : int refϕ4 � x : int refϕ5 , y : int refϕ6〉;
∗x ← y; 〈x : int refϕ7 , y : int refϕ8 � x : int refϕ9 , y : int refϕ10〉;
free(y); 〈x : int refϕ11 , y : int refϕ12 � x : int refϕ13 , y : int refϕ14〉;

〈x : int refϕ15 � x : int refϕ16〉.

Here, ϕi are variables for ownerships.
Then, the algorithm conduct type inference to calculate an ownership assign-

ment that makes the program above well-typed. One of the possible assignments
produces the following.

let x = malloc() in 〈x : int ref1 � x : int ref1〉;
let y = malloc() in 〈x : int ref1, y : int ref1 � x : int ref1, y : int ref1〉;
∗x ← y; 〈x : int ref1, y : int ref1 � x : int ref0, y : int ref1〉;
free(y); 〈x : int ref0, y : int ref1 � x : int ref0, y : int ref0〉;

〈x : int ref0 � x : int ref0〉.

The underlined cast expresses that the ownership of x should be converted
from 1 to 0 there for this program to be well-typed; that is, free(x) has to
be inserted there. By replacing each cast with corresponding instructions (e.g.,
〈x : int ref1, y : int ref1 � x : int ref0, y : int ref1〉 with free(x)), the verifier ob-
tains the program in Figure 1b.

Remark 1. One restriction of the current framework is that we can deal with only
casts from the ownership 1 to 0, excluding a cast like 〈x : int ref0.5�x : int ref0〉
which would be useful in disposing read-only pointers; dealing with such cast
requires manual annotations called assertions.

The current paper proposes a theoretical framework in a simple setting that
does not incorporate structures. Although we have a prototype of the implemen-
tation of the proposed algorithm, the conducted experiment is still limited. We
have not measured performance yet. Extension of the framework and demon-
strating its feasibility is deferred to future work.

This paper is structured as follows. We first review the framework by Suenaga
and Kobayashi [23] in Section 2. We then present the transformation algorithm
in Section 3. After reviewing related work in Section 4, we conclude in Section 5.

Notation. Q is the set of rational numbers. Given a (partial) function f : X → Y ,
we write f [x �→ y], where x ∈ X and y ∈ Y , for the (partial) function defined as
follows: f [x �→ y](x′) = y if x = x′ and f [x �→ y](x′) = f(x′) otherwise. We write
x̃ for a finite sequence x1, . . . , xn. We also write X∗ for the set {x1 . . . xn|xi ∈ X}.
The number n ≥ 0 shall be clear from context or does not matter when we use
the notations X∗ and x̃.

3 For simplicity, the cast insertion here is slightly different from that in Section 3.

62 T. Sonobe, K. Suenaga, and A. Igarashi

x, y, z, . . . (variables) ∈ Vars
F (fun. names) ∈ FunN
v (values) ::= null | x
s (statements) ::= skip | s1; s2 | let x = v in s | F (x1, . . . , xn)

| let x = malloc() in s | free(x) | let x = ∗y in s
| ∗x1 ← y2 | ifnull x then s1 else s2
| assert(x1 = x2) | assert(x1 = ∗x2)

d (fun. def.) ::= (x1, . . . , xn)s
D (fun. env.) ::= {F1 �→ d1, . . . , Fn �→ dn}
P (program) ::= 〈D, s〉

Fig. 3. Syntax of the language

2 Suenaga–Kobayashi Type System

Tomake the current paper self-contained, we recapitulate the Suenaga–Kobayashi
type system [23].

2.1 Language

Syntax. Figure 3 presents the syntax of the language. We fix countably infinite
sets Vars of variables and FunN of function names. A value of the language
is null or a variable representing a pointer. The meta-variable s ranges over
statements. The intuition of each statement is as follows.

– skip does nothing.
– s1; s2 executes s1 until it terminates and then executes s2.
– let x = v in s binds x to the value v and executes s.
– F (x1, . . . , xn) calls a function F with parameters x1, . . . , xn; we assume that

x1 . . . xn are different from each other.
– let x = malloc() in s allocates a memory cell, binds x to the pointer to the

cell, and executes s.
– free(x) deallocates the cell pointed to by x.
– let x = ∗y in s dereferences y, binds x to the result, and executes s.
– ∗x1 ← x2 writes x2 to the cell pointed to by x1.
– ifnull x then s1 else s2 executes s1 if x is null and s2 otherwise.
– assert(x1 = x2) does nothing if x1 is equal to x2; it raises assertion failure

otherwise. This statement and the statement assert(x1 = ∗x2) are used as
auxiliary information for the type system. More detail is in Section 2.2.

– assert(x1 = ∗x2) does nothing if x1 is equal to the value stored in the
memory cell pointed to by x2; it raises assertion failure otherwise.

A function definition (or, simply definition) d is of the form (x1, . . . , xn)s
representing a function that takes arguments, binds x1, . . . , xn to the argu-
ments, and executes s. We use the meta-variable D for function environments

Automatic Memory Management Based on Program Transformation 63

〈H,R, s1〉 →D 〈H ′, R′, s′1〉
〈H,R, s1; s2〉 →D 〈H ′, R′, s′1; s2〉

(Sem-Seq1)

〈H,R, skip; s2〉 →D 〈H,R, s2〉 (Sem-Seq2)

x′ is fresh

〈H,R, let x = v in s〉 →D 〈H,R[x′ �→ v], [x′/x]s〉
(Sem-Let)

D(F) = (x1, . . . , xn)s

〈H,R,F (y1, . . . , yn)〉 →D 〈H,R, [y1, . . . , yn/x1, . . . , xn]s〉
(Sem-Call)

y and x′ are fresh. v is an arbitrary value.

〈H,R, let x = malloc() in s〉 →D 〈H [x′ �→ v], R[y �→ x′], [y/x]s〉
(Sem-Malloc)

y ∈ dom(H)

〈H,R[x �→ y], free(x)〉 →D 〈H\y,R[x �→ y], skip〉
(Sem-Free)

〈H,R[x �→ null], free(x)〉 →D 〈H,R[x �→ null], skip〉 (Sem-FreeNull)

x′ is fresh

〈H [z �→ v], R[y �→ z], let x = ∗y in s〉 →D 〈H [z �→ v], R[y �→ z, x′ �→ v], [x′/x]s〉
(Sem-Deref)

〈H [R(x) �→ v′], R, ∗x← y〉 →D 〈H [R(x) �→ R(y)],R, skip〉 (Sem-Assign)

R(x) �= null

〈H,R, ifnull x then s1 else s2〉 →D 〈H,R, s1〉
(Sem-IfNull1)

R(x) �= null

〈H,R, ifnull x then s1 else s2〉 →D 〈H,R, s2〉
(Sem-IfNull2)

R(x) = R(y)

〈H,R,assert(x = y)〉 →D 〈H,R, skip〉
(Sem-AssertEq)

H(R(y)) = R(x)

〈H,R,assert(x = ∗y)〉 →D 〈H,R, skip〉
(Sem-AssertDerefEq)

Fig. 4. Semantics of the language

{F1 �→ d1, . . . , Fn �→ dn}. A function environment gives a mapping from func-
tion names to their definitions. Finally, a program of our language consists of a
function environment D and a main statement s, written 〈D, s〉.

Occurrences of x are bound in s of let x = v in s and of let x = ∗y in s;
x1, . . . , xn are bound in s of (x1, . . . , xn)s; and F1, . . . , Fn are bound in d1, . . . , dn,
and s in 〈{F1 �→ d1, . . . , Fn �→ dn}, s〉. We identify statements and programs that
differ only in the name of bound variables. We assume that bound variables are
renamed so that each of them is unique.

Semantics. A heap, ranged over by H , and a register file, ranged over by R,
are partial functions from Vars to the set of values. A register file is used to
record bindings of programs variables, whereas a heap to record those of heap
locations; we abuse Vars for the domains of both. We assume that the domain
of a heap and that of a register file are finite. We write dom(X) for the domain

64 T. Sonobe, K. Suenaga, and A. Igarashi

R(x) /∈ dom(H)

〈H,R, free(x)〉 →D Error
(Err-Free)

R(y) /∈ dom(H)

〈H,R, let x = ∗y in s〉 →D Error
(Err-Deref)

〈H,R[y �→ null], let x = ∗y in s〉 →D NullEx (Exn-DerefNull)

R(x) /∈ dom(H)

〈H,R, ∗x← z〉 →D Error
(Err-Assign)

〈H,R[x �→ null], ∗x← y〉 →D NullEx (Exn-AssignNull)

R(x) �= R(y)

〈H,R,assert(x = y)〉 →D AssertFail
(Exn-AssertFail1)

H(R(y)) �= R(x)

〈H,R,assert(x = ∗y)〉 →D AssertFail
(Exn-AssertFail2)

z /∈ dom(H)

〈H,R[y �→ z],assert(x = ∗y)〉 →D Error
(Err-AssertDeref)

Fig. 5. Semantics of the language (continued)

of X where X is a heap or a register file. We also write X\S, where S ⊆ Vars,
for the restriction of X on dom(X)\S. If S is a singleton {x}, we write X\x for
X\{x}.

Figures 4 and 5 define the operational semantics of the language. The seman-
tics is given as D-parameterized rewriting relations 〈H,R, s〉 →D 〈H ′, R′, s′〉
and 〈H,R, s〉 →D E; here, 〈H,R, s〉 is a configuration that models a state of
computation and E ∈ {Error,NullEx,AssertFail} is an exception. We write
→∗

D for the reflexive transitive closure of →D.
An exception E represents an exceptional state; Error represents an access

to a memory cell that is already deallocated; NullEx represents an access to
null4; AssertFail represents an assertion failure. One of the properties the type
system summarized later guarantees is that Error is not reachable; NullEx and
AssertFail are not seen as erroneous.

Definition 1. A program 〈D, s〉 is safe if 〈∅, ∅, s〉 →∗
D Error does not hold.

A program is said to be memory-leak free if the program does not leave any
memory cell allocated when it terminates. Notice that the property mentions
only terminating programs. Dealing with non-terminating programs is beyond
the scope of the current paper, though we are looking at this direction.

Definition 2. A program 〈D, s〉 is memory-leak free if 〈∅, ∅, s〉 →∗
D 〈H,R, skip〉

implies H = ∅.

2.2 Type System

Figure 6 defines the syntax of types.

4 free(null) is not considered exceptional following the convention of the C language.

Automatic Memory Management Based on Program Transformation 65

f (ownerships) ∈ {x ∈ Q | 0 ≤ x ≤ 1}
τ (types) ∈ {0}∗ → Own
Γ (type environments) ::= {x1 �→ τ1, . . . , xn �→ τn}
Θ (function type environments) ::= {F1 �→ (τ̃1)→ (τ̃ ′

1), . . . , Fn �→ (τ̃n)→ (τ̃ ′
n)}

Fig. 6. Definition of types and type environments

– Ownerships, ranged over by f , are rational numbers in [0, 1].

– Reference types, ranged over by τ , are maps from {0}∗ (the set of sequences
of zeros) to ownerships. We use a meta-variable w that ranges over {0}∗; we
write |w| for the length of w and ε for the empty sequence. Intuition is as
follows. Suppose that a variable x has a type τ at a program point such that
τ(w) = f . Then, the program has to follow the ownership f at the program
point to access the memory cell |w|-hop away from x. A reference type τ1+τ2
is defined by (τ1 + τ2)(w) = τ1(w) + τ2(w). Due to a technical reason [23],
we assume that a reference type τ satisfies the following rule: if τ(w) = 0
then τ(0w) = 0.

– Type environments, ranged over by Γ , are maps from variables to reference
types. We assume that the domain of a type environment is a finite set. We
write x1 :τ1, . . . , xn :τn for {x1 �→ τ1, . . . , xn �→ τn}. If x /∈ dom(Γ), we write
Γ, x :τ for Γ ∪ {x �→ τ}.

– Function type environments, ranged over by Θ, are maps from function
names to function types (τ̃)→ (τ̃ ′); the types τ̃ in a function type (τ̃)→ (τ̃ ′)

are the types of the parameters at function invocation, whereas τ̃ ′ are those
at the end of the function execution. We assume the length of τ̃ is the same
as that of τ̃ ′.

We write 1 for the type τ such that τ(w) = 1 for any w; 0 for one such that
τ(w) = 0. We also write τ reff for the type τ ′ such that τ ′(ε) = f and τ ′(0w) =
τ(w) for any w. The order τ1 ≤ τ2 is defined pointwise by: τ1(w) ≤Q τ2(w) for
all w. We write μα.τ for the least type τ such that α = τ on this order ≤; for
example, μα.α ref1 = 1 because α = α ref1 holds only if α = 1.

Remark 2. We use {0}∗, not N, for the domain of reference types so that our
types can be smoothly extended to complex heap objects. For example, we can
incorporate pointers to pairs by using {0, 1}∗ as the domain of the pointer types.
Such extension has been already done by Suenaga and Kobayashi [23].

Remark 3. A reference type τ ref f describes the usage of a variable. For ex-
ample, if x has the type 0 ref1 at a program point, it means that the memory
cell pointed to by ∗x is accessible only via x and that the cell pointed to by
∗∗x cannot be accessed via x. If ∗∗x has not been deallocated, there should be
other aliases that have ownership to access to the cell. See [23] for more detailed
presentation.

66 T. Sonobe, K. Suenaga, and A. Igarashi

Γ �Θ skip =⇒ Γ (T-Skip)

Γ1 �Θ s1 =⇒ Γ Γ �Θ s1 =⇒ Γ2

Γ1 �Θ s1; s2 =⇒ Γ2

(T-Seq)

Γ, x :τ1, y :τ2 �Θ s =⇒ Γ ′, x :0

Γ, y :τ1 + τ2 �Θ let x = y in s =⇒ Γ ′ (T-Let)

Γ, x :τ ′ �Θ s =⇒ Γ ′, x :0

Γ �Θ let x = null in s =⇒ Γ ′ (T-LetNull)

Θ(F) = (τ1, . . . , τn)→ (τ ′
1, . . . , τ

′
n)

Γ, x1 :τ1, . . . , xn :τn �Θ F (x1, . . . , xn) =⇒ Γ, x1 :τ
′
1, . . . , xn :τ

′
n

(T-Call)

Γ, x :0 ref1 �Θ s =⇒ Γ ′, x :0

Γ �Θ let x = malloc() in s =⇒ Γ ′ (T-Malloc)

Γ, x :0 ref1 �Θ free(x) =⇒ Γ, x :0 (T-Free)

Γ, x :τ1, y :τ2 reff �Θ s =⇒ Γ ′, x :0 f > 0

Γ, y : (τ1 + τ2) ref f �Θ let x = ∗y in s =⇒ Γ ′ (T-Deref)

Γ, x :0 ref1, y :τ1 + τ2 �Θ ∗x ← y =⇒ Γ, x :τ1 ref1, y :τ2 (T-Assign)

Γ, x :τ ′ �Θ s1 =⇒ Γ ′ Γ, x :τ reff �Θ s2 =⇒ Γ ′

Γ, x :τ reff �Θ ifnull x then s1 else s2 =⇒ Γ ′ (T-IfNull)

τ1 + τ2 = τ ′
1 + τ ′

2

Γ, x :τ1, y :τ2 �Θ assert(x = y) =⇒ Γ, x :τ ′
1, y :τ

′
2

(T-Assert)

τ1 + τ2 = τ ′
1 + τ ′

2 f > 0

Γ, x :τ1, y :τ2 reff �Θ assert(x = ∗y) =⇒ Γ, x :τ ′
1, y :τ

′
2 reff

(T-AssertDeref)

x1 :τ1, . . . , xn :τn �Θ s =⇒ x1 :τ
′
1, . . . , xn :τ

′
n

�Θ (x1, . . . , xn)s : (τ1, . . . , τn)→ (τ ′
1, . . . , τ

′
n)

(T-Def)

�Θ D(F) :Θ(F) for each F ∈ dom(D) dom(D) = dom(Θ)

� D :Θ
(T-Defs)

� D :Θ ∅ �Θ s =⇒ ∅
� 〈D, s〉

(T-Prog)

Fig. 7. Typing rules

The operation τ1 + τ2 is extended to type environments as follows:

(Γ1 + Γ2)(x) :=

⎧⎨
⎩

Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)
Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)
Γ1(x) + Γ2(x) otherwise.

Figure 7 defines the type judgments of the type system. The main one is that
for statements: Γ1
 s =⇒ Γ2. Here, Γ1 describes the type of each variable at
the program point just before s; Γ2 describes that of just after s. We call Γ1 the
pre type environment of s and Γ2 the post type environment.

Automatic Memory Management Based on Program Transformation 67

It should be easy to see that the intuition of ownerships explained in Section 1
is encoded in the typing rules. We give remarks about further important features
of the typing rules. For rule-by-rule explanation, readers are referred to [23].

– When an alias z to a variable w is created, the ownership on w transferred
to z. For example, in T-Let, the ownership on y represented by τ1 + τ2 at
the pre type environment of let x = y in s is split and transferred to x. This
feature is observed also in T-Deref and T-Assign.

– The ownership on a bound variable is forced to be 0 at the end of scope of the
variable. For example, in T-Let, the type of x at the post type environment
of s (i.e., the type environment at the end of the scope of x) is 0. This is
because x is made unreachable beyond this program point. Such a feature is
observed also in T-LetNull, T-Malloc, and T-Deref

5.
– If a program applies a destructive instruction to a variable of the type τ ref f ,

then τ needs to be 0. requires the type of x in the pre type environment to
be 0 ref1. This is because ∗x cannot be accessed beyond this program point.
The same feature appears in T-Assign where the type of x at the pre type
environment is required to be 0 ref1.

– The instructions assert(x = y) and assert(x = ∗y) enable ownership trans-
fer between variables. These instructions are provided as hints to a type
checker. Such transfer is legitimate only if the assertions indeed hold. Al-
though such annotation could be automatically generated using a must-alias
analysis, the current implementation assumes that the annotations are in-
serted manually.

The following theorem is from Suenaga and Kobayashi [23].

Theorem 1 (Type soundness [23]). If
 〈D, s〉, then 〈D, s〉 is safe and
memory-leak free.

3 Program Transformation

As we mentioned in Section 1, the main idea of the algorithm is to see missing
deallocations as type coercions and to discover such coercions. To this end, we
introduce a pseudo-instruction cast 〈Γ1�Γ2〉, which is interpreted as a sequence
of instructions that coerce Γ1 to Γ2. The algorithm first inserts a cast tem-
plate (i.e., a cast in which ownerships are left unknown) to every program point
and then conducts constraint-based type inference to the resulting program.
The algorithm decides which cast template should be replaced with deallocating
statements based on the result of the type inference.

This section first introduces a cast. Then, we introduce the syntax of con-
straints, which is followed by the definition of the algorithm.

5 Note that this does not necessary mean that the memory cell pointed to by x cannot
escape; the ownership retained by x in s may be transferred to other variables before
the scope of x ends.

68 T. Sonobe, K. Suenaga, and A. Igarashi

τ � τ (S-Refl)
τ1 � τ2 τ2 � τ3

τ1 � τ3
(S-Trans)

0 ref1 � 0 (S-Free) 1� 0 (S-FreeList)

f > 0 τ1 � τ2

τ1 reff � τ2 ref f
(S-Deref) ∅� ∅ (S-TEnvEmpty)

τ1 � τ2 Γ1 � Γ2

Γ1, x :τ1 � Γ2, x :τ2
(S-TEnv)

Fig. 8. Definition of τ1 � τ2 and Γ1 � Γ2

�
∅� ∅ S-TEnvEmpty

�
= skip� D2

Γ1 � Γ2

D1

τ1 � τ2
Γ1, x :τ1 � Γ2, x :τ2

S-Tenv

�
=

� D2

Γ1 � Γ2

�
;
� D1

τ1 � τ2

�
x�

τ � τ
S-Refl

	
x
= skip� D1

τ1 � τ3
D2

τ3 � τ2
τ1 � τ2

S-Trans

�
x

=
� D1

τ1 � τ3

�
x
;
� D2

τ3 � τ2

�
x�

0 ref1 � 0
S-Free

	
x
= free(x)�

1 � 0
S-FreeList

	
x
= freelist(x)� D1

τ1 � τ2 f > 0

τ1 ref f � τ2 reff
S-Deref

�
x

= let y = ∗x in
� D1

τ1 � τ2

�
y
;assert(y = ∗x)

Fig. 9. Semantics of casts

3.1 Casts

We define a relation between types τ1�τ2 as the least reflexive transitive relation
that satisfies the rules in Figure 8. This relation captures that the values of a
type τ1 can be coerced to those of a type τ2 by certain sequence of statements6.
The relation τ1 � τ2 is extended to that between type environments Γ1 � Γ2 in
the pointwise manner.

We write 〈Γ1 � Γ2〉 for a statement that coerces Γ1 to Γ2; we call 〈Γ1 � Γ2〉
a cast from Γ1 to Γ2. The semantics of a cast 〈Γ1 � Γ2〉, defined in Figure 9, is
given as a map from a derivation of Γ1 � Γ2 to a statement. It is not defined
if Γ1 and Γ2 do not match any cases in Figure 9. For example, we interpret a

6 As the rule S-Free suggests, the current framework inserts free(x) only at a program
point where x has the type 0 ref1. Hence, if a pointer has an ownership less than
1, one first needs to insert assertions so that the pointer has type 0 ref1. Relaxing
this restriction is left as future work.

Automatic Memory Management Based on Program Transformation 69

ϕ ∈ OVar
τ, σ ::= (μα.α reff) ref f ′

q ∈ {x ∈ Q | 0 ≤ x ≤ 1}
f ::= ϕ | q | f1 + f2
c ::= τ1 � τ2 | f1 ≤ f2 | c1 =⇒ c2
C :: {c1, . . . , cn}

Syntax sugars:

(f1 = f2) := {f1 ≤ f2, f2 ≤ f1}
(τ1 = τ2) := {τ1 � τ2, τ2 � τ1}
empty((μα.α ref f) ref f1) := (f = 0) ∪ (f1 = 0)
wf((μα.α reff) ref f ′) := (f ′ = 0 =⇒ f = 0)

Fig. 10. Syntax of constraints

derivation

x :0 ref1 � x :0
S-Free

as free(x), whereas

x :0� x :0
S-Refl

as skip. We define �s� as a statement that is obtained by applying �·� to each
occurrence of a cast in s. �(x̃)s� and �〈D, s〉� are defined in the same way.

The definition in Figure 9 uses as a function freelist . This function, given a
pointer x to a list of cells, deallocates all the cells reachable from x. Concretely,
freelist is defined as follows:

freelist(x) = ifnull x then skip else let y = ∗x in freelist(y); free(x).

In the rest of the paper, we assume that D contains the definition above and
that Θ contains freelist : (1)→ (0).

With this relation, the typing rule for cast instructions is as follows:

Γ1 � Γ2

Γ1
Θ 〈Γ1 � Γ2〉 =⇒ Γ2.
(T-Cast)

It is easy to observe that �Γ1 � Γ2� is defined if Γ1 � Γ2 holds.
The following property holds for a cast instruction.

Lemma 1. If Γ1 � Γ2, then Γ1
Θ �Γ1 � Γ2� =⇒ Γ2.

3.2 Constraints

Figure 10 defines the syntax of constraints. By abusing notation, we use meta-
variables f and τ for expressions used in constraints; f for expressions for owner-
ships and τ for expressions for types. We use a meta-variable q for the elements

70 T. Sonobe, K. Suenaga, and A. Igarashi

of {x ∈ Q | 0 ≤ x ≤ 1}. We also use the symbol � for constraints. We designate
the set of countably infinite set OVar for ownership variables, unknowns for
ownerships in constraints; the set is ranged over by ϕ. We write FOV(c) and
FOV(s) for the set of ownership variables that appear in c and s respectively.
we write FOV(C) for

⋃
c∈C

FOV(c).

In order to keep the type inference simple, we designate type templates ; every
reference type is assumed to be of the form (μα.α reff) reff ′ . The algorithm
could be extended so that it deals with more complex templates (see Section 3.5.)

A model θ is a substitution of {x ∈ Q | 0 ≤ x ≤ 1} to OVar. We write θ |= c
if θc is valid: θ |= τ1 � τ2 if and only if θτ1 � θτ2; θ |= f1 ≤ f2 if and only if
θf1 ≤ θf2; and θ |= c1 =⇒ c2 if and only if θ �|= c1 or θ |= c2. We write θ |= C
if θ |= c for any c ∈ C.

3.3 Algorithm

The transformation algorithm L(〈D, s〉) is defined as follows:

L(〈D, s〉) =
let 〈D′, s′〉 = I(〈D, s〉) (* insertion of casts *)
let C = Cprog(〈D′, s′〉) (* constraint generation *)
if C is unsatisfiable then fail
else let θ be a model s.t. θ |= C (* model extraction*)

�〈θD, θs〉� . (* reduction of casts *)

The algorithm L first inserts a cast instruction to every program point with the
algorithm I introduced later. Then, L generates a set of constraints C following
the typing rules in Figure 7. If C is satisfiable, L extracts a model θ, applies it to
the program, and then reduces every cast according to the definition in Figure 9.

We present each step in more detail in the rest of this section. The explanation
is followed by soundness and completeness of L.

Cast Insertion Algorithm. Given a statement, the algorithm L first inserts a
cast template (i.e., a cast that contains type templates) at every location. I(〈D, s〉)
in Figure 11 defines the algorithm to insert cast templates. Let templT () be a pro-
cedure that outputs a fresh type template μα.α refϕ refϕ′ such that ϕ and ϕ′ are
fresh ownership variables. Then, the procedure templTE (S), where S is a set of
variables, outputs a type environment

⋃
x∈S

{x �→ templTE ()}.

The definition of I is kept redundant deliberately: resulting programs in gen-
eral contain two or more adjacent casts, although two or more subsequent casts
could be collapsed to one. We, however, use the current definition because it
makes the proof of completeness easier.

Constraint-Generation Algorithm. Figure 12 defines the constraint-
generation function CΘ for statements. The algorithm takes a statement s and a

Automatic Memory Management Based on Program Transformation 71

I(〈d̃, s〉) = 〈Ĩ(d), I(s, ∅)〉
I((x̃)s) = (x̃)I(s, {x̃}); 〈templTE ({x̃}) � templTE ({x̃})〉

I(skip, S) = 〈templTE(S)� templTE (S)〉
I(s1; s2, S) = I(s1, S); I(s2, S)
I(let x = v in s, S) =
〈templTE (S)� templTE (S)〉;
let x = v in I(s, {x} ∪ S); 〈templTE ({x} ∪ S)� templTE ({x} ∪ S)〉

I(F (x1, . . . , xn), S) = 〈templTE(S)� templTE (S)〉;F (x1, . . . , xn)
I(let x = malloc() in s, S) =
〈templTE (S)� templTE (S)〉;
let x = malloc() in (I(s, {x} ∪ S); 〈templTE({x} ∪ S)� templTE ({x} ∪ S)〉)

I(free(x), S) = 〈templTE (S)� templTE (S)〉; free(x)
I(let x = ∗y in s, S) =
〈templTE (S)� templTE (S)〉;
let x = ∗y in (I(s, {x} ∪ S); 〈templTE ({x} ∪ S)� templTE ({x} ∪ S)〉)

I(∗x← y, S) = 〈templTE (S)� templTE (S)〉; ∗x← y
I(ifnull x then s1 else s2, S) =
〈templTE (S)� templTE (S)〉;
ifnull x then
I(s1, S); 〈templTE (S)� templTE (S)〉

else
I(s2, S); 〈templTE (S)� templTE (S)〉

I(assert(x = y), S) = 〈templTE (S)� templTE (S)〉;assert(x = y)
I(assert(x = ∗y), S) = 〈templTE (S)� templTE (S)〉;assert(x = ∗y)

Fig. 11. Insertion of casts

post type environment Γ ′ as input, and returns a pre type environment Γ and
a set of constraints C that is imposed to make Γ
Θ s =⇒ Γ ′ correct. The pro-
cedure newtempl() outputs a pair of a fresh type template τ and the constraint
set wf(τ). The algorithm CΘ is used in the constraint generation for function
definitions and programs; the definition of these cases are in Figure 13.

The constraint-generation algorithm follows the standard design of constraint-
based type inference [15]; the algorithm constructs a derivation tree following
the rules in Figure 7. Concretely, CΘ is designed so that the following property
holds.

Lemma 2. Suppose s is an output of the algorithm I. Then, if (Γ,C) = CΘ(s, Γ ′)
and θ |= C, then dom(Γ) = dom(Γ ′) and θΓ
θΘ θs =⇒ θΓ ′.

Solving Constraints. The last step of the algorithm L is to solve the con-
straints generated by C. First, the constraints of the shape τ1 � τ2 is reduced
into linear inequalities over ownership variables.

72 T. Sonobe, K. Suenaga, and A. Igarashi

CΘ(skip, Γ) = (Γ, ∅)

CΘ(s1; s2, Γ2) = (Γ1, C1 ∪ C2)
where (Γ,C1) = CΘ(s2, Γ2) (Γ1, C2) = CΘ(s1, Γ)

CΘ(let x = y in s, Γ ′) = (Γ ∪ {y :τ1 + τ2}, C1)
where (Γ1, C1) = CΘ(s, Γ ′ ∪ {x :0}) Γ = Γ1\{x, y} τ1 = Γ1(x) τ2 = Γ1(y)

CΘ(let x = null in s, Γ ′) = (Γ,C1)
where (Γ1, C1) = CΘ(s, Γ ′ ∪ {x :0}) Γ = Γ1\{x}

CΘ(F (x1, . . . , xn), Γ
′) = (Γ ∪ {x1 :τ1, . . . , xn :τn}, C1)

where (τ1, . . . , τn)→ (τ ′
1, . . . , τ

′
n) = Θ(F)

Γ = Γ ′\{x1, . . . , xn} C1 =
⋃

i(Γ
′(xi) = τ ′

i)

CΘ(let x = malloc() in s, Γ ′) = (Γ,C1 ∪ C2)
where (Γ1, C1) = CΘ(s, Γ ′ ∪ {x :0}) Γ = Γ1\x

(μα.α ref f ′) reff = Γ1(x) C2 = (f = 1) ∪ (f ′ = 0)

CΘ(free(x), Γ1) = (Γ ∪ {x :0 ref1}, C1)
where Γ = Γ1\x τ = Γ1(x) C1 = empty(τ)

CΘ(let x = ∗y in s, Γ ′) = (Γ ∪ {y : (μα.α ref f1+f2) reff ′
2
}, C1 ∪ C2)

where (Γ1, C1) = CΘ(s, Γ ′ ∪ {x :0}) Γ = Γ1\{x, y} C2 = (f ′
2 > 0) ∪ (f1 = f ′

1)
(μα.α ref f1) reff ′

1
= Γ1(x) (μα.α ref f2) reff ′

2
= Γ1(y)

CΘ(∗x← y, Γ ′) = ((Γ ′\{x, y}) ∪ {x :0 ref1, y : (μα.α ref f1+f2) reff1+f ′
2
}, f ′

1 = 1)

where (μα.α ref f1) reff ′
1
= Γ ′(x) (μα.α reff2) ref f ′

2
= Γ ′(y)

CΘ(ifnull x then s1 else s2, Γ
′) = (Γ2, C1 ∪ C2 ∪ C3)

where (Γ1, C1) = CΘ(s1, Γ ′) (Γ2, C2) = CΘ(s2, Γ ′) Γ ′
1 = Γ1\x Γ ′

2 = Γ2\x
C3 =

⋃
y∈dom(Γ ′

1)
(Γ ′

1(y) = Γ ′
2(y))

CΘ(assert(x = y), Γ ′) = (Γ ∪ {x :τ1, y :τ2}, C1 ∪ C2 ∪ C3)
where Γ = Γ ′\{x, y} ((τ1, C1), (τ2, C2)) = (newtempl (),newtempl ())

C3 = (τ1 + τ2 = Γ ′(x) + Γ ′(y))

CΘ(assert(x = ∗y), Γ ′) = (Γ ∪ {x : (μα.α refϕ1) refϕ′
1
, y : (μα.α refϕ2) reff ′

2
}, C)

where Γ = Γ ′\{x, y} C = C1

((μα.α ref f1) reff ′
1
), (μα.α ref f2) reff ′

2
) = (Γ ′(x), Γ ′(y))

ϕ1, ϕ
′
1, ϕ2 = newovar(),newovar(),newovar ()

C1 = (f ′
2 > 0) ∪ (ϕ1 + ϕ2 = f1 + f2) ∪ (ϕ′

1 + ϕ2 = f ′
1 + f2)

CΘ(〈Γ1 � Γ2〉, Γ ′) = (Γ1, C1)
where C1 =

⋃
x∈dom(Γ ′)(Γ

′(x) = Γ2(x)) ∪
⋃

x∈dom(Γ1)
(Γ1(x)� Γ2(x))

Fig. 12. Constraint generation for statements

Automatic Memory Management Based on Program Transformation 73

Cdef
Θ ((x1, . . . , xn)s, (τ1, . . . , τn)→ (τ ′

1, . . . , τ
′
n)) = C1 ∪ C2

where (Γ,C1) = CΘ(s, {x1 :τ
′
1, . . . , xn :τ

′
n})

C2 =
⋃

i∈{1,...,n}(Γ (xi) = τi)

Cprog(〈D, s〉) = C ∪ C′

where ((τ
Fd
1 , C

Fd
1), . . . , (τ

Fd
n , C

Fd
n)) = (newtempl(), . . . ,newtempl())

((τFc
1 , CFc

1), . . . , (τFc
n , CFc

n)) = (newtempl(), . . . ,newtempl())
for each (F �→ (x1, . . . , xn)s) ∈ D

Θ =
⋃

F∈dom(D){F : (τFd
1 , . . . , τFd

n)→ (τFc
1 , . . . , τFc

n)}
C =

⋃
F∈dom(D) C

def
Θ (D(F), Θ(F)) ∪

⋃
1≤i≤n(C

Fd
i ∪ CFc

i)

C′ = CΘ(s, ∅)

Fig. 13. Constraint generation for function definitions and programs

Concretely, a set of constraints C is converted to the following formula FC :∧
ϕ∈FOV(C)

0 ≤ ϕ ≤ 1 ∧
∧

f1≤f2∈C

(f1 ≤ f2)

∧
∧

(μα.α reff) reff1�(μα.α reff′) reff′
1
∈C

(Sub(f,f1, f
′, f ′

1)),

where Sub(f, f1, f
′, f ′

1) is defined as follows:

Sub(f, f1, f
′, f ′

1) :=
(f = f ′ ∧ f1 = f ′

1)
∨ (f = 0 ∧ f1 = 1 ∧ f ′ = 0 ∧ f ′

1 = 0)
∨ ((f = f ′ ∨ (f = 1 ∧ f ′ = 0)) ∧ f1 = f ′

1 ∧ f1 > 0)
∨ (f = 1 ∧ f1 = 1 ∧ f ′ = 0 ∧ f ′

1 = 0).

The formula Sub(f, f1, f
′, f ′

1) is equivalent to the disjunction of four cases in
Figure 8.

Lemma 3. θ |= FC if and only if θ |= C.

Then, this reduced constraint is solved by an off-the-shelf solver such as an
SMT solver. Notice that the reduced constraint is decidable because the con-
straint set C is a Boolean combination of linear inequalities.

After solving the constraints, the algorithm applies the obtained model to the
program. Then, every cast can be replaced with its interpretation.

3.4 Soundness and Completeness

L is sound with respect to the type system in Section 2.2:

Theorem 2 (Soundness of L). If L(〈D, s〉) = 〈D′, s′〉, then
Θ 〈D′, s′〉.

74 T. Sonobe, K. Suenaga, and A. Igarashi

We have completeness of L in the following sense. Let us write F(s), where s
is cast-free, for the statement obtained by replacing all the free(x) with skip.
The program F(〈D, s〉) is defined in the same way. If s can be made well-typed
within the types of the form (μα.α reff) reff ′ by inserting memory-deallocating
instructions, then L, with the help of a smart-enough SMT solver, successfully
finds a way to insert those instructions.

Lemma 4. If there is a derivation of θ′Γ1
Θ θ′s =⇒ θ′Γ2 with the types
of the shape (μα.α reff) reff ′ , then there are Γ ′

1 and θ such that (Γ ′
1, C) =

CΘ(I(F(s),dom(Γ2)), Γ2) and θ |= C and Γ1 = θΓ ′
1.

Theorem 3 (Completeness of L).
If there is a derivation of
 〈D, s〉 with the types of the shape (μα.α reff) reff ′ ,

then there is 〈D′, s′〉 such that 〈D′, s′〉 = L(F(〈D, s〉)) and
 〈D′, s′〉.

Remark 4. We need to prove that L(s) is somewhat equivalent to s (e.g., in the
sense of termination). We leave it as future work, which we do not expect to be
difficult.

Remark 5. Notice that L is in general non-deterministic due to the choice of
models for generated constraints. The current experimental implementation ar-
bitrarily picks up a model returned by an SMT solver (Z3 [6] in the current
implementation). However, it would be more plausible if we can pick up a “bet-
ter” models. Investigation of a measure for a better model (e.g., worst or average
memory consumption) is an interesting direction of future work.

3.5 Extension

We can make the algorithm described so far more powerful by using more
expressive templates. One of such templates is (μα.α ref f) ref f1,...,fn where
τ reff1,...,fn is an abbreviation for τ reff1 . . . reffn . The cast insertion for the
extended templates is the same as I except for the definition of templTE (S) that
returns a type template of the form τ reff1,...,fn . The extension of the constraint
generation C is straightforward. The SMT formula FC is extended as follows:∧

ϕ∈FOV(C)

0 ≤ ϕ ≤ 1 ∧
∧

f1≤f2∈C

(f1 ≤ f2) ∧
∧

τ�τ ′∈C

Sub(τ, τ ′)

where Sub(τ, τ ′) is defined by

Sub((μα.α ref f) reff1 , (μα.α reff ′) reff ′
1
) =

(f = f ′ ∧ f1 = f ′
1)

∨ (f = 0 ∧ f1 = 1 ∧ f ′ = 0 ∧ f ′
1 = 0)

∨ ((f = f ′ ∨ (f = 1 ∧ f ′ = 0)) ∧ f1 = f ′
1 ∧ f1 > 0)

∨ (f = 1 ∧ f1 = 1 ∧ f ′ = 0 ∧ f ′
1 = 0).

Sub((μα.α ref f) reff1,...,fn+1 , (μα.α ref f ′) reff ′
1,...,f

′
n+1

) =

Sub(fn, fn+1, f
′
n, f

′
n+1) ∧ (* Sub in Section 3.3 *)

Sub((μα.α ref f) reff1,...,fn , (μα.α ref f ′) ref f ′
1,...,f

′
n
).

Automatic Memory Management Based on Program Transformation 75

4 Related Work

Our algorithm is designed on top of the type system by Suenaga and Kobayashi
[23]. For relevant related work on memory-leak freedom verification, we refer
readers to [23]. We discuss related work on automated error correction in what
follows.

Khedker, Sanyal, and Karkare [12] propose a program transformation algo-
rithm for improving memory efficiency of Java programs. Their algorithm an-
alyzes liveness of references and nullifies them at a program point where they
are not live any more. Such nullification of a reference makes it possible for a
garbage collector, which approximates memory-cell liveness by reachability from
root variables [18, 19], to reclaim more memory cells. They also present how
their technique can be applied to C and C++ programs, in which they apply
memory-deallocating instructions in place of nullification.

For this purpose, they use an access graph that summarizes how each refer-
ence in a program is used. Our types are analogous to access graphs in the sense
that both approximate the usage of a pointer in a program. Although we need to
further investigate the technical difference between access graphs and our types,
one possible comparison would be the property guaranteed: They only guar-
antee that their program transformation does not introduce more null-pointer
exceptions, which is an analogue of our Theorem 1 and 2. Memory-leak free-
dom in our sense is out of the scope of their work although memory efficiency is
demonstrated empirically.

Ajiro, Ueda, and Cho [1] propose automated mode-error correction for a con-
current logic programming language. Their algorithm generates moding con-
straints (i.e., constraints on the direction of information flow of each variable
occurrence); if the generated constraints are unsatisfiable, the algorithm sug-
gests correction analyzing a minimal unsatisfiable subset of the constraints. They
intend their algorithm to be an aid for debugging; thus, they do not need to guar-
antee that their transformation generates a program that follows the intention
of a programmer. We do need to guarantee correctness because the algorithm
proposed in the current paper is for verification; it is indeed possible because we
focus only on memory-leak freedom.

Singh, Gulwani, and Solar-Lezama [20] propose a feedback-making algorithm
for programming classes. The algorithm finds a correction to a program sub-
mitted by students. A tutor provides a reference implementation and an error
model, a set of probable errors made by students, for each programming task.
Their system is supposed to be used in programming classes where the specifi-
cation of submitted programs are known completely and a set of probable errors
is quite limited. Though we do not make such assumptions, their idea might be
useful for our algorithm in choosing a model from multiple candidates.

Könighofer and Bloem [13] propose a method for localization and automated
correction. Their approach is based on model-based diagnosis [5, 16] and concolic
execution [7, 17]. Their algorithm first finds the set of statements that may be cor-
rected using an SMT solver and attempts to correct expressions in these statements
by template-based synthesis (e.g., [4]). Their approach cannot be directly applied

76 T. Sonobe, K. Suenaga, and A. Igarashi

to our problem because the former phase, in our setting, requires an appropriate
handling of aliases; our algorithm addresses this issue with ownerships.

5 Conclusion

We have proposed a program transformation that correctly inserts memory-
deallocating instructions to a program. The transformation is based on the
ownership-based type system by Suenaga and Kobayashi [23]; it is extended
with subtyping to capture ownership disposal. The transformation conducts type
inference for the extended type system to detect where to insert deallocating-
instructions.

Although we have an experimental implementation of the proposed transfor-
mation, our translator currently deals with only the toy language in Section 2. We
plan to implement a translator for full-fledged C by extending FreeSafeTy [23].
We also plan to extend our transformation with concurrency following the idea
by Suenaga et al. [22].

References

1. Ajiro, Y., Ueda, K., Cho, K.: Error-correcting source code. In: Maher, M.J., Puget,
J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 40–54. Springer, Heidelberg (1998)

2. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

3. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.
In: Freeman-Benson, B.N., Chambers, C. (eds.) OOPSLA, pp. 48–64. ACM (1998)

4. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

5. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130
(1987)

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Sarkar, V., Hall, M.W. (eds.) PLDI, pp. 213–223. ACM (2005)

8. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning for
storable locks and threads. Technical Report MSR-TR-2007-39, Microsoft Research
(2007)

9. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors.
In: Proc. of the Winter 1992 USENIX Conference, San Francisco, California, pp.
125–138 (1991)

10. Heine, D.L., Lam, M.S.: A practical flow-sensitive and context-sensitive C and
C++ memory leak detector. In: Cytron, R., Gupta, R. (eds.) PLDI, pp. 168–181.
ACM (2003)

11. Kernighan, B.W., Ritchie, D.: The C Programming Language, 2nd edn. Prentice-
Hall (1988)

Automatic Memory Management Based on Program Transformation 77

12. Khedker, U.P., Sanyal, A., Karkare, A.: Heap reference analysis using access graphs
(2007)

13. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: Bjesse, P., Slobodová, A. (eds.) FMCAD, pp. 91–100. FMCAD
Inc. (2011)

14. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: Ferrante, J., McKinley, K.S. (eds.) PLDI, pp. 89–100. ACM
(2007)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis (2. corr.
print). Springer (2005)

16. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

17. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
Wermelinger, M., Gall, H. (eds.) ESEC/SIGSOFT FSE, pp. 263–272. ACM (2005)

18. Shaham, R., Kolodner, E.K., Sagiv, S.: Heap profiling for space-efficient java. In:
Burke, M., Soffa, M.L. (eds.) PLDI, pp. 104–113. ACM (2001)

19. Shaham, R., Kolodner, E.K., Sagiv, S.: Estimating the impact of heap liveness
information on space consumption in java. In: Boehm, H., Detlefs, D. (eds.)
MSP/ISMM, pp. 171–182. ACM (2002)

20. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for in-
troductory programming assignments. In: Boehm, H.-J., Flanagan, C. (eds.) PLDI,
pp. 15–26. ACM (2013)

21. Stroustrup, B.: The C++ programming language - special edition, 3rd edn.
Addison-Wesley (2007)

22. Suenaga, K., Fukuda, R., Igarashi, A.: Type-based safe resource deallocation for
shared-memory concurrency. In: Leavens, G.T., Dwyer, M.B. (eds.) OOPSLA, pp.
1–20. ACM (2012)

23. Suenaga, K., Kobayashi, N.: Fractional ownerships for safe memory deallocation.
In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 128–143. Springer, Heidelberg
(2009)

24. Terauchi, T.: Checking race freedom via linear programming. In: Proc. of PLDI,
pp. 1–10 (2008)

The Essence of Ruby�

Katsuhiro Ueno, Yutaka Fukasawa,
Akimasa Morihata , and Atsushi Ohori

Research Institute of Electric Communication, Tohoku University, Japan
{katsu,fukasawa,morihata,ohori}@riec.tohoku.ac.jp

Abstract. Ruby is a dynamic, object-oriented language with advanced
features such as yield operator and dynamic class manipulation. They
make Ruby a popular, highly productive scripting language, but they
also make the semantics of Ruby complicated and difficult to under-
stand. Even the JIS/ISO standard of Ruby seems to contain some am-
biguities. For Ruby to be established as a reliable scripting language, it
should have a rigorous semantics. To meet this challenge, we present a
formal operational semantics that can serve as a high-level specification
for both the users and implementers. The key insight underlying the
semantics is that various elaborate features of Ruby can be cleanly rep-
resented as a composition of two orthogonal calculi: one for objects and
classes and the other for representing control. The presented semantics
leads straightforwardly to a reference implementation. Initial evaluation
of our implementation confirms that the presented semantics conforms
to commonly accepted Ruby behavior.

Keywords: Ruby, operational semantics, iterator, dynamic language.

1 Introduction

Ruby is a dynamic object-oriented language. Its design rationale is to provide the
programmer a language that is easy and natural to write programs with max-
imum freedom. Its rich set of control abstractions such as iterator with yield

operator enable the programmer to write sophisticated programs succinctly and
efficiently, and its flexible dynamic semantics allows the programmer to configure
evaluation environment including classes and their method suites. These features
make Ruby a popular, highly productive scripting language. These features, how-
ever, make the semantics of Ruby complicated and difficult to understand. Clear
and formal understanding of the semantics is essential for reasoning, verification,
and thereby developing reliable software.

To address this issue, the designers and the user communities have been try-
ing to define the standard of the language. The efforts have culminated to the

� The first author has been partially supported by JSPS KAKENHI Grant Num-
ber 24700021. The first and fourth author has been partially supported by JSPS
KAKENHI Grant Number 25280019.

�� The second author’s current affiliation: Marvelous Inc.
� � � The third author’s current affiliation: The University of Tokyo.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 78–98, 2014.
c© Springer International Publishing Switzerland 2014

The Essence of Ruby 79

JIS (Japanese Industrial Standard) standard [10] of Ruby followed by the ISO
standard [8]. We based our research on the original JIS standard [10] written
in Japanese; the ISO counterpart [8] is essentially the same. This 226 pages
document defines the syntax and the semantics of Ruby in details by defining
global run-time states including 7 independent run-time stacks, and specifying
how each syntax of Ruby mutates the run-time states.

Studying the details of this document, we find it admirable to have completed
the detailed descriptions of the evaluation process of all the language constructs.
It can certainly serve as a guideline for a particular style of Ruby implementa-
tions, including the widely used CRuby interpreter [15]. As a specification of the
semantics of Ruby, however, there seem to contain certain amount of ambiguities
in its descriptions of the interactions of some of the elaborate language features.
As a concrete example, let us consider the following Ruby program.

def foo ; yield ; print "foo" ; end

def bar ; foo { yield } ; print "bar" ; end

bar { break }

print "end"

yield calls a block (a form of a lambda term written as {· · ·}) passed as an
argument to a method. The block { break } will be called from the yield in
the first line through nested yield evaluations. The effect of the entire code
should be to reset the run-time environment to those just before the execution
of the third line and to jump to the forth line, according to a common informal
understanding of yield with break. So this program only prints “end”. We
have to say that the standard is ambiguous in specifying the precise meanings of
such codes. The document suggests some complication in evaluation of (nested)
yields with control effects in its informal statement such as “possibly affected
execution context”, whose precise meanings remain to be clarified.

In principle, the specification could be refined to the point that the evaluation
process is completely specified, but such a refinement would result in too detailed
and too low-level descriptions to understand the semantics of Ruby, let alone
to reason about it. A rigorous high-level specification of Ruby should ideally
be structured as a simple composition of well-structured components, each of
which is a straightforward specification of individual language feature. However,
decomposing Ruby into such components is not trivial since Ruby’s features are
deeply interwoven with each other due to its dynamic nature with sophisticated
control operations such as yields.

To meet this challenge, in this paper, we construct a big-step operational
semantics (in the style of natural semantics [11]) of Ruby based on our following
observations: the features of Ruby can be categorized as two disjoint subsets, one
for object managements and another for control operations, and each of the two
categories can be defined as a separate simple term calculus by abstracting the
intersections between the two calculi as oracle relations. The object counterpart
is the object calculus that accounts for dynamic behavior of instance variables,
method look-up, and class manipulation. The control counterpart is the control
calculus that describes local variable binding, method invocation, and Ruby’s
blocks with global control effects.

80 K. Ueno et al.

Our approach is inspired by the work of Guha et. al. [7], where a single cal-
culus of JavaScript is explained through its two aspects of object and control
operations. A novel contribution of the present paper is to show that these two
aspects are presented as independent two calculi and the entire calculus is ob-
tained by composing the two. This approach of modeling a dynamic language by
composition of multiple calculi would be beneficial to understanding its semantic
structure.

Each calculus can be further decomposed into its essential core part and ex-
tensions to the core. Each small component of this decomposition represents
individual Ruby feature with an effectively small syntax and evaluation rules.
The two core calculi and their extensions are combined straightforwardly into
the Ruby calculus that represents the essential core of Ruby. The real Ruby is
obtained by introducing a syntax elaboration phase that translates a number of
context-dependent implicit constructs into explicit terms in the Ruby calculus.
The composition of the syntax elaboration and the semantics of the Ruby cal-
culus defines the semantics of the real Ruby language. The resulting semantics
serves as a high-level specification of Ruby. Since the big-step semantics directly
corresponds to an interpreter implementation, it also straightforwardly yields a
reference implementation in a functional language with generative exceptions.
We have implemented the semantics in Standard ML and have conducted ini-
tial evaluation against a subset of Ruby test programs, which we believe cover
typical cases of Ruby’s dynamic features and unique control structures. The re-
sults confirm that the presented semantics with respect to blocks and yields
conforms to commonly accepted Ruby behavior.

In a wider perspective, the results shown in this paper can be regarded as a
case study of developing a sophisticated dynamic language in a formal and clear
way. Recent programming languages have complex control operators and flexi-
ble dynamic features which are considered practical but dirty. In addition, such
languages evolve rapidly with drastic changes according to the needs of software
developers. To prevent the specifications of such languages from becoming ob-
solete quickly, the construction of each specification as well as the specification
itself must be clear and concise. Our developments shown in this paper suggest
that this requirement can be satisfied by dividing their complex features into
simple and nearly orthogonal subsets.

The rest of this paper is organized as follows. Section 2 overviews the syntax
of Ruby and describes our strategy in defining the operational semantics. Sec-
tion 3 defines the two calculi with their operational semantics, and combines the
two calculi to form the essential core of Ruby. Section 4 extends the two calculi
to represent the full functionality of Ruby. Section 5 defines the Ruby calculus.
Section 6 describes the syntactic elaboration from real Ruby to the Ruby cal-
culus. Section 7 describes our implementation and reports its evaluation results
against crucial test cases. Sections 8 discusses related works. Sections 9 concludes
the paper. The detailed definitions of the calculi presented in this paper is given
in the Appendix which is available from the support web page of this paper,
http://www.pllab.riec.tohoku.ac.jp/papers/the-essence-of-ruby/.

http://www.pllab.riec.tohoku.ac.jp/papers/the-essence-of-ruby/

The Essence of Ruby 81

2 Overview of Ruby and Our Strategies

Ruby is a class-based “pure” object-oriented language, where all data elements
are objects, and all the computations are done through method invocations on
receiver objects. For example, 1 + 2 invokes the + method on an instance 1 of
class Integer with an argument object 2.

Each object belongs to a single class. A class itself is also an object, which
maintains a mutable set of methods for its instance objects. The system main-
tains the class hierarchy tree induced by the inheritance relation. Each object has
identity and a set of mutable instance variables. Instance variables are dynam-
ically generated in each object when they are initially assigned to some value.
The following is a simple example of cons cell for lists.

class Cons # define "Cons" class.

def setcar(x) ; @car = x ; end # define "setcar" method in Cons.

def setcdr(x) ; @cdr = x ; end # define "setcdr" method in Cons.

def car ; @car ; end # define "car" method to Cons.

def cdr ; @cdr ; end # define "cdr" method to Cons.

end

@car is an instance variable. When setcar is called on a Cons object at the first
time, this instance variable is generated in the receiver object.

Another feature that distinguishes Ruby from other object-oriented languages
is its control mechanism called block, which is a piece of code that takes a pa-
rameter and returns a value. A block is passed as an optional parameter to a
method. The passed block is invoked through an expression of the form yield(e)
occurring in the body of the method. This expression yields the value denoted
by e to the invoked block i.e. evaluates the block with the value. As an example,
suppose we want to enrich the Cons class by adding an enumeration method
each. With yield, this can be done by writing the following code just after the
previous definitions of Cons class.

class Cons

def each # add "each" method to Cons.

yield(@car) # call the given block.

@cdr.each { |x| yield(x) } if @cdr # call "each" with a block.

end

end

Since class and method definitions are statements whose effects are mutations to
the class object, this code adds eachmethod to the Cons class previously defined.
This each method takes a block implicitly and calls the block with a cons cell
value by the yield(@car) expression. Then it calls itself for the following cons
cells with a block { |x| yield(x) } which propagates the given block to the
recursive call. As a result, each method calls the given block with each cons cell
value. For example, if l is an instance of Cons then l.each { |x| print x }

prints each elements in l.
So far, blocks act just like lambda abstractions.The real strength of Ruby comes

from the combination of blocks and a rich collection of non-local control state-
ments such as break that breaks out of either an iteration or a block. This feature

82 K. Ueno et al.

allows users to define various iteration abstractions in a concise and intuitive man-
ner, as witnessed in the left-hand code below, which has the same structure and
the intuitive meaning as the corresponding imperative one on the right:

using the each iterator:

sum = 0

l.each { |i|

break if i == 0

sum = sum + i

}

using while loop:

sum = 0

i = l

while i do

break if i.car == 0

sum = sum + i.car

i = i.cdr

end

Both the above programs accumulate values in the cons list l to variable sum

until they meet zero. In both programs, break is used to terminate the iteration
on l regardless of the form of the loop. Thanks to this feature, skillful Ruby
programmers can write high-level object-oriented codes in a natural, intuitive,
and efficient way.

As overviewed above, major features of Ruby are classified into two categories.
The first is the object structure to represent dynamic behavior of objects and
classes. The second is the control structure to support blocks with non-local
control. The key observation underlying our construction of the semantics of
Ruby is that these two structures can be cleanly represented by two indepen-
dent sub-calculi, which we call the object calculus and the control calculus. The
object calculus accounts for various dynamic features of objects including in-
stance variables and dynamic method bindings. The control calculus realizes the
mechanism of yield-ing a value to a block with a rich set of non-local control
statements including break. This calculus accounts for Ruby’s subtle control
flow in a simple and precise manner.

After this separation, the object calculus can be defined relatively easily as
a variant of dynamic object calculi extensively studied in literature (see [1] for
a survey). In contrast, defining the control calculus requires to describe con-
trol flows that the combination of blocks and non-local jumps produce. James
and Sabry [9] proposed a continuation-based approach to describe a generalized
yield operator. However, continuation is not preferable to reveal the essential
core of Ruby, which must looks like a subset of Ruby language, since it does not
directly correspond to the commonly understood Ruby’s control primitives and
the Ruby implementations.

Our observation is that ML-style generative exception provides just enough
power to represent these non-local jump statements. ML-style exceptions are
generative in the sense that an exception definition dynamically generates a
fresh exception tag every time it is evaluated at runtime, in contrast to other
statically typed languages, such as C++ and Java, which uses statically declared
types or classes as exception tags. The following example written in Standard
ML shows the characteristics of the generative exceptions.

The Essence of Ruby 83

fun f () = let exception E

in (fn () => raise E, fn g => g () handle E => ())

end

val (r1, h1) = f ()

and (r2, h2) = f ()

val _ = h1 r2; (* this causes uncaught exception *)

It defines function f, which creates a pair of functions that raises and handles
exception E, and then calls f twice to obtain four functions: r1 and r2 which
raise E, and h1 and h2 which handle E. Although they seem to deal with identical
exception E, h1 handles only exceptions raised by r1 since two calls of f generates
different exception tags for E. So function application h1 r2 causes uncaught
exception error.

By including generative exception tags in the evaluation context, the evalua-
tion relation precisely models Ruby’s subtle behavior. Generativity is essential.
To see this, consider the following example.

def foo(x)

print "E#{x} "

if x >= 5 then yield

else foo(x+1) { print "B#{x} " ; if x <= 2 then break else yield end }

end

print "L#{x} "

end

foo(1)

Method foo recursively calls itself until x becomes 5, at which point the block
is called from the yield statement in the body of foo method. The called block
then executes yield inside of the block, resulting in calling the blocks of the
previous invocations of foo until the one with the parameter 2. This block ex-
ecutes break whose effect is to jump to the statement print "L#{x} " of the
method body of foo at the method invocation foo(2). As a result, this code
produces the following output: E1 E2 E3 E4 E5 B4 B3 B2 L2 L1. As seen in
this example, destinations of breaks cannot be statically labeled. This situation
can be cleanly represented by generating a new exception tag for each execution
of method call with a block and handling the generated exception.

By carefully constructing the two calculi in such a way that each calculus
treats the features that are external to the calculus as oracles (primitives), the
composition of the two calculi can be trivially done, yielding the Ruby calculus
representing the essence of Ruby. By introducing syntax elaboration and various
primitive classes, the combined calculus extends to full Ruby.

3 The Essential Core of Ruby

Following the strategy described in the previous section, we define two sub-
calculi, the object calculus for object management, and the control calculus for
control flows. These two sub-calculi are orthogonal except method invocation
that is the point they intersect with each other. The intersection point of two

84 K. Ueno et al.

calculi is explicitly specified by a pair of oracle relations. By combining two sub-
calculi at the intersection point, the Ruby calculus is obtained. In this section,
we define the essential core part of two calculi and combine them into the core
Ruby calculus, which captures fundamentals of Ruby.

To define the calculi, we introduce some notations. {} is an empty map.
dom(F) is the domain of a function F . For a function F , F ⊕ {x �→ v} is the
function F ′ such that dom(F ′) = dom(F) ∪ {x}, F ′(x) = v, and F ′(y) = F (y)
for any y ∈ dom(F ′) such that x �= y. We also define F ⊕ G by extending the
definition of ⊕ to any function G. F � {x �→ v} indicates that x ∈ dom(F)
and F (x) = v. [] is empty list and [x] is a singleton list of an item x. l1 ++ l2 is
the concatenation of two lists l1 and l2. We use list comprehension of the form
[F (x) | x ∈ l, P (x)] to generate a list in order from input list l where P (x) is a
predicate on an input item x and F (x) is the output item corresponding to x.
We define a big operator on lists

⊕
that fold the given list of maps by ⊕.

3.1 The Core Object Calculus

We let k, i and m range over the given set of class identifiers, instance variable
identifiers, and method identifiers, respectively. We assume that there is a given
set of method entities ranged over by ξ. In the object calculus, it is enough to
treat a method entity as an atomic language construct.

The syntax of the core object calculus is given below.

e ::= k | e.i | e.i = e | e.m | alloc e | new_class e | def e#m = ξ

e.i accesses instance variable i. e1.i = e2 assigns object e2 to instance variable i
of object e1. They require to specify the object e to which i belongs, while in
Ruby it is always the object bound to self and omitted. e.m looks up method m
of an object e. We note that this calculus focuses only on object operations, and
does not define how methods are invoked and how argument values are passed.
alloc e allocates an instance object of class e, which corresponds to Class#new

method of Ruby. new_class e dynamically creates a new direct subclass of a
class e. def e#m = ξ binds m to ξ in class e.

For this calculus, we define semantic structures necessary to evaluate this
calculus as follows.

A class consists of its method binding and its direct super class. Let M range
over method bindings, which are finite functions form method names to method
entities. An instance method context, ranged over by M , is a finite function from
class identifiers to method bindings. A class inheritance context, ranged over by
K, is a finite function over class identifiers that associates a class to its direct
super class. We refers to a pair (K,M) of the above two contexts as class context
ranged over by K. We say that K is well-formed if the transitive closure of K
is irreflexive. This well-formedness condition means that no class inherits itself.
We define ancestors of k in K, referred to as ancestors(K, k), as follows.

ancestors(K, k) =

{
ε if k �∈ dom(K)
ancestors(K, k′)++[k] if K � {k �→ k′}

The Essence of Ruby 85

Note that ancestors(K, k) is the list of the ancestor classes in the reverse order,
i.e. the front of the list is the farthest ancestor. If K is well-formed, the ancestors
list of any k in K is always finite. As we shall see, all the rules we shall define
preserve well-formedness of K. We define function methods(K, k) that computes
the map of available instance methods of class k in K as follows.

methods((K,M), k) =
⊕[

M(x)
∣∣ x ∈ ancestors(K, k)

]
In Ruby, there are several built-in classes that require special constructors to

allocate those instances. To prevent allocating instances of such classes by the
generic constructor alloc, we define Special as the set of the class identifiers of
such built-in classes. we let Special be {Class, Module, Proc} in this paper.

Let v range over the given countably infinite set of object identifiers, or values.
As we mentioned, all data including classes are objects in Ruby, so a Ruby
expression always denotes an object identifier. We let a range over the set of
non-class object identities. So v is either k or a.

Any object in Ruby has its own instance variables and belongs to a class. Let
I range over instance variable bindings, which are finite functions from instance
variable names to object identifiers. An object entity is a pair (I, k) of an instance
variable binding I and its class k. An object heap, ranged over by I, is a finite
function from object identifiers to object entities.

The operational semantics of the object calculus is defined as a set of rules
to derive the evaluation relation of the form I,K
 e ⇓ r, I ′,K′ indicating the
fact that, under the context I and K, an expression e evaluates to a result r,
and produces a new context I ′ and K′. We note that due to the dynamic nature
of Ruby, a class context K also acts as another mutable store in addition to an
object heap I. A result r is either a value v or wrong . wrong indicates run-time
failure.

As we mentioned above, we do not specify the structure of method entity in
this calculus. To define a rule for method look-up term e.m, we assume that
there is an oracle evaluation relation I,K
 ξ � r, I ′,K′ to convert a found
method entity ξ to a result r and to return a new context I ′ and K′ under the
context I and K. This oracle shall be replaced by the control calculus we shall
define below.

Figure 1 shows the set of evaluation rules that derives the evaluation relation.
We note that the above set of rules, and all the rules we shall define in the
sequel, should be taken with the following implicit rules leading wrong : if any of
the conditions in the premises are not satisfied, or evaluation of any component
of a term yields wrong, then the entire evaluation will yield wrong.

3.2 The Core Control Calculus

Let x and b range over a given countable set of local variable identifiers and block
identifiers, respectively. The set of the control calculus is given by the following
syntax.

e ::= bind x = e in e | x | update x = e | proc { |x| e } as b in e

86 K. Ueno et al.

class

(K,M) = K k ∈ dom(K) ∩ dom(M)

I,K � k ⇓ k,K

ivar

I,K � e ⇓ v, I ′,K′ I ′ � {v �→ (I, k)} I � {i �→ v′}
I,K � e.i ⇓ v′, I ′,K′

istore

I,K � e1 ⇓ v1, I
′,K′ I ′,K′ � e2 ⇓ v2, I

′′,K′′ I ′′ � {v1 �→ (I, k)}
I,K � e1.i = e2 ⇓ v2, I

′′ ⊕ {v1 �→ (I ⊕ {i �→ v2}, k)},K′′

call

I,K � e ⇓ v, I ′,K′ I ′ � {v �→ (I, k)} methods(K′, k) � {m �→ ξ}
I ′,K′ � ξ � r, I ′′,K′′

I,K � e.m ⇓ r, I ′′,K′′

alloc

I,K � e ⇓ k, I ′,K′ k �∈ Special a fresh

I,K � alloc e ⇓ a, I ′ ⊕ {a �→ ({}, k)},K′

newClass

I,K � e ⇓ k′, I ′, (K′,M ′) k fresh

I,K � new_class e ⇓ k, I ′ ⊕ {k �→ ({}, Class)},
(K′ ⊕ {k �→ k′},M ′ ⊕ {k �→ {}})

def

I,K � e ⇓ k, (K′,M ′) M ′ � {k �→ M}
I,K � def e#m = ξ ⇓ k, I, (K′,M ′ ⊕ {k �→ M⊕ {m �→ ξ}})

Fig. 1. Evaluation rules of the object calculus

| yield e to b | e.m(e, &b) | e; e | j e

j ::= return | break | next

bind x = e1 in e2 introduces local variable binding x in e2. update x = e
destructively assigns value e to x. In Ruby, the standard syntax for assignments
x = e is overloaded with variable definition (corresponding to bind) or variable
update (corresponding to update), dependent on its context. As we shall mention
in Section 6, this overloaded syntax can be supported by syntactic elaboration.
proc { |x| e1 } as b in e2 binds b to block { |x| e1 } in e2. yield e to b calls
block b with an argument e. e1.m(e2, &b) calls method m of object e1 with an
argument e2 and a block b. e1; e2 is sequential execution. j e performs non-local
jumps of the three kinds. return e breaks out of the currently executing method.
break e breaks out of the method invocation with the currently executing block.
next e breaks out of the currently executing block. We refer to j as a jump
kind in what follows. Ruby syntactically prohibits some of meaningless breaks.
For simplicity, we do not introduce syntax restriction here. Instead, meaningless
break is represented as wrong .

We define the semantic structure to evaluate this calculus as follows.
Non-local jumps performed by j e are realized by meta-level exceptions. We

follow a Standard ML style approach in representing exceptions [13], which is
well studied in literature. Let t range over a given countably infinite set of (meta-
level) exception tags. Let T be an exception context , which is a finite function
from jump kinds to exception tags. A packed value [v]t is a pair of value v and
an exception tag t, representing a raised exception with tag t and a parameter

The Essence of Ruby 87

value v. The result , ranged over by r, is either a value v, packed value [v]t, or
wrong.

Different from the object calculus, a method entity ξ is defined to be a triple
(x, b, e) of a variable x and a block b for formal parameters and an expression e for
the method body. To represent a mutable variable, we introduce a variable store
ranged over by S. Let s range over a given countably infinite set of variable
references. A variable store S is a finite function from variable references to
values. In the control calculus, we treat a value v as an atomic entity. A variable
environment E is a finite function from variables to variable references. A block
entity ranged over by ρ is a tuple (E, T, x, e) consisting of evaluation contexts
E and T , a formal parameter variable x, and a block body e. Let B range over
block contexts, which are finite maps from block identifiers to block entities.

The evaluation relation is defined by a set of rules to derive either of the
forms S,B,E, T
 e ⇓ r, S′ or S,B,E, T
 e handle t ⇓ r, S′. The former is the
standard form indicating the fact that under the evaluation context S,B,E and
T , e evaluates to r and produces S′. In this case, an exception raised during the
evaluation of e is propagated. The latter catches exceptions with tag t raised
during the evaluation of e.

To define a rule for method invocation term e1.m(e2, &p) in this calculus, we
use an oracle relation S,B,E, T
 e.m � ξ, S′ to look up a method entity
specified by e.m, in contrast to the object calculus which uses oracle to invoke
methods. This oracle shall be replaced by the object calculus.

Figure 2 shows the set of the evaluation rules. This set of rules should be taken
with implicit rules for wrong as before. In addition, each rule in the standard form
comes with an exception propagation rule: if a component yields an unexpected
raised exception then cancel any subsequent evaluation of other components and
the entire term will yield the raised exception. The top-level evaluation does not
expect any raised exception.

3.3 The Core Ruby Calculus

The object calculus and the control calculus are mostly orthogonal, and merges
straightforwardly into the core Ruby calculus, representing the essence of Ruby;
the semantics of all language constructs of Ruby shall be described as either
extensions or syntactic elaborations to the Ruby calculus.

In the Ruby calculus, the contexts I and K of the object calculus and the
context S of the control calculus are all mutable stores. We let H range over
Ruby heaps , which is a tuple of of I, K and S. The notation H ⊕ {x �→ y} and
H � {x �→ y} affect the corresponding part of H . We also naturally extend the
function methods(K, k) to methods(H, k).

The evaluation relation of the merged calculus is of the form H,B,E, T

e ⇓ r,H ′. The evaluation rules for the Ruby calculus are obtained by changing
the rules so that each rules preserves non-attractive parts of given heap H in
the returned heap. The only exception is the case for call. The case of call

in the core Ruby calculus is obtained by combining two call rules as if each
oracle relation � is replaced with the counterpart provided by other calculus.

88 K. Ueno et al.

bind

S,B,E, T � e1 ⇓ v, S′

S′ ⊕ {s �→ v}, E ⊕ {x �→ s}, T � e2 ⇓ r, S′′ (s fresh)

S,B,E, T � bind x = e1 in e2 ⇓ r, S′′

var

E � {x �→ s} S � {s �→ v}
S,B,E, T � x ⇓ v, S

update

E � {x �→ s} S,B,E, T � e ⇓ v, S′

S,B,E, T � update x = e ⇓ v, S′ ⊕ {s �→ v}

proc

S,B ⊕ {b �→ (E,T ⊕ {break �→ t}, x, e1)}, E, T � e2 handle t ⇓ v, S′

(t fresh)

S,B,E, T � proc { |x| e1 } as b in e2 ⇓ v, S′

yield

S,B,E, T � e ⇓ v, S′ B � {b �→ (E′, T ′, x, e)}
S′ ⊕ {s �→ v}, ∅, E′ ⊕ {x �→ s}, T ′ ⊕ {next �→ t} � e handle t ⇓ r, S′′

(s, t fresh)

S,B,E, T � yield e to b ⇓ r, S′′

call

S,B,E, T � e1.m � (x, b′, e), S′ S′, B,E, T � e2 ⇓ v, S′′

B � {b �→ ρ}
S′′ ⊕ {s �→ v}, {b′ �→ ρ}, {x �→ s}, {return �→ t} � e handle t ⇓ r, S′′′

(s, t fresh)

S,B,E, T � e1.m(e2, &b) ⇓ r, S′′′

seq

S,B,E, T � e1 ⇓ v, S′ S′, B,E, T � e2 ⇓ r, S′′

S,B,E, T � e1; e2 ⇓ r, S′′

jump

S,B,E, T � e ⇓ v, S′ T � {j �→ t}
S,B,E, T � j e ⇓ [v]t, S′

handle

S,B,E, T � e ⇓ v, S′

S,B,E, T � e handle t ⇓ v, S′ catch

S,B,E, T � e ⇓ [v]t, S′

S,B,E, T � e handle t ⇓ v, S′

Fig. 2. Evaluation rules of the control calculus

The resulting call rule of this construction is as follows:

H,B,E, T
 e1 ⇓ v1, H
′ H ′ � {v1 �→ (I, k)}

methods(H ′, k) � {m �→ (x, b′, e)} H ′, B,E, T
 e2 ⇓ v2, H
′′ B � {b �→ ρ}

H ′′ ⊕ {s �→ v2}, {b′ �→ ρ}, {x �→ s}, {return �→ t}
 e handle t ⇓ r,H ′′′

(s, t fresh)
H,B,E, T
 e1.m(e2, &b) ⇓ r,H ′′′

The complete definition of the core Ruby calculus is given in Appendix.

4 Extension to the Core Calculi

To obtain the full Ruby calculus that embodies all of the Ruby’s sophisticated
language features, this section extends the core calculi with most of Ruby’s

The Essence of Ruby 89

features. Due to space limitations, this section presents brief summary of each
extension. The definitions of the extended calculi are given in Appendix.

Modules and Mix-ins. A module in Ruby is a structure consisting of a mu-
table set of methods to be included in a class. By including modules in a class,
Ruby supports full-fledged mix-in without any additional machinery other than
dynamic method look-up mechanism.

We introduce the following terms to the object calculus: new_module, which
creates a new module with empty set of methods, and append_feature e1 to e2
which mixes module e1 in class (or module) e2. We use the def e#m = ξ syntax
to define method m in a module e as well as in a class.

We define the semantic structure of modules by reusing those of classes. Let
d range over a given countably infinite set of module identifiers. Let δ range over
the union of module identifiers and class identifiers, that shall be used for the
common behavior between modules and classes. We refer to the union set as
class-module identifiers.

In Ruby, every class or module has a mutable list of modules included in
the class or module. Unlike class inheritance, the relation on module inclusions
is not transitive; all affective included modules of a class or module are flatly
listed in the included module list. To represent this list, we introduce an included
module list context, ranged over by L, as a function from class-module identifiers
to lists of module identifiers. As in the class inheritance context, we introduce
the well-formedness condition on L as follows: for any δ′ ∈ dom(L), no identical
δ occurs twice in [δ′] ++L(δ′). This prevents circular and doubled inclusion of
modules. We note that mutual inclusion of modules is allowed and it does not
arise any circular references since module inclusions are not transitive. The only
case causing circular references is the case that a module includes itself. The
above well-formedness condition clearly prevents this.

A class context K is redefined to be a class-module context of the form
(K,L,M) to represent the included modules in each class. We also redefine the
structure of a method binding M to be a function from class-module identifiers.
Since modules are mutable values, a value v can be a module identifier d. We
can define evaluation rules for the mix-in terms by the above preparation.

Implicit Destinations of Method Definitions. In the actual Ruby, the des-
tination class or module of a def is implicitly given through a class or module
surrounding the method definition. However, the destination cannot be made up
for by syntactic elaboration since def can be nested and combined with some
reflection primitives. To see the subtle difficulty, consider the following example.

class Foo

def define_bar(c)

c.hoge { def bar ; "bar" ; end } # where to define "bar" method?

end

end

The destination of def bar · · · end depends on the run-time context. As an un-
common case, if c is a module object and hoge is an alias to Module#class_eval

then bar is defined in the module denoted by c. Otherwise, it is defined in Foo.

90 K. Ueno et al.

To specify this behavior of the def in our calculi, we extend the object calculus
with the feature to keep track of the current destination of def terms. We intro-
duce the following new syntax: module e1; e2; end which specifies an existing
class or module e1 as the current destination of defs in e2, and current_module

which gets out the current destination as a value. For the semantics of these
new constructs, we introduce a new evaluation context, class-module list, de-
noted by C, as a list of class-module identifiers. The evaluation relation becomes
H,C
 e ⇓ r,H ′. To keep a class-module list along with each method entity,
we introduce a method closure, ranged over by ζ, as a pair (C, ξ). We extend a
method binding M to be a function to the method closures. Due to this exten-
sion, the call rule is modified so that the class-module list in a method closure
is resumed when evaluating its method body.

Constants and Class-Variables. Let c range over the set of constant identi-
fiers. Any Ruby construct that refers to a constant can be represented with the
following two expressions: one is just c, which looks up a given constant from
the current class-module list, and another is e :: c that looks up c from spec-
ified module e. Mutations of constants can be essentially represented as single
expression of the form e1 :: c = e2 which binds c to value e2 in module e1.

We extend the class-module context for constants as follows. Let J be a
constant bindings as a finite function from constant identifiers to values. Let J be
a constant heap as a function from class-module identifiers to constant bindings.
Then a class-module context K is extended to be a tuple (J,K,L,M). To define
the rule of constant look-ups, a function is needed to compute available constant
bindings. This can be defined similarly to the methods function according to
the standard constant look-up rules. We can define the terms and rules for
class variables by introducing class variable identifiers, contexts and look-up
mechanisms similarly to the constants.

Method Visibility and super Method Calls. Every method in Ruby has its
own visibility, which is one of public, protected or private. The visibility con-
trols method lookup of visibility conscious method invocations. In addition, there
are two special forms of method invocations in Ruby: m() for self method calls
and super for calling a method bound in a super class. Any of these method in-
vocations can be characterized by how they search for the method to be invoked.
To support all variations of Ruby’s method invocations, we add two method call
terms of the form send e.m for visibility conscious method lookup and super m
for method lookup from super classes. The evaluation rules of these can be
derived from the call rule by replacing the computation of available method
bindings. To deal with the method visibility, we extend the class-module con-
text K with a visibility binding, that is a map from method identifiers to method
visibilities. Visibilities of the available methods can be computed by folding the
ancestors list with visibility binding composition. We can obtain a visibility
conscious available method binding by filtering out invisible methods from the
available method binding.

The Essence of Ruby 91

Singleton Classes. A singleton class is a mechanism to associate a particular
method to an object. In Ruby, a singleton class is a class with several minor lim-
itations. Here we only list some of them: they cannot have any instance objects,
they cannot be inherited (the standard says unspecified), and the visibility of
their protected methods are unspecified. Exact conformity to all these details
requires the operational semantics to distinguish singleton classes from ordinary
classes, and re-define class manipulation rules for singleton classes. By omitting
these details for simplicity, the singleton classes can be taken into account by
extending the object entity to be a triple (I, k, k′) where k′ is its singleton class
and adding a term for accessing to this k′. The alloc and call rules are also
modified to be conscious of singleton classes along with these extensions.

Miscellaneous Control Constructs. Ruby has a variety of control flow con-
structs other than method calls and blocks such as if and unless expressions,
while and until loops, and user-level exceptions. It is straightforward to incor-
porate these constructs to the control calculus by representing their control flows
in meta-level exceptions. Here we present a set of primitive constructs sufficient
for representing Ruby’s control flows defined as follows

e ::= · · · | if e then e else e end | n:{ e } | e rescue x.e | e ensure e

j ::= · · · | redon | breakn | raise

where n ranges over the set of natural numbers, each of which is used as a loop
label. n:{ e } indicates a loop labeled with n. redon jumps to the beginning of
the inner-most loop labeled with n. breakn breaks out of the inner-most n-
labeled loop. These primitives corresponds to Ruby’s while or until and their
break, next and redo statements. rescue, ensure and raise are for user-level
exceptions. The evaluation rules for these constructs are trivial and we omit
them. Actual Ruby’s control flow constructs are introduced by the syntactic
elaboration to these primitives.

5 The Ruby Calculus

The extended two calculi combine into a calculus in the same way as the core
Ruby calculus. The full Ruby calculus is obtained by adding the following three
features to the combined calculus: Proc objects, reflections, and error handling.

Proc Objects. In Ruby, a block is not only a control structure but a first-class
value. It is straightforward to incorporate this feature to the Ruby calculus by
adding block identifiers b to the set of values. The constructs for blocks are
modified so that they generate and consume a block value. This is done by
replacing the block identifier b in proc { |x| e1 } as b in e2 with variable x and
those in yield e to b and e1.m(e2, &b) with expression e.

Since blocks are first-class values and block values are represented by block
identifiers, a block context B must be included in H . In addition, due to the
introduction of class-module list mentioned in Section 4, a block entity ρ is
extended to be a tuple (E, T,C, x, e). The evaluation relation of the resulting

92 K. Ueno et al.

Ruby calculus is of the form H,E, T, C
 e ⇓ r,H ′. The evaluation rules of the
new proc and yield constructs are given below.

H ⊕ {b �→ (E, T ⊕ {break �→ t}, C, x1, e1)} ⊕ {b �→ ({}, Proc)} ⊕ {s �→ b},
E ⊕ {x2 �→ s}, T, C
 e2 handle t ⇓ r,H ′ (s, t fresh)

H,E, T, C
 proc { |x1| e1 } as x2 in e2 ⇓ r,H ′

H,E, T, C
 e2 ⇓ b,H ′ H ′ � {b �→ (E′, T ′, C′, x, e)}
H ′, E, T, C
 e1 ⇓ v,H ′′

H ′′ ⊕ {s �→ v}, E′ ⊕ {x �→ s}, T ′ ⊕ {next �→ t}, C′
 e handle t ⇓ r,H ′′′

(s, t fresh)
H,E, T, C
 yield e1 to e2 ⇓ r,H ′′′

The call rule is also modified so that it obtains a block parameter through
evaluating an expression. This modification is straightforward and we omit it.

Built-in Primitives for Reflections. Ruby provides a set of built-in primi-
tives for reflecting and reifying evaluation context. The Ruby calculus can read-
ily support these meta-level primitives uniformly. In most compiled languages,
a large part of evaluation contexts are static and are consumed away by the
compiler. We observe that this is the major source of difficulties in providing
meta-level primitives in static languages. In contrast, the operational semantics
of our Ruby calculus retains most of meta-level information in its evaluation
context, particularly, in heap H . It is then a simple matter to provide reflec-
tion functionalities as primitives to examine and modify the current evaluation
context. We have studied the meta-level primitives specified in the standard of
Ruby and confirmed that in most cases this is indeed the case. In the following,
we list typical Ruby’s primitive methods and the required primitive constructs
in the Ruby calculus.

1. Primitives to access module and class information, such as Module#instance
_methods and Module#private. Since all the information on modules are in
the heap, these methods are easily supported by introducing primitives to
access to the class-module context in the heap.

2. Primitives to reify the current run-time environment, such as Kernel.local_
variables and Kernel.block_given?. These methods refer to the evalua-
tion context of the caller. Since they do not modify the context, they can be
supported through corresponding primitives in the Ruby calculus.

3. Primitives to manipulate the callers’ run-time environment, such as Module#
public and String#=~. To support these methods, we first introduce re-
served local variables such as $~ and introduce primitives for manipulating
the reserved variables. We note that the standard requires that regular ex-
pression matching method dynamically create a local variable binding named
~ in the callers’ context. We would say this is unnatural, and this is neither
the case in the widely-accepted Ruby implementations. Although approach
mentioned above is not strictly compilant with the standard, it would more
naturally describe the intuitive meaning of the reserved variables.

The Essence of Ruby 93

4. Primitives to evaluating program texts such as Kernel.requireand Kernel.

eval. These allow to execute arbitrary program codes. However, since the re-
sults do not affect the caller except for the modification to the heap, they can
be supported similarly to the previous case by introducing new primitives.

These reflection mechanisms can be provided through primitive methods.
Since primitive methods are themselves possible targets of reflection, the user
code can manipulate them. This situation can be dealt with by materializing
primitive methods as semantic objects, and separate the evaluation rule of prim-
itive method calls from that of ordinary method calls.

Error Handling. The operational semantics of our Ruby calculus may get
stuck, yielding wrong . In Ruby, however, program never stuck except for un-
caught exception. Erroneous cases are reported to the user code through either
user-level exceptions, fallback method calls, or default values. If the conformity
to this specification is really desired, then it is straightforwardly achieved by
introducing appropriate exception for each erroneous case and making all the
cases that yield wrong in the Ruby calculus as explicit rules that raise the cor-
responding exception.

The only subtle case is Ruby’s LocalJumpError exception. This exception is
raised when a non-local jump cannot find appropriate jump destinations. This
situation mainly occurs in the case where break is evaluated in a Proc object
detached from the evaluation context. In this case, the operational semantics
needs to maintain the set of effective exception tags in the evaluation context.

Corner Cases Requiring Extensions. As we have discussed in this section,
our conclusion is that the Ruby calculus so far defined provides sufficient basis
for a complete specification of the full real Ruby language. The remaining works
towards the complete specification is to define semantic objects and evaluation
rules for each of the minor details and corner cases that we does not cover in
this paper. We list below some of those we found important during our close
scrutiny of the standard of Ruby.

– To deal with Symbol objects, identifiers should be treated as values.
– undef can be dealt with a new “undefined” state in method closures.
– Global variables can be added by introducing a new environment.
– self can be treated as a local variable implicitly appearing in the parameter

list of a method definition. To pass self along with user-specified arguments,
methods should be extended to multiple arguments.

– Multiple assignments and multiple arguments can be dealt with by incorpo-
rating Array objects and their primitives to the semantics.

6 Elaborating Ruby to the Ruby Calculus

Ruby allows a number of shorthands and implicit references to various enti-
ties, resulting in syntactic ambiguities. The Ruby standard specifies how the
ambiguities be resolved during the interpretation of the (abstract) syntax tree.

94 K. Ueno et al.

A systematic way to incorporate this ambiguity resolution is the introduction
of syntactic elaboration, which translates the real Ruby syntax to terms in the
Ruby calculus. We have designed the elaboration algorithm for major Ruby con-
structs as a series of functions of the form [[M]]κE that translates Ruby programM
into a Ruby calculus term under given elaboration context E , where κ is a name
of an elaboration function. The structure of an elaboration context E is specific
to each κ. In this paper, we pick up below some highlights of the elaboration
algorithm that demonstrates how it resolves the Ruby’s syntactic ambiguities.

Local Variable Scopes. In Ruby, variable identifiers in reference position are
either local variable references or private method calls with no argument. As-
signment syntax such as x = M implicitly declares that variable x is bound in
certain (possibly nested) scope. This syntactic ambiguity is resolved by Ruby’s
scoping rules. Since the scoping rules are all syntactic, this resolution process
can be factored into the elaboration algorithm.

We resolve this ambiguity in two steps. At first, we resolve the ambiguity of
identifiers by adding explicit empty argument lists to private method calls. This
step is defined as a context-sensitive Ruby-to-Ruby translation [[M]]preV , where V
is the set of identifiers that are decided as variable references. We show a few
cases of [[M]]preV below

[[x]]preV =

{
x if x ∈ V
x() if x �∈ V

[[m { |x| M }]]preV = m { |x| [[M]]pre{x} }

[[for x in M1 do M2 end]]preV = for x in [[M1]]
pre
V ∪{x} do [[M2]]

pre
V ∪{x}∪BV(M1)

end

where BV(M) is the set of bound variables occurring in M , some of whose cases
are defined as follows.

BV(x = M) = {x} ∪ BV(M) BV(m { |x| M }) = ∅
BV(for x in M1 do M2 end) = {x} ∪ BV(M1) ∪ BV(M2)

The second step is the function [[M]]topV that decides the set V of bound vari-
ables for each local variable scope and insert bind of the Ruby calculus to make
the scope explicit. Some cases of this algorithm are as follows

[[m { |x| M }]]topV = m { |x| bind BV(M) \ ({x} ∪ V) in [[M]]blockV ∪BV(M)∪{x} }
[[for x in M1 do M2 end]]topV =

[[M1]]
top
V .each { |x′| (update x = x′; [[M2]]

block
V) } (x′ fresh)

where bind V in · · · is the sequence of bind x = nil in · · · for all x in V .

Overloaded Constructs. Ruby contains many overloaded constructs so that
the user can enjoy productive programming with less keywords. Some of the
overloaded constructs are resolved by their syntactic context. The elaboration
phase is adequate to perform this kind of resolution. Typical examples include
break and next which break out of either while loops or blocks. The resolution
is expressed as follows.

The Essence of Ruby 95

[[while e1 do e2 end]]topE = 1:{ if [[e1]]
while
E then ([[e2]]

while
E ; redo1) else nil }

[[break]]whileE = break1 nil [[break]]blockE = break nil

[[next]]whileE = redo1 nil [[next]]blockE = next nil

For other overloaded constructs, their behavior is selected at run-time. A
typical example of this kind is class statement in Ruby, which creates a new
class or denotes an existing class. There are two design choices to represent
this kind of resolution; one is to introduce a new primitive, and the other is to
elaborate the class statement to a combination of primitives. We choose the
latter since this yields a simpler calculus. We show the elaboration rule of class
statement below

[[class c < e1; e2; end]]topE =
bind x1 = [[e1]]

top
E in

bind x = if defined_const?(c)
then if eq(superclass_of(c), x1) then c

else raise TypeError

else current_module :: c = new_class x1

in module x; [[e2]]
top
E ; end (x1, x fresh)

where defined_const?(c), superclass_of(e) and eq(e1, e2) are built-in reify
primitives. defined_const?(c) returns true if look-up of constant c is succeeded
in current context. superclass_of(e) returns the direct super class of class e.
eq(e1, e2) returns true if two object e1 and e2 are identical.

7 Conformity Evaluation

In order to evaluate conformity of our formalism to the actual Ruby language,
we developed a prototype Ruby interpreter and carried out an experiment.

Our interpreter is written in Standard ML. Since exceptions in Standard ML
are generative, our implementation is a straightforward coding of the evaluation
relations so far defined as a recursive evaluation function. We have implemented
all of the core Ruby calculus presented in Section 3.3, the large part of extensions
presented in Section 4 and 5, and the syntactic elaboration phase described in
Section 6. Our prototype interpreter also includes several built-in classes and
methods including Array and String.

We collected test cases from the test case suite distributed with CRuby (a.k.a.,
MRI, Matz Ruby Implementation) [15] version 1.9.3. CRuby is a de facto stan-
dard implementation of Ruby. We selected this test suite on considering that
the JIS/ISO standard is largely based on CRuby version 1.8 and 1.9. This test
suite consists of 2,729 test cases for both language features and built-in class
libraries. We picked up all the test cases for behaviors of blocks and jumps as
follows. Firstly, we excluded test cases essentially not for blocks but for meth-
ods that use blocks. Secondly, some of test cases use functionalities that our
implementation does not support; hence, we modified them so as to conform to
our implementation without changing their objectives. For example, we modify

96 K. Ueno et al.

methods that take more than one arguments to those that take an array of ar-
guments. Lastly, we had to omit a few test cases, such as those that heavily use
variable-length arguments and hashes. This selection and modification gave us
28 test cases.

Our implementation passed 26 out of 28 test cases. The two failures are caused
because of the following reasons. One is the case of LocalJumpErrorwe discussed
in Section 5. This is an expected case; this case can be treated by extending the
operational semantics according to the strategy described in Section 5. The other
one is a block that takes a block as its argument as follows.

Proc.new { |&b| b.call(10) }.call { |x| x }

Actually, this program does not follow the JIS/ISO standard, while this feature
is available in CRuby from version 1.8.7. Our implementation can support it by
a multiple-argument extension, which can certainly be incorporated.

We have seen that the behavior of our implementation is nearly the same as
an actual Ruby implementation, and moreover, the exceptional differences can
be fixed by small modifications. This result shows promise of our approach.

8 Related Works

We owe much of this work to the JIS/ISO standard of Ruby [10,8] written by the
designers and developers of the language. As we mentioned, although it is not a
formal specification and it is presented as a description of an abstract machine
in a particular implementation style in mind, it provides detailed description of
the language. Apart from this document, a few works have been done toward
rigorous specification of Ruby. James and Sabry [9] proposed a continuation-
based encoding of a generalized yield operator similar to the one found in Ruby.
This account provides an interesting insight into general nature of iterators with
yield operator. As we have shown in our development, Ruby’s control structure
including yield is directly represented by generative exceptions rather than
continuations, and this scales to various other features of Ruby. Furr et. al. and
An et. al. investigated static typing and type inference for a subset of Ruby
[4,6,2,3] using their Ruby program analysis framework [5]. These works assume
a simplified calculus with the features similar to Ruby. We expect that a formal
operational semantics we have worked out in this paper should be beneficial for
extending these works on the full set of Ruby.

Our work can be regarded as an attempt to develop a formal semantics of
dynamic languages. In this general perspective, a number of works have been
done on dynamic scripting languages, including JavaScript such as [12,7], and
Python such as [14], to mention a few. Our approach of modeling a dynamic
scripting language as a combination of multiple calculi would shed some light on
understanding semantic structures of scripting languages.

9 Conclusions

We have developed a formal operational semantics for Ruby based on the observa-
tion that Ruby’s dynamic behaviors can be cleanly represented by the composition

The Essence of Ruby 97

of two calculi: the object calculus that represent dynamic structures of objects, and
the control calculus that accounts for Ruby’s control operators including yields.
By constructing each of the two calculi in such a way that the features external to
the calculus are represented as oracle primitives, two calculi combine trivially to
yield the Ruby calculus that represents the essence of Ruby. This combined cal-
culus scales up to the full Ruby specified in the JIS/ISO standard. The construc-
tion of the calculus straightforwardly leads to an implementation in a functional
language with generative exceptions. Our evaluation using the implementation in-
dicates that the presented semantics with respect to blocks and yields conforms
to commonly accepted Ruby behavior. we plan to make a complete formal spec-
ification of Ruby according to the strategy described in Section 5 and present it
elsewhere.

An interesting future work is to develop a general framework for specifying a
complex language as a composition of multiple orthogonal calculi. Since many
existing dynamic languages tend to contain various features, the approach shown
in this paper would shade some light toward this direction.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
2. An, J.-H., Chaudhuri, A., Foster, J.S.: Static typing for Ruby on Rails. In:

IEEE/ACM International Conference on Automated Software Engineering, pp.
590–594 (2009)

3. An, J.-H., Chaudhuri, A., Foster, J.S., Hicks, M.: Dynamic inference of static types
for Ruby. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 459–472 (2011)

4. Furr, M., An, J.-H., Foster, J.S.: Profile-guided static typing for dynamic script-
ing languages. In: ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, pp. 283–300 (2009)

5. Furr, M., An, J.-H., Foster, J.S., Hicks, M.: The Ruby intermediate language. In:
Symposium on Dynamic Languages, pp. 89–98 (2009)

6. Furr, M., An, J.-H., Foster, J.S., Hicks, M.: Static type inference for Ruby. In:
ACM Symposium on Applied Computing, pp. 1859–1866 (2009)

7. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010)

8. ISO/IEC 30170:2012, Information technology – Programming languages – Ruby
(2012)

9. James, R.P., Sabry, A.: Yield: Mainstream delimited continuations. In: Workshop
on the Theory and Practice of Delimited Continuations, pp. 20–32 (2011)

10. JIS X 3017:2011, Programming languages – Ruby (2011)
11. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing,

M. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

98 K. Ueno et al.

12. Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for JavaScript. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer, Hei-
delberg (2008)

13. Milner, R., Tofte, M., MacQueen, D.: The Definition of Standard ML. MIT Press
(1997)

14. Politz, J.G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chitipothu,
A., Krishnamurthi, S.: Python: the full monty. In: ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applica-
tions, pp. 217–232 (2013)

15. Ruby programming language, http://www.ruby-lang.org/en/

http://www.ruby-lang.org/en/

Types for Flexible Objects

Zachary Palmer, Pottayil Harisanker Menon,
Alexander Rozenshteyn, and Scott Smith

Department of Computer Science,
The Johns Hopkins University, USA

{zachary.palmer,pharisa2,arozens1,scott}@jhu.edu

Abstract. Scripting languages are popular in part due to their ex-
tremely flexible objects. Features such as dynamic extension, mixins,
and first-class messages improve programmability and lead to concise
code. But attempts to statically type these features have met with lim-
ited success. Here we present TinyBang, a small typed language in which
flexible object operations can be encoded. We illustrate this flexibility
by solving an open problem in OO literature: we give an encoding where
objects can be extended after being messaged without compromising the
expressiveness of subtyping. TinyBang’s subtype constraint system en-
sures that all types are completely inferred; there are no data declarations
or type annotations. We formalize TinyBang and prove the type system
is sound and decidable; all examples in the paper run in our most recent
implementation.

1 Introduction

Modern scripting languages such as Python and JavaScript have become popular
in part due to the flexibility of their object semantics. In addition to support-
ing traditional OO operations such as inheritance and polymorphic dispatch,
scripting programmers can add or remove members from existing objects, arbi-
trarily concatenate objects, represent messages as first-class data, and perform
transformations on objects at any point during their lifecycle.

While a significant body of work has focused on statically typing flexible
object operations [BF98,RS02,BBV11], the solutions proposed place significant
restrictions on how objects can be used. The fundamental tension lies in sup-
porting self-referentiality. For an object to be extensible, “self” must be exposed
in some manner equivalent to a function abstraction λself . . . so that differ-
ent “self” values may be used in the event of extension. But exposing “self” in
this way puts it in a contravariant position; as a result, subtyping on objects is
invalid. The above systems create compromises; [BF98], for instance, does not
permit objects to be extended after they are messaged.

Along with the problem of contravariant self, it is challenging to define a fully
first-class object concatenation operation with pleasing typeability properties.
The aforementioned type systems do not support concatenation of arbitrary ob-
jects. In the related space of typed record concatenation, previous work [Pot00]
has shown that general record concatenation may be typed but requires consid-
erable machinery including presence/absence types and conditional constraints.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 99–119, 2014.
c© Springer International Publishing Switzerland 2014

100 Z. Palmer et al.

In this paper, we present a new programming language calculus, TinyBang,
which aims for significant flexibility in statically typing flexible object operations.
In particular, we support object extension without restrictions, and we have
simple type rules for a first-class concatenation operation.

TinyBang achieves its expressiveness with very few primitives: the core ex-
pressions include only labeled data, concatenation, higher-order functions, and
pattern matching. Classes, objects, inheritance, object extension, overloading,
and switch/case can be fully and faithfully encoded with these primitives. Tiny-
Bang also has full type inference for ease and brevity of programming. It is not
intended to be a programming language for humans; instead, it aims to serve as
a conceptual core for such a language.

1.1 Key Features of TinyBang

TinyBang’s type system is grounded in subtype constraint type theory [AWL94],
with a series of improvements to both expression syntax and typing to achieve
the expressiveness needed for flexible object encodings.

Type-indexed records supporting asymmetric concatenation TinyBang uses
type-indexed records: records for which content can be projected based
on its type [SM01]. For example, consider the type-indexed record
{foo = 45; bar = 22; 13}: the untagged element 13 is implicitly tagged with
type int, and projecting int from this record would yield 13. Since records
are type-indexed, we do not need to distinguish records from non-records; 22,
for example, is a type-indexed record of one (integer) field. Variants are also
just a special case of 1-ary records of labeled data, so ‘Some 3 expresses the
ML Some(3). Type-indexed records are thus a universal data type and lend
themselves to flexible programming patterns in the same spirit as Lisp lists and
Smalltalk objects.

TinyBang records support asymmetric concatenation via the & opera-
tor; informally, {foo = 45; bar = 22; 13} & {baz = 45; bar = 10; 99} results in
{foo = 45; bar = 22; baz = 45; 13} since the left side is given priority for the
overlap. Asymmetric concatenation is key for supporting flexible object concate-
nation, as well as for standard notions of inheritance. We term the & operation
onioning.

Dependently typed first-class cases TinyBang’s first-class functions are written
“pattern -> expression”. In this way, first-class functions are also first-class case
clauses. We permit the concatenation of these clauses via & to give multiple
dispatch possibilities. TinyBang’s first-class functions generalize the first-class
cases of [BAC06].

Additionally, we define a novel notion of union elimination, a slice, which
allows the type of bindings in a case arm to be refined based on which pattern
was matched. Dependently typed first-class cases are critical for typing our object
encodings, a topic we discuss in the next section.

Types for Flexible Objects 101

Outline In the next section, we give an overview of TinyBang and how it can
encode object features. In Section 3, we show the operational semantics and type
system for a core subset of TinyBang, trimmed to the key features for readability;
we prove soundness and decidability for this system in the appendices. Related
work is in Section 4 and we conclude in Section 5.

2 Overview

This section gives an overview of the TinyBang language and of how it supports
flexible object operations and other scripting features.

2.1 Language Features for Flexible Objects

The TinyBang expression syntax used in this section appears in Figure 1.

e ::= x | () | Z | l e | ref e | ! e | e & e | φ -> e | e
 e | e e | letx = e in e | x := e in e
φ ::= x | () | int | l φ | φ &φ patterns
 ::= + | - | == | <= | >= operators

l ::= ‘(alphanumeric) labels

Fig. 1. TinyBang Syntax

Program types take the form of a set of subtype constraints [AWL94]. For the
purposes of this Overview we will be informal about type syntax. For example,
the informal int ∪ bool is in fact be expressed via constraints int <: α and bool

<: α. The details of the type system are presented in Section 3.3.

Simple functions as methods We begin by considering the oversimplified case of
an object with a single method and no fields or self-awareness. In the variant
encoding, such an object is represented by a function which pattern-matches on
the message identifying that single method. We see in Figure 1 that all TinyBang
functions are written φ -> e, with φ being a pattern to match against the func-
tion’s argument. Each function has only one pattern; we call these one-clause
pattern-matching functions simple functions. For instance, consider the following
object and its invocation:

1 let obj = (‘twice x -> x + x) in obj (‘twice 4)

The syntax ‘twice 4 is a label constructor similar to an OCaml polymorphic
variant or Haskell newtype; like these languages, the expression ‘twice 4 has
type ‘twice int. The simple function ‘twice x -> x + x is a function which
matches on any argument containing a ‘twice label and binds its contents to
the variable x. Note that the expression ‘twice 4 is a first-class message.

A simple function is only capable of matching one pattern; to express general
pattern matching, functions are concatenated via the onion operation & to give
compound functions. Given two function expressions e1 and e2, the expression
(e1 & e2) conjoins them to make a compound function. (e1 & e2) arg will apply
the function which has a pattern matching arg; if both patterns match arg, the
leftmost function (e.g. e1) is given priority. For example:

102 Z. Palmer et al.

1 let obj = (‘twice x -> x + x) & (‘isZero x -> x == 0) in obj ‘twice 4

The above shows that traditional match expressions can be encoded using the
& operator to join a number of simple functions: one for each case. Because these
functions are values, TinyBang’s function conjunction generalizes the first-class
cases of [BAC06]; that work does not support “override” of existing clauses or
heterogeneously typed case branches.

Dependent pattern types The above shows the encoding of a simple object with
two methods, no fields, and no self-awareness, but this function conjunction ap-
proach presents some typing challenges. Consider the analogous OCaml match/-
case expression:

1 let obj m = (match m with | ‘twice x -> x + x

2 | ‘isZero x -> x == 0) in . . .

This will not typecheck, since the same type must be returned for all branches.1

We resolve this in TinyBang by giving the function a dependent pattern type
(‘twice int → int) & (‘isZero int → bool). If the function is applied in the
context where the type of message is known, the appropriate result type is in-
ferred; for instance, invoking this method with ‘isZero 0 always produces type
bool and not type int ∪ bool. When we present the formal type system be-
low, we show how these dependent pattern types extend the expressiveness of
conditional constraint types [AWL94,Pot00] in a dimension critical for typing
objects.

This need for dependent typing arises largely from our desire to accurately
type a variant-based object model; a record-based encoding of objects would not
have this problem. We choose a variant-based encoding because it greatly sim-
plifies encodings such as self-passing and overloading, which we describe below.

Onions are records There is no record syntax in TinyBang; instead, it suffices to
use concatenation (&) on labeled values. We informally call these records onions
to signify these properties. Here is an example of how multi-argument methods
can be defined:

1 let obj = (‘sum (‘x x & ‘y y) -> x + y)

2 & (‘equal (‘x x & ‘y y) -> x == y)

3 in obj (‘sum (‘x 3 & ‘y 2))

The ‘x 3 & ‘y 2 amounts to a two-label record. This ‘sum-labeled onion is
passed to the pattern ‘x x & ‘y y. (We highlight the pattern & differently than
the onioning & because the former is a pattern conjunction operator: the value
must match both subpatterns.) Also observe from this example how there is no
hard distinction in TinyBang between records and variants: there is only one
class of label. This means that the 1-ary record ‘sum 4 is the same as the 1-ary
variant ‘sum 4.

1 The recent OCaml 4 GADT extension mitigates this difficulty but requires an explicit
type declaration, type annotations, and only works under a closed world assumption.

Types for Flexible Objects 103

2.2 Self-awareness and Resealable Objects

Up to this point, objects have no self-awareness: they cannot invoke their own
methods. Encoding a runtime model of self-awareness is simple; for instance,
dynamic dispatch can be accomplished simply by transforming each method
invocation (e.g. obj.m(arg)) into a function call in which the object is passed to
itself (e.g. obj (‘self obj & ‘m arg)). But while this model exhibits appropriate
runtime behavior, it does not typecheck properly in the presence of subtyping.
Consider the code in Figure 2 and the Java statement A obj = new B();. The
encoding of obj.foo() here would fail to typecheck; the B implementation of foo
expects this to have a bar method, but the weakened obj cannot guarantee this.
Although this example uses Java type annotations to weaken the variable’s type,
similar weakening eventually occurs with any decidable type inference algorithm.
We also observe that the same problem arises if, rather than self-passing at the
call site, we encode the object to carry itself in a field.

class A {

int foo() { return 4; }

}

class B extends A {

int foo() { return this.bar(); }

int bar() { return 8; }

}
Fig. 2. Self-Encoding Example Code

The simple approach shown above fails because, informally, the object does
not know its own type. To successfully typecheck dynamic dispatch, we must
keep an internal type for the object separate from the external type it has in
any particular context; that is, in the above example, the object must remember
that it is a B-typed object even when it is generalized e.g. in an A-typed variable.
One simple approach to this is to capture an appropriate self-type in closure,
similar to how functions can recurse via self-passing:

1 let obj0 = self -> (‘foo _ & ‘self self -> self self (‘bar _ & ‘self self)) &
2 (‘bar _ & ‘self self -> 8) in
3 let obj = obj0 obj0 in . . .

The initial passing of obj0 to itself bootstraps the self-passing mechanism; obj
becomes a function with obj0 captured in closure as self; thus, any message
passed to obj uses the type of obj0 at the time obj was created rather than
relying on its type in context. While this approach is successful in creating a self-
aware object, it interferes with extensibility: the type of self is fixed, preventing
additional methods from being added or overridden.

To create an extensible encoding of dynamically dispatched objects, we build
on the work of [BF98]. In that work, an object exists in one of two states:
as a prototype, which can be extended but not messaged, or as a “proper”
object, which can be messaged but not extended. Prototypes cannot be messaged
because they do not yet have a notion of their own type. A prototype may be
“sealed” to transform it into a proper object, capturing the object’s type in
a fashion similar to the above. A sealed object may not be extended for the
same reason as the above: there exists no mechanism to modify or specialize the
captured self-type.

104 Z. Palmer et al.

The work we present here extends [BF98] with two notable refinements. First,
that work presents a calculus in which objects are primitives; in TinyBang, how-
ever, objects and the sealing process itself are encoded using simple functions
and conjunction. Second, TinyBang admits a limited context in which sealed
objects may be extended and then resealed, thus relaxing the sharp phase dis-
tinction between prototypes and proper objects. All object extension below will
be performed on sealed objects. Object sealing is accomplished by a TinyBang
function seal:

1 let fixpoint = f -> (w -> w w) (t -> a -> f (t t) a) in

2 let seal = fixpoint (seal -> obj ->

3 (msg -> obj (msg & ‘self (seal obj))) & obj) in

4 let obj = (‘twice x -> x + x) &

5 (‘quad x & ‘self self -> self (‘twice x) + self (‘twice x))

6 let sObj = seal obj in

7 let twenty = sObj ‘quad 5 in // returns 20

Here, fixpoint is simply the Y-combinator. The seal function operates by adding
a message handler which captures every message sent to obj. (We still add & obj

to this message handler to preserve the non-function parts of the object.) This
message handler captures the type of obj in the closure of a function; thus, later
invocations of this message handler will continue to use the type at seal-time
even if the types of variables containing the object are weakened. The message
handler adds a ‘self component containing the sealed object to the right of the
message and then passes it to the original object. We require fixpoint to ensure
that this self-reference is also sealed. So, every message sent to sObj will be sent
on to obj with ‘self sObj added to the right. Note that the ‘twice method
does not require a ‘self pattern component: due to structural subtyping, any
message with a ‘twice label (whether it also includes a ‘self or not) will do.

The key to preserving extensibility with this approach is the fact that, while
the seal function has captured the type of obj in closure, the self value is
still sent to the original object as an argument. We now show how this permits
extension of sealed objects in certain contexts.

Extending previously sealed objects In the definition of seal above, the catch-all
message handler adds a ‘self label to the right of the message; thus, if any
‘self label already existed in the message, it would be given priority over the
one added by seal. We can take advantage of this behavior in order to extend
a sealed object and then reseal it, refining its self-type. Consider the following
continuation of the previous code:

1 let sixteen = sObj ‘quad 4 in // returns 16

2 let obj2 = (‘twice x -> x) & sObj in

3 let sObj2 = seal obj2 in

4 let eight = sObj2 ‘quad 4 in . . . // returns 8

We can extend sObj after messaging it, here overriding the ‘twice message;
sObj2 represents the (re-)sealed version of this new object. sObj2 properly knows
its “new” self due to the resealing, evidenced here by how ‘quad invokes the new

Types for Flexible Objects 105

‘twice. To see why this works let us trace the execution. Expanding the sealing
of sObj2, sObj2 (‘quad 4) has the same effect as obj2 (‘quad 4 & ‘self sObj2),
which has the same effect as sObj (‘quad 4 & ‘self sObj2). Recall sObj is also a
sealed object which adds a ‘self component to the right ; thus this has the same
effect as obj (‘quad 4 & ‘self sObj2 & ‘self sObj). Because the leftmost ‘self
has priority, the ‘self is properly sObj2 here. We see from the original definition
of obj that it sends a ‘twice message to the contents of self, which then follows
the same pattern as above until obj (‘twice 4 & ‘self sObj2 & ‘self sObj) is
invoked (two times – once for each side of +).

Sealed and resealed objects obey the desired object subtyping laws because
we “tie the knot” on self using seal, meaning there is no contravariant self pa-
rameter on object method calls to invalidate object subtyping. Additionally, our
type system includes parametric polymorphism and so sObj and the re-sealed
sObj2 do not have to share the same self type, and the fact that & is a functional
extension operation means that there will be no pollution between the two dis-
tinct self types. Key to the success of this encoding is the asymmetric nature
of &: it allows us to override the default ‘self parameter. This self resealing is
possible in the record model of objects, but is much more convoluted; this is a
reason that we switched to a variant model.

It should be noted that this resealing approach is limited to contexts in which
no type information has yet been lost regarding the sealed object. Using the
example from Figure 2, typechecking would likely fail if one were to seal a B,
weaken its type to an A, extend it, and then reseal the result: the new self-type
would be derived from A, not B, and so would still lack knowledge of the bar

method. The runtime behavior is always correct, and typechecking would also
succeed if the extension provided its own override of the bar method for the
newly-sealed object to use.

Onioning it all together Onions also provide a natural mechanism for including
fields; we simply concatenate them to the functions that represent the methods.
Consider the following object which stores and increments a counter:

1 let obj = seal (‘x (ref 0) &

2 (‘inc _ & ‘self self -> (‘x x -> x := !x + 1 in !x) self))

3 in obj ‘inc ()

Observe how obj is a heterogeneous “mash” of a record field (the ‘x) and a
function (the handler for ‘inc). This is sound because onions are type-indexed
[SM01], meaning that they use the types of the values themselves to identify
data. For this particular example, invocation obj ‘inc () (note () is an empty
onion, a 0-ary conjunction) correctly increments in spite of the presence of the
‘x label in obj.

The above counter object code is quite concise: it defines a self-referential,
mutable counter object using no syntactic sugar whatsoever in a core language
with no explicit object syntax. But as we said before, we do not expect pro-
grammers to write directly in TinyBang under normal circumstances. Here are
a few syntactic sugarings used in subsequent examples. (A “real” language built

106 Z. Palmer et al.

on these ideas would include sugarings for each of the features we are about to
mention as well.)

o.x ∼= (‘x x -> x) o

o.x = e1 in e2 ∼= (‘x x -> x = e1 in e2) o

if e1 then e2 else e3 ∼= ((‘True _ -> e2) & (‘False _ -> e3)) e1
e1 and e2 ∼= ((‘True _ -> e2) & (‘False _ -> ‘False ())) e1

2.3 Flexible Object Operations

We now cover how TinyBang supports a wealth of flexible object operations,
expanding on the first-class messages and flexible extension operations covered
above. We show encodings in terms of objects rather than classes for simplicity;
applying these concepts to classes is straightforward.

Default arguments TinyBang can easily encode optional arguments that take on
a default value if missing. For instance, consider:

1 let obj = seal ((‘add (‘x x & ‘y y) -> x + y)

2 & (‘sub (‘x x & ‘y y) -> x - y)) in

3 let dflt = obj -> (‘add a -> obj (‘add (a & ‘x 1))) & obj in

4 let obj2 = dflt obj in

5 obj2 (‘add (‘y 3)) + obj2 (‘add (‘x 7 & ‘y 2)) // 4 + 9

Object dflt overrides obj’s ‘add to make 1 the default value for ‘x. Because
the ‘x 1 is onioned onto the right of a, it will have no effect if an ‘x is explicitly
provided in the message.

Overloading The pattern-matching semantics of functions also provide a simple
mechanism whereby multi-functions can be defined to overload their behavior.
We might originally define negation on the integers as

1 let neg = x & int -> 0 - x in . . .

Here, the conjunction pattern x & int will match the argument with int and
also bind it to the variable x. Later code could then extend the definition of
negation to include boolean values. Because multi-functions assign new meaning
to an existing symbol, we redefine neg to include all of the behavior of the old
neg as well as new cases for ‘True and ‘False:

1 let neg = (‘True _ -> ‘False ()) & (‘False _ -> ‘True ()) & neg in . . .

Negation is now overloaded: neg 4 evaluates to -4, and neg ‘True () evaluates
to ‘False () due to how application matches function patterns.

Mixins The following example shows how a simple two-dimensional point object
can be combined with a mixin providing extra methods:

1 let point = seal (‘x (ref 0) & ‘y (ref 0)

2 & (‘l1 _ & ‘self self -> self.x + self.y)
3 & (‘isZero _ & ‘self self -> self.x == 0 and self.y == 0)) in
4 let mixin = ‘near _ & ‘self self -> self ‘l1 ()) < 4) in
5 let mixPt = seal (point & mixin) in mixPt ‘near ()

Types for Flexible Objects 107

Here mixin is a function which invokes the value passed as self. Because an
object’s methods are just functions onioned together, onioning mixin into point

is sufficient to produce a properly functioning mixPt.
The above example typechecks in TinyBang; parametric polymorphism is used

to allow point, mixin, and mixPt to have different self-types. The mixin variable
has the approximate type “(‘near unit & ‘self α) → bool where α is an object
capable of receiving the ‘l1 message and producing an int”. mixin can be onioned
with any object that satisfies these properties. If the object does not have these
properties, a type error will result when the ‘near message is passed; for instance,
(seal mixin) (‘near ()) is not typeable because mixin, the value of self, does
not have a function which can handle the ‘l1 message.

TinyBang mixins are first-class values; the actual mixing need not occur until
runtime. For instance, the following code selects a weighting metric to mix into
a point based on some runtime condition cond.

1 let cond = (runtime boolean) in let point = (as above) in

2 let w1 =

3 (‘weight _ & ‘self self -> self.x + self.y) in

4 let w2 = (‘weight _ & ‘self self -> self.x - self.y) in

5 let mixPt = seal (point & (if cond then w1 else w2)) in

6 mixPt ‘weight ()

Inheritance, classes, and subclasses Typical object-oriented constructs can be
defined similarly to the above. Object inheritance is similar to mixins, but a
variable super is also bound to the original object and captured in the closure of
the inheriting objects methods, allowing it to be reached for static dispatch. The
flexibility of the seal function permits us to ensure that the inheriting object is
used for future dispatches even in calls to overridden methods. Classes are simply
objects that generate other objects, and subclasses are extensions of those object
generating objects. We forgo examples here for brevity.

3 Formalization

Here we give formal semantics to TinyBang. For clarity, features which are not
unique to our semantics – integers, state, etc. – are omitted. We first translate
TinyBang programs to A-normal form; Section 3.2 defines the operational se-
mantics of the A-normalized version of restricted TinyBang. Section 3.3 defines
the type system and soundness and decidability properties. The full technical
report [MPRS14b] shows how the omitted features are handled.

Notation For a given construct g, we let [g1, . . . , gn] denote an n-ary list of g,
often using the equivalent shorthand

n−⇀g . We elide the n when it is unnecessary.
Operator ‖ denotes list concatenation. For sets, we use similar notation:

n⨽−−⨼g
abbreviates {g1, . . . , gn} for some arbitrary ordering of the set.

108 Z. Palmer et al.

3.1 A-Translation

In order to simplify our formal presentation, we convert TinyBang into A-normal
form; this brings expressions, patterns, and types into close syntactic alignment
which greatly simplifies the proofs. The grammar of our A-normalized language
appears in Figure 3. For the purposes of discussion, we will refer to the restriction
of the language presented in Section 2 as the nested language and to the language
appearing in Figure 3 as the ANF language.

e ::= −⇀s expressions φ ::=
−−−−⇀
x = v̊ patterns

s ::= x = v | x =x | x =x x clauses

E ::= −−−−⇀x = v environment B ::= −−−−⇀x =x bindings

v ::= Z | () | l x | x &x | φ -> e values v̊ ::= int | () | l x | x &x pattern vals

l ::= ‘(alphanumeric) labels x ::= (alphanumeric) variables

Fig. 3. TinyBang ANF Grammar

Observe how expression and pattern grammars are nearly identical. We re-
quire that both expressions and patterns declare each variable at most once;
expressions and patterns which do not have this property must be α-renamed
such that they do. The constructions E and B are not directly used in the
A-translation; they define the environment and bindings in the semantics.

We define the A-translation function �e�x in Figure 4. Here, e is a nested
TinyBang expression; the result is the A-normalized form −⇀s in which the final
declared variable is x. We overload this notation to patterns as well. We use y
and z to range over fresh variables unique to that invocation of �−�−; different
recursive invocations use different fresh variables y and z.

Expressions�()�x = [x = ()]�l e�x = �e�y ‖[x = l y]�e1 & e2�x = �e1�y ‖ �e2�z ‖[x = y & z]�φ -> e�x = [x = �φ�y -> �e�z]�e1 e2�x = �e1�y ‖ �e2�z ‖[x = y z]�letx1 = e1 in e2�x2 = �e1�x1 ‖ �e2�x2�x2�x1 = [x1 =x2]

Patterns�()�x = [x = ()]�l φ�x = �φ�y ‖[x = l y]�φ1 &φ2�x = �φ1�y ‖ �φ2�z ‖[x = y & z]�x2�x1 = [x2 = ()]

Fig. 4. TinyBang A-Translation

Notice that A-translation of patterns is in perfect parallel with the ex-
pressions in the above; for example, the expression ‘A x -> x translates to
[y1 = ([x = (), y3 = ‘A x] -> [y2 = x])]. Using the same A-translation for pat-
terns and expressions greatly aids the formal development, but it takes some
practice to read these A-translated patterns. Variables matched against empty
onion (x = () here) are unconstrained and represent bindings that can be used
in the body. Variables matched against other pattern clauses (such as y3) are not
bindings; clause y3 = ‘A x constrains the argument to match a ‘A-labeled value.
The last binding in the pattern, here y3 = ‘A x, is taken to match the argument
when the function is applied; this is in analogy to how the variable in the last
clause of an expression is the final value. Variable binding takes place on ()

Types for Flexible Objects 109

(wildcard) definitions: every pattern clause x = () binds x in the function body.
In clause lists, each clause binds the defining variable for all clauses appearing
after it; nested function clauses follow the usual lexical scoping rules. For the
remainder of the paper, we assume expressions are closed unless noted.

3.2 Operational Semantics

Next, we define an operational semantics for ANF TinyBang. The primary com-
plexity of these semantics is pattern matching, for which several auxiliary defi-
nitions are needed.

Compatibility. The first basic relation we define is compatibility: is a value
accepted by a given pattern? We define compatibility using a constructive failure
model for reasons of well-foundedness which are discussed below. We use the
symbol � to range over the two symbols � and �, which indicate compatibility
and incompatibility, respectively, and order them: � < �.

We write x �
E�B

φ x′ to indicate that the value x is compatible (if � = �) or
incompatible (if � = �) with the pattern x′. E represents the environment in
which to interpret the value x while φ represents the environment in which to
interpret the pattern x′. B dictates how, upon a successful match, the values
from E will be bound to the pattern variables in φ. Compatibility is the least
relation satisfying the rules in Figure 5.

Empty Onion

x0 = v ∈ E x′
0 = () ∈ φ B = [x′

0 =x0]

x0
�
E�B

φ x′
0

Label

x0 = l x1 ∈ E x′
0 = l x

′
1 ∈ φ x1

�
E�B

φ x′
1

x0
�
E�B

φ x′
0

Conjunction Pattern

x′
0 =x

′
1 &x

′
2 ∈ φ x0

�1
E�

B1
φ x′

1 x0
�2
E�

B2
φ x′

2

x0
min(�1,�2)

E�
B1 ‖B2
φ x′

0

Onion Value Left

x0 =x1 &x2 ∈ E x1
�
E�B

φ x′
0

x0
�
E�B

φ x′
0

Onion Value Right

x0 =x1 &x2 ∈ E x′
0 =x

′
1 &x

′
2 /∈ φ x1

�
E�B′

φ x′
0 x2

�
E�

B
φ x′

0

x0
�
E�

B
φ x′

0

Label Mismatch

x0 = l x1 ∈ E x′
0 = v̊ ∈ φ v̊ = l′ x2 only if l �= l′ v̊ not of the form x′

&x′′ or ()

x0
�
E�

[]
φ x′

0

Fig. 5. Pattern compatibility rules

The compatibility relation is key to TinyBang’s semantics and bears some
explanation. As mentioned above, every clause x = () appearing in the pattern
binds the variable x; the Empty Onion rule ensures this by adding a binding
clause to B. The Label rule simply recurses when the value is a label and the
pattern matches that label; the Label Mismatch rule (which is the base case
for failure) applies when the pattern does not match that label. Conjunction is
relatively self-evident; min is used here as a logical “and” over the two recursive
premises. The onion rules reflect TinyBang’s asymmetric concatenation seman-
tics. Given a value x1 &x2, it is possible that both x1 and x2 match the pattern.

110 Z. Palmer et al.

If so, we must ensure that we take the bindings from the compatibility of x1.
The Onion Value Left rule applies when the left side matches. The Onion Value
Right rule only applies only if the left side doesn’t match; that is, a proof of
compatibility may recursively depend on a proof of incompatibility. This is the
reason that our relation is defined to be constructive for both success and failure:
it is necessary to show that the relation is inductively well-founded.

For an example, consider matching the pattern ‘A a & ‘B b against the value
‘A () & ‘B (). The A-translations of these expressions are, respectively, the first
and second columns below. Compatibility v5 �

E�B
φ p3 holds with the bindings B

shown in the third column.
E φ B

v1 = ()

v2 = ‘A v1

v3 = ()

v4 = ‘B v3

v5 = v2 & v4

a = ()

p1 = ‘A a

b = ()

p2 = ‘B b

p3 = p1 & p2

a = v1

b = v3

Matching. Compatibility determines if a value matches a single pattern; we
next define a matching relation to check if a series of pattern clauses match.
In TinyBang, recall that individual pattern clauses pattern -> body are sim-
ple functions φ -> e and a series simple functions onioned together expresses
a multi-clause pattern match. So, we define an application matching relation
x0 x1

��E e to determine if an onion of pattern clauses x0 can be applied
to argument x1. This relation is constructive on failure in the same fashion as
compatibility.We define matching as the least relation satisfying the rules in
Figure 6. The helper function RV extracts the return variable from a value,
defined as follows: RV(e ‖[x = ...]) = x and RV(e ‖[x = v̊]) = x.

Function

x0 = (φ -> e) ∈ E x1
�
E�B

φ RV(φ)

x0 x1
��E B ‖ e

Non-Function

x0 = (φ -> e) /∈ E x0 =x2 &x3 /∈ E

x0 x1
��E e

Onion Left

x0 =x2 &x3 ∈ E x2 x1
��E e

x0 x1
��E e

Onion Right

x0 =x2 &x3 ∈ E x2 x1
��E e′ x3 x1

��E e

x0 x1
��E e

Fig. 6. Application matching rules

The Function rule is the base case of a simple function application: the argu-
ment value x1 must be compatible with the pattern φ, and if so insert the result-
ing bindings B at the top of the function body e. The Onion Left/Right rules are
the inductive cases; notice that the Onion Right rule can only match successfully
if the (higher priority) left side has failed to match. The Non-Function rule is
the base case for application of a non-function, which fails but in a way which
permits dispatch to continue through the onion.

Operational Semantics. Using the compatibility and matching relations from
above, we now define the operational semantics of TinyBang as a small step

Types for Flexible Objects 111

relation e −→1 e′. Our definition uses an environment-based semantics; it pro-
ceeds by acting on the first unevaluated clause of e. We use an environment-based
semantics (rather than a substitution-based semantics) due to its suitability to
ANF and because it aligns well with the type system presented in the next
section.

We must freshen variables as they are introduced to the expression to preserve
the invariant that the ANF TinyBang expression uniquely defines each variable;
to do so, we take α(e) to be an α-renaming function which freshens all variables
in e which are not free. We then define the small step relation as the least relation
satisfying the rules given by Figure 7.

Variable Lookup

x1 = v ∈ E

E ‖[x2 =x1] ‖ e −→1 E ‖[x2 = v] ‖ e

Application

x0 x1
��E e′ α(e′) = e′′

E ‖[x2 =x0 x1] ‖ e −→1 E ‖ e′′ ‖[x2 =RV(e′′)] ‖ e

Fig. 7. The operational semantics small step relation

The application rule simply inlines the freshened function body e′′ in the event
there was a match. We define e0 −→∗ en to hold when e0 −→1 . . . −→1 en for
some n ≥ 0. Note that e −→∗ E means that computation has resulted in a final
value. We write e 	−→1 iff there is no e′ such that e −→1 e′; observe E 	−→1 for
any E. When e 	−→1 for some e not of the form E, we say that e is stuck.

3.3 Type System

We base TinyBang’s type system on subtype constraint systems, which have
been shown to be expressive [AWL94] and suitable for complex pattern matching
[Pot00] and object-orientation [WS01]. We begin by aligning expressions and
types (an operation made easy by our choice of ANF expression syntax); we then
define type system relations which parallel those from the operational semantics,
including a deductive constraint closure which parallels the small step relation
itself. Our proof of soundness proceeds by showing a simulation property that
programs stay aligned with their types as they execute, and stuck programs
correspond to inconsistent constraint sets.

Initial Alignment. Figure 8 presents the type system grammar. Note the
close alignment between expression and type grammar elements; E has type
V , and variable bindings B have the type analog F . Expressions e have types
α\C; expressions and type grammars are less different than they appear, since
the expression clauses are a list where the last variable contains the final value
implicitly whereas in the type the final type location α must be explicit. Both v
and v̊ have type τ .

We formalize this initial alignment step as a function �e�e which produces
a constrained type α\C; see Figure 9. Initial alignment over a given e picks a
single fresh type variable for each program variable in e; for the variable x0, we
denote this fresh type variable as

�
α0.

112 Z. Palmer et al.

C ::= ⨽−−⨼c constraint sets c ::= τ <: α | α <: α | α α <: α constraint

V ::=
⨽−−−−−−⨼
τ <: α constraint value sets τ ::= () | l α | α &α | α\V → α\C types

F ::=
⨽−−−−−−−⨼
α <: α constraint flow sets α type variables

Fig. 8. The TinyBang type grammar

n−⇀s �e = αn\
n⨽−−⨼c where ∀i ∈ {1..n}.si�s = αi\cin−−⇀x = v̊�p = αn\
n⨽−−⨼c where ∀i ∈ {1..n}.xi = v̊i �̊s = αi\cix0 =Z�s = �

α0\ int <:
�
α0 x0 = int�̊s = �

α0\ int <:
�
α0x0 = ()�s = �

α0\ () <:
�
α0 x0 = ()�̊s = �

α0\ () <:
�
α0x0 = l x1�s = �

α0\ l
�
α1 <:

�
α0 x0 = l x1�̊s = �

α0\ l
�
α1 <:

�
α0x0 =x1 &x2�s = �

α0\ �
α1 &

�
α2 <:

�
α0 x0 =x1 &x2�̊s = �

α0\ �
α1 &

�
α2 <:

�
α0x0 =φ -> e�s = �

α0\ φ�p → e�e <:
�
α0x0 =x1�s = �

α0\ �
α1 <:

�
α0x0 =x1 x2�s = �

α0\ �
α1

�
α2 <:

�
α0

Fig. 9. Initial alignment

Slicing. When defining type compatibility in TinyBang, a subtle problem arises
which did not appear in the evaluation system. In the evaluation system, each
variable is guaranteed to have a single assignment; thus, a premise of value
compatibility in Figure 5 such as “x1 = l x0 ∈ E” is unambiguous. This is not
so in the type system: a single type variable may have multiple lower bounds.
Such type variables represent union types and present subtle challenges. For
instance, consider a direct translation of Figure 5 to the type system (replacing
all x with α, all B with F , all φ with V , and so on). In the resulting relation, the
informal type ‘Aα∪ ‘Bα would appear to match the pattern ‘A _ &‘B _: we can
prove that the argument type variable has a ‘A lower bound and, independently,
we can prove that it has a ‘B lower bound. This is an instance of the well-
known union elimination problem: we must be consistent in our view of how
case analysis on unions is performed. Because TinyBang’s dispatch on functions
has weak dependent typing properties, this imprecision would be unsound if not
addressed: if the type system erroneously concludes that the argument matches
the ‘A _ &‘B _ pattern, this imprecision may cause it not to consider a lower
priority function which is actually invoked at runtime.

We solve this problem by defining a slicing relation to eliminate unions before
checking compatibility. This ensures that our union eliminations are consistent
(because they are performed before, not during, compatibility checking) and ad-
ditionally provides us with a refined form of the argument to use in typechecking
the function body. Slicing eliminates the above soundness concern because the
argument is first separated into the distinct ‘Aα and ‘Bα slices and compatibil-
ity is checked for each of them separately. Note that union elimination must be
complete up to the depth of the pattern; otherwise, union alignment problems
will begin where the elimination stopped.

We write α\V � α′\C to indicate that α\V is a slice of the constrained type
α′\C; this relation is defined as follows:

Types for Flexible Objects 113

Leaf

α �∈ V

α\V � α\C

Atomic

τ not of the form l α1 or α1 &α2 τ <: α ∈ V τ <: α′ ∈ C

α\V � α′\C
Label

l α1 <: α0 ∈ V l α′
1 <: α′

0 ∈ C α1\V � α′
1\C

α0\V � α′
0\C

Onion

α1 &α2 <: α0 ∈ V α′
1 &α

′
2 <: α′

0 ∈ C α1\V � α′
1\C α2\V � α′

2\C
α0\V � α′

0\C

Fig. 10. The slice relation for union elimination

Definition 1. α\V � α′\C is the least relation defined by the rules in Figure 10.
Slices α\V of α′\C additionally must always be

– well-formed: each α′′ in V has at most one lower bound in V ,
– disjoint: τ <: α′′ ∈ V implies that α′′ does not appear in C, and
– minimal: every upper-bounding α′′ in V is either α or appears in a lower

bound in V .
– acyclic: there exists a preorder on type variables in V s.t. α1 < α2 when

τ <: α2 ∈ V and α1 appears in τ

One nuance of slicing is that the Leaf rule can allow slicing to stop at an
arbitrary point - in practice the data is sliced as deep as the pattern requires it,
but it is possible to slice too shallowly by this relation, in which case a partial
match is all that is obtained, a topic discussed below.

Compatibility. Using the above slicing relation, we can now define the type
compatibility relation. Because a slice is a union-free representation of a type
up to some depth, we can define compatibility in much the same way as we did
in the evaluation system. As mentioned above, however, slicing may stop at an
arbitrary point.

To handle partial slices, we define the type compatibility relation to filter out
slices which are too shallow. In addition to being compatible (�) or incompat-
ible (�), type compatibility may show that a slice and a pattern are partially
compatible (��), meaning that the slice lines up with the pattern correctly but
is insufficiently deep. We use the metavariable
 to range over this extension to
the � grammar. As in value compatibility, we view these symbols as ordered:� < �� < �. We define type system compatibility as the least relation satisfying
the rules appearing in Figure 11.

Figure 12 shows an example of slicing and compatibility on a recursive type:
Peano integers. Here, α is a union type between a successor and a zero. We
consider matching Peano integers against two patterns (written here in nested
form): ‘Z () and ‘S ‘S (). (Recall that () in patterns means “match anything.”)
The topmost slice matches the first pattern directly. The middle slice is partial
after a single ‘S: it fails to match the ‘Z () pattern (we elide that arrow for
visual clarity) and partially matches the second pattern. The middle slice is

114 Z. Palmer et al.

Partial

�τ.τ <: α0 ∈ V

α0
��
V�∅

V ′ α
′
0

Empty Onion

τ <: α0 ∈ V () <: α′
0 ∈ V ′ F = {α0 <: α′

0}
α0

�
V�F

V ′ α′
0

Label

l α1 <: α0 ∈ V l α′
1 <: α′

0 ∈ V ′ α1
�
V�F

V ′ α′
1

α0
�
V�

F
V ′ α′

0

Conjunction Pattern

α′
1 &α

′
2 <: α′

0 ∈ V ′ α0
�1
V�

F1
V ′ α

′
1 α0

�2
V�

F2
V ′ α

′
2

α0
min(�1,�2)

V�
F1∪F2
V ′ α′

0

Onion Value Left

α1 &α2 <: α0 ∈ V α1
�
V�

F
V ′ α′

0 � �= �
α0

�
V�F

V ′ α′
0

Onion Value Right

α1 &α2 <: α0 ∈ V α′
1 &α

′
2 <: α′

0 �∈ V ′ α1
�
V�F ′

V ′ α′
0 α2

�
V�

F
V ′ α′

0

α0
�
V�F

V ′ α′
0

Label Mismatch

l α1 <: α0 ∈ V
τ <: α′

0 ∈ V ′ τ = l′ α2 only if l �= l′ τ not of the form α′
&α′′ or ()

α0
�
V�∅

V ′ α
′
0

Fig. 11. Type compatibility: does a type match a pattern?

insufficiently deep, indicating neither success nor failure. The bottommost slice
matches the second pattern completely; although it is also a partial slice, it is
deep enough that we can assert it would match that pattern regardless of how
it might be further expanded. In general, there is always a point at which we
can stop slicing: patterns are of fixed, finite depth, so every slice fixes as either
compatible or incompatible after a certain depth.

∪α =

‘S‘Z

()

argument type

‘Z ()

‘S ‘S α

‘S α

slice

slice
slice

some possible slices

‘Z ()

‘S ‘S

()

��
���

��

patterns

Fig. 12. Type compatibility example

Other than the additional concern of partial slices, type compatibility is much
like value compatibility; so, see Section 3.2 for more explanation of compatibility.

Matching. Type matching directly parallels expression matching. As in the
evaluation system, type matching propagates the result of compatibility and uses
the
 place to enforce left precedence of dispatch. Matching α0 α1

�
V0

�V1
α2\C′

is defined as the least relation satisfying the clauses in Figure 13.

Constraint Closure. Constraint closure can now be defined; each step of clo-
sure represents one forward propagation of constraint information and abstractly

Types for Flexible Objects 115

Function

(α′\V ′ → α\C) <: α0 ∈ V0 α1
�
V1
�F

V ′ α′

α0 α1
�
V0

�V1
α\C ∪ F

Non-Function

(α′\V ′ → α\C) <: α0 /∈ V0 α2 &α3 <: α0 /∈ V0

α0 α1
�
V0

�V1
α\C

Onion Left

α2 &α3 <: α0 ∈ V0 α2 α1
�
V0

�V1
α\C � �= �

α0 α1
�
V0

�V1
α\C

Onion Right

α2 &α3 <: α0 ∈ V0 α2 α1
�
V0

�V1
α′\C′ α3 α1

�
V0

�V1
α\C

α0 α1
�
V0

�V1
α\C

Fig. 13. Type application matching

models a single step of the operational semantics. This closure is implicitly de-
fined in terms of an abstract polymorphism framework defined by two functions.
The first, Φ, is analogous to the α(−) freshening function of the operational
semantics. For decidability, however, we do not want Φ to freshen every vari-
able uniquely; it only performs some α-substitution on the constrained type.
We write Φ(C,α) to indicate the freshening of the variables in C. The additional
parameter α describes the call site at which the polyinstantiation took place;
this is useful for some polymorphism models.

The second function, Υ , unifies type variables by producing type variable
equivalence relations. In particular, each of the above relations – slicing, com-
patibility, and matching – is actually defined to take an equivalence relation as
an implicit parameter. In their definitions, we consider type variables in sets
up to their equivalences by this relation; for instance, we read τ <: α /∈ V as
�α′. τ <: α′ ∈ V ∧α ∼= α′. For simplicity, readers may consider the monomorphic
system given by ΦMono(C,α) = C and where the equivalence relation given by
ΥMono(−) is always equality; in this case, the definitions above can be read as
they are presented. We discuss our concrete choice of polymorphism model for
TinyBang in a Technical Report [MPRS14b].

We write C =⇒1 C′ to indicate a single step of constraint closure. This rela-
tion is defined as the least such that the rules in Figure 14 are satisfied. This
relation defines the equivalence to be used by the relations in its premises: at
each constraint closure step C =⇒1 C′, we take the type variable equivalence
relation to be Υ (C). We write C0 =⇒∗ Cn to indicate C0 =⇒1 . . . =⇒1 Cn.

Transitivity

{τ <: α1, α1 <: α2} ⊆ C

C =⇒1 C ∪ {τ <: α2}

Application

α0 α1 <: α2 ∈ C α′
0\V0 � α0\C

α′
1\V1 � α1\C α′

0 α′
1

�
V0

�V1
α′\C′ α′′\C′′ = Φ(α′\C′, α2)

C =⇒1 C ∪ V1 ∪ C′′ ∪ {α′′ <: α2}

Fig. 14. Type constraint closure single-step relation

The operational semantics has a definition for a “stuck” expression; the type
system analogue is the inconsistent constraint set, which we define as follows:

116 Z. Palmer et al.

Definition 2 (Inconsistency). A constraint set C is inconsistent iff, under
the equivalence Υ (C), there exists some α0 α1 <: α2 ∈ C and α′

0\V0 � α1\C
and α′

1\V1 � α1\C such that α′
0 α′

1
�
V0

�V1
α′\C′. A constraint set which is not

inconsistent is consistent.

Informally, inconsistency captures the cases in which an expression can get stuck.
Given the above, we define what it means for a program to be type correct:

Definition 3 (Typechecking). A closed expression e typechecks iff �e�e =
α\C and C =⇒∗ C′ implies that C′ is consistent.

Formal Properties. We now state formal assertions regarding our type system.
For reasons of space, we give proofs for each of these statements in [MPRS14b].
We begin with soundness which we prove by simulation: the A-translation of the
program and the careful alignment between each of the relations in the system
makes simulation a natural choice. We may state soundness as follows:

Theorem 1 (Soundness). If e −→∗ e′ for stuck e′ then e doesn’t typecheck.

This result is proven in Appendix A of [MPRS14b].
We must also show typechecking to be decidable. Our strategy is to demon-

strate that the constraint closure of a finite constraint set C forms a subset
inclusion lattice and that it is sufficient (and computable) to check the consis-
tency of the top of that lattice. Because constraint closure is parametric in the
polymorphism model, we must impose some requirements on the model. First,
it must be finitely freshening: Φ must introduce finitely many variables into any
produced constraint set given an initial constraint set. Second, to ensure conver-
gence, polymorphism must be equivalence monotone: a constraint superset must
induce monotonically more equivalences in Υ . See [MPRS14b] for the definition
of a flexible polymorphism model with these properties.

Although the above restricts the polymorphism model to introduce finitely
many variables to constraint closure, we have not bounded the number of vari-
ables introduced by slicing. The type system presented in this paper is oversim-
plified for legibility and does not bound the number of slice variables introduced;
it is therefore undecidable. The solution to this problem is to introduce an occur-
rence check in slicing to prevent a single slice from making the same decision for
the same variable at the same pattern multiple times. This approach is similar
to determining whether the intersection of two regular trees is empty. While the
type system is very slightly weakened by this modiciation, the examples in this
paper are unaffected and the resulting system is intuitive and decidable.

Theorem 2 (Decidability). Typechecking with the above modification and a
finitely freshening, equivalence monotone polymorphism model is decidable.

4 Related Work

TinyBang’s object resealing is inspired by the Bono-Fisher object calculus
[BF98], in which mixins and other higher-order object transformations are

Types for Flexible Objects 117

written as functions. Objects in this calculus must be “sealed” before they are
messaged; unlike our resealing, sealed objects cannot be extended. Some related
works relax this restriction but add others [RS02,BBV11].

Typed multimethods [MC99] perform a dispatch similar to TinyBang’s dis-
patch on compound functions, but multimethod dispatch is nominally typed
while compound function dispatch is structurally typed. First-class cases
[BAC06] allow composition of case branches much like TinyBang. In [BAC06],
however, general case concatenation requires case branches to be written in CPS
and requires a phase distinction between constructing a case and matching with
it. TinyBang has a form of dependent type which allows different case branches
to return different types; this generalizes the expressiveness of conditional con-
straints [AWL94,Pot00] and is related to support for typed first-class messages
a la [Nis98,Pot00] – first-class messages are just labeled data in our encoding.

TinyBang shares several features and goals with CDuce [CNX+14]: both aim
to be flexible languages built around constraint subtyping. CDuce supports
dependently-typed case results as we do, but it does not slice on the pattern
side and so does not bind refined types. CDuce lacks a typed record append op-
eration and so the object encodings of this paper are not possible there. CDuce
takes a local type inference approach; this has the advantage of being modular
but the disadvantage of not being complete, requiring type annotations in some
cases, and the decidability of their inference algorithm remains open.

TinyBang’s onions are unusual in that they are a form of record supporting
typed asymmetric concatenation. The bulk of work on typing record extension
addresses symmetric concatenation only [Rémy94]. Standard typed record-based
encodings of inheritance [BCP99] avoid the problem of typing first-class concate-
nation by reconstructing records rather than extending them, but this requires
the superclass to be fixed statically. A combination of conditional constraints
and row types can be used to type record extension [Pot00]; TinyBang uses a
different approach that does not need row types.

There have been many attempts to bring static typing to existing scripting
languages; two of the more recent systems include [CRJ12,FAFH09]. The ma-
jority of such systems require some explicit type annotations, and invariably
are incomplete since an uncomputable problem is being solved: the languages
contain too many fundamentally dynamic operations (e.g. mutable object ex-
tension). Once a type system loses information on a dynamic operation, it is
difficult to recover. One primary tenant of this project’s design philosophy is to
build a language from the beginning with flexible but fully static typing; this
way, there will never be a need to attempt such recovery.

5 Conclusions

We presented TinyBang, a core language with a static type inference system
that types such flexible operations without onerous false type errors or the need
for manual programmer annotation. We believe TinyBang solves a longstanding
open problem: it infers types for object-oriented programs without compromising

118 Z. Palmer et al.

the expressiveness of object subtyping or of object extension. This is possible
due to a combination of novel features in TinyBang: asymmetric concatenation,
first-class dependently-typed cases, slicing for type refinement, and a flexible
non-let-based polymorphism model.

TinyBang is proved type sound; the proofs are found in the supplementary
appendices. We have implemented the type inference algorithm and interpreter
for TinyBang to provide a cross-check on the soundness of our ideas; the im-
plementation can be downloaded from [MPRS14a]. Type inference is decidable
but not provably polynomial for the same reason that let-polymorphism is not:
artificial programs exist which will exhibit exponential runtimes. However, all
of the examples in Section 2 typecheck in our implementation without expo-
nential blowup, and we have designed the polymorphism model with practical
performance in mind. We do not expect programmers to write in TinyBang. In-
stead, programmers would write in BigBang, a language we are developing which
includes syntax for objects, classes, and so on, and which desugars to TinyBang.

TinyBang infers extremely precise types, especially in conjunction with the
context-sensitive polymorphism model described in [MPRS14b]. While powerful,
these types are by nature difficult to read and defy modularization. Addressing
the problem of readability is part of our broader research agenda.

References

AWL94. Aiken, A., Wimmers, E.L., Lakshman, T.K.: Soft typing with conditional
types. In: POPL 21, pp. 163–173 (1994)

BAC06. Blume, M., Acar, U.A., Chae, W.: Extensible programming with first-class
cases. In: ICFP, pp. 239–250 (2006)

BBV11. Bettini, L., Bono, V., Venneri, B.: Delegation by object composition. Sci-
ence of Computer Programming 76, 992–1014 (2011)

BCP99. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing object encodings. In-
formation and Computation 155(1-2), 108–133 (1999)

BF98. Bono, V., Fisher, K.: An imperative, first-order calculus with object ex-
tension. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 462–497.
Springer, Heidelberg (1998)

CNX+14. Castagna, G., Nguyen, K., Xu, Z., Im, H., Lenglet, S., Padovani, L.: Poly-
morphic functions with set-theoretic types. Part 1: Syntax, semantics, and
evaluation. In: POPL (2014)

CRJ12. Chugh, R., Rondon, P.M., Jhala, R.: Nested refinements: A logic for duck
typing. In: POPL (2012)

FAFH09. Furr, M., (David) An, J.-H., Foster, J.S., Hicks, M.: Static type inference
for Ruby. In: SAC (2009)

MC99. Millstein, T.D., Chambers, C.: Modular statically typed multimethods. In:
Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 279–303. Springer,
Heidelberg (1999)

MPRS14a. Menon, P.H., Palmer, Z., Rozenshteyn, A., Smith, S.: Tinybang implemen-
tation (March 2014),
http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz

http://pl.cs.jhu.edu/big-bang/tiny-bang_2014-03-01.tgz

Types for Flexible Objects 119

MPRS14b. Menon, P.H., Palmer, Z., Rozenshteyn, A., Smith, S.: Types for flexible ob-
jects. Technical report, The Johns Hopkins University Programming Lan-
guages Laboratory (March 2014), http://pl.cs.jhu.edu/
big-bang/types-for-flexible-objects 2014-03-25.pdf

Nis98. Nishimura, S.: Static typing for dynamic messages. In: POPL (1998)
Pot00. Pottier, F.: A versatile constraint-based type inference system. Nordic J.

of Computing 7(4), 312–347 (2000)
Rémy94. Rémy, D.: Type inference for records in a natural extension of ML. In:

Theoretical Aspects of Object-Oriented Programming. MIT Press (1994)
RS02. Riecke, J.G., Stone, C.A.: Privacy via subsumption. Inf. Comput. 172(1),

2–28 (2002)
SM01. Shields, M., Meijer, E.: Type-indexed rows. In: POPL, pp. 261–275 (2001)
WS01. Wang, T., Smith, S.F.: Precise constraint-based type inference for Java. In:

Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 99–177.
Springer, Heidelberg (2001)

http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_2014-03-25.pdf
http://pl.cs.jhu.edu/big-bang/types-for-flexible-objects_2014-03-25.pdf

A Translation of Intersection and

Union Types for the λμ-Calculus

Kentaro Kikuchi1 and Takafumi Sakurai2

1 RIEC, Tohoku University, Sendai, Japan
2 Department of Mathematics and Informatics, Chiba University, Japan

Abstract. We introduce an intersection and union type system for the
λμ-calculus, which includes a restricted version of the traditional union-
elimination rule. We give a translation from intersection and union types
into intersection and product types, which is a variant of negative trans-
lation from classical logic to intuitionistic logic and naturally reflects
the structure of strict intersection and union types. It is shown that a
derivation in our type system can be translated into a derivation in the
type system of van Bakel, Barbanera and de’Liguoro. As a corollary, the
terms typable in our system turn out to be strongly normalising. We also
present an intersection and union type system in the style of sequent cal-
culus, and show that the terms typable in the system coincide with the
strongly normalising terms of the λμ-calculus, a call-by-name fragment
of Curien and Herbelin’s λμμ̃-calculus.

1 Introduction

Since Griffin’s seminal work [14], the Curry-Howard correspondence for classical
logic has been extensively studied and has yielded various term systems, e.g.
the calculi in [7,19,9]. Some of those systems can be considered as calculi with
control operators which deal with first-class continuations. Parigot’s λμ-calculus
[19] is one of such systems, and since it is a syntactical extension of the usual
λ-calculus, the type-free version of the calculus, called pure λμ-calculus in [19],
has also been studied.

As a type assignment system for type-free λμ-terms, van Bakel, Barbanera
and de’Liguoro [5] recently introduced an intersection type system to develop
model theory of the calculus. The system includes not only intersection types
but also product types, and so looks involved at first sight. However, the system
can be naturally understood in the light of the negative translation used in [21],
and indeed the simply typed part of the λμ-calculus is interpreted by the systems
with intersection and product types in [5,6].

Another approach to providing a type assignment system for type-free λμ-
terms is to employ a system with intersection and union types. In this approach,
simple types inhabited by some terms correspond to implicational formulas that
are provable in classical logic, and union types are used for continuations to
have more than one type. There are two intersection and union type systems
for the λμ-calculus in the literature [18,3]. In this paper we introduce another

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 120–139, 2014.
c© Springer International Publishing Switzerland 2014

A Translation of Intersection and Union Types for the λμ-Calculus 121

intersection and union type system where, unlike in the systems of [18,3], union-
introduction and elimination rules correspond to the usual or-introduction and
elimination rules in natural deduction. It is well-known in the context of λ-
calculus that the presence of such a standard union-elimination rule causes diffi-
culties for the subject reduction property (cf. [8]). So we impose some restrictions
on terms in the premisses of the union-elimination rule, expecting that the sys-
tem enjoys the subject reduction property (though in this paper we focus on
translations between systems and leave a proof of it for future work).

To clarify the relation between the two kinds of type systems, we introduce a
translation from intersection and union types to intersection and product types.
As in the previous systems [18,3], the types occurring in our system are the
strict version of intersection and union types (cf. [1,4]). Our translation is defined
along the structure of this class of types. Using the translation, we show that each
derivation in our system can be transformed into a derivation in the system of [6].
This implies strong normalisation of terms typable in our system. Since strong
normalisation has not been treated in [18,3], this is a new result on intersection
and union type systems for the λμ-calculus.

In the latter half of the paper, we introduce and study an intersection and
union type system for a call-by-name fragment of Curien and Herbelin’s λμμ̃-
calculus [9]. It is shown that the system enjoys both the subject reduction prop-
erty and the characterisation of strong normalisation by means of typability.
To prove one direction of the characterisation, we use the strong normalisation
result mentioned above, together with a transformation from derivations in the
type system into derivations in the above type system for the λμ-calculus and
simulation of each reduction step in the calculus by at least one reduction step in
the λμ-calculus. The transformation of derivations clarifies the relation between
the type systems (in particular, the left-union and the union-elimination rules).

One of the reasons to study systems based on sequent calculus, such as
the λμμ̃-calculus, is that they embody both logical and computational dual-
ity more explicitly than systems based on natural deduction. Since union types
are thought to be dual to intersection types, a system with both types was
proposed in [10,11] for the λμμ̃-calculus. The system employs definite types in
type environments whereas our system uses strict types similarly to the systems
for the λμ-calculus. Restricting types to definite ones is, however, not enough
to satisfy the subject reduction property, even in the case of call-by-name or
call-by-value reduction, as pointed out in [12,2]. The system in [12], which uses
intersection types and an involution operator rather than union types, does not
satisfy subject reduction either, as illustrated in Section 8 of [2].

To recover the subject reduction property of an intersection and union type
system for the λμμ̃-calculus, another restriction is required. A crucial restriction
is given in Definition 23(i) of [2] for the case of call-by-name reduction, which is
also thought to be dual to the value restriction in call-by-value functional lan-
guages (for the second-order quantification case). Since the calculus we study in
this paper does not have the μ̃-operator, the restriction is automatically satis-
fied. Our result seems to be the first characterisation of strong normalisation of

122 K. Kikuchi and T. Sakurai

(a fragment of) the λμμ̃-calculus by means of typability in an intersection and
union type system that enjoys the subject reduction property.

The organisation of the paper is as follows. In Section 2 we discuss type
systems for the λμ-calculus and their relationships. In Section 3 we introduce
a type system for a call-by-name fragment of the λμμ̃-calculus and study its
properties. In Section 4 we conclude and give suggestions for further work.

To save space we omit some of the details in proofs, but a longer paper [17]
is available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/.

2 Intersection and Union Types for the λμ-Calculus

In this section we introduce a new intersection and union type system for the
λμ-calculus, and discuss the relationships to systems in previous work.

2.1 The λμ-Calculus

First we introduce the syntax of Parigot’s pure λμ-calculus [19].

Definition 1 (Grammar of λμ). The sets of terms and commands are defined
inductively by the following grammar:

M,N ::= x | λx.M | MN | μα.C (terms)
C ::= [α]M (commands)

where x and α range over denumerable sets of λ-variables and μ-variables, re-
spectively.

The notions of free and bound variables are defined as usual, with both λ
and μ as binders. The sets of free λ-variables and μ-variables of a term M are
denoted by FVλ(M) and FVμ(M), respectively. We identify α-convertible terms
and use ≡ to denote syntactic equality modulo α-conversion.

Definition 2 (Reduction System of λμ). The reduction rules are:

(β) (λx.M)N → M [x := N]

(μ) (μα.C)N → μα.C[α⇐N]

where [x := N] is usual capture-free substitution, and [α⇐N] in the rule (μ)
replaces inductively each occurrence in C of the form [α]P by [α](PN).

The reduction relation −→β,μ is defined by the contextual closure of the rules
(β) and (μ). We use −→+

β,μ for its transitive closure, and −→∗
β,μ for its reflexive

transitive closure. A term M is said to be strongly normalising if there is no
infinite β, μ-reduction sequence out of M . The set of strongly normalising terms
is denoted by SNβ,μ. These kinds of notations are also used for the notions of
other reductions in this paper.

A Translation of Intersection and Union Types for the λμ-Calculus 123

2.2 An Intersection and Union Type System for the λμ-Calculus

In this subsection we introduce an intersection and union type system for the
λμ-calculus. The types we consider here can be seen as an extension of strict in-
tersection types [1,4]. We distinguish three kinds of types, following the definition
in [18] (without the empty intersection).

Definition 3. The sets TA, TI and TU of three kinds of types are defined in-
ductively by the following grammar:

TA : A,B ::= ϕ | I → U (arrow types)
TI : I, J ::= U | I ∩ J (intersection types)
TU : U, V ::= A | U ∪ V (union types)

where ϕ ranges over a denumerable set of type variables. We identify types mod-
ulo associativity and commutativity of ∩ and ∪, and use ≡ to denote the equiv-
alence.

The type assignment system λμ∩∪ is defined by the rules in Figure 1. A type
environment, ranged over by Γ , is defined as a finite set of pairs {x1 : I1, . . . , xn :
In} where the λ-variables are pairwise distinct. The type environment Γ, x : I
denotes the union Γ ∪ {x : I} where x does not appear in Γ . Similarly for type
environments with μ-variables {α1 : U1, . . . , αn : Um}, ranged over by Δ, except
that the types are restricted to union types. We write Γ
∩∪ M : I | Δ if
Γ
 M : I | Δ is derivable with the rules in Figure 1.

Γ, x : I � x : I | Δ
(Ax)

Γ �M : U | α : U,Δ

Γ � μα.[α]M : U | Δ
(μ1)

Γ �M : V | α : U, γ : V,Δ

Γ � μα.[γ]M : U | γ : V,Δ
(μ2)

Γ, x : I �M : U | Δ
Γ � λx.M : I → U | Δ

(→ I)
Γ �M : I → U | Δ Γ � N : I | Δ

Γ �MN : U | Δ
(→ E)

Γ �M : I | Δ Γ �M : J | Δ
Γ �M : I ∩ J | Δ

(∩ I)

Γ �M : I ∩ J | Δ
Γ �M : I | Δ

(∩E)
Γ �M : I ∩ J | Δ
Γ �M : J | Δ

(∩E)

Γ �M : U | Δ
Γ �M : U ∪ V | Δ

(∪ I)
Γ �M : V | Δ

Γ �M : U ∪ V | Δ
(∪ I)

Γ �M : U ∪ V | Δ Γ, x : U � xN : I | Δ Γ, x : V � xN : I | Δ
Γ �MN : I | Δ

(∪E)

where x /∈ FVλ(N)

Fig. 1. Type assignment system λμ∩∪

124 K. Kikuchi and T. Sakurai

The rule (∪E) in Figure 1 is a rather restricted version of the traditional
union-elimination rule that would have the form:

Γ �M : U ∪ V | Δ Γ, x : U � N : I | Δ Γ, x : V � N : I | Δ
Γ � N [x := M] : I | Δ

This general version causes the subject-reduction problem as in the case of an
intersection and union type system for λ-terms (cf. [8]). Though our rule (∪E)
might look too restrictive, the system λμ∩∪ is more general than the intersection
and union type systems proposed in [18] and [3] in the sense that if a term is
typable in one of their systems without the empty intersection then it is typable
in λμ∩∪ (cf. Subsection 2.4). An example of a judgement that is derivable in
λμ∩∪ but not in the systems in [18,3] is x : ϕ1
 x : ϕ1 ∪ ϕ2 | .

Example 1. The term (μα.[α](λy.μγ.[α]y))z is typable in the system λμ∩∪ as
follows. Let A ≡ ϕ1 → ϕ2 and Γ = {z : ϕ1 ∩ A}, and let D1 be the following
derivation:

Γ, y : A � y : A | γ : ϕ3, α : A ∪ (A→ ϕ3)
(Ax)

Γ, y : A � y : A ∪ (A→ ϕ3) | γ : ϕ3, α : A ∪ (A→ ϕ3)
(∪ I)

Γ, y : A � μγ.[α]y : ϕ3 | α : A ∪ (A→ ϕ3)
(μ2)

Γ � λy.μγ.[α]y : A→ ϕ3 | α : A ∪ (A→ ϕ3)
(→ I)

Γ � λy.μγ.[α]y : A ∪ (A→ ϕ3) | α : A ∪ (A→ ϕ3)
(∪ I)

Γ � μα.[α](λy.μγ.[α]y) : A ∪ (A→ ϕ3) |
(μ1)

Let D2 be the following derivation:

Γ, x : A � x : A |
(Ax)

Γ, x : A � z : ϕ1 ∩ A |
(Ax)

Γ, x : A � z : ϕ1 |
(∩E)

Γ, x : A � xz : ϕ2 |
(→ E)

Γ, x : A � xz : ϕ2 ∪ ϕ3 |
(∪ I)

Let D3 be the following derivation:

Γ, x : A→ ϕ3 � x : A→ ϕ3 |
(Ax)

Γ, x : A→ ϕ3 � z : ϕ1 ∩A |
(Ax)

Γ, x : A→ ϕ3 � z : A |
(∩E)

Γ, x : A→ ϕ3 � xz : ϕ3 |
(→ E)

Γ, x : A→ ϕ3 � xz : ϕ2 ∪ ϕ3 |
(∪ I)

Then by applying the rule (∪E) to the conclusions of D1, D2 and D3, we obtain
a derivation of Γ
 (μα.[α](λy.μγ.[α]y))z : ϕ2 ∪ ϕ3 | . Note that this term is not
typable without using the rules for ∪. !

Lemma 1.

1. If Γ
∩∪ t : I | Δ and x is a fresh λ-variable then Γ, x : J
∩∪ t : I | Δ.

A Translation of Intersection and Union Types for the λμ-Calculus 125

2. If Γ
∩∪ t : I | Δ and α is a fresh μ-variable then Γ
∩∪ t : I | α : U,Δ.

Proof. By induction on the derivations. !

Lemma 2. The following rule is admissible in the system λμ∩∪.

Γ �M : U1 ∪ · · · ∪ Un | Δ Γ, x : U1 � xN : I | Δ · · · Γ, x : Un � xN : I | Δ
Γ �MN : I | Δ

(∪E)n

where n ≥ 2 and x /∈ FVλ(N).

2.3 The Type System of van Bakel, Barbanera and de’Liguoro

In this subsection we briefly recall the intersection type system in [6] which also
uses product types. The system is a modification of the system in [5], which was
inspired by denotational semantics developed in [21].

The intersection-free part of the system can be seen as the image of negative
translation from the implication fragment of classical logic into the conjunction
and negation fragment of intuitionistic logic (viewing × as conjunction and→ ν
as negation). However, unlike in a CPS-translation, only types are translated in
the image while terms are not changed from those in the λμ-calculus.

Definition 4. The sets TD of term types and TC of continuation-stack types
are defined inductively by the following grammar:

TD : δ ::= ν | ω → ν | κ → ν | δ ∧ δ
TC : κ ::= δ × ω | δ × κ | κ ∧ κ

where ν and ω are type constants. Elements of TD∪TC are ranged over by σ, τ, ρ.

The relations ≤D and ≤C on TD and TC , respectively, are defined by the rules
in Figure 2, where ≤A denotes either ≤D or ≤C .

σ ≤A σ σ ∧ τ ≤A σ σ ∧ τ ≤A τ

ν ≤D ω → ν ω → ν ≤D ν δ1 × δ2 × ω ≤C δ1 × ω

(δ1 × ω) ∧ (δ2 × κ) ≤C (δ1 ∧ δ2)× κ (δ1 × κ1) ∧ (δ2 × κ2) ≤C (δ1 ∧ δ2)× (κ1 ∧ κ2)
where κ1 �= ω and κ2 �= ω

σ ≤A ρ ρ ≤A τ

σ ≤A τ

σ ≤A τ1 σ ≤A τ2
σ ≤A τ1 ∧ τ2

δ1 ≤D δ2
δ1 × ω ≤C δ2 × ω

δ1 ≤D δ2 κ1 ≤C κ2

δ1 × κ1 ≤C δ2 × κ2

κ2 ≤C κ1

κ1 → ν ≤D κ2 → ν

Fig. 2. Relations ≤D and ≤C

126 K. Kikuchi and T. Sakurai

Γ, x : δ � x : δ | Δ
(Ax)

Γ �M : κ→ ν | α : κ,Δ

Γ � μα.[α]M : κ→ ν | Δ
(μν

1)
Γ �M : κ′ → ν | α : κ, γ : κ′,Δ

Γ � μα.[γ]M : κ→ ν | γ : κ′,Δ
(μν

2)

Γ, x : δ �M : κ→ ν | Δ
Γ � λx.M : δ × κ→ ν | Δ

(Abs)
Γ �M : δ × κ→ ν | Δ Γ � N : δ | Δ

Γ �MN : κ→ ν | Δ
(App)

where κ is either a type in TC or ω where κ is either a type in TC or ω

Γ �M : δ | Δ Γ �M : δ′ | Δ
Γ �M : δ ∧ δ′ | Δ

(∧)
Γ �M : δ | Δ δ ≤D δ′

Γ �M : δ′ | Δ
(≤)

Fig. 3. Type assignment system λμ∧×

Lemma 3. (δ1 ∧ · · · ∧ δn)× (κ1 ∧ · · · ∧ κn) ≤C (δ1 × κ1) ∧ · · · ∧ (δn × κn).

Proof. By δ1∧· · ·∧δn ≤D δi and κ1∧· · ·∧κn ≤C κi, we have (δ1∧· · ·∧δn)×(κ1∧
· · ·∧κn) ≤C δi×κi for each i ∈ {1, . . . , n}. Hence (δ1∧· · ·∧δn)×(κ1∧· · ·∧κn) ≤C

(δ1 × κ1) ∧ · · · ∧ (δn × κn). !

The type assignment system λμ∧× is defined by the rules in Figure 3. We
write Γ
∧× M : δ | Δ if Γ
 M : δ | Δ is derivable with the rules of Figure 3.

In [6], it was shown that strongly normalising terms are characterised by
means of typability in the system λμ∧×. The following is one direction of the
characterisation theorem.

Theorem 1 ([6]). If Γ
∧× M : δ | Δ for some Γ, δ and Δ, then M ∈ SNβ,μ.

2.4 A Translation of Intersection and Union Types

Now we introduce a translation of intersection and union types into intersection
and product types, extending the translation of simple types in [6]. The trans-
lation is defined along the structure of the three kinds of types in Definition 3.
The aim is to prove strong normalisation of terms typable in λμ∩∪, using this
translation and the strong normalisation result of terms typable in λμ∧×.

Definition 5. The mappings (·)D : TI → TD and (·)C : TU → TC are defined
inductively as follows:

ϕC := ν × ω
(I → U)C := ID × UC

(U ∪ V)C := UC ∧ V C

UD := UC → ν
(I ∩ J)D := ID ∧ JD

A Translation of Intersection and Union Types for the λμ-Calculus 127

It can be easily verified that the above mappings are well-defined. We extend
the mappings to type environments by ΓD := {x : ID | x : I ∈ Γ} and ΔC :=
{α : UC | α : U ∈ Δ}.

Proving the preservation of derivability in λμ∩∪ by the translation requires
some observations on the system λμ∧×. We give a detailed proof of it in [17]. Here
we instead show the preservation of derivability in the system that is obtained
from λμ∩∪ by replacing the rules (→ E) and (∪E) with the following one:

Γ �M : (I1→U1) ∪ · · · ∪ (In→Un) | Δ Γ � N : I1 | Δ · · · Γ � N : In | Δ
Γ �MN : U1 ∪ · · · ∪ Un | Δ

(→E)′

where n ≥ 1. This rule is the same as one of the rules of the intersection and union
type system in [3]. A similar rule also appeared in [18]. We write Γ
∩∪′ M : δ | Δ
if Γ
 M : δ | Δ is derivable in this alternative system. By using the rule (∪E)n

in Lemma 2, we see that the rule (→ E)′ is derivable in the original system λμ∩∪,
so Γ
∩∪′ M : δ | Δ implies Γ
∩∪ M : δ | Δ.

Theorem 2. If Γ
∩∪′ M : I | Δ then ΓD
∧× M : ID | ΔC .

Proof. By induction on the derivation of Γ
∩∪′ M : I | Δ. Here we consider
some cases.

• Γ �M : V | α : U, γ : V,Δ

Γ � μα.[γ]M : U | γ : V,Δ
(μ2)

By the induction hypothesis, we have ΓD
∧× M : V D | α : UC , γ : V C , ΔC

where V D ≡ V C → ν. Then by the rule (μν
2), we obtain ΓD
∧× μα.[γ]M :

UC → ν | γ : V C , ΔC .

• Γ, x : I �M : U | Δ
Γ � λx.M : I → U | Δ

(→ I)

By the induction hypothesis, we have ΓD, x : ID
∧× M : UD | ΔC where
UD ≡ UC → ν. Then by the rule (Abs), we obtain ΓD
∧× λx.M : ID ×
UC → ν | ΔC where ID × UC → ν ≡ (I → U)C → ν ≡ (I → U)D.

• Γ �M : U | Δ
Γ �M : U ∪ V | Δ

(∪ I)

By the induction hypothesis, we have ΓD
∧× M : UD | ΔC where UD ≡
UC → ν. From the definition of ≤D, we have UC → ν ≤D UC ∧ V C → ν.
Hence by the rule (≤), we obtain ΓD
∧× M : UC ∧ V C → ν | ΔC where
UC ∧ V C → ν ≡ (U ∪ V)C → ν ≡ (U ∪ V)D.

• Γ �M : (I1→U1) ∪ · · · ∪ (In→Un) |Δ Γ � N : I1 |Δ · · · Γ � N : In |Δ
Γ �MN : U1 ∪ · · · ∪ Un |Δ

(→E)′

By the induction hypothesis, we have ΓD
∧× M : ((I1 → U1)∪ · · · ∪ (In →
Un))

D | ΔC and, for all i ∈ {1, . . . , n}, ΓD
∧× N : IDi | ΔC . Then by the

128 K. Kikuchi and T. Sakurai

rule (∧), we have ΓD
∧× N : ID1 ∧ · · · ∧ IDn | ΔC . Now

((I1 → U1) ∪ · · · ∪ (In → Un))
D ≡ ((I1 → U1) ∪ · · · ∪ (In → Un))

C → ν

≡ (I1 → U1)
C ∧ · · · ∧ (In → Un)

C → ν

≡ (ID1 × UC
1) ∧ · · · ∧ (IDn × UC

n)→ ν

≤D (ID1 ∧ · · · ∧ IDn)× (UC
1 ∧ · · · ∧ UC

n)→ ν
(by Lemma 3)

Hence by the rules (≤) and (App), we obtain ΓD
∧× MN : (UC
1 ∧ · · · ∧

UC
n) → ν | ΔC where (UC

1 ∧ · · · ∧ UC
n) → ν ≡ (U1 ∪ · · · ∪ Un)

C → ν ≡
(U1 ∪ · · · ∪ Un)

D. !

Corollary 1. If Γ
∩∪′ M : I | Δ for some Γ, I and Δ, then M ∈ SNβ,μ.

Proof. By Theorems 1 and 2. !

The above corollary is enough to show strong normalisation of terms typable
in the systems (without the type constants) of [18] and [3]. We can also prove
the same result for the full system λμ∩∪. (See [17].)

Theorem 3. If Γ
∩∪ M : I | Δ then ΓD
∧× M : ID | ΔC .

Corollary 2. If Γ
∩∪ M : I | Δ for some Γ, I and Δ, then M ∈ SNβ,μ.

3 Intersection and Union Types for the λμ-Calculus

In the remainder of the paper, we are concerned with the λμ-calculus, a call-by-
name fragment of Curien and Herbelin’s λμμ̃-calculus [9]. We present an inter-
section and union type system that enjoys both the subject reduction property
and the characterisation of strongly normalising terms by means of typability.
The strong normalisation result in the previous section is used to prove one
direction of the characterisation theorem.

There are two main reasons to study here systems based on sequent calculus
instead of the λμ-calculus based on natural deduction. One is that they embody
the duality between call-by-name and call-by-value more explicitly than the λμ-
calculus does. Though we only deal with a call-by-name calculus in the present
paper, this leads to future investigations into call-by-value calculi. The other is
a more technical reason. In the presence of the syntactic category of contexts,
we can treat operation concerning μ-variables (i.e. [α⇐N] in Definition 2) as
usual capture-free substitution (i.e. [α := e] in Definition 7). This allows us to
prove properties of the systems, such as subject reduction, in a smoother way.

3.1 The λμ-Calculus

The λμ-calculus was originally introduced in [16] as an extension of the λ-calculus
[15,16]. Here we study a version in [9] that is a call-by-name fragment of the λμμ̃-
calculus.

A Translation of Intersection and Union Types for the λμ-Calculus 129

Definition 6 (Grammar of λμ). The sets of terms, contexts and commands
are defined inductively by the following grammar:

t, s ::= x | λx.t | μα.c (terms)
e ::= α | t · e (contexts)
c ::= 〈t | e〉 (commands)

where x and α range over denumerable sets of λ-variables and μ-variables, re-
spectively.

The syntax has three kinds of expressions: terms, contexts and commands.
Contexts are typically constructed from a μ-variable using the constructor ‘·’.
They can also be considered to have a hole in the position of the head variable.
So the command 〈t | e〉 is read as the result of filling the hole of e with a term t.

Definition 7 (Reduction System of λμ). The reduction rules are:

(β) 〈λx.t | s · e〉 → 〈t[x := s] | e〉
(μ) 〈μα.c | e〉 → c[α := e]

where both [x := s] and [α := e] are usual capture-free substitution.

The rule (β) corresponds to (β) of the λμ-calculus, while the rule (μ) corre-
sponds to consecutive applications of the rule (μ). A more precise correspondence
is shown in Theorem 6.

3.2 An Intersection and Union Type System for the λμ-Calculus

The type assignment system λμ∩∪ is defined by the rules in Figure 4. This type
system is a sequent calculus based on three kinds of judgements: Γ
 t : I | Δ,
Γ | e : I
 Δ and 〈t | e〉 : (Γ
 Δ). In the judgement Γ | e : I
 Δ, the type I
represents the type of the hole of the context e. So in the rule (L →), the hole
with type U in the right premiss is replaced, in the conclusion, by the hole with
type I → U applied to the term t which is typed with I in the left premiss.

We write Γ
−∩∪ t : I | Δ (resp. Γ | e : I
−∩∪ Δ and 〈t | e〉 : (Γ
−∩∪ Δ)) if
Γ
 t : I | Δ (resp. Γ | e : I
 Δ and 〈t | e〉 : (Γ
 Δ)) is derivable with the rules
in Figure 4.

One of the differences from the systems in [10,11,2] is that they use definite
types in type environments while we use the types in Definition 3. Definite types
are, roughly speaking, those which allow neither union types in the (immediate)
components of an intersection type nor intersection types in the (immediate)
components of a union type.

The next example shows that the command 〈μα.〈λy.μγ.〈y |α〉 |α〉 | z · δ〉 is
typable in the system λμ∩∪. Through the translation in the next subsection, this
command corresponds to [δ]((μα.[α](λy.μγ.[α]y))z) in the λμ-calculus, where the
subterm (μα.[α](λy.μγ.[α]y))z is the term treated in Example 1.

130 K. Kikuchi and T. Sakurai

Γ, x : I1 ∩ · · · ∩ In � x : Ii | Δ
(Ax)

Γ | α : Ui � α : U1 ∪ · · · ∪ Un,Δ
(Ax)

where i ∈ {1, . . . , n} where i ∈ {1, . . . , n}
Γ � t : I | Δ Γ | e : I � Δ

〈t | e〉 : (Γ � Δ)
(Cut)

c : (Γ � α : U,Δ)

Γ � μα.c : U | Δ
(MuAbs)

Γ � t : I | Δ Γ | e : U � Δ

Γ | t · e : I → U � Δ
(L→)

Γ, x : I � t : U | Δ
Γ � λx.t : I → U | Δ

(R→)

Γ | e : Ii � Δ

Γ | e : I1 ∩ I2 � Δ
(L∩)

Γ � t : I | Δ Γ � t : J | Δ
Γ � t : I ∩ J | Δ

(R∩)

where i ∈ {1, 2}
Γ | e : U � Δ Γ | e : V � Δ

Γ | e : U ∪ V � Δ
(L∪)

Γ � t : Ui | Δ
Γ � t : U1 ∪ U2 | Δ

(R∪)

where i ∈ {1, 2}

Fig. 4. Type assignment system λμ∩∪

Example 2. The command 〈μα.〈λy.μγ.〈y |α〉 |α〉 | z · δ〉 is typable in the system
λμ∩∪ as follows. Let A ≡ ϕ1 → ϕ2, Γ = {z : ϕ1 ∩ A} and Δ = {α : A ∪ (A →
ϕ3), δ : ϕ2 ∪ ϕ3}, and let D1 be the following derivation:

Γ, y : A � y : A | γ : ϕ3,Δ
(Ax)

Γ, y : A | α : A � γ : ϕ3, Δ
(Ax)

〈y |α〉 : (Γ, y : A � γ : ϕ3,Δ)
(Cut)

Γ, y : A � μγ.〈y |α〉 : ϕ3 | Δ
(MuAbs)

Γ � λy.μγ.〈y |α〉 : A→ ϕ3 | Δ
(→ I)

Γ | α : A→ ϕ3 � Δ
(Ax)

〈λy.μγ.〈y |α〉 |α〉 : (Γ � Δ)
(Cut)

Γ � μα.〈λy.μγ.〈y |α〉 |α〉 : A ∪ (A→ ϕ3) | δ : ϕ2 ∪ ϕ3
(MuAbs)

Let Δ′ = {δ : ϕ2 ∪ ϕ3}, and let D2 be the following derivation:

Γ � z : ϕ1 | Δ′ (Ax) Γ | δ : ϕ2 � Δ′ (Ax)

Γ | z · δ : A � Δ′ (L→)
Γ � z : A | Δ′ (Ax) Γ | δ : ϕ3 � Δ′ (Ax)

Γ | z · δ : A→ ϕ3 � Δ′ (L→)

Γ | z · δ : A ∪ (A→ ϕ3) � Δ′ (L∪)

Then by applying the rule (Cut) to the conclusions of D1 and D2, we obtain a
derivation of 〈μα.〈λy.μγ.〈y |α〉 |α〉 | z · δ〉 : (Γ
 Δ′). !

In the following we show some lemmas on properties of the system λμ∩∪.

Lemma 4.

1. If Γ
−∩∪ t : I1 ∩ · · · ∩ In | Δ then Γ
−∩∪ t : Ii | Δ for any i ∈ {1, . . . , n}.
2. If Γ | e : U1 ∪ · · · ∪ Un
−∩∪ Δ then Γ | e : Ui
−∩∪ Δ for any i ∈ {1, . . . , n}.

A Translation of Intersection and Union Types for the λμ-Calculus 131

Proof. By induction on the derivations. Note that if the last applied rule of the
derivation of Γ
−∩∪ t : I1 ∩ · · · ∩ In | Δ is (MuAbs), (R→) or (R∪), then n = 1,
and that the last applied rule of the derivation of Γ | e : U1 ∪ · · · ∪ Un
−∩∪ Δ is
not (L∩). !

Lemma 5 (Term Substitution Lemma). Let Γ
−∩∪ s : I | Δ.

1. If Γ, x : I
−∩∪ t : J | Δ then Γ
−∩∪ t[x := s] : J | Δ.
2. If Γ, x : I | e : J
−∩∪ Δ then Γ | e[x := s] : J
−∩∪ Δ.
3. If c : (Γ, x : I
−∩∪ Δ) then c[x := s] : (Γ
−∩∪ Δ).

Proof. By simultaneous induction on the derivations. In the case where Γ, x :
I
−∩∪ t : J | Δ is an axiom with t ≡ x, then we use Lemma 4(1). !

Lemma 6 (Context Substitution Lemma). Let Γ | e : U
−∩∪ Δ.

1. If Γ
−∩∪ t : I | α : U,Δ then Γ
−∩∪ t[α := e] : I | Δ.
2. If Γ | e′ : I
−∩∪ α : U,Δ then Γ | e′[α := e] : I
−∩∪ Δ.
3. If c : (Γ
−∩∪ α : U,Δ) then c[α := e] : (Γ
−∩∪ Δ).

Proof. By simultaneous induction on the derivations. In the case where Γ | e′ :
I
−∩∪ α : U,Δ is an axiom with e′ ≡ α, then we use Lemma 4(2). !

Lemma 7 (Generation Lemma)

1. If Γ | e : I
−∩∪ Δ then I ≡ U1 ∩ · · · ∩ Un and Γ | e : Ui
−∩∪ Δ for some Ui

(i ∈ {1, . . . , n}).
2. If Γ
−∩∪ λx.t : U | Δ then U ≡ A1 ∪ · · · ∪ An and Γ, x : I
−∩∪ t : V | Δ for

some Ai ≡ I → V (i ∈ {1, . . . , n}).
3. If Γ
−∩∪ μα.c : U | Δ then U ≡ U1 ∪ · · · ∪ Un and c : (Γ
−∩∪ α : Ui, Δ) for

some Ui (i ∈ {1, . . . , n}).
4. If Γ | t · e : U
−∩∪ Δ then U ≡ (I1 → V1) ∪ · · · ∪ (In → Vn), Γ
−∩∪ t : Ii | Δ

and Γ | e : Vi
−∩∪ Δ for any Ii → Vi (i ∈ {1, . . . , n}).

Proof. By induction on the derivations. !

We are now in a position to show that the system λμ∩∪ satisfies the subject
reduction property. First we prove the case where the reduction is at the root.

Lemma 8

1. If 〈μα.c | e〉 : (Γ
−∩∪ Δ) then c[α := e] : (Γ
−∩∪ Δ).
2. If 〈λx.t | s · e〉 : (Γ
−∩∪ Δ) then 〈t[x := s] | e〉 : (Γ
−∩∪ Δ).

Proof. 1. Let 〈μα.c | e〉 : (Γ
−∩∪ Δ). Then there exists I ≡ U1 ∩ · · · ∩ Un such
that Γ
−∩∪ μα.c : I | Δ and Γ | e : I
−∩∪ Δ. By Lemma 7(1), there exists
Ui such that Γ | e : Ui
−∩∪ Δ, and by Lemma 4(1), Γ
−∩∪ μα.c : Ui | Δ. So
by Lemma 7(3), Ui ≡ Ui1 ∪ · · · ∪ Uim and c : (Γ
−∩∪ α : Uik , Δ) for some
Uik . Then by Lemma 4(2), Γ | e : Uik
−∩∪ Δ. Hence by Lemma 6(3), we
have c[α := e] : (Γ
−∩∪ Δ).

132 K. Kikuchi and T. Sakurai

2. Let 〈λx.t | s · e〉 : (Γ
−∩∪ Δ). Then there exists I ≡ U1 ∩ · · · ∩ Un such that
Γ
−∩∪ λx.t : I | Δ and Γ | s · e : I
−∩∪ Δ. By Lemma 7(1), there exists Ui

such that Γ | s · e : Ui
−∩∪ Δ, and by Lemma 4(1), Γ
−∩∪ λx.t : Ui | Δ. So
by Lemma 7(2), Ui ≡ Ai1 ∪ · · · ∪ Aim and Γ, x : J
−∩∪ t : V | Δ for some
Aik ≡ J → V . Then by Lemma 7(4), Γ
−∩∪ s : J | Δ and Γ | e : V
−∩∪ Δ.
Now by Lemma 5(1), we have Γ
−∩∪ t[x := s] : V | Δ. Hence by the rule
(Cut), we obtain 〈t[x := s] | e〉 : (Γ
−∩∪ Δ). !

Theorem 4 (Subject Reduction)

1. If Γ
−∩∪ t : I | Δ and t−→β,μ t′ then Γ
−∩∪ t′ : I | Δ.

2. If Γ | e : I
−∩∪ Δ and e −→β,μ e′ then Γ | e′ : I
−∩∪ Δ.

3. If c : (Γ
−∩∪ Δ) and c−→β,μ c′ then c′ : (Γ
−∩∪ Δ).

Proof. By simultaneous induction on the derivations. If the reduction is at the
root, then we use Lemma 8. !

3.3 Translating λμ∩∪ into λμ∩∪

In this subsection we show that typing derivations in the system λμ∩∪ can be
translated into ones in the system λμ∩∪ in an appropriate way. To do so, we
employ an equivalent formulation to λμ∩∪ that has the following rules instead
of (μ1) and (μ2):

Γ �M : U | α : U,Δ

[α]M : (Γ � α : U,Δ)
(Nam)

C : (Γ � α : U,Δ)

Γ � μα.C : U | Δ
(MuAbs)

The rule (Nam) introduces a new form of judgement C : (Γ
 Δ), which should
be immediately followed by the rule (MuAbs). So the derivability of judgements
of the form Γ
 M : I | Δ is not changed from that in the original λμ∩∪. We
write C : (Γ
∩∪ Δ) if C : (Γ
 Δ) is derivable in this alternative formulation.

Also, we add the following to the reduction rules of the λμ-calculus:

(ρ) [α](μγ.C)→ C[γ := α]

The translation from the terms in the λμ-calculus to those in the λμ-calculus
is given in Figure 5.

Θ(x) := x
Θ(λx.t) := λx.Θ(t)
Θ(μα.c) := μα.Θ′(c)

Θ′(〈t | e〉) := Θ′′(Θ(t), e)

Θ′′(M,α) := [α]M
Θ′′(M, t · e) := Θ′′(MΘ(t), e)

Fig. 5. Translation from λμ to λμ

A Translation of Intersection and Union Types for the λμ-Calculus 133

The following two technical lemmas are useful for proving Theorem 5.

Lemma 9. If Γ | α : U
−∩∪ Δ then there exists α : V ∈ Δ such that V ≡
U ∪ V1 ∪ · · · ∪ Vn (n ≥ 0).

Proof. By induction on the derivation, assuming the commutativity of ∪. !

Lemma 10. Let Γ | t ·e : (I1 → U1)∪· · ·∪ (In → Un)
−∩∪ Δ with its derivation
length k. Then, for any i ∈ {1, . . . , n}, Γ
−∩∪ t : Ii | Δ with its derivation length
less than k, and Γ | e : U1 ∪ · · · ∪ Un
−∩∪ Δ with its derivation length k − 1.

Proof. As in Lemma 7(4), we have Γ
−∩∪ t : Ii | Δ and Γ | e : Ui
−∩∪ Δ for all
i ∈ {1, . . . , n}, whose derivations are subderivations of the given derivation. Then
we can construct a derivation of Γ | e : U1 ∪ · · · ∪ Un
 Δ with its length k − 1
by replacing each judgement for t · e and (Ii → Ui)’s in the original derivation
by a corresponding judgement for e and Ui’s. !

Now we prove that the translation Θ preserves types. This explains how the
rules of λμ∩∪ corresponds to the rules of λμ∩∪.

Theorem 5

1. If Γ
−∩∪ t : I | Δ then Γ
∩∪ Θ(t) : I | Δ.
2. If Γ | e : I
−∩∪ Δ then Θ′′(M, e) : (Γ
∩∪ Δ) for any M such that Γ
∩∪

M : I | Δ.
3. If c : (Γ
−∩∪ Δ) then Θ′(c) : (Γ
∩∪ Δ).

Proof. We prove 1, 2 and 3 by simultaneous induction on the lengths of the
derivations. We consider here some of the cases in 2.

•
Γ | α : Ui � α : U1 ∪ · · · ∪ Un,Δ

(Ax)

Let Γ
∩∪ M : Ui | α : U1 ∪ · · · ∪Un, Δ. Then by the rules (R∪) and (Nam),
we have [α]M : (Γ
∩∪ α : U1 ∪ · · · ∪ Un, Δ) where [α]M ≡ Θ′′(M,α).

• Γ � t : I | Δ Γ | e : U � Δ

Γ | t · e : I → U � Δ
(L→)

Let Γ
∩∪ M : I → U | Δ. By the induction hypothesis, we have Γ
∩∪
Θ(t) : I | Δ. Then again by the induction hypothesis, we haveΘ′′(MΘ(t), e) :
(Γ
∩∪ Δ) where Θ′′(MΘ(t), e) ≡ Θ′′(M, t · e).

• Γ | e : U � Δ Γ | e : V � Δ

Γ | e : U ∪ V � Δ
(L∪)

First we show the case where e ≡ α. Then by Lemma 9, there exists α : W ∈
Δ such that W ≡ U ∪V ∪W1 ∪ · · · ∪Wn (n ≥ 0). Let Γ
∩∪ M : U ∪V | Δ.
Then by the rules (R∪) and (Nam), we have [α]M : (Γ
∩∪ Δ) where
[α]M ≡ Θ′′(M,α).
Next we show the case where e ≡ t ·e′. Then by Lemmas 7(4), U∪V ≡ (I1 →
U1)∪· · ·∪(In → Un), and by Lemma 10, for all i ∈ {1, . . . , n}, Γ
−∩∪ t : Ii | Δ

134 K. Kikuchi and T. Sakurai

and Γ | e′ : U1 ∪ · · · ∪ Un
−∩∪ Δ with their derivation lengths less than
that of Γ | e : U ∪ V
 Δ. Hence by the induction hypothesis, we have
Γ
∩∪ Θ(t) : Ii | Δ for each i ∈ {1, . . . , n}. Now let Γ
∩∪ M : U ∪ V | Δ,
and consider the following derivation:

Γ, x : Ii → Ui � x : Ii → Ui | Δ
(Ax)

....
Γ � Θ(t) : Ii | Δ

Γ, x : Ii → Ui � Θ(t) : Ii | Δ
Lemma 1

Γ, x : Ii → Ui � xΘ(t) : Ui | Δ
(→ E)

Γ, x : Ii → Ui � xΘ(t) : U1 ∪ · · · ∪ Un | Δ
(∪ I)

where x is a fresh λ-variable. Then by applying the rule (∪E)n in Lemma 2,
we have Γ
∩∪ MΘ(t) : U1∪· · ·∪Un | Δ. Hence by the induction hypothesis
for the derivation of Γ | e′ : U1 ∪ · · · ∪ Un
 Δ, we obtain Θ′′(MΘ(t), e′) :
(Γ
∩∪ Δ) where Θ′′(MΘ(t), e′) ≡ Θ′′(M, t · e′). !

Next we show that reduction in the λμ-calculus is simulated in the λμ-calculus
through the translation Θ. This is used to prove one direction of the character-
isation theorem of strong normalisation.

Lemma 11

1. Θ(t[x := s]) ≡ Θ(t)[x := Θ(s)].
2. Θ′(c[x := s]) ≡ Θ′(c)[x := Θ(s)].
3. Θ′′(M [x := Θ(s)], e[x := s]) ≡ Θ′′(M, e)[x := Θ(s)].

Proof. By simultaneous induction on the structure of t, e or c. !

In the following we abbreviate M [α⇐N1] · · · [α⇐Nk] as M [α⇐N1, · · · , Nk].

Lemma 12. Let e ≡ s1 · · · · · sn · α and N̄ ≡ Θ(s1), · · · , Θ(sn).

1. Θ(t[α := e]) ≡ Θ(t)[α⇐ N̄].
2. Θ′(c[α := e]) ≡ Θ′(c)[α⇐ N̄].
3. Θ′′(M [α⇐ N̄], e′[α := e]) ≡ Θ′′(M, e′)[α⇐ N̄].

Proof. By simultaneous induction on the structure of t, e or c. !

Lemma 13

1. Θ(t[α := γ]) ≡ Θ(t)[α := γ].
2. Θ′(c[α := γ]) ≡ Θ′(c)[α := γ].
3. Θ′′(M [α := γ], e[α := γ]) ≡ Θ′′(M, e)[α := γ].

Proof. By simultaneous induction on the structure of t, e or c. !

Now we are in a position to show the simulation theorem.

A Translation of Intersection and Union Types for the λμ-Calculus 135

Theorem 6

1. If t−→β,μ t′ then Θ(t) −→+
β,μ,ρ Θ(t′).

2. If c−→β,μ c′ then Θ′(c)−→+
β,μ,ρ Θ′(c′).

3. If e−→β,μ e′ then Θ′′(M, e)−→+
β,μ,ρ Θ′′(M, e′).

Proof. By simultaneous induction on the structure of t, e or c. We prove the case
where the reduction is at the root.

• 〈λx.t | s · e〉 → 〈t[x := s] | e〉.
We have Θ′(〈λx.t | s · e〉) ≡ Θ′′(Θ(λx.t), s · e) ≡ Θ′′((λx.Θ(t))Θ(s), e) −→β

Θ′′(Θ(t)[x := Θ(s)], e) and Θ′(〈t[x := s] | e〉) ≡ Θ′′(Θ(t[x := s]), e). There-
fore, by Lemma 11, we have Θ′(〈λx.t | s · e〉)−→+

β,μ,ρ Θ′(〈t[x := s] | e〉).
• 〈μα.c | e〉 → c[α := e].

We have Θ′(〈μα.c | e〉) ≡ Θ′′(Θ(μα.c), e) ≡ Θ′′(μα.Θ′(c), e). Let e ≡ s1 ·
· · · · sn · γ and N̄ ≡ Θ(s1), · · · , Θ(sn). Then, we have Θ′′(μα.Θ′(c), e) ≡
Θ′′((μα.Θ′(c))Θ(s1) · · ·Θ(sn), γ) ≡ [γ]((μα.Θ′(c))Θ(s1) · · ·Θ(sn)) −→∗

μ

[γ](μα.Θ′(c)[α⇐ N̄]) −→ρ Θ′(c)[α⇐ N̄][α := γ]. Let e′ ≡ s1 · · · · · sn · α.
Then, by Lemma 12, we have Θ′(c[α := e′]) ≡ Θ′(c)[α⇐ N̄], and so, by
Lemma 13, we have Θ′(c[α := e′][α := γ]) ≡ Θ′(c[α := e′])[α := γ] ≡
Θ′(c)[α⇐ N̄][α := γ]. Since Θ′(c[α := e]) ≡ Θ′(c[α := e′][α := γ]), we have
Θ′(〈μα.c | e〉)−→+

β,μ,ρ Θ′(c[α := e]). !

Now we can prove that all terms typable in λμ∩∪ are strongly normalising.

Corollary 3

1. If Γ
−∩∪ t : I | Δ for some Γ, I and Δ, then t ∈ SNβ,μ.

2. If Γ | e : U
−∩∪ Δ for some Γ,U and Δ, then e ∈ SNβ,μ.

3. If c : (Γ
−∩∪ Δ) for some Γ and Δ, then c ∈ SNβ,μ.

Proof. By Theorems 5 and 6, Corollary 2, and the fact that SNβ,μ = SNβ,μ,ρ. The
last equality follows from (i) for any term M of the λμ-calculus, M ∈ SNρ and
(ii) if M −→ρ M ′−→β,μN then there exists M ′′ such that M −→β,μM ′′−→∗

ρ N .
 !

3.4 Characterisation of Strongly Normalising Terms

By Corollary 3, we see that any term typable in λμ∩∪ is strongly normalising.
However, it is not yet clear how many terms are typable in λμ∩∪. In this sub-
section we show that λμ∩∪ is powerful enough to type all strongly normalising
terms. Although this is a typical property in intersection type systems for the
usual λ-calculus, it has not been proved for the λμ-calculus (or a fragment of
the λμμ̃-calculus) in a type system that enjoys the subject reduction property.

First we introduce notations on type environments.

136 K. Kikuchi and T. Sakurai

Definition 8. 1. The type environment Γ ∩ Γ ′ is defined by

Γ ∩ Γ ′ := {x : I ∩ I ′ | x : I ∈ Γ and x : I ′ ∈ Γ ′}
∪ {x : I | x : I ∈ Γ and x does not appear in Γ ′}
∪ {x : I ′ | x : I ′ ∈ Γ ′ and x does not appear in Γ}.

2. The type environment Δ ∪Δ′ is defined by

Δ ∪Δ′ := {x : U ∪ U ′ | x : U ∈ Δ and x : U ′ ∈ Δ′}
∪ {x : U | x : U ∈ Δ and x does not appear in Δ′}
∪ {x : U ′ | x : U ′ ∈ Δ′ and x does not appear in Δ}.

Lemma 14

1. If Γ
−∩∪ t : I | Δ then Γ ∩ Γ ′
−∩∪ t : I | Δ ∪Δ′.
2. If Γ | e : I
−∩∪ Δ then Γ ∩ Γ ′ | e : I
−∩∪ Δ ∪Δ′.
3. If c : (Γ
−∩∪ Δ) then c : (Γ ∩ Γ ′
−∩∪ Δ ∪Δ′).

Proof. By simultaneous induction on the derivations. !

Next we prove crucial lemmas about type-checking in the system λμ∩∪.

Lemma 15 (Term Inverse Substitution Lemma). Let Γ
−∩∪ s : I | Δ.

1. If Γ
−∩∪ t[x := s] : J | Δ then there exists I ′ such that Γ, x : I ′
−∩∪ t : J | Δ
and Γ
−∩∪ s : I ′ | Δ.

2. If Γ | e[x := s] : J
−∩∪ Δ then there exists I ′ such that Γ, x : I ′ | e : J
−∩∪ Δ
and Γ
−∩∪ s : I ′ | Δ.

3. If c[x := s] : (Γ
−∩∪ Δ) then there exists I ′ such that c : (Γ, x : I ′
−∩∪ Δ)
and Γ
−∩∪ s : I ′ | Δ.

Proof. By simultaneous induction on the structure of t, e or c. The non-trivial
cases are the following two cases.

• e ≡ t · e′
Suppose Γ | (t · e′)[x := s] : J
−∩∪ Δ. By Lemma 7(1), there exist U1 . . . , Un

such that J ≡ U1 ∩ · · · ∩ Un and Γ | (t · e′)[x := s] : Ui
−∩∪ Δ for some
i ∈ {1, . . . , n}. Then, fixing one such i and applying Lemma 7(4), there
exist I1, V1, . . . , Im, Vm such that Ui ≡ (I1 → V1) ∪ · · · ∪ (Im → Vm), and
Γ
−∩∪ t[x := s] : Ij | Δ and Γ | e′[x := s] : Vj
−∩∪ Δ for any j ∈ {1, . . . ,m}.
So, for each j ∈ {1, . . . ,m}, there exists I ′j such that Γ, x : I ′j
−∩∪ t : Ij | Δ
and Γ
−∩∪ s : I ′j | Δ, and there exists I ′′j such that Γ, x : I ′′j | e′ : Vj
−∩∪ Δ

and Γ
−∩∪ s : I ′′j | Δ, by the induction hypothesis. By Lemma 14 and (L→),

we have Γ, x : I ′j∩I ′′j | t·e′ : Ij → Vj
−∩∪ Δ. Let I ′ ≡ (I ′1∩I ′′1)∩· · ·∩(I ′m∩I ′′m).

By Lemma 14 and (L∪), we have Γ, x : I ′ | t · e′ : Ui
−∩∪ Δ, and, by (L∩),
we have Γ, x : I ′ | t · e′ : J
−∩∪ Δ. We also have Γ
−∩∪ s : I ′ | Δ by (R∩).

• c ≡ 〈t | e′〉
This case can be proved dually to the same case of the proof of Lemma 16.

 !

A Translation of Intersection and Union Types for the λμ-Calculus 137

Lemma 16 (Context Inverse Substitution Lemma). Let Γ | e : U
−∩∪ Δ.

1. If Γ
−∩∪ t[α := e] : I | Δ then there exists U ′ such that Γ
−∩∪ t : I | α : U ′, Δ
and Γ | e : U ′
−∩∪ Δ.

2. If Γ | e′[α := e] : I
−∩∪ Δ then there exists U ′ such that Γ | e′ : I
−∩∪ α :
U ′, Δ and Γ | e : U ′
−∩∪ Δ.

3. If c[α := e] : (Γ
−∩∪ Δ) then there exists U ′ such that c : (Γ
−∩∪ α : U ′, Δ)
and Γ | e : U ′
−∩∪ Δ.

Proof. By simultaneous induction on the structure of t, e or c. The non-trivial
cases are the following two cases.

• e ≡ t · e′
This case can be proved dually to the same case of the proof of Lemma 15.

• c ≡ 〈t | e′〉
Suppose 〈t | e′〉[α := e] : (Γ
−∩∪ Δ). Then, there exists I such that Γ
−∩∪
t[α := e] : I | Δ and Γ | e′[α := e] : I
−∩∪ Δ. By the induction hypothesis,
there exists V ′ such that Γ
−∩∪ t : I | α : V ′, Δ and Γ | e : V ′
−∩∪ Δ, and
there exists V ′′ such that Γ | e′ : I
−∩∪ α : V ′′, Δ and Γ | e : V ′′
−∩∪ Δ. Let
U ′ ≡ V ′ ∪ V ′′. By Lemma 14 and (Cut), we have 〈t | e′〉 : (Γ
−∩∪ α : U ′, Δ),
and by (L∪), we have Γ | e : U ′
−∩∪ Δ. !

Now we prove the characterisation theorem of strongly normalising terms.

Theorem 7

1. t ∈ SNβ,μ if and only if Γ
−∩∪ t : I | Δ for some Γ, I and Δ.

2. e ∈ SNβ,μ if and only if Γ | e : U
−∩∪ Δ for some Γ,U and Δ.

3. c ∈ SNβ,μ if and only if c : (Γ
−∩∪ Δ) for some Γ and Δ.

Proof. The right to left implications are by Corollary 3. For the converses, we
prove 1, 2 and 3 simultaneously by main induction on the maximal length of all
β, μ-reduction sequences out of t, e or c, and subinduction on the structure of
t, e or c. We analyse the possible cases according to the shape of t, e or c.

• t ≡ x for some λ-variable x. In this case we just have to take x : I
 x : I |
which is an axiom.

• e ≡ α for some μ-variable α. Similar, taking an axiom | α : U
 α : U .
• t ≡ λx.s. By the subinduction hypothesis, there exist Γ, I and Δ such that

Γ
−∩∪ s : I | Δ. Let I ≡ U1 ∩ · · · ∩ Un. Then by Lemma 4(1), we have
Γ
−∩∪ s : Ui | Δ for any i ∈ {1, . . . , n}. Hence, if x : J ∈ Γ then we have
Γ \ {x : J}
−∩∪ λx.s : J → Ui | Δ. Otherwise, using Lemma 14(1), we have
Γ
−∩∪ λx.s : J → Ui | Δ for some J .

• The cases t ≡ μα.c, e ≡ t · e′, c ≡ 〈x | e〉 and c ≡ 〈λx.s |α〉 are proved using
the subinduction hypothesis and Lemma 14.

The last two cases require us to use the main induction hypothesis.

138 K. Kikuchi and T. Sakurai

• c ≡ 〈μα.c′ | e〉. By the main induction hypothesis, there exist Γ and Δ such
that c′[α := e] : (Γ
−∩∪ Δ). By the subinduction hypothesis, there exist
Γ ′, U and Δ′ such that Γ ′ | e : U
−∩∪ Δ′. Then by Lemmas 14 and 16(3),
there exists U ′ such that c′ : (Γ ∩ Γ ′
−∩∪ α : U ′, Δ ∪ Δ′) and Γ ∩ Γ ′ | e :
U ′
−∩∪ Δ ∪Δ′. From the former, we have Γ ∩ Γ ′
−∩∪ μα.c′ : U ′ | Δ ∪Δ′.
Hence by the rule (Cut), we obtain 〈μα.c′ | e〉 : (Γ ∩ Γ ′
−∩∪ Δ ∪Δ′).

• c ≡ 〈λx.t | s ·e〉. By the main induction hypothesis, there exist Γ and Δ such
that 〈t[x := s] | e〉 : (Γ
−∩∪ Δ). Then there exists J such that Γ
−∩∪ t[x :=
s] : J | Δ and Γ | e : J
−∩∪ Δ. By the subinduction hypothesis, there exist
Γ ′, I and Δ′ such that Γ ′
−∩∪ s : I | Δ′. Hence by Lemmas 14 and 15(1),
there exists I ′ such that Γ ∩ Γ ′, x : I ′
−∩∪ t : J | Δ ∪Δ′ and Γ ∩ Γ ′
−∩∪ s :
I ′ | Δ∪Δ′. From the former, we have Γ ∩Γ ′
−∩∪ λx.t : I ′ → J | Δ∪Δ′. From
the latter and Γ | e : J
−∩∪ Δ, we have Γ ∩ Γ ′ | s · e : I ′ → J
−∩∪ Δ ∪Δ′.
Hence by the rule (Cut), we obtain 〈λx.t | s · e〉 : (Γ ∩ Γ ′
−∩∪ Δ ∪Δ′). !

4 Conclusion

We have presented a translation from intersection and union types into inter-
section and product types. Using the translation, we have shown that our in-
tersection and union type system for the λμ-calculus can be embedded into the
type system of [6], which yields strong normalisation of terms typable by our
system. We have also presented an intersection and union type system for the
λμ-calculus, and proved the subject reduction property and the characterisation
theorem of strong normalisation.

It is expected that our type system for the λμ-calculus enjoys the subject
reduction property. This is plausible since, by the side condition of the union-
elimination rule, the variable to be discharged can occur only once in each pre-
miss, in which case known counter examples do not emerge. It is also expected
that all strongly normalising terms in the λμ-calculus are typable in our system.
These problems are to be investigated in future work.

Another direction for future work is to design intersection and union type
systems for call-by-value languages based on duality in sequent calculus. For
languages without control operators, some natural deduction style systems have
been proposed [13,20]. To give a uniform perspective, however, we consider the
sequent calculus approach to be promising.

Acknowledgements. We would like to thank the anonymous referees for de-
tailed comments and useful suggestions. The figures of the derivations have been
drawn using Makoto Tatsuta’s proof.sty macros. The second author was sup-
ported by JSPS KAKENHI Grant Numbers 24650002 and 25280025.

A Translation of Intersection and Union Types for the λμ-Calculus 139

References

1. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor. Com-
put. Sci. 102(1), 135–163 (1992)

2. van Bakel, S.: Completeness and partial soundness results for intersection and
union typing for λμμ̃. Ann. Pure Appl. Logic 161(11), 1400–1430 (2010)

3. van Bakel, S.: Sound and complete typing for λμ. In: Proc. ITRS 2010. EPTCS,
vol. 45, pp. 31–44 (2011)

4. van Bakel, S.: Strict intersection types for the lambda calculus. ACM Comput.
Surv. 43(3) (2011)

5. van Bakel, S., Barbanera, F., de’Liguoro, U.: A filter model for the λμ-calculus.
In: Ong, L. (ed.) TLCA 2011. LNCS, vol. 6690, pp. 213–228. Springer, Heidelberg
(2011)

6. van Bakel, S., Barbanera, F., de’Liguoro, U.: Characterisation of strongly normal-
ising λμ-terms. In: Proc. ITRS 2012. EPTCS, vol. 121, pp. 1–17 (2013)

7. Barbanera, F., Berardi, S.: A symmetric lambda calculus for classical program
extraction. Inform. and Comput. 125(2), 103–117 (1996)

8. Barbanera, F., Dezani-Ciancaglini, M., de’Liguoro, U.: Intersection and union
types: Syntax and semantics. Inform. and Comput. 119(2), 202–230 (1995)

9. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proc. ICFP 2000, pp.
233–243 (2000)

10. Dougherty, D., Ghilezan, S., Lescanne, P.: Characterizing strong normalization in
a language with control operators. In: Proc. PPDP 2004, pp. 155–166 (2004)

11. Dougherty, D., Ghilezan, S., Lescanne, P.: Intersection and union types in the
λμμ̃-calculus. Electr. Notes Theor. Comput. Sci. 136, 153–172 (2005)

12. Dougherty, D., Ghilezan, S., Lescanne, P.: Characterizing strong normalization
in the Curien-Herbelin symmetric lambda calculus: Extending the Coppo-Dezani
heritage. Theor. Comput. Sci. 398(1-3), 114–128 (2008)

13. Dunfield, J., Pfenning, F.: Type assignment for intersections and unions in call-
by-value languages. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp.
250–266. Springer, Heidelberg (2003)

14. Griffin, T.: A formulae-as-types notion of control. In: Proc. POPL 1990, pp. 47–58
(1990)

15. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75.
Springer, Heidelberg (1995)

16. Herbelin, H.: Séquents qu’on calcule. Thèse de Doctorat, Université Paris 7 (1995)
17. Kikuchi, K., Sakurai, T.: A translation of intersection and union types for the

λμ-calculus (long version), http://www.nue.riec.tohoku.ac.jp/user/kentaro/
18. Laurent, O.: On the denotational semantics of the untyped lambda-mu calculus.

Unpublished note (January 2004)
19. Parigot, M.: λμ-calculus: An algorithmic interpretation of classical natural deduc-

tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992)

20. Riba, C.: On the values of reducibility candidates. In: Curien, P.-L. (ed.) TLCA
2009. LNCS, vol. 5608, pp. 264–278. Springer, Heidelberg (2009)

21. Streicher, T., Reus, B.: Classical logic, continuation semantics and abstract ma-
chines. J. Funct. Program. 8(6), 543–572 (1998)

http://www.nue.riec.tohoku.ac.jp/user/kentaro/

A Formalized Proof of Strong Normalization
for Guarded Recursive Types

Andreas Abel and Andrea Vezzosi

Computer Science and Engineering, Chalmers and Gothenburg University,
Rännvägen 6, 41296 Göteborg, Sweden

�����������	
����� �������
���	�������

Abstract. We consider a simplified version of Nakano’s guarded fixed-point
types in a representation by infinite type expressions, defined coinductively. Small-
step reduction is parametrized by a natural number “depth” that expresses under
how many guards we may step during evaluation. We prove that reduction is
strongly normalizing for any depth. The proof involves a typed inductive notion
of strong normalization and a Kripke model of types in two dimensions: depth
and typing context. Our results have been formalized in Agda and serve as a case
study of reasoning about a language with coinductive type expressions.

1 Introduction

In untyped lambda calculus, fixed-point combinators can be defined using self-applica-
tion. Such combinators can be assigned recursive types, albeit only negative ones. Since
such types introduce logical inconsistency, they are ruled out in Martin-Löf Type The-
ory and other systems based on the Curry-Howard isomorphism. Nakano (2000) intro-
duced a modality for recursion that allows a stratification of negative recursive types to
recover consistency. In essence, each negative recursive occurrence needs to be guarded
by the modality; this coined the term guarded recursive types (Birkedal and Møgelberg,
2013).1 Nakano’s modality has found applications in functional reactive programming
(Krishnaswami and Benton, 2011b) where it is referred to as later modality.

While Nakano showed that every typed term has a weak head normal form, in this
paper we prove strong normalization for our variant λ	 of Nakano’s calculus. To this
end, we make the introduction rule for the later modality explicit in the terms by a
constructor next, following Birkedal and Møgelberg (2013) and Atkey and McBride
(2013). By allowing reduction under finitely many nexts, we establish termination ir-
respective of the reduction strategy. Showing strong normalization of λ	 is a first step
towards an operationally well-behaved type theory with guarded recursive types, for
which Birkedal and Møgelberg (2013) have given a categorical model.

Our proof is fully formalized in the proof assistant Agda (2014) which is based on
intensional Martin-Löf Type Theory. 2 One key idea of the formalization is to represent

1 Not to be confused with Guarded Recursive Datatype Constructors (Xi et al., 2003).
2 A similar proof could be formalized in other systems supporting mixed induction-coinduction,

for instance, in Coq.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 140–158, 2014.
c© Springer International Publishing Switzerland 2014

Strong Normalization for Guarded Recursive Types 141

the recursive types of λ	 as infinite type expressions in form of a coinductive defi-
nition. For this, we utilize Agda’s new copattern feature (Abel et al., 2013). The set
of strongly normalizing terms is defined inductively by distinguishing on the shape of
terms, following van Raamsdonk et al. (1999) and Joachimski and Matthes (2003). The
first author has formalized this technique before in Twelf (Abel, 2008); in this work we
extend these results by a proof of equivalence to the standard notion of strong normal-
ization.

Due to space constraints, we can only give a sketch of the formalization; a longer
version and the full Agda proofs are available online (Abel and Vezzosi, 2014). This
paper is extracted from a literate Agda file; all the colored code in displays is necessarily
type-correct.

2 Guarded Recursive Types and Their Semantics

Nakano’s type system (2000) is equipped with subtyping, but we stick to a simpler
variant without, a simply-typed version of Birkedal and Møgelberg (2013), which we
shall call λ	. Our rather minimal grammar of types includes product A×B and function
types A→ B, delayed computations 	A, variables X and explicit fixed-points μXA.

A,B,C ::= A×B | A→ B |	A | X | μXA

Base types and disjoint sum types could be added, but would only give breadth rather
than depth to our formalization. As usual, a dot after a bound variable shall denote
an opening parenthesis that closes as far to the right as syntactically possible. Thus,
μX .X → X denotes μX (X → X), while μXX → X denotes (μX .X)→ X (with a free
variable X).

Formation of fixed-points μXA is subject to the side condition that X is guarded in
A, i. e., X appears in A only under a later modality 	. This rules out all unguarded
recursive types like μX .A×X or μX .X → A, but allows their variants μX .	(A×X)
and μX .A×	X , and μX .	(X → A) and μX .	X → A. Further, fixed-points give rise
to an equality relation on types induced by μXA = A[μXA/X].

Γ (x) = A

Γ
 x : A

Γ ,x:A
 t : B

Γ
 λx. t : A → B

Γ
 t : A → B Γ
 u : A

Γ
 t u : B

Γ
 t1 : A1 Γ
 t2 : A2

Γ
 (t1, t2) : A1×A2

Γ
 t : A1×A2

Γ
 fst t : A1

Γ
 t : A1×A2

Γ
 snd t : A2

Γ
 t : A

Γ
 next t : 	A

Γ
 t : 	(A→ B) Γ
 u : 	A

Γ
 t ∗u : 	B

Γ
 t : A A = B

Γ
 t : B

Fig. 1. Typing rules

142 A. Abel and A. Vezzosi

Terms are lambda-terms with pairing and projection plus operations that witness
applicative functoriality of the later modality (Atkey and McBride, 2013).

t,u ::= x | λ xt | t u | (t1, t2) | fst t | snd t | next t | t ∗u

Figure 1 recapitulates the static semantics. The dynamic semantics is induced by the
following contractions:

(λ x. t)u �→ t[u/x]
fst (t1, t2) �→ t1
snd (t1, t2) �→ t2
(next t)∗(next u) �→ next (t u)

If we conceive our small-step reduction relation −→ as the compatible closure of �→,
we obtain a non-normalizing calculus, since terms like Ω = ω (next ω) with ω =
(λ x. x∗(next x)) are typeable.3 Unrestricted reduction of Ω is non-terminating: Ω −→
next Ω −→ next (next Ω) −→ . . . If we let next act as delay operator that blocks re-
duction inside, we regain termination. In general, we preserve termination if we only
look under delay operators up to a certain depth. This can be made precise by a family
−→n of reduction relations indexed by a depth n ∈ N, see Figure 2.

t �→ t ′

t −→n t ′
t −→n t ′

λx. t −→n λx. t ′
t −→n t ′

t u−→n t ′ u

u−→n u′

t u−→n t u′

t −→n t ′

(t,u)−→n (t ′,u)

u−→n u′

(t,u)−→n (t,u′)

t −→n t ′

fst t −→n fst t ′
t −→n t ′

snd t −→n snd t ′

t −→n t ′

next t −→n+1 next t ′
t −→n t ′

t ∗u−→n t ′ ∗u

u−→n u′

t ∗u−→n t ∗u′

Fig. 2. Reduction

We should note that for a fixed depth n the relation −→n is not confluent. In fact the
term (λ z.nextn+1 z)(fst (u, t)) reduces to two different normal forms, nextn+1 (fst (u, t))
and nextn+1 u. We could remedy this situation by making sure we never hide redexes
under too many applications of next and instead store them in an explicit substitution
where they would still be accessible to −→n. Our problematic terms would then look
like nextn ((next z)[fst (u, t)/z]) and nextn ((next z)[u/z]) and the former would reduce
to the latter. However, we are not bothered by the non-confluence since our semantics
at level n (see below) does not distinguish between nextn+1u and nextn+1u′ (as in u′ =
fst (u, t)); neither u nor u′ is required to terminate if buried under more than n nexts.

To show termination, we interpret types as sets A ,B,C of depth-n strongly nor-
malizing terms. We define semantic versions �×�, �→�, and �	� of product, function

3
Ω : A with A = μX(X). To type ω , we use x : μY ((Y → A)).

Strong Normalization for Guarded Recursive Types 143

space, and delay type constructor, plus a terminal (=largest) semantic type �#�. Then
the interpretation �A�n of closed type A at depth n can be given recursively as follows,
using the Kripke construction at function types:

�A×B�n = �A�n �×� �B�n A �×� B = {t | fst t ∈A and snd t ∈B}
�A → B�n =

⋂
n′≤n(�A�n′ �→� �B�n′) A �→� B = {t | t u ∈B for all u ∈A }

�	A�0 = �	��#� �#� = {t | t term}
�	A�n+1 = �	��A�n �	�A = {next t | t ∈A }
�μXA�n = �A[μXA/X]�n (A is weak head expansion closure of A)

Due to the last equation (μ), the type interpretation is ill-defined for unguarded recur-
sive types. However, for guarded types we only return to the fixed-point case after we
have passed the case for 	 , which decreases the index n. More precisely, �A�n is de-
fined by lexicographic induction on (n,size(A)), where size(A) is the number of type
constructor symbols (×, →, μ) that occur unguarded in A.

While all this sounds straightforward at an informal level, formalization of the de-
scribed type language is quite hairy. For one, we have to enforce the restriction to well-
formed (guarded) types. Secondly, our type system contains a conversion rule, getting
us into the vincinity of dependent types which are still a challenge to a completely for-
mal treatment (McBride, 2010). Our first formalization attempt used kinding rules for
types to keep track of guardedness for formation of fixed-point, and a type equality
relation, and building on this, inductively defined well-typed terms. However, the com-
plexity was discouraging and lead us to a much more economic representation of types,
which is described in the next section.

3 Formalized Syntax

In this section, we discuss the formalization of types, terms, and typing of λ	 in Agda.
It will be necessary to talk about meta-level types, i. e., Agda’s types, thus, we will refer
to λ	’s type constructors as ×̂, →̂, 	̂ , and μ̂ .

3.1 Types Represented Coinductively

Instead of representing fixed-points as syntactic construction on types, which would re-
quire a non-trivial equality on types induced by μ̂XA = A[μ̂XA/X], we use meta-level
fixed-points, i. e., Agda’s recursion mechanism.4 Extensionally, we are implementing
infinite type expressions over the constructors ×̂, →̂, and 	̂ . The guard condition on re-
cursive types then becomes an instance of Agda’s “guard condition”, i. e., the condition
the termination checker imposes on recursive programs.

4 An alternative to get around the type equality problem would be iso-recursive types, i. e., with
term constructors for folding and unfolding of μ̂XA. However, we would still have to imple-
ment type variables, binding of type variables, type substitution, lemmas about type substitu-
tion etc.

144 A. Abel and A. Vezzosi

Viewed as infinite expressions, guarded types are regular trees with an infinite num-
ber of 	̂ -nodes on each infinite path. This can be expressed as the mixed coinductive(ν)-
inductive(μ) (meta-level) type

νXμY. (Y ×Y)+ (Y ×Y)+X .

The first summand stands for the binary constructor ×̂, the second for →̂, and the third
for the unary 	̂ . The nesting of a least-fixed point (μ) inside a greatest fixed-point (ν)
ensures that on each path, we can only take alternatives ×̂ and →̂ a finite number of
times before we have to choose the third alternative 	̂ and restart the process.

In Agda 2.4, we represent this mixed coinductive-inductive type by a datatype ��
(inductive component) mutually defined with a record ∞�� (coinductive component).

������
���� �� 	
�� ����

�×̂� 	 �a b 	 ��� → ��
�→̂� 	 �a b 	 ��� → ��
	̂� 	 �a∞ 	 ∞��� → ��

������ ∞�� 	
�� ����
�����������
����������� ������
���� ������ 	 ��

While the arguments a and b of the infix constructors ×̂ and →̂ are again in ��, the
prefix constructor 	̂ expects and argument a∞ in ∞��, which is basically a wrapping5

of ��. The functions ����� and ��	
� convert back and forth between �� and ∞�� so that
both types are valid representations of the set of types of λ	.

����� : ��→ ∞��
��	
� : ∞��→ ��

However, since ∞�� is declared
����
����, its inhabitants are not evaluated until
��	
�d. This allows us to represent infinite type expressions, like ���= μ̂X(̂X).

��� 	 ∞��
����� ��� � 	̂ ���

Technically, ��� is defined by copattern matching (Abel et al., 2013); ��� is uniquely
defined by the value of its only field, ��	
� ���, which is given as 	̂ ���. Agda will use
the given equation for its internal normalization procedure during type-checking. Alter-
natively, we could have tried to define ��� : �� by ��� = 	̂����� ���. However, Agda
will rightfully complain here since rewriting with this equation would keep expanding
��� forever, thus, be non-terminating. In contrast, rewriting with the original equation
is terminating since at each step, one application of ��	
� is removed.

The following two defined type constructors will prove useful in the definition of
well-typed terms to follow.

5 Similar to a ������� in the functional programming language Haskell.

Strong Normalization for Guarded Recursive Types 145

	� 	 �� → ��
	 a � 	̂ ����� a

�⇒� 	 �a∞ b∞ 	 ∞��� → ∞��
����� �a∞ ⇒ b∞� � ����� a∞ →̂ ����� b∞

3.2 Well-Typed Terms

Instead of a raw syntax and a typing relation, we represent well-typed terms directly by
an inductive family (Dybjer, 1994). Our main motivation for this choice is the beautiful
inductive definition of strongly normalizing terms to follow in Section 5. Since it relies
on a classification of terms into the three shapes introduction, elimination, and weak
head redex, it does not capture all strongly normalizing raw terms, in particular “junk”
terms such as fst (λ xx). Of course, statically well-typed terms come also at a cost: for
almost all our predicates on terms we need to show that they are natural in the typing
context, i. e., closed under well-typed renamings. This expense might be compensated
by the extra assistance Agda can give us in proof construction, which is due to the strong
constraints on possible solutions imposed by the rich typing.

Our encoding of well-typed terms follows closely Altenkirch and Reus (1999); McBride
(2006); Benton et al. (2012). We represent typed variables x : ��	 Γ a by de Brujin in-
dices, i. e., positions in a typing context Γ : ���, which is just a list of types.

��� � ���� ��

���� ��� 	 �Γ 	 ���� �a 	 ��� →
�� ����
 ��� 	 ∀!Γ a" → ��� �a 		 Γ� a
��� 	 ∀!Γ a b" �x 	 ��� Γ a� → ��� �b 		 Γ� a

Arguments enclosed in braces, such as Γ, a, and b in the types of the constructors ��	�
and �
, are hidden and can in most cases be inferred by Agda. If needed, they can
be passed in braces, either as positional arguments (e. g., {Δ}) or as named arguments
(e. g., {Γ = Δ}). If ∀ prefixes bindings in a function type, the types of the bound vari-
ables may be omitted. Thus, ∀{Γ a} → A is short for {Γ : ���}{a : ��} → A.

Terms t : �� Γ a are indexed by a typing context Γ and their type a, guaranteeing
well-typedness and well-scopedness. In the following data type definition,�� (Γ :���)
shall mean that all constructors uniformly take Γ as their first (hidden) argument.

���� �� �Γ 	 ���� 	 �a 	 ��� →
�� ����
��� 	 ∀!a" �x 	 ��� Γ a� → �� Γ a
�#� 	 ∀!a b" �t 	 �� �a 		 Γ� b� → �� Γ �a →̂ b�
��� 	 ∀!a b" �t 	 �� Γ �a →̂ b�� �u 	 �� Γ a� → �� Γ b
���� 	 ∀!a b" �t 	 �� Γ a� �u 	 �� Γ b� → �� Γ �a ×̂ b�
��� 	 ∀!a b" �t 	 �� Γ �a ×̂ b�� → �� Γ a
��� 	 ∀!a b" �t 	 �� Γ �a ×̂ b�� → �� Γ b
���� 	 ∀!a∞" �t 	 �� Γ ������ a∞�� → �� Γ �	̂ a∞�
�∗� 	 ∀!a∞ b∞" �t 	 �� Γ �	̂�a∞ ⇒ b∞��� �u 	 �� Γ �	̂ a∞�� → �� Γ �	̂ b∞�

146 A. Abel and A. Vezzosi

The most natural typing for ���� and ∗ would be using the defined 	� � �� → ��:

���� 	 ∀!a" �t 	 �� Γ a� → �� Γ �	 a�
�∗� 	 ∀!a b" �t 	 �� Γ �	�a →̂ b��� �u 	 �� Γ �	 a�� → �� Γ �	 b�

However, this would lead to indices like 	̂ ����� a and unification problems Agda can-
not solve, since matching on a coinductive constructor like ����� is forbidden—it can
lead to a loss of subject reduction (McBride, 2009). The chosen alternative typing,
which parametrizes over a∞ b∞ : ∞�� rather than a b : ��, works better in practice.

3.3 Type Equality

Although our coinductive representation of λ	 types saves us from type variables, type
substitution, and fixed-point unrolling, the question of type equality is not completely
settled. The propositional equality ≡ of Martin-Löf Type Theory is intensional in the
sense that only objects with the same code (modulo definitional equality) are considered
equal. Thus, ≡ is adequate only for finite objects (such as natural numbers and lists) but
not for infinite objects like functions, streams, or λ	 types.

However, we can define extensional equality or bisimulation on �� as a mixed
coinductive-inductive relation ≅/∞≅ that follows the structure of ��/∞�� (hence, we
reuse the constructor names ×̂, →̂, and 	̂).

������
���� �≅� 	 �a b 	 ��� →
�� ����

�×̂� 	 ∀!a a’ b b’" �a≅ 	 a ≅ a’� �b≅ 	 b ≅ b’� → �a ×̂ b� ≅ �a’ ×̂ b’�
�→̂� 	 ∀!a a’ b b’" �a≅ 	 a’ ≅ a� �b≅ 	 b ≅ b’� → �a →̂ b� ≅ �a’ →̂ b’�
	̂� 	 ∀!a∞ b∞" �a≅ 	 a∞ ∞≅ b∞� → 	̂ a∞ ≅ 	̂ b∞

������ �∞≅� �a∞ b∞ 	 ∞��� 	
�� ����
�����������
����������� ≅�����
���� ≅����� 	 ����� a∞ ≅ ����� b∞

��-equality is indeed an equivalence relation (we omit the standard proof).

≅��$ 	 ∀!a" → a ≅ a
≅��� 	 ∀!a b" → a ≅ b → b ≅ a
≅����� 	 ∀!a b c" → a ≅ b → b ≅ c → a ≅ c

However, unlike for ≡ we do not get a generic substitution principle for ≅, but have to
prove it for any function and predicate on ��. In particular, we have to show that we can
cast a term in �� Γ a to �� Γ b if a ≅ b, which would require us to build type equality
at least into ��	 Γ a. In essence, this would amount to work with setoids across all our
development, which would add complexity without strengthening our result. Hence, we
fall for the shortcut:

It is consistent to postulate that bisimulation implies equality, similarly to the func-
tional extensionality principle for function types. This lets us define the function
���
to convert terms between bisimilar types.

Strong Normalization for Guarded Recursive Types 147

��������� ≅%��%≡ 	 ∀ !a b" → a ≅ b → a ≡ b

���� 	 ∀!Γ a b" �eq 	 a ≅ b� �t 	 �� Γ a� → �� Γ b

We shall require
��� in uses of functorial application, to convert a type c∞ : ∞�� into
something that can be ��	
�d into a function type.

	��� 	 ∀!Γ c∞ b∞ a" �eq 	 c∞ ∞≅ ������ a ⇒ b∞��
�t 	 �� Γ �	̂ c∞�� �u 	 �� Γ �	 a�� → �� Γ �	̂ b∞�

	��� eq t u � ���� �	̂ eq� t ∗ u

3.4 Examples

Following Nakano (2000), we can adapt the Y combinator from the untyped lambda
calculus to define a guarded fixed point combinator:

fix= λ f . (λ x. f (x∗next x)) (next (λ x. f (x∗next x))).

We construct an auxiliary type ��� a that allows safe self application, since the argument
will only be available "later". This fits with the type we want for the �� combinator,
which makes the recursive instance y in fix (λ y. t) available only at the next time slot.

�� 	 ∀!Γ a" → �� Γ ��	 a →̂ a� →̂ a�

&��� 	 �� → ∞��
����� �&�� a� � 	̂ &�� a →̂ a

����'�� 	 ∀!Γ a" → �� Γ �	̂ &�� a� → �� Γ �	 a�
����'�� x � 	��� �≅����� ≅��$� x ����� x�

�� � �#� ���� � ����� ���
����

� � ��� ���� ����
� � ��� ���
� � �#� ���� � �����'�� ���

Another standard example is the type of streams, which we can also define through
corecursion.

������

����� 	 �� → ��

����� a � a ×̂ 	̂
�����∞ a

�����∞ 	 �� → ∞��
����� �
�����∞ a� �
����� a

���� 	 ∀!Γ a" → �� Γ a → �� Γ �	
����� a� → �� Γ �
����� a�
���� a s � ���� a ����� �	̂ �≅����� ≅��$�� s�

148 A. Abel and A. Vezzosi

��� 	 ∀!Γ a" → �� Γ �
����� a� → �� Γ a
��� s � ��� s

���� 	 ∀!Γ a" → �� Γ �
����� a� → �� Γ �	
����� a�
���� s � ���� �	̂ �≅����� ≅��$�� ���� s�

Note that ���� returns a stream inside the later modality. This ensures that functions
that transform streams have to be causal, i. e., can only have access to the first n elements
of the input when producing the nth element of the output. A simple example is mapping
a function over a stream.

���
 	 ∀!Γ a b" → �� Γ ��a →̂ b� →̂ �
����� a →̂
����� b��

Which is also better read with named variables.

����= λ f . �� (λ mapS. λ s. (f s, mapS∗ ���� s))

4 Reduction

In this section, we describe the implementation of parametrized reduction−→n in Agda.
As a prerequisite, we need to define substitution, which in turn depends on renaming
(Benton et al., 2012).

A renaming from context Γ to context Δ , written Δ ≤ Γ, is a mapping from variables
of Γ to those of Δ of the same type a. The function 	����� lifts such a mapping to terms.

�≤� 	 �Δ Γ 	 ���� →
��
�≤� Δ Γ � ∀ !a" → ��� Γ a → ��� Δ a

������ 	 ∀ !Γ Δ 	 ���" !a 	 ��" �η 	 Δ ≤ Γ� �x 	 �� Γ a� → �� Δ a

Building on renaming, we define well-typed parallel substitution. From this, we get
the special case of substituting de Bruijn index 0.

��#��(∀ !Γ a b" → �� Γ a → �� �a 		 Γ� b → �� Γ b

Reduction t −→n t ′ is formalized as the inductive family t 〈n〉⇒β t’ with four con-
structors β��� representing the contraction rules and one congruence rule
��� to reduce
in subterms.

���� �〈�〉⇒β� !Γ" 	 ∀ !a" → �� Γ a → N → �� Γ a →
�� ����

β 	 ∀ !n a b"!t 	 �� �a 		 Γ� b"!u"
→ ��� ��#� t� u 〈 n 〉⇒β ��#��(u t

β��� 	 ∀ !n a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ ��� ����� t u� 〈 n 〉⇒β t

β��� 	 ∀ !n a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ ��� ����� t u� 〈 n 〉⇒β u

Strong Normalization for Guarded Recursive Types 149

β	 	 ∀ !n a∞ b∞"!t 	 �� Γ ������ a∞ →̂ ����� b∞�"!u 	 �� Γ ������ a∞�"
→ ����� t ∗ ���� !�∞ � a∞" u� 〈 n 〉⇒β ����� !�∞ � b∞" ���� t u��

���) 	 ∀ !n n’ Δ a b t t’ Ct Ct’"!C 	 *β��� Δ Γ a b n n’"
→ �Ct 	 Ct ≡ C + t ,�
→ �Ct’ 	 Ct’ ≡ C + t’ ,�
→ �t⇒β 	 t 〈 n 〉⇒β t’�
→ Ct 〈 n’ 〉⇒β Ct’

The congruence rule makes use of shallow one hole contexts C, which are given by
the following grammar

C ::= λ x_ | _u | t _ | (t,_) | (_,u) | fst _ | snd _ | next_ | _∗u | t∗_.

��� says that we can reduce a term, suggestively called Ct, to a term Ct’, if (1) Ct
decomposes into C[t], a context C filled by t, and (2) Ct’ into C[t’], and (3) t reduces
to t’. As witnessed by relation Ct≡C �t�, context C : β��� Γ Δ a b n n’ produces a
term Ct : �� Γ b of depth n’ if filled with a term t : �� Δ a of depth n. The depth is
unchanged except for the case ����, which increases the depth by 1. Thus, t 〈n〉⇒β t’
can contract every subterm that is under at most n many ����s.

���� *β��� 	 �Δ Γ 	 ���� �a b 	 ��� �n n’ 	 N� →
�� ����
�#� 	 ∀!Γ n a b" → *β��� �a 		 Γ� Γ b �a →̂ b� n n
���� 	 ∀!Γ n a b" �u 	 �� Γ a� → *β��� Γ Γ �a →̂ b� b n n
���� 	 ∀!Γ n a b" �t 	 �� Γ �a →̂ b�� → *β��� Γ Γ a b n n
����� 	 ∀!Γ n a b" �u 	 �� Γ b� → *β��� Γ Γ a �a ×̂ b� n n
����� 	 ∀!Γ n a b" �t 	 �� Γ a� → *β��� Γ Γ b �a ×̂ b� n n
��� 	 ∀!Γ n a b" → *β��� Γ Γ �a ×̂ b� a n n
��� 	 ∀!Γ n a b" → *β��� Γ Γ �a ×̂ b� b n n
���� 	 ∀!Γ n a∞" → *β��� Γ Γ ������ a∞� �	̂ a∞� n �- . n�
∗�� 	 ∀!Γ n a∞ b∞" �u 	 �� Γ �	̂ a∞�� → *β��� Γ Γ �	̂ �a∞ ⇒ b∞�� �	̂ b∞� n n
∗�� 	 ∀!Γ n a∞ b∞"

�t 	 �� Γ �	̂ �a∞ ⇒ b∞��� → *β��� Γ Γ �	̂ a∞� �	̂ b∞� n n

���� �≡�+�, !n 	 N" !Γ 	 ���" 	 !n’ 	 N" !Δ 	 ���" !b a 	 ��" →
�� Γ b → *β��� Δ Γ a b n n’ → �� Δ a →
��

5 Strong Normalization

Classically, a term is strongly normalizing (sn) if there’s no infinite reduction sequence
starting from it. Constructively, the tree of all the possible reductions from an sn term
must be well-founded, or, equivalently, an sn term must be in the accessible part of the
reduction relation. In our case, reduction t 〈n〉⇒β t’ is parametrized by a depth n, thus,
we get the following family of ��-predicates.

���� �� �n 	 N� !a Γ" �t 	 �� Γ a� 	
�� ����
��� 	 �∀ !t’" → t 〈 n 〉⇒β t’ → �� n t’� → �� n t

150 A. Abel and A. Vezzosi

Van Raamsdonk et al. (1999) pioneered a more explicit characterization of strongly
normalizing terms � , namely the least set closed under introductions, formation of
neutral (=stuck) terms, and weak head expansion. We adapt their technique from lambda-
calculus to λ	; herein, it is crucial to work with well-typed terms to avoid junk like
fst(λ x.x) which does not exist in pure lambda-calculus. To formulate a deterministic
weak head evaluation, we make use of the evaluation contexts E : !���

E ::= _ u | fst _ | snd _ | _∗u | (next t)∗_.

Since weak head reduction does not go into introductions which include λ -abstraction,
it does not go under binders, leaving typing context Γ fixed.

���� /��� �Γ 	 ���� 	 �a b 	 ��� →
��
���� �≅�+�, !Γ 	 ���" 	 !a b 	 ��" → �� Γ b → /��� Γ a b → �� Γ a →
��

Et≅E�t� witnesses the splitting of a term Et into evaluation context E and hole con-
tent t. A generalization of _≅_�_� is "��� P which additionally requires that all terms
contained in the evaluation context (that is one or zero terms) satisfy predicate P. This
allows us the formulation of P-neutrals as terms of the form �E[x] for some �E[_] =
E1[. . .En[_]] and a variable x where all immediate subterms satisfy P.

���� 0��� !Γ" �P 	 ∀!c" → �� Γ c →
��� 	
∀ !a b" → �� Γ b → /��� Γ a b → �� Γ a →
�� ����

���� 	 ∀ !a b t u" �u 	 P u� → 0��� P ���� t u� ����� u� �t : �a →̂ b��
��� 	 ∀ !a b t" → 0��� P ���� t� ��� �t : �a ×̂ b��
��� 	 ∀ !a b t" → 0��� P ���� t� ��� �t : �a ×̂ b��
∗�� 	 ∀ !a∞ b∞ t u" �u 	 P u� → 0��� P �t ∗ �u : 	̂ a∞� : 	̂ b∞� �∗� u� t
∗�� 	 ∀ !a∞ b∞ t u" �t 	 P ����� !�∞ � a∞ ⇒ b∞" t��

→ 0��� P ������ t� ∗ �u : 	̂ a∞� : 	̂ b∞� �∗� t� u

���� 0*� !Γ" �P 	 ∀!c" → �� Γ c →
��� !b" 	 �� Γ b →
�� ����
��� 	 ∀ x → 0*� P ���� x�
���� 	 ∀ !a" !t 	 �� Γ a" !E Et"

→ �n 	 0*� P t� �Et 	 0��� P Et E t� → 0*� P Et

Weak head reduction (whr) is a reduction of the form �E[t]−→ �E[t ′] where t �→ t ′. It is
well-known that weak head expansion (whe) does not preserve sn, e.g., (λ x.y)Ω is not
sn even though it contracts to y. In this case, Ω is a vanishing term lost by reduction. If
we require that all vanishing terms in a reduction are sn, weak head expansion preserves
sn. In the following, we define P-whr where all vanishing terms must satisfy P.

���� �1�⇒� !Γ" �P 	 ∀!c" → �� Γ c →
��� 	
∀ !a" → �� Γ a → �� Γ a →
�� ����

β 	 ∀ !a b"!t 	 �� �a 		 Γ� b"!u"
→ �u 	 P u�
→ P 1 ���� ��#� t� u� ⇒ ��#��(u t

β��� 	 ∀ !a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ �u 	 P u�

Strong Normalization for Guarded Recursive Types 151

→ P 1 ��� ����� t u� ⇒ t

β��� 	 ∀ !a b"!t 	 �� Γ a"!u 	 �� Γ b"
→ �t 	 P t�
→ P 1 ��� ����� t u� ⇒ u

β	 	 ∀ !a∞ b∞"!t 	 �� Γ ������ �a∞ ⇒ b∞��"!u 	 �� Γ ������ a∞�"
→ P 1 ����� t ∗ ���� !�∞ � a∞" u� ⇒ ����� !�∞ � b∞" ���� t u��

���) 	 ∀ !a b t t’ Et Et’"!E 	 /��� Γ a b"
→ �Et 	 Et ≅ E + t ,�
→ �Et’ 	 Et’ ≅ E + t’ ,�
→ �t⇒ 	 P 1 t ⇒ t’�
→ P 1 Et ⇒ Et’

The family of predicates � n is defined inductively by the following rules—we
allow ourselves set-notation at this semi-formal level:

t ∈ � n

λ xt ∈ � n

t1, t2 ∈ � n

(t1, t2) ∈ � n next t ∈ � 0

t ∈ � n

next t ∈ � (1+ n)

t ∈ � � n

t ∈ � n

t ′ ∈ � n t 〈n〉⇒ t ′

t ∈ � n

The last two rules close � under neutrals � �, which is an instance of " � with
P = � n, and level-n strong head expansion t 〈n〉⇒ t ′, which is an instance of P-whe
with also P = � n.

The � -relations are antitone in the level n. This is one dimension of the Kripke
worlds in our model (see next section).

���
* 	 ∀ !m n" → m ≤N n → ∀ !Γ a"!t 	 �� Γ a" →
* n t →
* m t

The other dimension of the Kripke worlds is the typing context; our notions are also
closed under renaming (and even undoing of renaming). Besides 	������ , we have
analogous lemmata 	������ � and 	�����⇒.

������
* 	 ∀ !n a Δ Γ" �ρ 	 Δ ≤ Γ� !t 	 �� Γ a" →

* n t →
* n ������� ρ t�

����2�����
* 	 ∀!n a Γ Δ" �ρ 	 Δ ≤ Γ� !t 	 �� Γ a" →

* n ������� ρ t� →
* n t

A consequence of �	��#������ is that t ∈ � n iff t x ∈ � n for some variable x.
(Consider t = λ y. t ′ and t x 〈n〉⇒ t ′[y/x].) This property is essential for the construction
of the function space on sn sets (see next section).

�#����
* 	 ∀!Γ a b n"!t 	 �� �a 		 Γ� �a →̂ b�" →
��� t ���� ���� ∈
* n → t ∈
* n

152 A. Abel and A. Vezzosi

6 Soundness

A well-established technique (Tait, 1967) to prove strong normalization is to model each
type a as a set A = �a� of sn terms. Each so-called semantic type A should contain the
variables in order to interpret open terms by themselves (using the identity valuation).
To establish the conditions of semantic types compositionally, the set A needs to be
saturated, i. e., contain � � (rather than just the variables) and be closed under strong
head expansion (to entertain introductions).

As a preliminary step towards saturated sets we define sets of well-typed terms in
an arbitrary typing context but fixed type, ����� a. We also define shorthands for the
largest set, set inclusion and closure under expansion.

��
�� 	 �a 	 ��� →
��1
��
�� a � !Γ 	 ���" �t 	 �� Γ a� →
��

+#, 	 ∀!a" → ��
�� a
+#, t � #

�⊆� 	 ∀!a" �AA′ 	 ��
�� a� →
��
A ⊆ A′ � ∀!Γ"!t 	 �� Γ �" → A t → A′ t

������ 	 ∀ �n 	 N� !a" �A 	 ��
�� a� →
��
������ n A � ∀!Γ"!t t’ 	 �� Γ �" → t 〈 n 〉⇒ t’ → A t’ → A t

For each type constructor we define a corresponding operation on�����s. The prod-
uct is simply pointwise through the use of the projections.

�+×,� 	 ∀!a b" → ��
�� a → ��
�� b → ��
�� �a ×̂ b�
�A +×, B� t � A ���� t� × B ���� t�

For function types we are forced to use a Kripke-style definition, quantifying over
all possible extended contexts Δ makes A �→�B closed under renamings.

�+→,� 	 ∀!a b" → ��
�� a → ��
�� b → ��
�� �a →̂ b�
�A +→, B� !Γ" t � ∀!Δ" �ρ 	 Δ ≤ Γ� → ∀ !u" → A u → B ���� ������� ρ t� u�

The ����� for the later modality is indexed by the depth. The first two constructors
are for terms in the canonical form ���� t, at depth ��	� we impose no restriction on t,
otherwise we use the given set A. The other two constructors are needed to satisfy the
properties we require of our saturated sets.

���� +	, !a∞" �A 	 ��
�� ������ a∞�� !Γ" 	 �n 	 N� → �� Γ �	̂ a∞� →
�� ����
����(∀ !t 	 �� Γ ������ a∞�" → +	, A ��� ����� t�
���� 	 ∀ !n"!t 	 �� Γ ������ a∞�" �t 	 A t� → +	, A ���� n� ����� t�
�� 	 ∀ !n"!t 	 �� Γ �	̂ a∞�" �n 	
*� n t� → +	, A n t
��� 	 ∀ !n"!t t’ 	 �� Γ �	̂ a∞�"

�t⇒ 	 t 〈 n 〉⇒ t’� �t 	 +	, A n t’� → +	, A n t

The particularity of our saturated sets is that they are indexed by the depth, which
in our case is needed to state the usual properties. In particular if a term belongs to a

Strong Normalization for Guarded Recursive Types 153

saturated set it is also a member of � , which is what we need for strong normalization.
In addition we require them to be closed under renaming, since we are dealing with
terms in a context.

������ 3�
'� �n 	 N� !a" �A 	 ��
�� a� 	
�� ����
����

���
*� 	
*� n ⊆ A
���
* 	 A ⊆
* n
���/�� 	 ������ n A
���2����� 	 ∀ !Γ Δ" �ρ 	 Δ ≤ Γ� → ∀ !t" → A t → A ������� ρ t�

������
'� �a 	 ��� �n 	 N� 	
��1 ����
����

���
�� 	 ��
�� a
���0��� 	 3�
'� n satSet

For function types we will also need a notion of a sequence of saturated sets up to a
specified maximum depth n.

'�≤ 	 �a 	 ��� �n 	 N� →
��1

'�≤ a n � ∀ !m" → m ≤N n →
'� a m

To help Agda’s type inference, we also define a record type for membership of a term
into a saturated set.

������ �∈� !a n Γ" �t 	 �� Γ a� �A 	
'� a n� 	
�� ����
����������� [U+21BF]�
���� [U+21C3]� 	 ���
�� A t

�∈〈�〉� 	 ∀ !a n Γ" �t 	 �� Γ a� !m" �m≤n 	 m ≤N n� �A 	
'�≤ a n� →
��
t ∈〈 m≤n 〉 A � t ∈ A m≤n

Given the lemmas about � shown so far we can lift our operations on ����� to
saturated sets and give the semantic version of our term constructors.

For function types we need another level of Kripke-style generalization to smaller
depths, so that we can maintain antitonicity.

�→�� 	 ∀ !n a b" �A 	
'�≤ a n� �B 	
'�≤ b n� →
'� �a →̂ b� n
A →� B � ������

! ���
�� � λ t → ∀ m �m≤n 	 m ≤N �� → �A m≤n +→, B m≤n� t
4 ���0��� � ������

! ���
* � �
*

� ����

"
"
����

������ A �
'�≤ A
������ B �
'�≤ B
A � A 5���
��
B � B5���
��

154 A. Abel and A. Vezzosi

C 	 ��
�� �� →̂ ��
C t � ∀ m �m≤n 	 m ≤N �� → �A m≤n +→, B m≤n� t

�
* 	 C ⊆
* �
�
* t � ����2�����
* ��� ��#����
*

�B5���
* ≤N5��$ �t � ≤N5��$ ��� �A 5���
*� ≤N5��$ ���� ��������

� ����

The proof of inclusion into � first derives that ��� (����� �
 t) (��	 ��	�) is in
� through the inclusion of neutral terms into A and the inclusion of B into � , then
proceeds to strip away first (��	 ��	�) and then (����� �
), so that we are left with
the original goal � n t. Renaming t with �
 is necessary to be able to introduce the
fresh variable ��	� of type a.

The types of semantic abstraction and application are somewhat obfuscated because
they need to mention the upper bounds and the renamings.���� � ∀ �n a b� �A � ��	≤ a n� �B � ��	≤ b n� �Γ� �t � 	
 �a �� Γ� b� →

�∀ �m� �m≤n � m ≤N n� �Δ� �ρ � Δ ≤ Γ� �u � 	
 Δ a� →
u ∈〈 m≤n 〉 A → ������ u ����� ������ ρ� t�� ∈〈 m≤n 〉B�

→ ��� t ∈ �A →� B�
�
 ���� �A � A ��B �B� t� m m≤n ρ u �
��	≤�������B m≤n �β ���	≤������ A m≤n u�� �
 t m≤n ρ �� u��

���� � ∀ �n a b��A � ��	≤ a n��B � ��	≤ b n��Γ��t � 	
 Γ �a →̂ b���u � 	
 Γ a�
→ t ∈ �A →� B� → u ∈〈 ≤N���� 〉 A → ��� t u ∈〈 ≤N���� 〉B���� �B �B� � � u� �� t� �� u� � ≡����� �λ t → ��� t u ∈〈 ≤N���� 〉B� �����

�� t � ≤N���� �� u�

The ����� for product types is directly saturated, inclusion into � uses a lemma
to derive � n t from � n (��� t), which follows from A ⊆ � .

�×�� 	 ∀ !n a b" �A 	
'� a n� �B 	
'� b n� →
'� �a ×̂ b� n
A ×� B � ������

! ���
�� � ���
�� A +×, ���
�� B
� ����

Semantic introduction ����	� : t1 ∈ A → t2 ∈ B → ���	 t1 t2 ∈ (A �×� B) and
eliminations ����� : t ∈ (A �×� B) → ��� t ∈ A and ����� : t ∈ (A �×� B) → ��� t ∈
B for pairs are straightforward.

The later modality is going to use the saturated set for its type argument at the pre-
ceeding depth, we encode this fact through the type �$��	��.

'����� 	 �a 	 ��� �n 	 N� →
��1

'����� a ��� � #

'����� a ���� n� �
'� a n

'�����
�� 	 !n 	 N"!a 	 ��" →
'����� a n → ��
�� a

'�����
�� ! ���" A � +#,

'�����
�� !��� n" A � ���
�� A

Strong Normalization for Guarded Recursive Types 155

Since the cases for �	�� are essentially a subset of those for � , the proof of inclu-
sion into � goes by induction and the inclusion of A into � .

	�� 	 ∀!n a∞" �A 	
'����� ������ a∞� n� →
'� �	̂ a∞� n	�� !n" !a∞" A � ������
! ���
�� � +	, �
'�����
�� A � n
� ����

Following Section 3 we can assemble the combinators for saturated sets into a se-
mantics for the types of λ	. The definition of ���� proceeds by recursion on the induc-
tive part of the type, and otherwise by well-founded recursion on the depth. Crucially
the interpretation of the later modality only needs the interpretation of its type parame-
ter at a smaller depth, which is then decreasing exactly when the representation of types
becomes coinductive and would no longer support recursion.

��≤ 	 �a 	 ��� !n 	 N" → ∀ !m" → m ≤N n →
'� a m

��� 	 �a 	 ��� �n 	 N� →
'� a n a →̂ b � n � a �≤ !n" →� b �≤ !n" a ×̂ b � n � a � n ×� b � n 	̂ a∞ � n � 	� 0 n
����

0 	 ∀ n →
'����� ������ a∞� n
0 ��� � �
0 ���� n� � ����� a∞ � n

Well-founded recursion on the depth is accomplished through the auxiliary definition
���≤ which recurses on the inequality proof. It is however straightforward to convert
in and out of the original interpretation, or between different upper bounds.

��≤ 	 ∀ a !n m" �m≤n 	 m ≤N n� → ���
�� � a � m� ⊆ ���
�� � a �≤ m≤n�
���≤ 	 ∀ a !n m" �m≤n 	 m ≤N n� → ���
�� � a �≤ m≤n� ⊆ ���
�� � a � m�

������≤ 	 ∀ a !n n’ m" �m≤n 	 m ≤N n� �m≤n’ 	 m ≤N n’�
→ ���
�� � a �≤ m≤n� ⊆ ���
�� � a �≤ m≤n’�

As will be necessary later for the interpretation of ����, the interpretation of types
is also antitone. For most types this follows by recursion, while for function types anti-
tonicity is embedded in their semantics and we only need to convert between different
upper bounds.

����� 	 ∀ a !m n" → m ≤N n → ���
�� � a � n� ⊆ ���
�� � a � m�

Typing contexts are interpreted as predicates on substitutions. These predicates in-
herit antitonicity and closure under renaming. Semantically sound substitutions act as
environments θ. We will need !�� to extend the environment for the interpretation of
lambda abstractions.

156 A. Abel and A. Vezzosi

��� 	 ∀ Γ !n" → ∀ !Δ" �σ 	
�#�� Γ Δ � →
�� Γ �� !n" σ � ∀ !a" �x 	 ��� Γ a� → σ x ∈ a � n

6�� 	 ∀ !m n" → �m≤n 	 m ≤N n� →
∀ !Γ Δ" !σ 	
�#�� Γ Δ" �θ 	 Γ �� !n" σ� → Γ �� !m" σ

6�� m≤n θ !a" x � ��� a �∈ m≤n �θ x�

2����� 	 ∀ !n Δ Δ ’" → �ρ 	 2�� Δ Δ ’� →
∀ !Γ"!σ 	
�#�� Γ Δ" �θ 	 Γ �� !n" σ� → Γ �� �ρ •� σ�

2����� ρ θ !a" x � [U+21BF] ���2����� � a � �� ρ �[U+21C3] θ x�

/�� 	 ∀ !a n Δ Γ" !t 	 �� Δ a" → �t 	 t ∈ a � n� →
∀ !σ 	
�#�� Γ Δ" �θ 	 Γ �� σ� → a 		 Γ �� �t 		� σ�

/�� t θ � ���� � t
/�� t θ ���� x� � θ x

The soundness proof, showing that every term of λ	 is a member of our saturated
sets and so a member of � , is now a simple matter of interpreting each operation in
the language to its equivalent in the semantics that we have defined so far.

����� � ∀ �n a Γ� 	t �
� Γ a� �Δ� �σ � ���� Γ Δ� →
	θ � Γ �� �n� σ� → ����� σ t ∈ a � n

����� 	��� x� θ � θ x
����� 	��� t� θ � ���� �� � t� λ m≤n ρ u →
� ��≤ � m≤n 	
 ����� t 	��� 	� ���≤ � m≤n 	
 u�� 	������ ρ 	��� m≤n θ����

����� 	��� t u� θ � ���� 	����� t θ� 	����� u θ�
����� 	���� t u� θ � ����� 	����� t θ� 	����� u θ�
����� 	��� t� θ � ���� 	����� t θ�
����� 	��� t� θ � ���� 	����� t θ�
����� 	t ∗ u� θ � ∗� 	����� t θ� 	����� u θ�
����� ������ 	���� t� θ � � �����
����� ��� n� 	���� t� θ � � 	���� 	
 ����� t 	��� �≤�� θ���

The interpretation of ���� depends on the depth, at ��	� we are done, at �
 n we
recurse on the subterm at depth n, using antitonicity to %�� the current environment to
depth n as well. In fact without ���� we would not have needed antitonicity at all since
there would have been no way to embed a term from a smaller depth into a larger one.

7 Conclusions

In this paper, we presented a family of strongly-normalizing reduction relations for
simply-typed lambda calculus with Nakano’s modality for recursion. Using a similar
stratification, Krishnaswami and Benton (2011a) have shown weak normalization using
hereditary substitutions, albeit for a system without recursive types.

Strong Normalization for Guarded Recursive Types 157

Our Agda formalization uses a saturated sets semantics based on an inductive notion
of strong normalization. Herein, we represented recursive types as infinite type expres-
sions and terms as intrinsically well-typed ones.

Our treatment of infinite type expressions was greatly simplified by adding an exten-
sionality axiom for the underlying coinductive type to Agda’s type theory. This would
not have been necessary in a more extensional theory such as Observational Type The-
ory (Altenkirch et al., 2007) as shown in (McBride, 2009). Possibly Homotopy Type
Theory (UnivalentFoundations, 2013) would also address this problem, but there the
status of coinductive types is yet unclear.

For the future, we would like to investigate how to incorporate guarded recursive
types into a dependently-typed language, and how they relate to other approaches like
coinduction with sized types, for instance.

Acknowledgments. Thanks to Lars Birkedal, Ranald Clouston, and Rasmus Møgel-
berg for fruitful discussions on guarded recursive types, and Hans Bugge Grathwohl,
Fabien Renaud, and some anonymous referees for useful feedback on the Agda de-
velopment and a draft version of this paper. The first author acknowledges support by
Vetenskapsrådet framework grant 254820104 (Thierry Coquand). This paper has been
prepared with Stevan Andjelkovic’s Agda-to-LaTeX converter.

References

Agda Wiki. Chalmers and Gothenburg University, 2.4 edn. (2014),
�����������������	����	������������

Abel, A.: Normalization for the simply-typed lambda-calculus in Twelf. In: Logical Frame-
works and Metalanguages (LFM 2004). Electronic Notes in Theoretical Computer Science,
vol. 199C, pp. 3–16. Elsevier (2008)

Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: Programming infinite structures
by observations. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2013, Rome, Italy, January 23-25, pp. 27–38. ACM Press
(2013)

Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded recursive types
(long version and Agda sources) (August 2014),
������������������	������������	�����	������������	���	���

Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: Proceedings of the
ACM Workshop Programming Languages meets Program Verification, PLPV 2007, Freiburg,
Germany, October 5, pp. 57–68. ACM Press (2007)

Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive
types. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 453–468.
Springer, Heidelberg (1999)

Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: Proc. of the 18th
ACM SIGPLAN Int. Conf. on Functional Programming, ICFP 2013, pp. 197–208. ACM Press
(2013)

Benton, N., Hur, C.K., Kennedy, A., McBride, C.: Strongly typed term representations in Coq.
Journal of Automated Reasoning 49(2), 141–159 (2012)

http://wiki.portal.chalmers.se/agda
http://www.cse.chalmers.se/~abela/publications.html#aplas14

158 A. Abel and A. Vezzosi

Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types qua fixed
points on universes. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, pp. 213–222. IEEE Computer Society Press
(2013)

Dybjer, P.: Inductive families. Formal Aspects of Computing 6(4), 440–465 (1994)
Joachimski, F., Matthes, R.: Short proofs of normalization. Archive of Mathematical Logic 42(1),

59–87 (2003)
Krishnaswami, N.R., Benton, N.: A semantic model for graphical user interfaces. In: Proceed-

ing of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP
2011, Tokyo, Japan, September 19-21, pp. 45–57. ACM Press (2011a)

Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In: Proceedings
of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, Toronto,
Ontario, Canada, June 21-24, pp. 257–266. IEEE Computer Society Press (2011b)

McBride, C.: Type-preserving renaming and substitution, unpublished draft (2006),
�������������	�����������������!������"

McBride, C.: Let’s see how things unfold: Reconciling the infinite with the intensional (Extended
abstract). In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp.
113–126. Springer, Heidelberg (2009)

McBride, C.: Outrageous but meaningful coincidences: Dependent type-safe syntax and evalua-
tion. In: Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP 2010,
Baltimore, MD, USA, September 27-29, pp. 1–12. ACM Press (2010)

Nakano, H.: A modality for recursion. In: Proceedings of the 15th Annual IEEE Symposium on
Logic in Computer Science (LICS 2000), Santa Barbara, California, USA, June 26-29, pp.
255–266. IEEE Computer Society Press (2000)

van Raamsdonk, F., Severi, P., Sørensen, M.H., Xi, H.: Perpetual reductions in lambda calculus.
Information and Computation 149(2), 173–225 (1999)

Tait, W.W.: Intensional interpretations of functionals of finite type I. The Journal of Symbolic
Logic 32(2), 198–212 (1967)

Univalent Foundations: Homotopy type theory: Univalent foundations of mathematics. Tech. rep.
Institute for Advanced Study (2013), �����������������������������������

Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: Proceedings of the 30th
ACM SIGPLAN Symposium on Principles of Programming Languages, New Orleans, pp.
224–235 (2003)

http://strictlypositive.org/ren-sub.pdf
http://homotopytypetheory.org/book/

Functional Pearl: Nearest Shelters in Manhattan

Shin-Cheng Mu1 and Ting-Wei Chen2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Dep. of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan

Abstract. Godzilla is attacking New York, and your task is to choose,
for each shelter in the city, a nearest shelter to evacuate to. Luckily,
distance between shelters is measured by Manhattan length, which allows
us to complete the task in O(n log n) time. We present two algorithms:
an algorithmic solution that solves the problem by a list-homomorphism,
and a data structure based solution that exploits a “thinning” property.

Godzilla is awakened again, and is attacking New York this time. The citizens
not evacuated in time are hiding in numerous shelters all over the city, which are
currently the only places with water and food. In this functional pearl, you are
given the set of coordinates of these shelters, and your task is to come up with
an escape plan: for each shelter, in case it gets attacked, find a nearest shelter
where people should evacuate to. Note that “being the nearest shelter” is not
a symmetric relation: consider three shelters at coordinates (0, 0), (2, 0), (3, 0),
where the shelter nearest to (0, 0) is (2, 0), while the one nearest to (2, 0) is (3, 0).

There is a good twist, however. Being in New York, where streets are grid-
aligned, distances between buildings are measured by the so-called Manhattan
distance — sum of the absolute differences of their coordinates. This allows us
to compute the nearest shelters, for each of the n shelters, in O(n log n) time.
In fact, we will present in this pearl two algorithms: an algorithmic approach
using a list-homomorphism, and a data structure based approach that exploits
a “thinning” property that allows logarithm-time looking-up.1

1 Specification

We adopt a Haskell-like notation, use xs, ys , etc., to denote sets and lists, and
use x, y, etc. to denote their elements. Standard functions on lists such as (:),
map, filter , etc., are overloaded to sets. We let X and Y coordinates increase
toward the east (right) and north (top), thus when we say that (x2, y2) is to the
northeast of (x1, y1), we mean x1 ≤ x2 and y1 ≤ y2.

1 Haskell code accompanying this pearl can be fetched from http://www.iis.sinica.

edu.tw/~scm/sw/nearest shelters.zip .

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 159–175, 2014.
c© Springer International Publishing Switzerland 2014

http://www.iis.sinica.edu.tw/~{}scm/sw/nearest_shelters.zip
http://www.iis.sinica.edu.tw/~{}scm/sw/nearest_shelters.zip

160 S.-C. Mu and T.-W. Chen

To give a specification, we start with defining a function allpairs . Given a list
of type [a], it returns a set of pairs {(a, {a})}, such that each element in the
input is paired with all elements other than itself:

allpairs :: [a]→ {(a, {a})}
allpairs [] = { }
allpairs (x : xs) = {(x, xs)} ∪map (id × (x :)) (allpairs xs),

where (f × g) (x, y) = (f x, g y). For example, allpairs [1, 2, 3] = {(1, {2, 3}),
(2, {1, 3}), (3, {1, 2})}. One can easily see that we have

map fst (allpairs xs) = setify xs , (1)

where setify :: [a]→ {a} converts a list to a set. Note that the output of allpairs
is a set, not a multiset. The input list is also meant to represent a set of points,
and thus we assume that it contains no duplicates. The sets will be represented
by concrete data structures, but we defer the decision until the choice is clear.

A shelter is identified with its coordinates:

type Ptr = (Int , Int).

The task is to find, for each point, their nearest neighbours:

nearall :: [Ptr]→ {(Ptr ,Ptr)}
nearall = map nearest ◦ allpairs

where nearest (x, xs) = (x,min≤x xs),

where the relation ≤x compare points by their Manhattan distance from x,

y ≤x z = manhattan x y ≤ manhattan x z ,
manhattan (x1, y1) (x2, y2) = |x1 − x2|+ |y1 − y2| .

Given a connected preorder�,2 the function min� computes a minimum element
under � in its input, while the binary minimum operator is denoted by �. It
will be specified later what min� and � return in case of a tie, for � of our
interest. For a concise presentation, we let min≤x { } = #, where # is a pseudo
“furthest shelter” and an identity element of ≤x . In the actual code it can be
emulated by lifting Ptr to Maybe Ptr and denoting # by Nothing.

It will turn out that we wish the input list to be sorted primarily by X-
coordinates, then secondarily by Y, but we will bring up this constraint when it
is motivated in Section 3.1. The output set will also be eventually represented
by a list, and it might be sorted differently from the input. It often happens
in algorithm design that finding an appropriate set representation is crucial to
efficiency, and the decision should be postponed until its motivations and effects
are clear.

2 A preorder � on A is a relation (a subset of A× A) that is reflexive and transitive.
It is connected if for every x, y in A, at least one of x� y and y � x holds.

Functional Pearl: Nearest Shelters in Manhattan 161

2 Looking Toward the Northeast

When tackling problems involving Manhattan distance, it is sometimes a useful
strategy to first solve a subproblem in which we consider, for each point, only
those points to its northeast. To see the motivation, let (x2, y2) be a point located
to the northeast of (x1, y1), and consider the Manhattan distance between them:

|x1 − x2|+ |y1 − y2|
= { since x2 ≥ x1 and y2 ≥ y1 }

x2 − x1 + y2 − y1

= (x2 + y2)− (x1 + y1).

The distance is the difference between the sums of their coordinates. Given a
point x, consider a set of points, all to the northeast of x. To choose the point
nearest to x, we simply pick the one whose sum of coordinates is the smallest.
To put it formally, if we define:

(x1, y1) ↗ (x2, y2) = x1 ≤ x2 ∧ y1 ≤ y2,

such that x ↗ y yields true if y is to the northeast of x, we have

min≤x
◦ filter (x↗) = min≤+

◦ filter (x↗), (2)

where (x1, y1) ≤+ (x2, y2) = x1+y1 ≤ x2+y2. Given a point, we will refer to the
sum of its X and Y coordinates simply as its “sum”, when no confusion occurs.

Property (2) is useful because, while min≤x depends on x, min≤+ does not.
We have thus turned a local property into a global property. As we will see later,
this allows us to reuse the result of min≤+ when we consider nearest shelters of
each points.

To compute nearall , we solve a subproblem in which we compute for every
shelter the nearest shelter to its northeast:

nearall↗ :: [Ptr]→ [(Ptr ,Ptr)]
nearall↗ = map nearest↗ ◦ allpairs

where nearest↗ (x, xs) = (x,min≤x (filter (x↗) xs)).

Nothing is lost by considering only the points to the northeast. The nearest shel-
ters toward the northwest, for example, could be computed by reusing nearall↗,
if we flip every point around the X-axis:

nearall↖ = map (flipX × flipX) ◦ nearall↗ ◦ map flipX ,

where flipX (x, y) = (−x, y). Functions nearall↙ and nearall↘ can be defined
similarly, and nearall can be computed by searching toward each direction in
turns before combining the results:

nearall xs = nearall↗ xs ⊕ nearall↖ xs ⊕ nearall↘ xs ⊕ nearall↙ xs
where ys ⊕ zs = {(x, y ≤x z) | x ∈ xs, (x, y) ∈ ys , (x, z) ∈ zs}.

The rest of the pearl will be focusing on constructing efficient implementations
of nearall↗.

162 S.-C. Mu and T.-W. Chen

3 A Divide-and-Conquer Approach

Aiming for an O(n log n)-time algorithm, one naturally goes for a divide-and-
conquer approach. Let us consider how allpairs (xs ++ ys) can be computed in
terms of allpairs xs and allpairs ys :

allpairs [] = { }
allpairs [x] = {(x, { })}
allpairs (xs ++ ys) = map (id × (∪ys ′)) xss ∪map (id × (xs ′∪)) yss

where (xss, yss) = (allpairs xs, allpairs ys)
(xs ′, ys ′) = (setify xs, setify ys)

Note that, by (1), (xs ′, ys ′) = (map fst xss,map fst yss). The function allpairs
thus turns out to be a list homomorphism, a common pattern used to describe
divide-and-conquer algorithms on lists [9,7]. Our task now is to come up with a
list-homomorphic definition of nearall↗.

3.1 Finding the Nearest Shelter in a List Homomorphism

We try to construct an inductive definition of nearall↗ by the typical unfold-
fold transformation. The cases for empty and singleton lists are easy. The goal
is to find some ⊕ such that nearall↗ (xs ++ ys) = nearall↗ xs ⊕ nearall↗ ys , and
discover what constraints we need to impose on xs and ys . Some hints for the
impatient readers: if we assume that the input is sorted by X-coordinate, the
result of nearall↗ ys can be used as it is, while the result of nearall↗ xs will be
updated by integrating those points in ys .

Assuming that xs and ys are non-empty, we reason:

nearall↗ (xs ++ ys)

= (map nearest↗ ◦ allpairs) (xs ++ ys)

= { by definition, let (xss , yss) = (allpairs xs, allpairs ys), and

(xs ′, ys ′) = (setify xs , setify ys) }
map nearest↗ (map (id × (∪ys ′)) xss ∪map (id × (xs ′∪)) yss)

= { map fusion }
map (λ(x, zs).(x,min≤x (filter (x↗) (zs ∪ ys ′)))) xss ∪
map (λ(y, zs).(y,min≤y (filter (y↗) (xs ′ ∪ zs)))) yss .

Observe that, by (1), x and y in the λ expression are respectively members of
xs and ys . If we assume that the input xs ++ ys is sorted primarily by ascending
X-coordinate and secondarily by ascending Y-coordinate, we have

x ↗ y ⇔ x ↑ y ∧ (3)

¬(y ↗ x) , (4)

for all x ∈ xs and y ∈ ys ,

Functional Pearl: Nearest Shelters in Manhattan 163

where x↑y denotes that y is to the north of x, that is, (x1, y1)↑(x2, y2) = y1 ≤ y2.
The right-hand side of ∪ (the last line of the derivation above) thus reduces

to nearall↗ ys :

map (λ(y, zs).(y,min≤y (filter (y↗) (xs ′ ∪ zs)))) yss

= { (4) holds by assumption }
map (λ(y, zs).(y,min≤y (filter (y↗) zs))) yss

= { definitions of nearest↗ and nearall↗ }
nearall↗ ys .

For the left-hand side of ∪, we calculate:

map (λ(x, zs).(x,min≤x (filter (x↗) (zs ∪ ys ′)))) xss

= { filter and min distributes into ∪ }
map (λ(x, zs).(x,min≤x (filter (x↗) zs) ≤+

min≤x (filter (x↗) ys ′)))) xss

= { map-fusion }
map (λ(x, z).(x, z ≤x min≤x (filter (x↗) ys ′)))

(map (λ(x, zs).(x,min≤x (filter (x↗) zs))) xss)

= { definition of nearall↗ }
map (λ(x, z).(x, z ≤x min≤x (filter (x↗) ys ′)))

(nearall↗ xs)

= { by (2) and (3) }
map (λ(x, z).(x, z ≤x min≤+ (filter (x↑) ys ′)))

(nearall↗ xs).

For brevity, we extract from the last line the following definition:

minWithin ys (x, z) = (x, z ≤x min≤+ (filter (x↑) ys)).

In words, minWithin ys (x, z) selects, from ys , those points that are to the north
of x, find a point whose sum is minimum, before comparing it with z. We now
have:

nearall↗ [] = { }
nearall↗ [x] = {(x,#)}
nearall↗ (xs ++ ys) =

map (minWithin (setify ys)) (nearall↗ xs) ∪ nearall↗ ys .

By always splitting xs ++ ys into two lists of roughly the same size, we get a
O(n log n)-time algorithm if we can compute map (minWithin (setify ys)) xs ′ in
time linear to the sizes of ys and xs ′, where xs ′ = nearall↗ xs.

3.2 Sweeping

In this section we develop an efficient way to compute the expression

map (minWithin (setify ys)) (nearall↗ xs) ∪ nearall↗ ys .

164 S.-C. Mu and T.-W. Chen

Again, some spoilers for the impatient readers: we will assume that the results
of nearall↗ xs and nearall↗ ys are sorted by Y-coordinates, and merge them in
a zip-like manner.

Consider map (minWithin ys ′) xs ′ (where, for brevity, ys ′ = setify ys and
xs ′ = nearall↗ xs). For each element (x, z) of xs ′ we apply minWithin ys ′, that
is, to filter out those points in ys ′ that are to the north of x and pick a minimum
(before comparing with z). If the elements in xs ′ are processed in north-to-south
order, we will filter out a successively larger subset of ys ′. That allows us to
reuse previously computed results of smaller subsets of ys ′.

Since we typically process lists from right-to-left, to process nearall↗ xs in
the order mentioned above, we would want to store it in a list such that the first
components are sorted by ascending (left-to-right) Y-coordinates. The input and
output of our main algorithm are thus sorted differently: the former is sorted
primarily by X (a constraint discovered in Section 3.1), while the output is sorted
by Y.

Define snearall↗ = sortY ◦ nearall↗, where sortY , of type {(Ptr ,Ptr)} →
[(Ptr ,Ptr)], sorts the input set into a list of pairs of points such that the Y-
coordinates of the first components are ascending. By distributing sortY into
nearall↗, one easily get:

snearall↗ (xs ++ ys) =
map (minWithin (setify ys)) (snearall↗ xs) ‘merge‘ snearall↗ ys ,

where merge combines two sorted lists. To efficiently compute the subexpression
map (minWithin (setify ys)) (snearall↗ xs), we define:

sweep :: [(Ptr ,Ptr)]→ [Ptr]→ ([(Ptr ,Ptr)],Ptr)
sweep xs ys = (map (minWithin (setify ys)) xs,min≤+ ys),

which caches the results of the current minimum in the second component of the
pair. Caching some reusable results in a pair to avoid redundant function calls
is called “tupling” [3], a common technique in program derivation. If sweep can
be computed efficiently, snearall↗ (xs ++ ys) can be computed by:

snearall↗ (xs ++ ys) = fst (sweep (snearall↗ xs) ys ′) ‘merge‘ zs
where zs = snearall↗ ys

ys ′ = map fst zs .

Note that sweep assumes that both of its arguments are sorted by the Y-
coordinate. We let ys ′ = map fst zs to satisfy the demand that ys ′ is sorted.

Now we aim to construct an inductive definition of sweep. The cases when
xs := [] or ys := [] are omitted. The more interesting case is sweep ((x, z) :
xs) (y : ys), for which we distinguish between following two cases, where ≤Y

compares the Y-coordinate:

Case x >Y y. Since (x, z) : xs is sorted by ascending Y, we have that for all
(x′, z′) ∈ ((x, z) : xs), x′ >Y y. That is, y is not in the northeast direction of any
points in ((x, z) : xs) and can be dropped. Indeed we have

sweep ((x, z) : xs) (y : ys) = (id × (y ≤+)) (sweep ((x, z) : xs) ys).

Functional Pearl: Nearest Shelters in Manhattan 165

The equation above is best proved as a separate lemma

Lemma 1. sweep xs (y : ys) = (id × (y ≤+)) (sweep xs ys), if x >Y y for
all (x, z) ∈ xs.

Proof of the lemma is a routine induction on xs , shown in Appendix A.

Case x ≤Y y. We reason:

sweep ((x, z) : xs) (y : ys)

= (map (minWithin (setify (y : ys)) ((x, z) : xs)),

min≤+ (y : ys))

= { definitions of map and minWithin }
((x, z ≤+ min≤+ (filter (x↑) (y : ys))) :

map (minWithin (setify (y : ys))) xs,

min≤+ (y : ys))

= { since x ≤Y y, and y : ys ascending w.r.t ≤Y }
((x, z ≤x min≤+ (y : ys)) :

map (minWithin (setify (y : ys))) xs,

min≤+ (y : ys))

= { definition of sweep }
let (zs ,m) = sweep xs (y : ys)

in ((x, z ≤x m) : zs ,m).

We have thus constructed sweep:

sweep [] ys = ([],min≤+ ys)
sweep xs [] = (xs ,∞)
sweep ((x, z) : xs) (y : ys)
| x >Y y = (id × (y ≤+)) (sweep ((x, z) : xs) ys
| x ≤Y y = let (zs ,m) = sweep xs (y : ys)

in ((x, z ≤x m) : zs ,m).

In fact, the structure of sweep resembles merge. We may further combine
sweep and merge, to be a little bit more efficient. Define:

sweepmrg :: [(Ptr ,Ptr)]→ [(Ptr ,Ptr)]→ ([(Ptr ,Ptr)],Ptr)
sweepmrg xs ys = let (zs ,m) = sweep xs (map fst ys)

in (merge zs ys ,m).

It takes a routine calculation to derive an inductive definition of sweepmrg :

sweepmrg [] ys = (ys ,min≤+ (map fst ys))
sweepmrg xs [] = (xs ,∞)
sweepmrg ((x, z) : xs) ((y, w) : ys)
| x >Y y = let (zs ,m) = sweepmrg ((x, z) : xs) ys

in ((y, w) : zs , y ≤+ m)
| x ≤Y y = let (zs ,m) = sweepmrg xs ((y, w) : ys)

in ((x, z ≤x m) : zs ,m).

166 S.-C. Mu and T.-W. Chen

nearall↗ :: [Ptr]→ [(Ptr ,Maybe Ptr)]
nearall↗ = snearall↗ ◦ sort

snearall↗ :: [Ptr]→ [(Ptr ,Maybe Ptr)]
snearall↗ [] = []
snearall↗ [x] = [(x,Nothing)]
snearall↗ xs = fst (sweepmrg (snearall↗ ys) (snearall↗ zs))

where (ys , zs) = splitAt ((length xs) ‘div ‘ 2) xs

sweepmrg :: [(Ptr ,Maybe Ptr)]→ [(Ptr ,Maybe Ptr)]→
([(Ptr ,Maybe Ptr)],Maybe Ptr)

sweepmrg [] ys = (ys ,min≤+ (map fst ys))
sweepmrg xs [] = (xs,Nothing)
sweepmrg ((x, z) : xs) ((y,w) : ys)
| x >Y y = let (zs ,m) = sweepmrg ((x, z) : xs) ys

in ((y, w) : zs, Just y ≤+ m)
| otherwise = let (zs ,m) = sweepmrg xs ((y,w) : ys)

in ((x, z ≤+ m) : zs ,m)

Fig. 1. Computing nearall↗ in a list-homomorphism

While snearall↗ may thus be defined as:

snearall↗ [] = []
snearall↗ [x] = [(x,#)]
snearall↗ (xs ++ ys) = fst (sweepmrg (snearall↗ xs) (snearall↗ ys)).

The key components of the actual code is summarised in Figure 1, where we
lift Ptr to Maybe Ptr and use Nothing to denote #. To ensure that the input is
sorted by X-coordinate, we compose sort before snearall↗.

3.3 Complexity Analysis

We give a brief complexity analysis before we conclude discussion of this algo-
rithm. In each recursive call of sweepmrg , the sum of the lengths of its arguments
is decremented by one. Therefore the running time of sweepmrg is clearly linear
in the sum of lengths of its two arguments. In each recursive call to function
snearall↗ cuts the length of its argument by half. The running time of snearall↗
can be estimated by T (n) = n + 2 × T (n/2). By standard analysis we may
conclude that T (n) is in O(n logn).

4 A Thinning Approach

The solution in the previous section achieves O(n log n) complexity by splitting
the problem into at most O(log n) levels, while ensuring that each level can
be processed in linear time. We now present a complementary approach, in

Functional Pearl: Nearest Shelters in Manhattan 167

which we make n queries into a data structure, time of each query bounded by
O(log n). Interestingly, it turns out that to maintain the data structure, we have
to keep “thinning” it, a technique often used to construct efficient algorithms
for optimisation problems.

Following the development in Section 2, we focus on developing a fast al-
gorithm for nearall↗, and also assume that the input list of points is sorted,
with no duplication. Recall that nearall↗ = map nearest↗ ◦ allpairs , where
nearest↗ (x, xs) = (x,min≤x (filter (x↗) xs)). This time, we attempt to com-
pute nearall↗ by processing the input from right to left, that is, to express
nearall↗ (x : xs) as a function of xs and nearall↗ xs:

nearall↗ (x : xs)

= nearest↗ (x, xs) : map (nearest↗ ◦ (id × (x :))) (allpairs xs))

= { (x : xs) sorted, and thus ¬(y ↗ x) for all y ∈ xs }
nearest↗ (x, xs) : map nearest↗ (allpairs xs))

= { definition of nearall↗ }
nearest↗ (x, xs) : nearall↗ xs

= { definition of nearest↗, (2) }
(x,min≤+ (filter (x↗) xs)) : nearall↗ xs

= { x : xs sorted by X }
(x,min≤+ (filter (x↑) xs)) : nearall↗ xs

The second step is valid because one can easily show that nearest↗ (y, x : zs) =
nearest↗ (y, zs) if ¬(y ↗ x) for all x, y, zs . The last step is valid because, now
that x : xs is sorted primarily by X, to check for (x↗) reduces to checking for
(x↑).

Given an input list of length n, for each tail x : xs, one can see nearest↗ as
making a query: “among the points in xs that are to the north of x, which point
has minimum sum?” A series of such queries are made, from right to left (or,
east to west), on the n such tails of the input. Our wish is to ensure that each
query can be completed in O(log n) time.

Some points in xs are redundant. Consider, for example, two points y = (1, 2)
and z = (3, 1) in xs. A moment’s thought reveals that we do not need to keep
z, since for all x, if x ↗ z, it must also be the case that x ↗ y, and yet y ≤+ z
— wherever z is chosen, it makes no harm to use y instead. Therefore, instead
of querying into xs, we can keep only a “thinned” version of xs without such
redundant elements.

The algorithm scans the input list right-to-left, while carrying a subset of the
tail containing only those elements that are needed. In Section 4.1 we review
some theories on such “thinned” sets, before we instantiate the theory to this
particular problem and develop the main structure of the algorithm in Section
4.2. In Section 4.3 we develop the data structure used in the algorithm that
allows efficient thinning and querying.

168 S.-C. Mu and T.-W. Chen

4.1 Minimum, Thinning, and Filtering

The idea, when computing some optimal solutions, of throwing away elements
that are no longer needed has been called “thinning” [2], and has been applied
to solve a number of optimisation problems [5,13,11], as well as deriving approx-
imation algorithms [12]. In those contexts, the main purpose of thinning is to
asymptotically reduce the number of potential solutions. Less addressed, how-
ever, is that thinning a set also reveals more structure that we may exploit to
allow efficient access, which is what we need.

Thinning is typically described in a relational setting. In this section, we will
try to give a minimal, not-so-relational account sufficient for readers to get an
idea of the concept.

Assume some preorder � such that y � z captures the idea that z is no longer
needed in the presence of y. Apparently, not all elements are comparable under
�. The non-redundant elements of a set are those minimal elements under �.
The operation thin� ys yields a subset xs of ys , with some redundant elements
possibly removed.

Our implementation of thin�, in fact, keeps only those minimal elements. To
prove its properties, however, it is sufficient to assume a weaker specification:
that thin� does not throw away non-redundant elements. More precisely, if ys
is a result of thin� zs, we demand merely that ys ⊆ zs and 3

(∀z : z ∈ zs : (∃y : y ∈ ys : y � z)).

That is, while being a subset of zs , ys is large enough such that every element
in zs is subsumed by some element in ys . Not over-specifying thin� allows more
flexibility and, by capturing only the essential constraints, makes some properties
about thin� easier to prove.

We will need the following two properties about thin . Firstly, we have

min� ◦ thin� ⊆ min�,

if y � z ⇒ y � z.
(5)

The symbol ⊆ denotes inclusion of relations, but we may roughly understand it
as saying that “for all inputs, the output of the LHS is a legitimate output of
the RHS.” Therefore, (5) states that as long as � implies �, if we remove some
redundant elements from a set by thin� and take a minimum, the result is still
a minimum of the original set.

The second property says that thin and filter commute:

filter p ◦ thin� ⊆ thin� ◦ filter p,

if y � z ⇒ (p z ⇒ p y).
(6)

The antecedent ensures that if the lesser solution z is kept by filter p, so is y.
Proof of (6) is given in Appendix B.

3 (∀x̄ : R : P) is read “for all variable(s) x̄ in range R, P is true.” Similarly with ∃.
The notation is suggested, among others, by Gries and Schneider [8].

Functional Pearl: Nearest Shelters in Manhattan 169

4.2 Thinning the Set of Shelters

To describe the kind of thinning we perform, define

y � z ≡ y ≤+ z ∧ z ↑ y.

By y � z we denote that y subsumes z and makes z redundant, that is, to
compute the nearest shelter to the northeast of any x, we do not need z as long
as y is around. The definition says that y � z if and only of the sum of y is no
worse than z, while it is located no southerner than z. Indeed, it immediately
follows from the definition that

y � z ⇒ y ≤+ z ∧
y � z ⇒ (x ↑ z) ⇒ (x ↑ y) , for all x,

which guarantee (5) and (6).
Back to nearall↗. The following calculation justifies defining it in terms of

a function that passes a thinned set of shelters around. We have shown in the
beginning of this section that nearall↗ (x : xs) = (x,min≤+ (filter (x↑) xs)) :
nearall↗ xs. Consider the second component of the pair:

min≤+ (filter (x↑) xs)

= { by (5) }
min≤+ (thin� (filter (x↑) xs))

= { by (6) }
min≤+ (filter (x↑) (thin� xs)) .

That is, to find the point in xs nearest to x, it is sufficient to query into a thinned
set thin� xs. To avoid recomputing thin� xs from scratch, we perform tupling
again by defining:

nearthin :: [Ptr]→ ([(Ptr ,Ptr)], {Ptr})
nearthin xs = (nearall↗ xs, thin� xs) .

If nearthin can be computed efficiently, we may let

nearall↗ = fst ◦ nearthin .

A routine calculation yields:

nearthin [] = ([], {})
nearthin (x : xs) = let (zs , xs ′) = nearthin xs

in ((x,min≤+ (filter (x↑) xs ′)) : zs, thinadd x xs ′),

where thinadd x xs ′ = thin� (x : xs ′), that is, it adds x into xs ′, before removing
redundant elements.

It remains to decide what data structure we may use to represent {Ptr} to
allow efficient implementation of min≤+

◦ filter (x↑) and thinadd .

170 S.-C. Mu and T.-W. Chen

4.3 A Splay Tree Representation

It often turns out that the key to constructing efficient algorithm is to find
efficient representations of sets. Now let us consider how a fully thinned set, that
is, one containing only minimal elements under �, looks like.

– If two points have the same Y-coordinate, we only need to keep the one with
a smaller sum. Thus for each Y value there needs to be at most one point.

– If y and z, with y ↑ z, both remain in the fully thinned set, it must be the
case that y <+ z — otherwise y would be dropped.
That is, if we sort the elements of the fully thinned set of points by increasing
Y-coordinates, the sums of these points must be increasing too.

Let xs be a thinned set. To perform min≤+ (filter (x↑) xs), one only need to
find, among those points to the north of x, the one with the smallest Y-value,
since its sum must be the smallest too! One could use some variation of binary
search tree that allows logarithm look-up on Y. The operation thinadd is trickier,
since after inserting x, we have to remove elements that became redundant in
the presence of x.

For advantages to be seen later, we will use splay trees [14], a well-known, self-
adjusting binary search tree with amortised O(log n) look-up and insertion. One
interesting property of splay tree is that the most recently accessed or inserted
element is moved to the root. For our purpose it suffices to use an ordinary
binary tree as the backbone:

data Tree a = Lf | Nd (Tree a) a (Tree a).

We implemented the following operations:

– find :: (a → a → Ordering) → a → Tree a → Zipper a.4 The function call
find cmp x t tries to find x in t, using cmp for comparison. The trail it goes
through is recorded in a zipper [10]:

data ZigZag a = L a (Tree a) | R (Tree a) a,
type Zipper a = (Tree a, [ZigZag a]).

If the result is (Lf, zs), x is not found in t. Otherwise it returns (Nd u x′ v, zs)
such that cmp x x′ = EQ, and zs is the path leading to the tree where x′ is
found. Once we have a zipper, a lot can be done to it.

– lub :: Zipper a → Maybe a takes a zipper (resulting from a search using
find cmp x t) and returns the least element in t that is no smaller than x, if
such an element exists.

– splay :: Zipper a → Tree a rolls the zipper back to a tree, while rotating the
nodes all the way up such that the node accessed just now becomes the root.

– insZip :: a → (a → a → a)→ Zipper a → Tree a, defined in terms of splay ,
performs insertion. If (u, zs) = find cmp x t is the result of searching for x
in t, insZip y f (u, zs) inserts a value into where the search ended. If the

4 data Ordering = LT | EQ | GT.

Functional Pearl: Nearest Shelters in Manhattan 171

search failed (u = Lf), the value y is inserted as it is. If the search succeeded
(u = Nd u x v), the value f y x is added in place of x. The newly inserted
value is splayed to the root.

– For convenience, we also define insert cmp x f t = insZip x f (find cmp x t),
which performs insertion right after a search.

There are many ways these and similar operations can be implemented and the
readers do not need to know a particular implementation to understand the
algorithm. For the interested readers, however, our definitions are recorded in
Figure 2. The main work is done in splay , whose last four clauses pattern-match
against the two most recent steps of the zipper, to determine whether a zig-zig,
or a zig-zag step, etc., should be performed. The two clauses where the zipper is
a singleton list are respectively the zig and the zag case.

Given these operations, it is not hard to see that min≤+ (filter (x↑) xs) can
be implemented by first finding x using its Y-coordinate, then performing lub
on the resulting zipper. We thus refine nearthin to:

nearthin :: [Ptr]→ ([(Ptr ,Maybe Ptr)],Tree Ptr)
nearthin [] = ([], Lf)
nearthin (x : xs) = let (ys , t) = nearthin xs

zpr = find cmpY x t
in ((x, lub zpr) : ys , thinadd x zpr),

where cmpY compares the Y-coordinate. The function thinadd , on the other
hand, inserts x into zpr before performing thinning using thin :

thinadd :: Ptr → Zipper Ptr → Tree Ptr
thinadd x zpr = thin (insZip x const zpr).

The parameter const to insZip means “when there is another point having the
same Y-value, keep the newly inserted one.”

How do we implement thin , then? Notice that the tree returned by insZip
must look like Nd t x u, where x is the newly inserted point and t contains
all the points having a smaller Y-value than x. We aim to remove from t those
points whose sums are greater than or equal to that of x. Luckily, the sums in t
are also sorted! Therefore, we insert x into t, this time using cmpS , a function
comparing the sums:

thin (Nd t x u) = let Nd t′ u′ = insert cmpS x const t
in Nd t′ x u.

In the resulting tree Nd t′ u′, the omitted root must be x, the tree u′ contains
all the points whose sums are greater than that of x, while t′ contains all the
points with smaller sums. We simply get rid of u′ and put back t′. All auxiliary
functions we need for nearthin are now in place.

4.4 Complexity Analysis

The main work is carried out by nearthin. Given an input of length n, it makes
2n calls to find , n calls to lub, and 2n calls to insZip. All these operations have
amortised complexity O(log n). The algorithm thus runs in O(n log n) time.

172 S.-C. Mu and T.-W. Chen

find :: (a→ a→ Ordering)→ a→ Tree a→ Zipper a
find cmp x t = mkZIter t []
where mkZIter Lf zs = (Lf, zs)

mkZIter (Nd t y u) zs =
case cmp x y of

LT → mkZIter t (L y u : zs)
EQ → (Nd t y u, zs)
GT → mkZIter u (R t y : zs)

splay :: Zipper a→ Tree a
splay (t, []) = t
splay (Lf, L x u : zs) = splay (Nd Lf x u, zs)
splay (Lf,R t x : zs) = splay (Nd t x Lf, zs)
splay (Nd t x u, [L y v]) = Nd t x (Nd u y v)
splay (Nd u x v,[R t y]) = Nd (Nd t y u) x v
splay (Nd t x u, L y v : L z w : zs) = splay (Nd t x (Nd u y (Nd v z w)), zs)
splay (Nd u y v,R t x : L z w : zs) = splay (Nd (Nd t x u) y (Nd v z w), zs)
splay (Nd u y v,L z w : R t x : zs) = splay (Nd (Nd t x u) y (Nd v z w), zs)
splay (Nd v z w,R u y : R t x : zs) = splay (Nd (Nd (Nd t x u) y v) z w, zs)

insert :: (a→ a→ Ordering)→ a→ (a→ a→ a)→ Tree a→ Tree a
insert cmp x f t = insZip x f (find cmp x t)

insZip :: a→ (a→ a→ a)→ Zipper a→ Tree a
insZip x f (Lf, zs) = splay (Nd Lf x Lf, zs)
insZip x f (Nd u x′ v, zs) = splay (Nd u (f x x′) v, zs)

lub :: Zipper a→ Maybe a
lub (Nd x ,) = Just x
lub (Lf, cxt) = lubCxt cxt
where lubCxt [] = Nothing

lubCxt (L x : zs) = Just x
lubCxt (R : zs) = lubCxt zs

Fig. 2. Splay Tree Operations

5 Conclusion

What have we achieved? We have developed two algorithms solving the near-
est shelters problem. The first algorithm uses a list homomorphism to achieve
O(n log n) complexity. It processes the inputs through the X-axis, while sweeps
and combines the results of recursive calls through the Y-axis.

The second algorithm is a new application of thinning. Elements in the thinned
set possess a familiar structure: for each Y we keep only the best sum, and the
sum increases with Y. Sets maintained in a number of thinning algorithms often
possess the same structure (a typical example being the knapsack problem [5]).
In those cases, however, thinning is used to asymptotically reduce the number of

Functional Pearl: Nearest Shelters in Manhattan 173

solutions, allowing (pseudo) linear-time massive updates. For our problem, the
same property is exploited to organise solutions in a tree, thus allowing logarithm
time query and thinning. We are interested to see more examples like this.

Our derivations fit into the niche category of cute, little calculations suitable
to be presented as functional pearls. For the program derivation community, it
might be interesting since it relates existing techniques, such as list homomor-
phism and thinning, to a new problem. More complex solutions to more general
problems have been studied in the algorithm community. Bentley, in his study
of multidimensional divide-and-conquer [1], very briefly described in words a
O(n log n) algorithm for finding, under Euclidean distance, nearest neighbours
for all points on a two-dimensional plane. The algorithm is similar in structure
to our first algorithm, although our sweeping and merging is much simplified
by considering only Manhattan distance. Bentley claimed that the algorithm ex-
tends to k-dimensions with complexity O(n logk−1 n). Clarkson [4] and Gabow et
al. [6] proposed O(n log δ) deterministic algorithms, where δ is the ratio of max-
imum to minimum distances between the given points. Clarkson also proposed
a O(ckn logn) randomized algorithm, where k is the dimension and c is a con-
stant. Vaidya [15] presented a deterministic algorithm that works for Minkowski
distance — a generalisation of both Euclidean and Manhattan distance, with
O((ck)kn logn) worst-case complexity. The algorithms of Clarkson, Gabow and
Vaidya make use of cell trees, which partitions the plane into square-sized cells,
each cell storing information about useful neighbour cells, while allowing efficient
querying. It remains to see whether these algorithms can be derived or proved
in a calculational manner.

References

1. Bentley, J.L.: Multidimensional divide-and-conquer. Communications of the
ACM 23(4), 214–229 (1980)

2. Bird, R.S., de Moor, O.: Algebra of Programming. International Series in Computer
Science. Prentice Hall (1997)

3. Chin, W.-N., Hu, Z.: Towards a modular program derivation via fusion and tupling.
In: Batory, D., Blum, A., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 140–
155. Springer, Heidelberg (2002)

4. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Synder,
L. (ed.) Foundations of Computer Science, pp. 226–232. IEEE Computer Society
Press (1983)

5. de Moor, O.: A generic program for sequential decision processes. In: Hermenegildo,
M., Swierstra, S.D. (eds.) PLILP 1995. LNCS, vol. 982, pp. 1–23. Springer, Hei-
delberg (1995)

6. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: DeMillo, R.A. (ed.) Theory of Computing, pp. 135–143. ACM
Press (1984)

7. Gibbons, J.: The third homomorphism theorem. Journal of Functional Program-
ming 6(4), 657–665 (1996)

8. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Springer (Octo-
ber 22, 1993)

174 S.-C. Mu and T.-W. Chen

9. Hu, Z., Iwasaki, H., Takeichi, M.: Construction of list homomorphisms via tupling
and fusion. In: Penczek, W., Sza�las, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp.
407–418. Springer, Heidelberg (1996)

10. Huet, G.: The zipper. Journal of Functional Programming 7(5), 549–554 (1997)

11. Morihata, A., Koishi, M., Ohori, A.: Dynamic programming via thinning and in-
crementalization. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475,
pp. 186–202. Springer, Heidelberg (2014)

12. Mu, S.-C., Lyu, Y.-H., Morihata, A.: Constructing datatype-generic fully
polynomial-time approximation schemes using generalised thinning. In: Oliveira,
B.C.d.S., Zalewski, M. (eds.) Workshop on Generic Programming, pp. 97–108.
ACM Press (2010)

13. Sasano, I., Hu, Z., Takeichi, M., Ogawa, M.: Make it practical: A generic linear-time
algorithm for solving maximum-weightsum problems. In: Odersky, M., Wadler, P.
(eds.) International Conference on Functional Programming, pp. 137–149. ACM
Press (2000)

14. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

15. Vaidya, P.M.: An O(n log n) algorithm for the all-nearest-neighbors problem. Dis-
crete and Computational Geometry 4(2), 101–115 (1989)

A Proof of Lemma 1

Lemma: If x >Y y for all (x, z) ∈ xss , we have

sweep xs (y : ys) = (id × (y ≤+)) (sweep xs ys).

Proof. The proof is routine and we sketch an outline here. The main proof is:

sweep xs (y : ys)

= (map (minWithin (setify (y : ys))) xs ,min≤+ (y : ys))

= { by (7), see below }
(map (minWithin (setify ys)) xs,min≤+ (y : ys))

= { definition of min }
(map (minWithin (setify ys)) xs, y ≤+ min≤+ ys)

= { definition of sweep }
(id × (y ≤+)) (sweep xs ys).

In the second step we need this property: if x >Y y for all (x, z) ∈ xs, we have

map (minWithin (setify (y : ys))) xs = map (minWithin (setify ys)) xs, (7)

which follows from a corresponding property for minWithin : for all x, y, z, and
ys ,

minWithin (setify (y : ys)) (x, z) = minWithin (setify ys) (x, z), (8)

Functional Pearl: Nearest Shelters in Manhattan 175

provided that x >Y y. The proof of (8) goes:

minWithin (setify (y : ys)) (x, z)

= (x, z ≤x min≤+ (filter (x↑) (y : ys)))

= { since x >Y y }
(x, z ≤x min≤+ (filter (x↑) ys))

= minWithin (setify ys) (x, z).

B Proof of (6)

To formally prove (6), we need more machineries of relational calculus which we
cannot fully explain here. Readers are referred to [2]. Relationally, filter p can be
seen as lifting a coreflexive relation p? to a function on sets, written Ep? can bee
The aim is to prove that Ep? ◦ thin Q ⊆ thin Q ◦Ep?. According to the universal
property of thin, we have R ⊆ thin Q ◦ ES if and only if

∈ ◦ R ⊆ S ◦ ∈ ∧
R ◦ � ◦ S◦ ⊆ � ◦ Q.

The two proof obligations are discharged below:

∈ ◦ Ep? ◦ thin Q

= { definition of E }
p? ◦ ∈ ◦ thin Q

⊆ { definition of thin }
p? ◦ ∈ ◦ ∈\∈

⊆ p? ◦ ∈.

Ep? ◦ thin Q ◦ � ◦ p?

⊆ { definition of thin }
Ep? ◦ � ◦ Q ◦ p?

= { definition of E }
Λ(p? ◦ ∈) ◦ � ◦ Q ◦ p?

⊆ { since Q ◦ p? ⊆ p? ◦ Q }
Λ(p? ◦ ∈) ◦ � ◦ p? ◦ Q

⊆ { since ΛR ◦ R◦ ⊆ � }
� ◦ Q.

The property Q ◦ p? ⊆ p? ◦ Q is a point-free way of saying that, for all x and y,
p y ∧ xQy ⇒ p x.

Suppl: A Flexible Language for Policies

Robert Dockins and Andrew Tolmach

Dept. of Computer Science Portland State University Portland, Oregon, USA

Abstract. We present the Simple Unified Policy Programming Lan-
guage (Suppl), a domain-neutral language for stating, executing, and
analyzing event-condition-action policies. Suppl uses a novel combina-
tion of pure logic programming and disciplined imperative programming
features to make it easy for non-expert users to express common policy
idioms. The language is strongly typed and moded to allow static detec-
tion of common programming errors, and it supports a novel logic-based
static analysis that can detect internally inconsistent policies. Suppl has
been implemented as a compiler to Prolog and used to build several
network security applications in a Java framework.

1 Introduction

Many computing systems incorporate policies that specify how the system should
respond to events. Policies are used to define, e.g., who may access protected web
sites, how to categorize arriving emails, or what to do when the temperature in
boiler #2 exceeds safe limits. Because policies change over time, designers often
provide a mechanism to express them separately from the main body of imple-
mentation code. This mechanism might be simple, like configuration parameters
accessed by a GUI (e.g., your email client); but it may be a non-trivial external
language in its own right (e.g., configuration files for a Cisco router). A dedicated
policy language allows relatively non-technical users to write and review poli-
cies without understanding the underlying code. It may also support automatic
analysis of policies for properties such as consistency or completeness.

Many existing policy languages evolved in the context of particular appli-
cations or execution environments and hence are domain-specific, “baking in”
concepts related to, say, networks or access control. However, policy languages
often share common basic requirements and structures. This raises a natural
challenge: can we define a domain-neutral policy language suitable for use in a
wide variety of applications? Moreover, existing policy languages often appear
very ad-hoc: they typically lack control abstractions, types, and support for
modularity. This raises another challenge: can we improve on these languages by
applying ideas from programming language design?

Suppl, the Simple Unified Policy Programming Language, is our attempt to
address these challenges.1 Suppl is designed to describe the large class of policies
known as event-condition-action (ECA) policies. The ECA paradigm, originally

1 http://web.cecs.pdx.edu/~rdockins/suppl/

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 176–195, 2014.

� Springer International Publishing Switzerland 2014

http://web.cecs.pdx.edu/~rdockins/suppl/

Suppl: A Flexible Language for Policies 177

developed in the context of active databases [10], is based on an event-handling
loop. When an external stimulus generates an event, the policy evaluates condi-
tions based on the current state of the world and its internal memory and decides
what actions to take. Suppl uses a novel combination of (pure) predicates from
logic programming, used to describe conditions, and imperative event handlers,
which generate actions. Both parts work together to make expressing common
policy idioms simple and understandable. The Suppl language is parameterized
over the vocabulary of events and actions needed for a particular domain. These
are provided by an ambient execution environment (coded in a conventional lan-
guage) which triggers calls into Suppl when an event occurs and interprets the
action directives that Suppl returns.

Suppl is strongly typed, strongly moded, and locally stateless. These features
are designed to make Suppl programs easy to reason about and to facilitate the
early detection of errors. Despite its locally stateless properties, Suppl is capable
of expressing stateful policies by making controlled use of data tables that provide
a principled point of interaction between the stateless logic-programming core
and the imperative event-handling language.

Suppl is also designed to allow easy combination of distinct policy units,
perhaps written by different people. Both predicates and event handlers can
be easily extended by additional, textually separate, clauses. However, these
features make it possible to write policies that are incoherent—for example, an
access control policy might generate both “allow” and “deny” actions in response
to a request event. To report such possible inconsistencies, we have developed a
novel logic-based static analysis called conflict detection, which is only feasible
because we have a carefully-designed language specifically for policies.

Suppl has been implemented as a compiler generating Prolog code, which
runs in a Java execution environment that provides the realizations of events
and actions. On top of this implementation we have built two network security
applications. The first is a prototype active network firewall built on the Linux
netfilter stack, in which connection attempts are mediated by a Suppl policy.
The second is the SOUND platform [9], which uses active sensing to detect
misbehavior on networks and introduction-based-routing [13] to control access.
Suppl can be used to define various aspects of policy in this system, for example,
what remedial actions to take when misbehavior is detected.

The detailed contributions of this paper are as follows:

– A tutorial introduction to Suppl from the viewpoint of a policy author,
using a simple example (�2).

– A novel approach to integrating pure predicates and stateful event handlers
(�3.1).

– The static type and mode system used for predicates, which is both simple
and practical (�3.2).

– Conflict detection analysis, which combines control-flow analysis and auto-
mated provers to find potential inconsistencies in policies (�4).

– An implementation of Suppl, using a Java-based runtime system (�5).

178 R. Dockins and A. Tolmach

2 Suppl by Example

Suppl is our attempt to build a general-purpose policy language as described in
the introduction. It explicitly embraces the ECA paradigm; events and actions
are primitive concepts in the language, and event handlers are the fundamental
construct for initiating computation. Conditions are another bedrock concept:
the main programming abstraction in Suppl is the predicate, similar to that
found in logic programming languages like Prolog. Unlike Prolog, the Suppl

predicate language is pure (no side effects), strongly typed and strongly moded.
Event handlers are written in a separate imperative vocabulary designed to make
expressing policy decisions as natural as possible.

To illustrate Suppl, we will examine an extended example. Suppose we are
writing a policy for a system that controls door locks in a secure facility. A
person requests a door to open by using their keycard; the system decides to
accept the request and open the door, or to deny the request and leave the door
locked. The system is also capable of raising an alarm, which will cause security
personnel to head to the area to investigate.

Primitives. We can model these concepts in Suppl in a few lines; see Listing 1,
lines 1–8. We declare person, scanner, location and door to be primi-
tive types. These types will have some concrete implementation in the security
system, but they are treated as opaque by Suppl. We also declare an event
open door request, indicating that someone has used a keycard scanner and
requested a door to be opened, and two actions the system can take in response:
open door and dispatch security. These declarations (together with the
other primitive declarations) form the interface between the policy and the sys-
tem being governed. Note that a policy may decide to do nothing in response to
an event; for this door lock setting, this constitutes a request denial.

On line 10 we declare that the open door and dispatch security actions
are in conflict. This is our way to state our intention that a single policy event
should not elicit both actions. Conflict declarations will come into play when we
discuss conflict analysis later.

To define any interesting policies regarding this security system, we need to
have some operations that allow us to examine the properties of the opaque
types. For example, we need to know which scanners govern which doors, where
the scanners are, and the location to which the scanner gates access. Lines 12–14
of Listing 1 declare three functions from the opaque type scanner to doors
and locations. It will eventually be the responsibility of the security system to
implement these operations. Finally, we need to know who is allowed to be where.
Line 16 introduces a predicate, authorized loc, which represents a relation
between persons and locations. For now, we leave unspecified how authorizations
are determined; thus the predicate is declared primitive. The in keyword is
related to the mode system and indicates that uses of this predicate must pass
both arguments in; modes are discussed in more detail below.

Suppl: A Flexible Language for Policies 179

1 primitive type person.
2 primitive type scanner.
3 primitive type location.
4 primitive type door.
5

6 event open door request(person, scanner).
7 action open door(door).
8 action dispatch security(location).
9

10 conflict open door(), dispatch security().
11

12 primitive function scan door(scanner) yields door.
13 primitive function scan loc(scanner) yields location.
14 primitive function scan gates(scanner) yields location.
15

16 primitive predicate authorized loc(person in, location in).
17

18 handle open door request(?P, ?S) =>
19 query
20 | authorized loc(P, scan loc(S)) =>
21 query
22 | authorized loc(P,scan gates(S)) =>

open door(scan door(S));
23 | => skip;
24 end;
25 | => dispatch security(scan loc(S));
26 end;
27 end.

Listing 1. A simple door security policy

Event Handler Now we can define a simple event handler for the security system
(lines 18–27). This handler says how to respond to an open door request
event. Like every event handler, it starts by naming the event to be handled
and binding the event arguments; the ?P form indicates a variable binding. The
main body of the handler consists of a query statement with two branches. Each
branch consists of a logical query on the left of the => symbol and a list of
statements on the right. The first branch is entered if the person P is authorized
to be where they are now, i.e., in the location where the scanner is; otherwise
the second branch is entered and security is dispatched to that location. In the
first branch, another query is run to see if person P is allowed on the far side of
the door. If so, the door is opened; otherwise, the request is denied. In general, a
query construct may have many branches; the queries are attempted in order and
(only) the first one to succeed is executed. The underscore represents a trivial
query that always succeeds, and skip is a command that has no effect. If no
branch of a query construct succeeds, nothing happens. Thus, the query branch
on line 23 is redundant and could be eliminated without changing the meaning
of the program.

Authorization. Suppose we want to define the predicate authorized loc in-
stead of making it a primitive. To do this, we remove the primitive keyword

180 R. Dockins and A. Tolmach

from its declaration and we specify rules that define when the predicate holds.
The syntax for rules is quite similar to Prolog syntax. In particular, we adopt
the Prolog lexical convention that variables begin with uppercase letters and
program identifiers begin with lowercase letters.

Listing 2, lines 1–9, uses two rules to define the authorized loc predicate
in terms of some new, lower-level, primitives. (Note: for space reasons we have
not repeated lines 1–14 of Listing 1.) A rule consists of a single predicate applied
to some arguments followed by the :− symbol and a comma-separated list of
clauses. A rule should be read as an implication from right to left. Thus, the rule
authorized loc(P,L):− public space(L) means that “for all P and L,
if L is a public space then P is authorized to be in L.” When multiple clauses
are separated by a comma, all must hold. So the second rule means that P is
authorized to be in L if P belongs to some group G that owns L. Finally, the
meaning of the predicate authorized loc is the disjunction of all the right-
hand-sides of its rules. So, authorized loc holds if either of its two rule bodies
hold.

The overall effect of this policy will be to allow persons into and out of areas
that are public or for which they are members of an owning group. If someone
gets into an area for which they are not authorized (by tailgating someone else,
say) then security will be notified if they try to leave by using a keycard scanner.

Detecting repeated failures. Now, suppose we want to prevent someone from
doing a trial-and-error scan with their keycard; that is, we don’t want people to
be able to map out which doors are opened by a keycard by simply trying all of
them and seeing which ones open. Such a pattern of use might occur if a keycard
is stolen and the thief doesn’t know what doors it opens. One way to mitigate
this risk is to keep track of failed open attempts. If too many failed attempts
happen within a short time frame, we want to dispatch security to investigate.

To do this, we need to keep some state about failed requests. Suppl is, by
design, locally stateless, so there are no mutable references or data structures
we can manipulate within queries to keep track of this information. Instead,
Suppl includes a concept of data tables, which provide a principled way to
implement stateful policies. From the point of view of the logic programming
query language, tables are just another predicate that may be used in rules.
However, the imperative event handling language has commands that insert and
delete rows from tables.

Suppose we want to trigger an alarm if more than five failed attempts are made
by a single person within an hour. To keep track of the required data, we set up a
table and write an event handler to populate it (see Listing 2 lines 11–21). Table
declarations are similar in most ways to predicate declarations; the columns of
the table are given as an ordered tuple of types, just as for predicates. However,
unlike predicates, tables behave much like the tables of a relational database:
tuples are added and removed from tables explicitly rather than by defining rules.
The key clause declares the table’s primary key. The mode keywords following
key indicate which columns form the table’s primary key: columns declared with
the mode in are in the primary key and those declared with mode out are not.

Suppl: A Flexible Language for Policies 181

1 predicate authorized loc(person in, location in).
2

3 authorized loc(P,L) :− public space(L).
4 authorized loc(P,L) :− group owns(G,L), group member(P,G).
5

6 primitive type group.
7 primitive predicate public space(location in).
8 primitive predicate group owns(group in, location in).
9 primitive predicate group member(person in, group out).

10

11 table failed attempts(person, scanner, eventid)
12 key (in,in,in) lifetime 3600000.
13 index failed attempts(in, out, out).
14

15 handle open door request(?P, ?S) =>
16 query
17 | authorized loc(P, scan gates(S)) => skip;
18 | => queue insert (P, S, current event)
19 into failed attempts;
20 end;
21 end.
22

23 predicate excessive failures(person in).
24 excessive failures(P) :−
25 findall(EID,failed attempts(P, ,?EID),RS), set size(RS) >=

5.
26

27 handle open door request(?P, ?S) =>
28 query
29 | authorized loc(P, scan loc(S)) =>
30 query
31 | authorized loc(P, scan gates(S)) =>
32 open door(scan door(S));
33 | excessive failures(P) =>
34 dispatch security(scan loc(S));
35 end;
36 | => dispatch security(scan loc(S));
37 end;
38 end.

Listing 2. A more complicated door security policy

Every table will contain at most one row for the values in the primary key. If a
new row is inserted with the same values for all primary key columns as a row
already in the table, the old row will be evicted and the new row will replace
it. Tables also have an optional lifetime argument that indicates how many
milliseconds each row should remain in the table from the time it was inserted
(3600000 milliseconds corresponds to one hour). The eventid type is a built-in
type that is used to give a unique identifier to each event occurrence.

The index declaration indicates that we intend to query this table by supply-
ing the first column as an argument; the index declaration both interacts with
the mode system (described below) and also suggests to the implementation that

182 R. Dockins and A. Tolmach

building an index for this table on its first column would be worthwhile. Unlike
the primary key, a table index does not impose any uniqueness constraints.

Despite the strong similarities between Suppl tables and the relational tables
of a typical RDBMS, their use cases are rather different. Suppl tables are pri-
marily intended to store short-term, “soft” data; the Suppl runtime holds table
data in memory and makes no persistence guarantees about it. Restarting the
Suppl runtime will clear all table data. It should be possible to have Suppl data
tables backed instead by a persistent RDBMS; however, a reasonable semantics
for interacting with external RDBMSs seems to require distributed transaction
support in the general case. We hope to examine these issues in future work.

Now we write an event handler that inserts a row into failed attempts
whenever an unauthorized person attempts to enter a gated area (Lines 15–
21). It is normal in Suppl to have more than one handler for a given event;
when that event occurs, all its handlers will be run. The query illustrates the
use of sequential evaluation to implement a form of negation. If the person
is authorized, the first query branch succeeds and the handler does nothing;
otherwise, the second branch is executed and the insertion is performed. The
primitive current event function returns the eventid corresponding to the
event currently being handled. The result of this pattern is that we get a sliding
window view of all the failed open attempts that have occurred in the last hour.

Note that the command to insert a row is written queue insert: this in-
dicates that the insert does not happen immediately. Instead, it occurs after all
handlers for the current event have completed. This is to ensure that there are
no complicated and difficult-to-debug interactions between separately-defined
event handlers. State changes are queued up and executed after all handers are
finished, so that the next event that occurs will see the updated table state.

Now we can write the excessive failures predicate that holds if a person
has amassed too many failed attempts (lines 23–25). This predicate holds on
a person P who has five or more distinct failed door-open event identifiers in
the failed attempts table. The excessive failures predicate relies on
the primitive findall construct, which calculates a set of all the solutions
to a given query. Here we use it to get a result set whose size we can then
calculate using the built-in set size function. As used here, the findall
can be rendered as “find all instances of EID such that P is related to EID
(for some ignored scanner value) in the failed events table; place the result set
in variable RS.” In contrast to every other predicate construct, findall has
explicit variable binding. Variables bound in the second argument (the search
goal) may appear in the first argument. Using this predicate, we can now replace
our original event handler (Listing 1 lines 17–27) with one that also responds to
excessive failures (Listing 2 lines 27–38).

3 Suppl in Detail

Suppl’s design attempts to balance competing objectives: simplicity, expressiv-
ity, support for early detection of errors, and ease of combining separately-written

Suppl: A Flexible Language for Policies 183

policies. The use of logic programming, for example, is driven both by the need
for expressivity (realistic policy conditions are naturally expressed using logic
programming rules) and to make it easy to combine policies. As compared to
procedures or functions, it is easy to extend the functionality of predicates by
adding new rules. In the interests of both simplicity and expressivity, we allow
arbitrary recursive predicates to be written, which makes the language Turing-
complete. Event handling is likewise easy to extend by adding new handlers—
event handling logic does not have to be collected together in a single place.

A slightly simplified syntax for Suppl is presented in Figure 1. For lack of
space, we do not give full explanations of all the language’s constructs, but in-
stead focus on the most important and novel. There are four major syntactic
classes: terms, clauses, handler bodies and declarations. Terms represent data
values, clauses are used to define predicates, and handler bodies are used to
implement handlers and procedures. A Suppl program consists of a set of dec-
larations, which are used both to provide static information to the compiler
(declaring types and modes for predicates, functions, etc.) and to implement the
policy (rules, event handlers, procedure definitions). Terms are quite similar to
those of Prolog, with the addition of the variable binding form ?A (used inside
handler bodies to make variable bindings explicit), and of tuple data structures.
Clauses also take inspiration from Prolog; the main syntactic difference is that
disjunction is written with a vertical bar rather than with the traditional semi-
colon. The operational semantics of the logic programming core of Suppl can be
understood in a standard way, as performing selective linear definite clause (SLD)
resolution [18] with negation-as-failure [7]. The parts of Suppl that cannot be
understood by analogy to standard logic programming concepts are covered in
further detail below.

3.1 Event Handlers

The primary interface between a Suppl policy and the system it governs is
defined by events and actions. These are declared as distinguished identifiers
carrying some number of data arguments. Their meaning is determined entirely
by the surrounding execution environment.

Program execution is always initiated by an event and events happen when the
system being governed wishes to interrogate the policy. When an event occurs,
every event handler in the program matching the event is executed and the set
(possibly empty) of all resulting actions is collected together to be passed to the
surrounding execution environment. The execution environment is responsible
for executing these actions, as well as for implementing all declared primitive
functions and predicates. The Suppl semantics assumes that the execution of
primitive functions and predicates is side-effect free. Suppl is “locally stateless,”
which means the only state in Suppl is in the data tables, and they do not change
during the execution of the handlers for a single event. Instead, the effects of
any queue insert or queue delete statements are delayed until after all
handlers for the event have completed.

184 R. Dockins and A. Tolmach

d ::= Declaration
| primitive type 〈id〉. prim type decl
| type 〈id〉 := t. type decl
| data 〈id〉 ::= 〈id〉(t1, · · · , tm) | · · · | 〈id〉(t1, · · · , tn). data type decl
| event 〈id〉(t1, · · · , tn). event decl
| action 〈id〉(t1, · · · , tn). action decl
| conflict 〈id1〉(t1, · · · , tn),〈id2〉(t1, · · · , tm) (=> c)? . conflict decl
| procedure 〈id〉(t1, · · · , tn). procedure decl
| primitive function〈id〉 (t1, · · · , tn) yields t . prim function decl
| (primitive)? predicate 〈id〉(t1 o1?, · · · , tn on?). predicate decl
| mode 〈id〉(o1, · · · , on). mode decl
| table 〈id〉(t1, · · · , tn) key (o1, · · · , on) (lifetime 〈int〉)?. table decl
| index 〈id〉(o1, · · · , on). index decl
| g :- c . rule
| handle 〈id〉(?X1, · · · , ?Xn) => b end. event handler
| define procedure 〈id〉(?X1, · · · , ?Xn) := b end. procedure defn
| axiom c . axiom decl
| lemma c . lemma decl

b ::= Handler Body
| b1 b2 sequence
| 〈id〉(m1, · · · ,mn); procedure or action
| queue insert(m1, · · · ,mn) into 〈id〉; table insert
| queue delete(m1, · · · ,mn) from 〈id〉; table delete
| skip; noop
| query | c1 => b1 · · · | cn => bn end; multibranch query
| foreach c => b end; foreach query

t ::= Type
| 〈id〉 named type
| X,Y, Z, · · · type variables
| list(t) list
| set(t) finite set
| map(t1, t2) finite map
| t1 ∗ · · · ∗ tn tuple type
| number numeric type
| string string type

c ::= Clause
| m1 = m2 | m1 <> m2 (dis)equality
| m1 <= m2 | m1 < m2 comparisions
| m1 >= m2 | m1 > m2

| 〈id〉(m1, · · · ,mn) predicate
| c1|c2 disjunction
| c1, c2 conjunction
| not c negation
| c1 -> c2 implication
| findall(m, g,X) find all

o ::= Mode
| in | out | ignore

g ::= 〈id〉(m1, · · · ,mn) Goal

m ::= Term
| "literal", · · · strings
| 10, 3.14, 2.9e8, · · · numbers
| X, Y, Z, · · · variables
| ?X, ?Y, ?Z, · · · var bindings
| anonymous var
| 〈id〉(m1, · · · ,mn) function call
| m1 +m2 | m1 −m2 numeric ops
| m1 ∗m2 | m1/m2

| �m negative
| [] empty list
| [m1, · · · , mn] concrete list
| [m1 | m2] list cons cell
| (m1, · · · , mn) tuple

Fig. 1. Simplified syntax of Suppl

Suppl: A Flexible Language for Policies 185

All program execution is event-driven, and the event handler serves as the
entry point for Suppl programs. The body of an event handler is a sequence
of statements, which may be actions, commands to manipulate data tables,
query evaluations, or foreach invocations. Event handlers can also invoke
user-defined procedures that abstract over common sequences of statements.

The query construct, illustrated by several examples in �2, consists of a series
of branches, each guarded by a query into the core logic-programming part of
the language; the branch corresponding to (just) the first successful query is
executed. This behavior captures a common idiom that is inconvenient to express
in pure logic programming (without cut).

The foreach construct foreach some pred(A,?B)=> ... end; is an
iterator: it asks the system to find all values for B such that some pred(A,B)
is true, and executes its body once for each instantiation found.

3.2 Predicates, Types, and Modes

Unlike Prolog, Suppl predicates are pure (they lack both side-effects and non-
logical constructs, like cut), well-typed and well-moded. Types and modes are
primarily intended to help with early detection of errors. They make large classes
of “shallow” errors (e.g., mixing up argument order) detectable at compile time.
A strong typing discipline also makes it easier to interface with SMT solvers for
discovering deeper program properties (see �4). Our type and mode systems are
similar to those of Mercury [22] and HAL [14], but significantly simpler.

Types built in to the system include number and string. There are also
built-in polymorphic type operators list, (finite) set and (finite) map. Users
may also declare recursive algebraic datatypes for generating arbitrary tree-
shaped data structures. Every predicate in a Suppl program must be declared,
giving the number and types of its arguments.

Modes indicate which arguments of a predicate are inputs and which are con-
sidered outputs. For example, the predicate call member([1,2,3,4], 2) asks
the question: “does the list [1,2,3,4] contain the value 2?” Both arguments
are used in input mode. On the other hand, the call member([1,2,3,4],N)
asks the system to find all values for N (four in this case) that make the state-
ment true. Here we are using the second argument in output mode. Not all modes
make sense for a given predicate. The call member(L, 5) asks the system to
find all lists L that contain value 5; there is no obvious algorithm for doing this,
so member can not be used with its first argument in output mode.

As with types, the modes of all predicates in a Suppl program must be de-
clared. For example, we can express the allowed modes for the member predicate
by writing:

mode member(in, in).
mode member(in, out).

The rules of predicates are checked to ensure they respect the specified modes by
reordering the body of each rule (if necessary) so that every variable is instan-
tiated before it is used. Variables get instantiated by being passed in as formal

186 R. Dockins and A. Tolmach

arguments to a predicate rule, by being generated as outputs from predicate
calls, or via the equality operator. Mode checking ensures that every predicate
can be implemented as a nondeterministic program manipulating only ground
data (i.e., containing no unbound variables) and ensures that “instantiation er-
rors” (which can happen in an ill-moded Prolog program) never occur.

4 Conflict Detection

Problem. The extensibility of predicates and event handlers makes it easy to
combine Suppl code from multiple sources, but also makes it easy to write
policies that are self-contradictory. The runtime environment must choose some
action (even if that is to do nothing) in response to an incoherent policy outcome;
but without further guidelines, any such choice is necessarily arbitrary.

Consider again the door-lock policy from section 2. The main event handler
(see Listing 2 lines 27–38) opens the door if the requester is authorized both to
be where he is and where he is going. Security is instead dispatched if the user
is not authorized to be where he is. Now suppose we separately want to define a
special class of persons that always have access to any door. One way to do this
is to add the following predicate and handler. We assume the environment has
some way to determine who currently has global privileges.

primitive predicate has global privileges(person in).

handle open door request(?P, ?S) =>
query
| has global privileges(P) => open door(scan gates(S));
end;

end.

Each of these handlers make sense on their own, but in combination they can
result in the policy both opening a door (because the requester has global access)
and also dispatching security (because the requester is not authorized according
to authorized loc). Such a result is undesirable.

Solutions. One solution might be to layer an additional mechanism for dynamic
conflict resolution on top of the basic policy language. For example, we might
provide a way to assign priorities to actions, and say that higher-priority actions
“win” in the event of a conflict. But the details of such an approach become
complicated: it is hard to find a modular way to assign priorities (especially
because ties must not be allowed), and it is not clear what to do about the actions
that “lose.” Dynamic conflict resolution can lead to fragile, inscrutable policies
where minor-seeming changes have wide-ranging, poorly understood effects.

We would prefer instead to provide a tool that detects potential conflicts
statically, so that the policy programmer can then use the existing facilities of
the policy language to fix them before execution. Specifically, we focus on a static
analysis that identifies control-flow paths through a policy that are initiated by
the same event and lead to conflicting actions. The policy author declares what

Suppl: A Flexible Language for Policies 187

actions she considers conflicting by writing a conflict declaration, e.g., listing 1
line 10.

Let us examine the example conflict from above in more detail. For the con-
flict to occur there must be some event that triggers both handlers; thus, assume
open door request(P,S) has occurred. The first handler must have control
flow pass to one of the two branches that dispatches security. For now, let us
consider only one of these, the one appearing in the outermost query con-
struct. For this branch to activate, the previous branch must have failed, so
authorized location(P,scanner loc(S)) is false. However, the propo-
sition has global privileges(P) must hold for the other handler to issue
the conflicting open door verdict. To rule out this conflict, we must prove a
contradiction under these assumptions. However, we cannot do this; nothing in
the definition of authorized location allows us to derive a contradiction.
So our analysis should report a possible conflict between the two handlers.

We have developed a prototype conflict detection analysis for Suppl that for-
malizes the line of reasoning outlined above. The analysis works in two phases. In
the first phase, it identifies all the pairs of control-flow paths in the program that
could possibly conflict. For each of these, it builds a formula in first-order logic
that states what conditions would have to be true for the program to traverse
both paths on a single event occurrence. In the second phase, these formulae
are passed to an off-the-shelf SMT solver; we have experimented with Z3 [21],
CVC4 [1] and Alt-Ergo [2]. If the solver can show the formula is unsatisfiable, we
know the potential conflict cannot occur. Otherwise (if the solver finds a model
or runs out of time), we report a potential conflict to the user.

We have designed the analysis to be sound, in the sense that it reports all
potential conflicts. But to be useful in practice, it is crucial that the analysis
also be as precise as possible, so that false positives are rare. Because Suppl is
Turing-complete, the analysis cannot be complete, in the sense that it only re-
ports genuine conflicts: some false positives are inevitable. Moreover, the partic-
ular SMT solvers we use may have limitations that induce further imprecisions.
However, although we are still in the early stages of working with our prototype,
our initial results on precision are promising.

Generation of Conflict Formulae. The problem definitions that get fed to the
external solver break down into two distinct parts. One part is the definition
of predicates in the program, which we call the background theory. This theory
is the same for all problem instances. The second part consists of a formula
corresponding to a particular pair of potentially-conflicting control-flow paths.

Building the background theory follows well-known work in the semantics of
logic programs with negation-as-failure. For each defined predicate, the analy-
sis calculates the Clark completion [7], which is a standard way to render the
semantics of a logic program into a formula of first-order logic. It essentially
formalizes the idea that a predicate is defined by the disjunction of its rules,
while taking care to bind variables in the places that give the desired meaning.
In other words, the Clark completion defines a predicate to hold if and only if it
is established by one of its rules. Primitive predicates are uninterpreted in the

188 R. Dockins and A. Tolmach

translation; that is, they are declared but not given any definition. The Clark
completion procedure is sound (but not complete) with respect to Selective Lin-
ear Definite clause (SLD) resolution, the logical reasoning system underlying the
operational semantics of Prolog and similar logic programming languages [18].
This means that every query answered by SLD resolution will be a model of the
Clark completion. However, in some cases SLD resolution will fail to terminate
even when the Clark completion has a model.

The soundness of Clark completion is sufficient for the soundness of our con-
flict analysis. Our analysis attempts to show that the Clark completion has
no models corresponding to the control-flow paths in question; a fortiori a
logic-programming language based on SLD resolution will fail to activate those
control-flow paths. Consider, for example, the authorized loc predicate, de-
fined by the rules below.

authorized loc(P,L) :− public space(L).
authorized loc(P,L) :− group owns(G,L), group member(P,G).

The Clark completion defines this predicate by the first-order formula below:

∀P L. authorized loc(P,L)↔(
public space(L) ∨ (∃G. group owns(G,L) ∧ group member(P,G))

)
Note that variables corresponding to the predicate arguments are quantified
universally at the outside, whereas variables appearing only in the body are
quantified existentially at the level of the rule. If a rule body contains a compound
term instead of a variable, a new fresh variable is introduced and an equality is
added to the rule body.

Next we examine the control-flow paths through the imperative event handlers
so we can generate queries to send to an SMT solver. This is done via a recursive
algorithm which, when given the syntax of a handler body, calculates a set of
potential conflicts. A potential conflict consists of the following data: the name of
the initiating event, the user-defined conflict clause that is involved, and control
flow paths that lead from the initiating event to the conflicting actions. From
a given control-flow path, we can determine what logical queries must have
succeeded and failed for the control-flow path to be traversed. For example, if a
control-flow path goes into a branch of a query construct, the logical predicates
guarding that branch must hold; and furthermore, the logical predicates guarding
any preceding branches in the query must fail.

For each potential conflict, we can construct a formula in first-order logic that
represents the state of affairs that must exist for the potential conflict to actually
occur. For the example above, the generated conflict formula is:

∃P S.
¬authorized loc(P, scan loc(S)) ∧ has global privileges(P)

A potential conflict is satisfiable if the associated conflict formula is satisfi-
able, given the background theory of the associated logical predicates. Dually,
a potential conflict is unsatisfiable if we can derive a contradiction by assuming

Suppl: A Flexible Language for Policies 189

the conflict formula; in other words, if it is logically impossible for the potential
conflict to actually occur.

We have proved the soundness of our conflict analysis with respect to an
idealized version of the semantics of Suppl. In particular, we have proved that,
for every actual conflict that occurs during the run of a Suppl program, our
analysis algorithm generates a satisfiable potential conflict. A straightforward
corollary is: if all the potential conflicts generated by the conflict analysis are
unsatisfiable, then the policy will produce no actual conflicts when executed.
We lack here the space to discuss the conflict generation algorithm or its proof;
details will appear in a forthcoming paper [23].

Asserting facts. Sometimes the conflict detection system will report a conflict
where none exists because it has no way to analyze the policy primitives. Policy
authors can communicate domain knowledge about the primitives to the analysis
by using the axiom keyword. Any clause asserted as an axiom is assumed to be
true and will be used by external provers during analysis. Of course, the user
must be very careful only to assert axioms that actually hold; otherwise the
correctness of the analysis will be compromised.

A policy author can also state a lemma; like axioms, lemmas are used by
provers when trying to discharge proof obligations. However, the prover will
also try to prove the lemma. In this way, the policy author can help guide
provers toward finding useful facts they might not otherwise find in time, and
also document the policy with properties that are expected to hold.

External Solver. To interface with back-end provers, we use the Why3 pro-
gram verification system [4]. Why3 understands all the concepts we need to
express Suppl programs: first-order logic, recursive datatypes, parametric poly-
morphism, numbers, sets, etc. Why3 can translate all these concepts into forms
that can be understood by back-end SMT solvers; in particular, Why3 knows
how to perform the tricky transformations that are needed to remove parametric
polymorphism, which is not supported natively by most SMT solvers (Alt-Ergo
seems to be the sole exception [3]).

Once our conflict detection problems are exported in Why3 format, we can
use the Why3 system to dispatch the problems to a variety of solvers, including:
CVC4, Alt-Ergo, Z3, and many others. Problems may even be translated into a
form suitable to manual proof in Coq or Isabelle/HOL, if desired.

Discussion. We cannot hope to have a complete procedure for finding conflicts,
and false positives are inevitable. However, even if the problem were decidable,
using SMT solvers means that, as a practical matter, we cannot expect to al-
ways get back answers in a reasonable amount of time. Nonetheless, our limited
experience so far has given us promising results; CVC4 and Alt-Ergo both seem
to do well at discharging the problem instances we build. We tested a number of
different ways to resolve the conflict in our door lock policy from above (and for
other similar policies); for each alternative we tried, a solver was able to prove
the conflict could not occur using less than 1 second of runtime.

190 R. Dockins and A. Tolmach

We do not yet have any data about how this analysis system scales to large
policies. The number of potential conflicts is quadratic in the number of control-
flow paths in a program, but this may be acceptable for realistic policies.

Conflict detection for policies is important in its own right. However, the
potential applications for our analysis pipeline go further. For example, lemmas
can be used simply to document properties of a policy that a user expects to be
true; over time, as a policy is modified, if the lemma is falsified by some change,
the analysis will indicate if the lemma can no longer be proved, indicating a
problem. In future work we hope to explore other avenues for analysis, including
liveness properties and data invariants.

5 Implementation

The implementation of Suppl is divided into two parts: a compiler that trans-
lates Suppl code into an executable Prolog policy; and a backend runtime sys-
tem. The compiler is a standalone application written in Haskell, whereas the
runtime is built on top of the tuProlog interpreter [11], which is written in Java.
Suppl is an open-source project; additional information may be found at the
first author’s home page.2

The most complicated tasks performed by the frontend compiler involve im-
plementing the static type and mode disciplines. The type system is essentially
a first-order variant of Hindley-Milner polymorphism. The type checking algo-
rithm follows the main ideas of the classic type inference algorithm W [20].

The mode system is responsible for ensuring that each predicate defined in a
policy respects its stated modes. Actually, the term “mode checking” is a slight
misnomer, because each mode for a predicate causes different code to be gen-
erated. Mode checking works by literally rearranging the clauses of rules until
data flows strictly from left to right. The mode checking algorithm is extremely
naive—we simply explore all rearrangements of the rule body until we find one
that satisfies the dataflow constraints. Although this takes worst-case time fac-
torial in the number of clauses, it seems to perform well enough in practice.

As Suppl is designed to be agnostic to the problem domain to which it is being
applied, it is important that it be easy to extend the language with problem-
specific programming facilities and to interface with an external system that
generates the events and implements the actions returned by a Suppl program.
In order to make this interface as easy as possible and to support the basic logic-
programming facilities need for Suppl semantics, our runtime system for Suppl
is based on the tuProlog system [11], a Prolog interpreter written in Java, which
has a well-designed external function interface. To implement Suppl primitive
functions and predicates simply requires writing a Java class containing methods
with the correct names using the tuProlog’s API, and arranging for the custom
class to be loaded into the interpreter. The interpreter uses Java reflection to
find the external functions and execute them as required.

2 http://web.cecs.pdx.edu/~rdockins/suppl/

http://web.cecs.pdx.edu/~rdockins/suppl/

Suppl: A Flexible Language for Policies 191

The executable part of Suppl is deliberately quite similar to Prolog, and the
mapping between Suppl data structures and Prolog data structures is nearly
trivial. The connection between the Java API and Prolog data structures is a
little more distant, but the tuProlog API for manipulating Prolog terms is rela-
tively easy to use. To get a flavor for the required interface programming, consider
the following example file, which implements a simple primitive predicate named
primOp at two different modes.

public class NewLibrary
extends alice.tuprolog.Library {
// in this case, the io mode implementation
// also works for mode ii
public boolean primOp ii 2(Term arg1, Term arg2) {

return primOp io 2(arg1,arg2);
}

public boolean primOp io 2(Term arg1, Term arg2) {
arg1 = arg1.getTerm();

// build some new term
Struct x = new Struct("mkAsdf", arg1);

// try to unify x with arg2
return engine.unify(x, arg2);

}
}

This Java code is sufficient to implement the following declared Suppl prim-
itive.

data asdf ::= mkAsdf(string).

primitive predicate primOp(string, asdf).
mode primOp(in,in).
mode primOp(in,out).

Suppl data constructs, as well as action and event instances, are all repre-
sented directly as functor applications in Prolog; lists and numbers are handled
natively by the Prolog system. Strings are interpreted in Prolog as atoms.

In the tuProlog API, the Struct class (a subclass of Term) represents atoms,
lists and functor applications. Above, new Struct("mkAsdf",arg1) con-
structs a new Prolog functor instance with name mkAsdf and a single argu-
ment, represented by arg1. This maps directly onto a Suppl term built using
the mkAsdf data constructor. The class Number (also a Term subclass) is used
to represent numeric values. Primitive Suppl types can be represented by arbi-
trary Java objects. These objects will be passed around by reference inside the
policy code; the runtime will make use only of basic Java Object methods, like
equals and hashCode.

Using a Prolog interpreter in this way is a relatively heavyweight implementa-
tion strategy and will be unsuitable for applications requiring very frequent policy
queries or which have tight real-time deadlines. So, it would almost certainly not be

192 R. Dockins and A. Tolmach

acceptable for, say, a firewall to query a Suppl policy every time a packet arrives;
however, it may be acceptable to query the policy every time a new connection is
opened.

Here is some sample code showing how to set up the Suppl runtime environ-
ment and load a custom library and interact with a loaded policy.

public static void main(String[] args)
throws Exception {

SupplEngine engine = RunPolicy.setupEngine();
NewLibrary lib = new NewLibrary(engine);
engine.loadLibrary(lib);
RunPolicy.loadTheories(args, engine);

Term[] evargs = new Term[] {
new Struct("string literal"),
new Int(6) };

Struct event = new Struct("notification", evargs);

List<Term> actions =
RunPolicy.handleEvent(engine, event);

for(Term t : actions) {
t = t.getTerm();
System.out.println(t.toString());

}
}

This sample code will load any compiled policy files given as command line
arguments, feed a single synthetic event into the policy engine and print the
resulting actions.

The result of this design is that it should be easy to integrate Suppl-defined
policies into existing Java applications whenever policy questions can be orga-
nized into the event-condition-action paradigm. In addition, only modest changes
to the Suppl compiler should be required to target other Prolog systems, which
would allow Suppl policies to integrate with applications written in languages
other than Java.

6 Related Work

Here we survey existing work including both explicitly domain-neutral languages
and languages that were designed for network security applications but can easily
be generalized to broader domains.

Generic policy languages. The Policy Description Language (PDL) [19] is similar
in many ways to Suppl; it is based on the ECA policy paradigm, is influenced by
logic programming ideas and is also designed with ease of analysis in mind. PDL
has only one form of rule, which states that an event causes a particular action
provided some condition holds. A significant difference from Suppl is that PDL

Suppl: A Flexible Language for Policies 193

lacks any explicit notion of state; instead, time-varying policies can be written
using rules that match on event sets that can examine events that occurred in
the past. Suppl event handlers can only examine the current event, but data
tables allow a principled way to record information for later examination.

Ponder [8] is a language for expressing security policies interacting at various
levels of the hardware/software stack: network firewalls, databases, Java runtime
security. Ponder’s approach to specifying policy is quite different to ours; it has a
strongly-developed object model for roles, groups, membership, etc. and syntax
for manipulating these objects. In contrast, Suppl builds in nothing except
primitive base types, and instead relies on the user (or a library author) to build
a model of the problem domain in question.

Modern business rules management systems such as JRules [5] and Drools [17]
include languages for defining arbitrary production rule systems that can be in-
tegrated into Java applications. While production rules have a declarative flavor,
rule actions can actually contain arbitrary imperative code, and chaining among
rules can cause complicated and opaque control flow logic. Suppl enforces a
more disciplined separation between conditions and actions.

Network security. The Authorization Specification Language (ASL) [16] is a
language for expressing certain kinds of access control policies. Like Suppl,
it takes inspiration from logic programming constructs, and the primary act
of programming in ASL involves writing various kinds of rules: authorization
rules, access control rules, data integrity rules, etc. ASL allows users to express
various kinds of conflict resolution metapolicies. ASL seems to lack any method
for expressing stateful policies.

The Flow-based Management Language (FML) [15] is a declarative language
for managing enterprise network configuration. An FML policy is expressed as a
set of implication rules, based on nonrecursive DATALOG with negation. There
is no internal notion of state. The language design is tailored to support efficient
(linear time) evaluation. Conflicts can be resolved either by ordering rules or by
assigning priorities to primitive actions.

Procera [24] is a domain specific language (embedded in Haskell) for express-
ing networking policy using the framework of functional reactive programming.
In this framework, one defines a policy program (conceptually) as a time-varying
function from an infinite stream of input events to a stream of output events.
Aside from the quite different programming model, Procera’s status as an embed-
ded DSL makes it more difficult to build static analysis tools, as any analyses
must be able to handle essentially all of the constructs of the host language,
Haskell, a large general-purpose language in its own right.

Conflict detection and resolution. Conflict resolution has been studied in the
context of PDL [6]. The PDL conflict resolution system allows users to declare
the conditions under which a conflict occurs. At runtime, conflicts can be handled
in a number of different ways by writing conflict monitors. These may resolve
conflicts by choosing actions with higher priorities, by canceling all effects of
the event causing the conflict, etc. Policy monitors are not expressible in PDL

194 R. Dockins and A. Tolmach

itself, but must be defined externally. Suppl avoids the tricky issue of conflict
resolution by passing it off instead to the external system we already assume
must exist. Instead, we have concentrated our efforts on building a system to
help users discover potential conflicts in their policies statically.

Dunlop et al. [12] present a system for both detecting and dynamically resolv-
ing policy conflicts. In their system, policies are stated using operators of deontic
logic—in particular, modal operators for permission, prohibition and obligations.
They propose a number of strategies for resolving conflicts at runtime (explicit
priority values, new policy overrides old, specific policy overrides general, etc.)
and suggest that no one strategy is appropriate for all uses.

7 Conclusion

Suppl is a programming language designed from the ground up for expressing
and reasoning about event-condition-action policies over arbitrary domains. It
combines the power and simplicity of pure logic programming, used for describing
conditions, with the flexibility and familiarity of imperative programming, used
to connect events to actions. The language has been implemented and integrated
into several Java-based network security applications. We are actively working
to apply it in additional domains.

Perhaps the most important benefit of having a dedicated language for author-
ing policies is the opportunity to apply sophisticated static analyses to detect
errors before a policy is fielded. We have developed a prototype of one such analy-
sis, which discovers conflicts caused by inconsistent actions, making essential use
of an external logic solver. As future work, we plan to extend this prototype—in
particular, by improving the quality of feedback from the external solver to the
programmer—and to apply the same approach to other static analyses, such as
liveness or functional correctness.

Acknowledgments. This work was supported by the Air Force Research Lab-
oratory under contract FA8650-11-C-7189. Any opinions, findings, and conclu-
sions or recommendations expressed herein are those of the authors and do not
necessarily reflect the views of the funding agency.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

2. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The Alt-Ergo automated theorem prover (2008), http://alt-ergo.lri.fr/

3. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing Polymorphism
in SMT solvers. In: Intl. Workshop on Satisfiability Modulo Theories (SMT). ACM
International Conference Proceedings Series, vol. 367, pp. 1–5 (2008)

http://alt-ergo.lri.fr/

Suppl: A Flexible Language for Policies 195

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd
of provers. In: Boogie 2011: Workshop on Intermediate Verification Languages,
Wroc�law, Poland, pp. 53–64 (August 2011)

5. Boyer, J., Mili, H.: Agile Business Rule Development. Springer (2011)
6. Chomicki, J., Lobo, J., Naqvi, S.: Conflict resolution using logic programming.

IEEE Trans. on Knowl. and Data Eng. 15(1), 244–249 (2003)
7. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322 (1977)
8. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder policy specifica-

tion language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001)

9. DARPA: Safety On Untrusted Network Devices (SOUND) (2011), Mission-oriented
Resilient Clouds (MRC) program: DARPA-BAA-11-55

10. Dayal, U., Hanson, E.N., Wisdom, J.: Active database systems. In: Modern
Database Systems. ACM (1994)

11. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java-Prolog integration in tuPro-
log. Sci. Comput. Program. 57(2), 217–250 (2005)

12. Dunlop, N., Indulska, J., Raymond, K.: Methods for conflict resolution in policy-
based management systems. In: Intl. Conf. on Enterprise Distributed Object Com-
puting. IEEE (2003)

13. Frazier, G., Duong, Q., Wellman, M.P., Petersen, E.: Incentivizing responsible net-
working via introduction-based routing. In: McCune, J.M., Balacheff, B., Perrig,
A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp.
277–293. Springer, Heidelberg (2011)

14. Garcia de la Banda, M., Stuckey, P.J., Harvey, W., Marriott, K.: Mode checking
in HAL. In: Lloyd, J. (ed.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1270–1284.
Springer, Heidelberg (2000)

15. Hinrichs, T.L., Gude, N.S., Casado, M., Mitchell, J.C., Shenker, S.: Practical
declarative network management. In: Workshop on Research on Enterprise Net-
working, WREN 2009, pp. 1–10. ACM (2009)

16. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing
authorizations. In: IEEE Symp. on Security and Privacy. IEEE (1997)

17. JBoss Drools Team: Drools documentation (2014), http://docs.jboss.org/
drools/release/6.1.0.Final/drools-docs/html single

18. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artificial
Intelligence 2, 227–260 (1971)

19. Lobo, J., Bhatia, R., Naqvi, S.: A policy description language. In: AAAI Conf. on
Artificial Intelligence. American Association for Artificial Intelligence (1999)

20. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst.
Sci. 17, 348–375 (1978)

21. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

22. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury: An
efficient purely declarative logic programming language. Journal of Logic Program-
ming 29(1-3), 17–64 (1996)

23. Trieu, A., Dockins, R., Tolmach, A.: Conflict analysis for Suppl (in preparation,
2014)

24. Voellmy, A., Kim, H., Feamster, N.: Procera: A language for high-level reactive
network control. In: HotSDN (2012)

http://docs.jboss.org/drools/release/6.1.0.Final/drools-docs/html_single
http://docs.jboss.org/drools/release/6.1.0.Final/drools-docs/html_single

A Method for Scalable and Precise Bug Finding

Using Program Analysis and Model Checking

Manuel Valdiviezo, Cristina Cifuentes, and Padmanabhan Krishnan

Oracle Labs
Brisbane Australia

{manuel.valdiviezo,cristina.cifuentes,paddy.krishnan}@oracle.com

Abstract. This paper presents a technique for defect detection in large
code bases called model-based analysis. It incorporates ideas and tech-
niques from program analysis and model checking. Model checking, while
very precise, is unable to handle large code bases that are in the millions
of lines of code. Thus we create a number of abstract programs from the
large code base which can all be model checked. In order to create these
abstract programs, we first identify potential defects quickly via static
analysis. Second we create a program slice containing one potential de-
fect. Each slice is then abstracted using a combination of automatic data
and predicate abstraction. This abstracted model is then model checked
to verify the existence or absence of the defect. By applying model check-
ing to a large number of small models instead of one single large model
makes our approach scalable without compromising on precision.

We have applied our analysis to detect memory leaks and implemented
it using aspects of the Parfait static code analysis tool and the SPIN
model checker. Results show that our approach scales to large code bases
and has good precision: the analysis runs over 1 million lines of non-
commented C++ OpenJDKTM source code in 1 hour and 19 minutes,
with a precision of 84.5%. Further, our analysis found 62.2% more de-
fects when compared to the dataflow approach used by Oracle Parfait’s
memory leak checker.

1 Introduction

In this paper we present a technique that combines abstraction and software
model checking (SMC), which enables us to detect defects in large code bases.
The motivation for this research is the need to develop automated defect finding
techniques that are more accurate than purely static analysers and can be made
to scale systems consisting of 1 million lines of uncommented code. The technique
must also be able to report the results in a few hours on standard desktop
machines. To be realistic, we do not demand completeness; thus the technique
might miss a few defects. Hence we do not aim to verify the original program.
But we require high precision (viz., a low false positive rate) as demanded by
the consumers of our results. Our aim is to have a precision of more than 80%.

As we are looking for automated techniques, model checking is a potential
starting point. Software model checking (SMC) technology is suitable for the

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 196–215, 2014.
c© Springer International Publishing Switzerland 2014

A Method for Scalable and Precise Bug Finding 197

verification of small/medium code bases, up to the low thousands of lines of
code. However, it cannot handle large code bases that have millions of lines of
code [1].

The TACAS 2013 and 2014 competitions on software verification
(http://sv-comp.sosy-lab.org/2013/results/ and http://sv-comp.sosy-

lab.org/2014/results/) identify model-checkers that perform well on various
benchmarks. All the benchmarks used in the competition are relatively small
when compared with our needs. We were unable to use tools identified by them
(such as LLBMC [2] or CBMC [3]) on our real code bases which have more than
one million lines of uncommented code.

Abstraction [4,1] and bounded model checking [3] are two of the possible
techniques to get a handle on such large code bases. In this paper we describe and
demonstrate an effective abstraction (also called model generation) technique
that can be combined with SMC. Our data and predicate abstraction is totally
automatic unlike Bandera [4] which requires manual processing which is just not
feasible on our large code bases. The main reason for the efficacy of our approach
is the generation of multiple models for a given property. We ensure that each
model has only one potential defect. Thus each model will be small enough to
be verified using model checking very quickly. This is based on the observation
that model checking works very well on small program and our aim is to run
many invocations of the model checker on small models. To achieve this we use
a defect-driven slicing and abstraction process.

The key steps in our approach are as follows.

1. Given a desired property, we identify all statements where a defect could
occur. These statements form the list of potential defects.

2. For each potential defect we create a slice of the program that has only the
relevant variables and conditions we want to check for.

3. Each slice is converted into a specialised abstraction using automatic data
abstraction (i.e., discarding irrelevant values, or converting a range of values
to a single value related to the property being checked for). Where auto-
matic data abstraction is not possible, a suitable predicate abstraction (i.e.,
replacing predicates with boolean variables) is used. By using predicate ab-
straction only in limited contexts, we reduce the cost of predicate solving.
This results in small models that are constructed quickly.

4. The resulting models are then verified against the desired property using a
model checker.

The novel aspects in our approach include the use of automatic data and
predicate abstraction to generate a number of, potentially small, models that
can be model checked, and at the same time keeping sufficient information in
the model so as to not require refinement based on any counter-example after
the model-checking process.

While our approach is general, we use memory leaks as an example to demon-
strate the generation of the set of abstractions. In order to handle other defect
types, one has to specify a customised abstraction algorithm. This customisation
can be based on our technique of using data and predicate abstraction.

http://sv-comp.sosy-lab.org/2013/results/
http://sv-comp.sosy-lab.org/2014/results/
http://sv-comp.sosy-lab.org/2014/results/

198 M. Valdiviezo, C. Cifuentes, and P. Krishnan

The rest of the paper is organised as follows. In Section 2, we survey some
related work. In Section 3, we present an example that illustrates our approach.
In Section 4, we explain the technical details of our approach while in Section 5,
we outline our implementation. In Section 6, we present our experimental results
and conclude in Section 7.

2 Related Work

From a performance view point static analysers can be very effective at detecting
defects; they often trade speed for accuracy. However, it is often the case that
complex analyses are not scalable. ESP [5] represents a general techniques that
could be applied to the detection of memory leaks. It uses property simulation
to prune the number of paths explored by the analysis. It relies on encoding
of temporal safety properties and, in principle, can be used to detect memory
leaks. However, the results reported [6] appear to indicate that the approach is
very sensitive to the input program. In the context of memory leaks, Sparrow [7]
uses interprocedural but non-path-sensitive analysis. Sparrow took about 2 hours
to process binutils-2.13.1, a small to medium sized program. Saber [8] uses
sparse value-flow graph to represent def-use chains and value flows via assign-
ments. Leaks are detected by performing a reachability analysis on this graph.
The authors state that Saber is faster than Sparrow and also works on large
systems such as wine-0.9.24. Unfortunately, these tools are not available and
we have been unable to use them in our experimentation.

The idea of using slicing to reduce the complexity of analysis to speed up the
verification process has been explored in recent times [9]. The scalability of such
techniques is very much an open question, especially as they slice models which
by definition are compact. Similarly [10] attempt to verify aspects of operating
systems after code slicing. But they admit that they can use model checking
only within a limited scope.

It is also possible to use SMT solvers on the slicing to remove false alarms (i.e.,
verify that the defect is not possible) [11]. However, the results provided by the
authors indicate that SMT solvers are unlikely to scale. None of the programs
considered are really large. In some cases the SMT solver did not terminate and
in other cases it took more than 30 minutes. This appears to be related to the
complexity of the path constraints that need to be solved.

SANTE [12] combines static and dynamic analysis to reduce the number of
false positives. This is aimed mainly at test generation and they do not use
model checking for defect detection. The key idea, like ours, is that slicing can
reduce the size of the program that needs to be analysed.

There are numerous approaches to model checking and we summarise a few
key ones here. Bandera is a SMC that allows the verification of user-defined
properties in Java programs [4]. The checking process applies slicing to the pro-
gram, user-guided data abstraction over the slice and the resulting abstracted
version of the program is model checked. The major drawback of this approach
is that user input is required for the data abstraction. Such a manual process is
tedious and impossible to apply in practice in large code bases.

A Method for Scalable and Precise Bug Finding 199

The Static Driver Verifier (SDV) [1], based on SLAM is an SMC for verifying
user-defined properties on sequential C programs. C programs are abstracted
using predicate abstraction with an initial set of predicates derived from the
property. SDV then employs iterative counter-example guided abstraction refine-
ment (CEGAR) to determine if the user-defined property is satisfied. However,
the authors state that: “SLAM is unable to handle very large programs (with
hundreds of thousands of lines of code)” [1].

Similar to SDV, the Berkeley Lazy Abstraction Software verification Tool
(BLAST), is a SMC for verifying properties in C programs [13]. It applies a
technique called lazy abstraction during the refinement process. While this im-
proves the scalability of the CEGAR approach, we have been unable to use it
for our work.

The C–Bounded Model Checker (CBMC) [3] and Low-level Bounded Model
Checker (LLBMC) [2] verify properties in C programs via bounded model check-
ing. In CBMC, the C program is abstracted once by unwinding the loop struc-
tures (including backward goto statements) according to the ‘unwind’ parameter.
Function calls are also inlined. Optionally, slicing can be applied on the C pro-
gram. LLBMC uses the bit code representation of the C program to perform
bounded model checking.

The main drawback of such approaches is their sensitivity to the ‘unwind’
parameter. A small value can reduce the accuracy of the verification, but a
large value can increase the runtime unnecessarily. Determining what is the best
value needs significant experimentation and determining this value a-priori is
not possible for large code bases.

3 Illustrative Example

Memory leak is a common defect in programs written in C. A memory leak
happens when memory that has been previously allocated (via ‘malloc’ or similar
memory allocation function in C), is not deallocated (via ‘free’ or similar) prior
to the program ending.

Figure 1 shows a small C program for motivation purposes. At line 3, 128 bytes
are allocated and the starting address of those 128 bytes is stored in pointer ‘p’.
At lines 14 and 19, memory pointed to by ‘p’ is deallocated. At lines 17–22, the
memory pointed to by ‘p’ is deallocated only when ‘retval’ is equal to -1 and ‘p’
is not equal to NULL. Thus the case when ‘retval’ is equal to -2 is not taken
into account and ‘free’ is not called. Therefore, memory leaks at the end of this
function.

Figure 2 presents the control flow graph for the example C function using SSA
form [14]. In SSA form, each variable is defined exactly once; existing variables
are split into separate versions, and a ‘phi’ function is used at merge points.
For example, variable ‘retval’ is assigned values at lines 5 and 10. Both of these
constant values reach the ‘end’ basic block, therefore, the first intermediate state-
ment in that basic block (statement ‘P11’) is the definition of ‘retval’ as the ‘phi’
function between values -1 and -2. ‘P11’ states that the value of ‘retval’ is either

200 M. Valdiviezo, C. Cifuentes, and P. Krishnan

1 int f oo {
2 int r e t v a l = 0 ;
3 char ∗p = mal loc (128) ;
4 i f (p == NULL) {
5 r e t v a l = −1;
6 goto end ;
7 }
8 FILE ∗ f = fopen (” t e s t . c”

, ” ro ”) ;
9 i f (f == NULL) {

10 r e t v a l = −2;
11 goto end ;
12 }

13 f c l o s e (f) ;
14 f r e e (p) ;
15 return 0 ;
16 end :
17 i f (r e t v a l == −1) {
18 i f (p != NULL) {
19 f r e e (p) ;
20 p = NULL;
21 }
22 }
23 return r e t v a l ;
24 }

Fig. 1. Motivating Example with a Memory Leak

-1 or -2 depending on which path was followed. Other statements of interest
include ‘P0’ which does the allocation of memory, ‘P9’ and ‘P16’ which do the
deallocation of memory, and both ‘P10’ and ‘P18’ which are exit points for this
function.

As part of our analysis we make use of program slicing [9]. A program slice
is the set of statements in a program that may affect the value of a variable at
some point of interest; commonly referred to as the slicing criterion. If we use
‘P18’ as our slicing criterion, we are interested in all statements that may affect
the value of ‘retval’.

The slice therefore includes the branches into ‘bb7’, namely ‘P17’, ‘P15’ and
‘P13’ and their dependencies, ‘P11’, ‘P12’ and ‘P14’, and the dependencies of
these three basic blocks, namely, ‘P3’, ‘P7’, ‘P13’ and ‘P15’ (these last two
already in the set), and so on.

In this case the slice contains all statements in the example except for those
in the shaded basic block ‘bb4’; i.e., the slice of slicing criterion ‘P18’ are all
statements that are not shaded.

We now describe some of the key steps in the abstraction process for this
example. As part of the data abstraction process for pointers, we use the val-
ues ‘NULL ADDR’, ‘MEM ALLOC’ and ‘OTHER’ to indicate a null pointer,
a pointer pointing to an allocated block of memory and a pointer pointing to
other addresses respectively. The slice in our example has 4 predicates: ‘P1: p
== NULL’, ‘P5: f == NULL’, ‘P12: retval == -1’ and ‘P14: p != NULL’. Three
of the four predicates can be effectively represented using data abstraction, viz.,
using ‘NULL ADDR’ . As a result, only one boolean variable (say ’b’) needs to
be created to keep track of the predicate ‘retval == -1’. For this predicate, the
instruction at ‘P11’ defines ‘retval’. The instructions ‘b = true’ and ‘b = false’
are added to predecessor basic blocks ‘bb’ and ‘bb3’, respectively, prior to the
last branching instruction, to abstract the incoming values of the phi function
(-1 and -2, respectively). Thus by using data abstraction first, we reduce the
number of extra variables that need to be introduced for predicate abstraction.

A Method for Scalable and Precise Bug Finding 201

Fig. 2. Control Flow Graph in SSA Form for the Example of Figure 1

To handle the memory allocation at ‘P0’, two abstracted instructions are
created. The first is a declaration of a variable that keeps track of the pointer ‘p’,
and the second is noting that the result of invoking an external library function
(‘malloc’) can return one of two values; the newly allocated address or NULL
if there is not enough memory available. This indecisive result is expressed by
using a non-deterministic selection statement which covers the two cases ‘p =
NULL’ and ‘p = MEM ALLOC’. Similarly the call to ‘fopen’ at ‘P4’ defines the
value of variable ‘f’. We assume that the ‘fopen’ can only return either ‘NULL’
(which indicates failure) or ‘OTHER’ (which indicates success) since the return
value is a pointer and there is no memory allocation involved.

Although, not present in the above example, we show how integer values
are handled. For instance, a particular data abstraction rule could define that
some integers can be abstracted to the range {‘below1’, ‘between1&9’, ‘above9’}.
Based on this, a control predicate ‘x<1’ can be expressed as ‘x==below1’; there-
fore, ‘x’ can be data abstracted and no extra boolean variable needs to be added
to the model. On the other hand, the control predicates like ‘y==5’ requires a
new boolean variable since it cannot be represented using the earlier data ab-
straction rule. To reiterate, data abstraction followed by predicated abstraction
reduces the introduction of extra variables.

In the next section we describe our analysis that combines program analysis
and model checking techniques. The description of the specialised abstraction
will explain how the values used in the above example arise.

In the next section we describe our analysis that combines program analysis
and model checking techniques. The description of the specialised abstraction
will explain how the values used in the above example arise.

202 M. Valdiviezo, C. Cifuentes, and P. Krishnan

4 Model-Based Analysis

Recall that the aim of our model-based analysis is to use model checking tech-
niques to find defects such as memory leaks in large C code bases effectively.
That is, the analysis should take only a few hours to complete code that has
around a million lines. In contrast to most SMCs, where one model is generated
per program, we generate multiple models per program. We use a specialised
abstraction that aims to reduce the size of the models. Model checking is then
performed separately over each model resulting in reduction in the search space.

Given a defect type (e.g., memory leak), we use a demand-driven approach
to identify all statements in the program where that defect may happen. We
call these locations “potential defects”. The list of potential defects is created
by using a static analyser that runs very quickly. For each potential defect, we
create a model using a specialised abstraction that is checked by a model checker.

Program With
Potential Defects

Specialised
Abstraction

Specialised
Abstraction

Defect

Slicer and
Abstractor

A Model
Checker

No
Defect

Specialised
Abstraction

Potential
Defect

Is Finite State Model
Has violation

Is verified

Times-out

Is Too Complex

Fig. 3. Architecture of the Model-based Analysis Approach

Figure 3 illustrates our approach to model-based analysis: for each potential
defect we first determine all the other statements in the program that are depen-
dent on the statement of the potential defect; this step effectively creates a slice
of the program starting at the potential defect statement, taking into account
only variables and conditions that are relevant for the analysis to be applied. We
then reduce the slice to a specialised abstraction which in turn is transformed
into a finite state model that is fed into a model checker.

Automatic data abstraction is used to discard irrelevant ranges of values un-
related to the property to be checked. We also use predicate abstraction on
statements when it is not possible to use data abstraction, resulting also in
smaller abstracted models. This combination of data and predicate abstractions
alleviates the expensive predicate solving, and reduces the complexity of the
resulting model; again, improving performance of the analysis.

A Method for Scalable and Precise Bug Finding 203

Owing to the use of automatic abstraction techniques it is possible that an
abstraction proves too complex to transform into a model. In such cases the
particular potential defect is not analysed further. The complex abstractions
result because of the presence of unsupported operations for the data abstraction
mechanism and also because of limitations in the predicate solver. In contrast to
the CEGAR approach, where multiple iterations of generation of an abstraction
may happen, we only abstract once. We generate simpler models by specialising
the property (i.e., the defect type in our case) to be checked. Thus our technique
is faster than CEGAR based approaches but less accurate. This tradeoff enables
us to handle large code bases without reducing the value of the reported defects.

Once the model is run through the model checker, either a counterexample is
generated; in which case the potential defect violates the property being checked
for and is therefore a defect, or no property violation happens; in which case the
potential defect is not a defect.

Algorithm 1. High Level Algorithm

procedure DefectSpecificModelCheck(program)
potentialDefects := GetPotentialDefectsList(program)

defects := ∅
for each pd in potentialDefects do

slice := Slicing(program,pd)
if slice is executable then

model := SpecialisedAbstraction(slice, pd)
if model is not empty then

result := ModelCheck(model, fixedProperty)
if fixedProperty is not satisfied then

defects := defects ∪ { pd }
end if
potentialDefects := potentialDefects \ { pd }

end if
end if

end for
Print(defects)

end procedure

The Procedure DefectSpecificModelCheck in Algorithm 1 depicts our
model-based analysis at a high level. First a list of ‘potentialDefects’ is gen-
erated for the program. This is a simple static analysis pass. For each potential
defect, a slice of the code is obtained. If the resulting slice is a self-contained
piece of code that can be executed, a model of it is generated via specialised
abstraction. If a non-empty model is generated, it is run by a model checker and
determined to be safe or unsafe; unsafe results are placed in the ‘defects’ list.
Other cases lead to the potential defect remaining in the list of potential defects.
The slicing and model checking components of the algorithm are standard. We
explain our specialised abstraction in the next section.

204 M. Valdiviezo, C. Cifuentes, and P. Krishnan

4.1 Specialised Abstraction

As mentioned earlier, our specialised abstraction for defect types makes use of
data abstraction and predicate abstraction. Procedure SpecialisedAbstraction

in Algorithm 2 describes the specialised abstraction for a given slice ‘slice’ and
a potential defect ‘pd’. The algorithm keeps track of a set of boolean variables
(‘boolVariables’) and a set of data variables (‘dataVariables’), as well as a list of
abstracted instructions (‘model’).

Algorithm 2. Specialised Abstraction Algorithm

function SpecialisedAbstraction(slice,pd)
boolVariables := ∅; dataVariables := ∅
predicates := GetControlStatementPredicates(slice)
for each pred in predicates do

if pred cannot be expressed using DataAbstraction then
boolVar := CreateBoolVariable(pred)
boolVariables := boolVariables ∪ { boolVar}

end if
end for
model := <>
for each inst in slice do

modelInst, dataVariables := ApplyDefectSpecificAbstraction(inst,
pd, boolVariables, dataVariables)

if modelInst is empty then
return empty

else
model := model � modelInst

end if
end for
return model

end function

For a given slice, we first determine all predicates in the control statements.
If the predicate cannot be expressed using the specific defect data abstraction,
a boolean variable is created for it and added to the set ‘boolVariables’.

Each instruction in the slice is processed by ‘ApplyDefectSpecificAbstraction’
to generate the abstracted instruction (‘modelInst’) and update the set of data
variables ‘dataVariables’. Predicate abstraction is applied to predicates associ-
ated with boolean variables (i.e., in the set ‘boolVariables’). If the instruction is
too complex for the abstraction at hand, an empty model is returned. Otherwise
the model is extended (� is just concatenation) with the model representing
the current instruction (inst) being processed.

Next we explain the details of the data and predicate abstraction (denoted by
‘ApplyDefectSpecificAbstraction’) for finding memory leak defects. Recall that
we will create one model per potential defect. We consider a potential memory
leak a pair of memory allocation and return statements. Thus each model will

A Method for Scalable and Precise Bug Finding 205

have only one allocation that may leak at exactly one exit point. For memory leak
detection, the ‘dataVariables’ of interest are pointers. A pointer value is repre-
sented by its abstracted address, address space and its offset. The abstracted ad-
dress, used in the data abstraction process, can either be NULL (‘NULL ADDR’),
point to the allocatedmemory in question (‘MEM ALLOC ADDR’), or point else-
where (‘OTHER ADDR’). The address space attribute keeps track of relevant in-
formation of the memory contained in the address of the pointer; there are three
possible values. Pointers that point to memory containing an address to an al-
located memory are marked as ‘PARENT ALLOC ADDR’. For example, a dou-
ble pointer ‘p’ (i.e.,‘void **p’) will be flagged as ‘PARENT ALLOC ADDR’ if
the memory it points to (i.e.,‘*p’) includes a memory allocation (e.g., ‘*p = mal-
loc(..)’). This information allows for the detection of indirect deallocations or es-
capes of ‘MEM ALLOC ADDR’. In cases where a pointer address is reachable
from outside the function being analysed (e.g., argument passed by reference),
it is marked as ‘ESCAPE ADDR’. This way it is possible to identify when the
‘MEM ALLOC ADDR’ escapes. If the pointer does not point to a parent com-
pound data type and does not escape, its value is ‘NONE’. Last, the offset of the
pointer is stored as an integer, which is needed for supporting arithmetic opera-
tions.

The arithmetic operations that can be represented by this abstraction are
limited to additions and subtractions between pointers and integers. As a result,
only the offset section of pointers is affected in these operations. In the case of
logical operations, our approach only supports equals and not equals predicates.
The address space attribute is ignored when computing comparisons as they do
not represent the value of the address itself. The particular case of comparing
between two pointers evaluating to ‘OTHER ADDR’ is handled by assigning
‘true or false’ non-deterministically.

The address space attribute of pointers is modified as a side effect of defi-
nitions of external pointers, memory writes and memory copies. First, when a
pointer is defined externally (e.g., a pointer returned by a library function),
the address space of that pointer is set to ‘ESCAPE ADDR’. Secondly, we
need to propagate the address space attribute when a ‘child’ pointer is stored
in a memory pointed by a ‘parent’ pointer. The ‘parent’ pointer is flagged as
‘PARENT ALLOC ADDR’ if the ‘child’ pointer address is a memory allocation
or it is marked as ‘PARENT ALLOC ADDR’. On the other hand, the ‘ES-
CAPE ADDR’ flag is propagated to the ‘child’ pointer from the ‘parent’ pointer
if it is the case. Finally, memory copies (e.g., using memcpy(...)) sets the desti-
nation pointer as ‘PARENT ALLOC ADDR’ if the source pointer is marked as
such. In all of the three cases stated above, our algorithm declares that memory
leak is not possible and defines an end state in the model when a pointer address
space needs to be set to ‘PARENT ALLOC ADDR’ and ‘ESCAPE ADDR’ at
the same time.

The address and address space abstractions are summarised in Figure 4.

206 M. Valdiviezo, C. Cifuentes, and P. Krishnan

Address ∈ {NULL ADDR, MEM ALLOC ADDR, OTHER ADDR}

AddressSpace ∈ {NONE, PARENT ALLOC ADDR, ESCAPE ADDR}

Offset ∈ Z

Fig. 4. Address data abstraction

Concretely, we represent pointers as integers: the address, address space and
offset of the abstracted representation of pointers. They are extracted by using
arithmetic modulus operations as defined in Figure 5.

pointerAddress(ptr) ≡ (| ptr | MOD 10) MOD 3

pointerAddressSpace(ptr) ≡ (| ptr |— MOD 10) DIV 3

pointerOffset(ptr) ≡ ptr DIV 10

Fig. 5. Operations to extract elements from pointers represented as integers

There are two limitations to using specialised abstraction. First, it does not
support the analysis of user-defined properties, and second, the resulting model
cannot be guaranteed to be non spurious. It may be inaccurate due to predicates
that may be missing in the model. The first limitation results from the fact that
each property needs a particular algorithm for the analysis. However, this is
not a requirement in our case as we are interested in checking for known types
of defects for which effective algorithms have been developed. To minimise the
effects of the second limitation, the analysis accepts this fact and just leaves the
potential defect as a potential defect, rather than attempting to generate a more
accurate model.

4.2 Example Revisited

We now show the working of the memory leak abstraction technique on our
running example presented in Figure 1. Recall that the slice for the criterion ‘P18’
is all the statements in non-shaded basic blocks. This slice has 4 predicates: ‘P1: p
== NULL’, ‘P5: f == NULL’, ‘P12: retval == -1’ and ‘P14: p != NULL’. Three
of the four predicates can be effectively represented using our data abstraction,
since ‘NULL ADDR’ is a possible abstracted value. As indicated earlier, only
one boolean variable needs to be created to keep track of the predicate ‘retval
== -1’.

We illustrate the processing of a couple of instructions. The instruction at
‘P0’ allocates memory via ‘malloc’ and stores the result in ‘p’. This instruction

A Method for Scalable and Precise Bug Finding 207

is modelled by two abstracted instructions: a declaration of a variable that keeps
track of the pointer ‘p’, and the result of invoking an external library function
that can return one of two values; the newly allocated address or NULL if there
is not enough memory available. This indecisive result is expressed by using a
non-deterministic selection statement which covers the two cases ‘p = NULL’
and ‘p = MEM ALLOC’. This is shown in the first if – fi statement in Figure 6.

The instruction at ‘P11’ defines the variable ‘retval’; this variable affects the
boolean variable associated with predicate ‘retval == -1’. Assume the boolean
variable is named ‘b’. The instructions ‘b = true’ and ‘b = false’ are added to
basic blocks ‘bb’ and ‘bb3’, respectively, prior to the last branching instruction,
to abstract the incoming values of the phi function (-1 and -2, respectively).

The instruction at ‘P4’ is a call to the library function ‘fopen’ and defines
the value of variable ‘f’. This instruction generates a non-deterministic selection
statement to represent the result of ‘fopen’ and an assignment that makes ‘f’
an escape address. In the first construct, we assume that the ‘fopen’ can only
return either ‘OTHER’ or ‘NULL’ since the return value is a pointer and there is
no memory allocation involved. The address is flagged as ‘ESCAPE ADDR’ for
safety as we assume that this address can be potentially reached interprocedu-
rally. This last statement is not relevant in this particular example as there is no
memory write to this address. However, it prevents other cases from reporting
false positives.

4.3 Function Summaries and Interprocedural Support

We conclude the discussion of our approach by noting our use of standard func-
tion summaries to handle interprocedural analysis [15]. That is, function sum-
maries of each function are created and then used at each calling site. A function
summary is a collection of pre and post conditions that encapsulates how the
inputs and outputs of a function are affected in the context of a function call.
These predicates can represent relevant effects for the memory leak detection
analysis such as pointer escapes, memory copies, memory allocations and deal-
locations. The summaries of functions from external library functions can be
defined in a configuration file. In particular, summaries of common functions of
the C library, such as ‘malloc’ and ‘free’, are used in the analysis.

Whenever a function summary is missing for a given (external) function, the
algorithm makes use of the worst case scenario for the defect at hand. For ex-
ample, for memory leak defects, we can safely assume that every pointer input
is escaped and that every pointer output is in an escaped abstracted address
space. Further, the return value is non-deterministically defined in this case to
avoid missing defects that are not directly related with such calls.

5 Implementation

We have implemented our model-based analysis for detecting memory leaks using
the Parfait static code analysis tool [16] and the SPIN [17] model checker. Given

208 M. Valdiviezo, C. Cifuentes, and P. Krishnan

our abstraction technique, the model checker we use need not have support for
memory leaks.

Our slicing implementation is performed in two passes: a backward pass to
calculate the control and data dependencies from the exit point back to the point
of interest (the allocation), and a forward pass to track the uses of the allocation
statement. This implementation makes use of Parfait’s pointer alias analysis.

To implement predicate abstraction, we make use of Parfait’s predicate mod-
ule. When this module cannot determine the value of an abstracted boolean
variable, e.g., the predicate is too complex for the module to solve, we assign a
value non-deterministically. This module is fast but less precise than a theorem
prover, again, as a tradeoff between precision and scalability.

Our implementation has some limitations in the abstraction and the interpro-
cedural support. Our specialised abstraction method is occasionally unable to
generate a model because of the use of a simple predicate solver. For instance, it
is not able to express boolean variables, representing predicates, in terms of other
boolean variables, and it cannot resolve predicates containing floating point val-
ues. Our interprocedural support is not complete. As explained in Section 4.3,
we rely on Parfait’s existing function summaries for detecting interprocedural
defects. We have not extended Parfait to fully support our model-based anal-
ysis needs. So, some information is not considered in the generation of these
summaries and, therefore, our algorithm can miss relevant information for the
analysis.

We translate our specialised abstraction into the Promela which is the input
language to the SPIN model checker. There are two features of the Promela
language that deserve explanation as they differ from traditional programming
languages. Promela’s control flow is based on whether a statement is executable
or not [17]. A statement is executable if it evaluates to a non-zero integer value;
therefore, every statement in Promela returns a value. A statement can be an
expression on its own, and expressions like ‘0;’ are not executable as they do not
evaluate to a non-zero value. We take advantage of this property of the language
and use non-executable statements to specify end states. This combined with
Promela’s modelling of non-determinism using guarded statements enables us to
represent different behaviours.

The generated Promela model for our memory leak example shown in Fig-
ure 1 is presented in Figure 6. It has been slightly modified to aid readability. The
model contains only one active process, ‘myProcess’, which is enough for evalu-
ating sequential properties such as memory leak. Two auxiliary global boolean
variables are included in the construction of the model: ‘memoryLeak’ and ‘exit’.
The ‘memoryLeak’ variable will evaluate to true when the memory in question
is allocated and has not been either freed nor escaped. The ‘exit’ variable is
set to true in the block containing the exit statement in the potential defect.
As a result, the logical temporal logic (LTL) property that expresses memory
leak freedom is represented as [](exit -> !memoryLeak), which means “at any
state in the model, if exit holds true, memoryLeak is false”.

A Method for Scalable and Precise Bug Finding 209

bool memoryLeak = fa l se ;

bool e x i t = fa l se ;

a c t i v e proctype myProcess () {
int p ; // pointer p
int f ; // pointer f
bool b ; // represent ing

// r e t v a l == −1
bool pred0 , pred1 ;

bool pred2 , pred3 ;

entry :

i f
: : true −>

memoryLeak = true ;

p = MEMALLOC;

: : true −> p = NULL;

f i ;
pred0 = addrSpace (p) == NULL;

i f
: : (pred0) −> goto bb ;

: : else −> goto bb2 ;

f i ;
bb : b = true ; // r e t v a l = −1;
goto end ;

bb2 :

i f
: : true −> f = OTHER;

: : true −> f = NULL;

f i ;
f = setAddrSpace (f , ESCAPE ADDR) ;

pred1 = addrSpace (f) == NULL;

i f
: : (pred1) −> goto bb3 ;

: : else −> 0 ;

f i ;
bb3 : b = fa l se ; // r e t v a l = −2;
goto end ;

end :

pred2 = b ;

i f
: : (pred2) −> goto bb5 ;

: : else −> goto bb7 ;

f i ;
bb5 : pred3 = addrSpace (p) != NULL;

i f
: : (pred3) −> goto bb6 ;

: : else −> goto bb7 ;

f i ;
bb6 :

i f
: : addrSpace (p) == MEMALLOC −>

memoryLeak = fa l se ; 0 ;

: : else −> skip ;

f i ;
goto bb7 ;

bb7 : e x i t = true ;

0 ;

}

Fig. 6. Promela model for example of Figure 1

The Promela model is then passed to SPIN to perform the model checking.
If SPIN reports an error, the memory leak is reported as such. We make use
of a timeout in case the SPIN processing time takes too long. In practice, test
runs indicate that 10 seconds is sufficient time prior to timeout for the size and
complexity of the models our analysis generates.

6 Experimental Results

We measure the effectiveness of our technique and report both precision and
recall [18]. We evaluated our approach by running two sets of experiments. The
first measured the precision and recall of the results against existing benchmarks
from the program analysis community. The second measured precision and per-
formance against a large open source code base. For this case it is not possible
to measure recall as the list of all defects in the large code base is not known.
We also compare the results produced by the LLBMC model-checker [2] and re-
sults produced by a purely static-analysis approach using Parfait [16]. We chose
LLBMC because, unlike other model-checkers for C, it supports the detection of
memory leaks.

210 M. Valdiviezo, C. Cifuentes, and P. Krishnan

6.1 Evaluation of Precision and Recall Against Benchmarks

We use the subset of memory leak benchmarks available in the NIST SA-
MATE [19] suite and the Error Detection Test Suite from Iowa State Univer-
sity [20]. These suites contains small benchmarks (the average number of lines
of code without comments/blank lines is also shown) with known memory leaks.
Furthermore each program has one defect per benchmark. Knowing the location
of the defect in the code allows us to determine whether the results of our analysis
are correct (hence a true positive), incorrect (hence a false positive) or whether
defects were missed all together (hence a false negative). Precision and recall
are then computed based on these values. It should be noted that we are not
including benchmarks with allocation to global pointers as our implementation
does not consider those cases as memory leaks.

Table 1. Small Benchmark Results

Benchmark Total Avg Tool True False False Precision Recall Time
Defects LOC + + - (sec)

SAMATE
50

22
Model-based 44 0 6 100% 88% 34
LLBMC 39 0 11 100% 86.67% 6.38
Parfait 44 0 6 100% 88% 6.53

IOWA 25 35
Model-based 17 0 8 100% 68% 20.44
LLBMC 22 0 3 100% 88% 7.67
Parfait 13 0 12 100% 52% 1.05

Table 1 shows the results of this evaluation. For each benchmark suite we
list the total number of defects in the benchmarks, the reported true positives,
the number of false positives and false negatives, and compute the precision and
recall for the analysis results. As can be seen, all reports produced by the analysis
in both benchmarks are correct, hence a false positive rate of 0 and therefore
precision of 100%.

The false negatives for the model-based approach in these benchmarks are
mostly due to the incomplete function summaries. Thus, our algorithm is unable
to process relevant statements or has to be more conservative when abstracting
calls to those functions; e.g., assume that every parameter in the call escapes.
LLBMC also suffers from a similar problem. More than half the number of false
negatives are because LLBMC does not recognise strdup as allocating memory
or because of exceptions. LLBMC ran out of memory on three of the programs in
the SAMATE suite. In terms of runtime, our model-based approach will generate
models for all potential memory leaks in the code, whereas the LLBMC approach
will stop when it first encounters a memory leak defect.

Our model-based approach generates 125 potential defects for the various pro-
grams in SAMATE. For these 125 potential defects 122 models were generated,
i.e., 3 models were too complex. The model-checking process is able to prove
violations in 44 of the 122 models. Thus it missed finding 6 defects. Similarly,

A Method for Scalable and Precise Bug Finding 211

for the IOWA data set, our approach generates 37 potential defects for which 32
models were generated with 5 models being too complex. The model-checking
process verified 17 out of the 32 models.

Parfait will also process all potential memory leaks in the program, however,
it uses less expensive data flow techniques which have been optimised over the
years. Thus its performance on small benchmarks is excellent both in terms of
accuracy and run-time.

The main conclusion we wish to draw from this experiment is that model
checking does work for small programs. There is no advantage in generating
models on small programs as shown by the significantly larger time taken by the
model-based analysis. The model checking process (using LLBMC) is effective
although in the case of the benchmarks from the SAMATE set, Parfait is much
better than LLBMC. The next section evaluates the effectiveness of slicing and
the specialised abstraction technique as applied to a large system.

6.2 Evaluation Using OpenJDK

We ran our analysis over the OpenJDK 7 build 136, on a Sun Ultra24 machine
with Core2Duo 3.3Ghz with 6GB RAM of memory. The OpenJDK version has
more than 1.4 million lines of non-commented C/C++ code. We used version
5.2.2 of the SPIN model checker. For this system we compare our approach
with only the dataflow analysis built into Parfait. Unfortunately LLBMC was
unable to run successfully on the above system; thus we are unable to present
any results for it. Also tools such as Sparrow and Saber were not available for
our experimentation. So no comparison with their approaches can be made.

Although our implementation uses Parfait, the memory leak detection in Par-
fait is a separate pass that can be run in stand-alone mode. These features of
Parfait are independent from each other and hence the comparison does not
suffer from any internal biases.

Since neither us nor the authors of the code know where all memory leaks
are in the OpenJDK code base, we can only measure precision of the results
produced by the analysis, as measuring recall requires knowledge of the location
of all memory leaks. Precision is measured by manually inspecting each report
produced by the analysis and determining whether the report is correct (i.e., true
positive) or incorrect (i.e., false positive). Given the industrial nature of the code
base, and its size we used this code base to measure the runtime performance of
the analysis.

Table 2. OpenJDK Benchmark Results

Tool Total Reports True False Relative Precision Performance
Positive Positive False Negative

Parfait 38 37 1 25 97.37% 55 sec

Model-based 71 60 11 2 84.5% 1:19 hr

212 M. Valdiviezo, C. Cifuentes, and P. Krishnan

Table 2 shows the results of this evaluation. Of the 71 defects reported by
the analysis, 60 are correct and 11 are false positives, leading to a precision of
84.5%. The precision in this case is less when compared to the SAMATE and
IOWA benchmarks. This is because the latter benchmarks are small and not
necessarily fully representative of real code, i.e., they lack in complexity of the
code. The false positives included in this test were caused by limitation in the
implementation of the slicing module. In some cases our slicing algorithm fails
to include uses of parent pointers in the slice and, thus, relevant escapes are not
added to the model. We also measure the relative false negative for both tools
based on the true positive results. For each true positive, we determine whether
the other tool reports it or not; if it does not, then it is a false negative. 35 reports
were found by both tools. So Parfait missed 25 memory leaks reported by model-
based analysis, whereas our approach only missed 2 reported by Parfait. That
is, 62.2% more defects were correctly reported.

These results were expected as the model-based approach is more exhaustive
and thus more computationally expensive than the data flow technique. The
extra performance runtime is still within acceptable time for scaling the analysis
to millions of lines of code.

Although the general algorithm reduces the number of model construction
cancellations by making safe assumptions and using non-deterministic assign-
ments, we are still forced to abandon the analysis in several of these cases.
We also found some data and predicate abstraction clashes; e.g., operations
composed of both predicate and data abstracted variables. These instances are
handled by discarding predicate abstraction and applying data abstraction on
the fly when possible. Otherwise the analysis is cancelled. For example for the
OpenJDK code base, we only generate models for 67% of the potential defects.

We also examined the minimum, maximum and average number of states of
the models generated by the analysis. The smallest model had 7 states while the
largest model had close to 1.8 million states. The average size of the model was
about 92,000 states. For models that had a defect, the smallest model had 12
states and the largest model had about 800,000 states and the average size was
14,000 states. Of the 4,186 models generated only 13 models timeout given the
10 second limit. We can therefore conclude that model checking was, in general,
effective. We are investigating if there is any correlation between the number of
states in the models and the overall performance. Intuitively, large models which
do not have a defect lead to reduction in performance as all states need to be
examined. However, a large model which has a defect that can be found without
computing the entire space will not affect performance.

6.3 Threats to Validity

We now discuss a few threats to validity. The first is related to the selection of
benchmarks. We have chosen IOWA and SAMATE as representative of small
programs and OpenJDK for a large system. Experimenting with other sys-
tems may yield different results. In our evaluation we have converted the spe-
cialised abstraction to Promela and used the SPIN model checker. We could have

A Method for Scalable and Precise Bug Finding 213

translated the abstraction to C (and used CBMC [3]) or to LLVM bit code (and
used LLBMC). While the exact timing will vary, in all these cases we do not
think that this would change the overall validity of our approach. The initial list
of the potential defects has a significant influence on the process. That is, larger
the list the more abstractions that need to be created. If one can use a more
sophisticated (and hence potentially more expensive) static analyser, our results
could be improved. But the identification of the optimal point is an open ques-
tion. Also we are using the function summaries from Parfait. This results in a
fair comparison for OpenJDK but also points to an area that could be improved.

7 Conclusion and Future Work

In this paper we have presented our model-based analysis approach to finding de-
fects, which makes use of model checking techniques in conjunction with program
analysis. The aim of our approach was to develop a defect detection mechanism
that can scale to thousands and millions of lines of code, without loss in pre-
cision, at the expense of missing some defects. Our approach has been applied
to a version OpenJDK that has approximately 1.4 million lines of code which is
much larger than programs used in the TACAS 2013 and 2014 benchmarks and
tools such as Saber [8].

The key to our analysis is the use of a specialised abstraction that relies on
both data and predicate abstraction and the use of multiple models (one per
potential defect) to generate a number of small models each of which can be
model checked. Thus we are able to leverage the strengths of program analysis
and model checking. As our abstraction process limits the size of the models and
hence could have false negatives.

Our implementation results for memory leak detection show that the analysis
scales well to large code bases without detracting from precision, at the expense
of missing some defects. When compared to data flow analysis, our analysis was
much slower but reported 62% more defects. The runtime performance of our
analysis is reasonable to include this analysis in a static code analysis tool that
runs over millions of lines of code.

There are two main avenues for further research. The first is a more detailed
comparison. For instance, we could compare our approach with other techniques
developed for memory leak (e.g., if we get access to Saber). Second, we believe
that our analysis can be applied to other types of defects which needs validation.

Acknowledgements. Initial work was conducted by the first author under
Prof. Hayes’s supervision. We thank Daniel Wainwright and Matthew Johnson
for their assistance with our experiments.

214 M. Valdiviezo, C. Cifuentes, and P. Krishnan

References

1. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Communications of the ACM 54, 68–76 (2011)

2. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded model checking of C and C++ pro-
grams using a compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012)

3. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

4. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby,
Hongjun, Z.: Bandera: Extracting finite-state models from Java source code. In:
Proceedings of the International Conference on Software Engineering, pp. 439–448
(2000)

5. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in poly-
nomial time. In: Proceedings of the Conference on Programming Language Design
and Implementation (PLDI), pp. 57–68. ACM Press (June 2002)

6. Dor, N., Adams, S., Das, M., Yang, Z.: Software validation via scalable path-
sensitive value flow analysis. In: Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), pp. 12–22. ACM (2004)

7. Jung, Y., Yi, K.: Practical memory leak detector based on parameterized proce-
dural summaries. In: Proceedings of the 7th International Symposium on Memory
Management (ISMM), pp. 131–140 (2008)

8. Sui, Y., Ye, D., Xue, J.: Static memory leak detection using full-sparse value-flow
analysis. In: Proceedings of the 2012 International Symposium on Software Testing
and Analysis (ISSTA), pp. 254–264. ACM (2012)

9. Yatapanage, N., Winter, K., Zafar, S.: Slicing behavior tree models for verification.
In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 125–139.
Springer, Heidelberg (2010)

10. Park, M., Byun, T., Choi, Y.: Property-based code slicing for efficient verifica-
tion of OSEK/VDX operating systems. In: Proceedings of the First International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS), pp. 69–84
(2012)

11. Kim, Y., Lee, J., Han, H., Choe, K.M.: Filtering false alarms of buffer overflow
analysis using SMT solvers. Information and Software Technology 52(2), 210–219
(2010)

12. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: Proceedings of
the ACM Symposium on Applied Computing (SAC), pp. 1284–1291 (2012)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003)

14. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

15. Hampapuram, H., Yang, Y., Das, M.: Symbolic path simulation in path-sensitive
dataflow analysis. In: Proceeding of PASTE, pp. 52–58. ACM Press (2005)

A Method for Scalable and Precise Bug Finding 215

16. Cifuentes, C., Keynes, N., Li, L., Hawes, N., Valdiviezo, M., Browne, A., Zim-
mermann, J., Craik, A., Teoh, D., Hoermann, C.: Static deep error checking in
large system applications using Parfait. In: Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, pp. 432–435. ACM (2011)

17. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2011)

18. Anderson, P.: The use and limitations of static-analysis tools to improve software
quality. CrossTalk: The Journal of Defense Software Engineering, 18–21 (2008)

19. NIST: National Institute of Standards and Technology SAMATE Reference
Dataset (SRD) project (January 2006), http://samate.nist.gov/SRD

20. Luecke, G.R., Coyle, J., Hoekstra, J., Kraeva, M., Li, Y., Taborskaia, O., Wang,
Y.: A survey of systems for detecting serial run-time errors. Concurrency and
Computation – Practice and Experience 18(15), 1885–1907 (2006)

http://samate.nist.gov/SRD

Model-Checking for Android Malware Detection�

Fu Song1 and Tayssir Touili2

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, P.R. China

fsong@sei.ecnu.edu.cn
2 Liafa, CNRS and Université Paris Diderot, France

touili@liafa.univ-paris-diderot.fr

Abstract. The popularity of Android devices results in a significant increase of
Android malwares. These malwares commonly steal users’ private data or do ma-
licious tasks. Therefore, it is important to efficiently and automatically analyze
Android applications and identify their malicious behaviors. This paper intro-
duces an automatic and scalable approach to analyze Android applications and
identify malicious applications. Our approach consists of modeling an Android
application as a PushDown System (PDS), succinctly specifying malicious be-
haviors in Computation Tree Logic (CTL) or Linear Temporal Logic (LTL), and
reducing the Android malware detection problem to CTL/LTL model-checking
for PDSs. We implemented our techniques in a tool and applied it to analyze
more than 1260 android applications. We obtained encouraging results. In partic-
ular, we discovered ten programs known as benign that are leaking private data.

1 Introduction

The rapid growth of Android’s market results in a significant increase in Android mal-
wares. Although Google introduced a security service Bouncer on the Android Play
Store (Android Market) in February 2012, according to a recent report, the number of
Android malwares has increased from 3063 to 51447 between the first and third quar-
ters of 2012 1. These malwares usually steal users’ private information such as phone
identifiers, location information, or send overpriced messages, etc.

Researchers have done many efforts aimed at addressing these problems [2, 4, 7–
10, 12–16, 19, 20, 22, 30]. All these works cannot directly analyze Dalvik codes to
identify complicated malwares (Android applications are written in Java and compiled
into Dalvik codes. Dalvik codes are a kind of assembly programs that run in Dalvik
Virtual Machine, like Java bytecode run in Java Virtual Machine). In this work, we di-
rectly analyze Dalvik bytecode rather than translating it into Java and then using Java
program analyzers. Indeed, several malwares are written directly in Dalvik. Moreover,
decompilation from Android applications to Java does not always work, due to the fact

� This work was partially supported by STCSM Project (No. 14PJ1403200), NSFC Project (No.
61402179), SHMEC-SHEDF Project (No.13CG21), the Open Project of Shanghai Key Lab-
oratory of Trustworthy Computing (No. 07dz22304201301), ANR grant (No.ANR-08-SEGI-
006), SHEITC Project (No.130407), Shanghai Knowledge Service Platform for Trustworthy
Internet of Things (No. ZF1213).

1 http://www.f-secure.com.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 216–235, 2014.
c© Springer International Publishing Switzerland 2014

Model-Checking for Android Malware Detection 217

that existing reverse engineering tools are prone to failure. We propose an efficient and
automatic approach that directly analyzes Dalvik codes and can identify complicated
malwares. Our approach consists of modeling an Android application as a Pushdown
System (PDS) which is a natural model of sequential programs with potentially recur-
sive procedure calls [11], and expressing malicious behaviors in SCTPL [25, 26] and
SLTPL [27]. SCTPL (resp. SLTPL) is an extension of Computation Tree Logic (CTL)
(resp. Linear Temporal Logic (LTL)) with variables, quantifiers and predicates over the
stack that allows to succinctly describe malicious behaviors. The Android malware de-
tection problem is reduced to SCTPL/SLTPL model-checking for PDSs which can be
solved by [26, 27].

For instance, let us consider an Android application that intends to steal the IMSI
ID of the phone by sending a text message to another phone. This application can
obtain the IMSI ID by calling the getSubscriberId method whose return value is the
IMSI ID. Later, it can call the sendTextMessage method with the IMSI ID as third pa-
rameter by which the IMSI ID is sent to another phone. Since the IMSI ID is users’
private information, it is important to identify whether an Android application steals
the IMSI ID or not. We can model the Android application as a PDS and specify this
malicious behavior as the following SCTPL formula: EF∃x(x = getS ubscriberId() ∧
EFsendTextMessage(−,−, x,−,−)), where − denotes the non-important parameters.
This formula expresses that the return value of getSubscriberId (i.e., the IMSI ID) is
assigned to a variable x. Later, sendTextMessage is called with x as third parameter.
However, this formula is not robust enough and malwares could easily get around by
some obfuscation techniques. For example, a malware could encrypt the IMSI ID such
that the sent text (i.e., third parameter of sendTextMessage) does not have any explicit
relation with the IMSI ID. E.g., the malware Hongtoutou uses the DES algorithm to
encrypt the IMSI ID by the secret key 48734154. To overcome this problem, in this pa-
per, we introduce a predicate encode to express the existence of a relation between two
variables. More precisely, the predicate y = encode(x, l) expresses that the value of y
depends on the value of x at the control point l. Thus, the above malicious behavior can
be specified in a more precise manner using the following SCTPL formula: EF∃x∃l(x =
getS ubscriberId()∧Loc(l)∧EF∃y(sendTextMessage(−,−, y,−,−)∧y = encode(x, l))).
This formula specifies that the return value of getSubscriberId is assigned to a variable
x at a control point l (i.e., Loc(l) holds). Later, sendTextMessage is called with y as third
parameter such that the value of y depends on the value of x at l.

However, it is not trivial to determine whether a configuration of the PDS model
satisfies predicates of the form y = encode(x, l) or not. To solve this problem, we
propose an algorithm based on the saturation procedure of [11]. Our algorithm com-
putes an annotation function from which we can infer whether a configuration satisfies
y = encode(x, l) or not. Thus, we can check whether an Android application has some
malicious behaviors by applying SCTPL and SLTPL model-checking for PDSs.

We implemented our techniques in a tool and applied it to check 1260 Android mal-
wares. We obtained interesting results. Our tool was able to detect all these malwares.
We also applied our tool to check 71 applications from Android Compatibility Test
Suite which are regarded as benign applications. We found that ten of them leak private
data and three of them do some malicious behaviors such as record videos without the

218 F. Song and T. Touili

1 c l a s s M y a c t i v i t y e x t e n d s A c t i v i t y {
2 p u b l i c S t r i n g i d ;
3 p u b l i c o n C r e a t e () {
4 TelephonyManager m = C o n t e x t . g e t S y s t e m S e r v i c e (‘ ‘ phone ”) ;
5 i d=m. g e t D e v i c e I d () ;
6 r e t u r n ; }
7

8 p u b l i c onPause () {
9 SmsManager s=SmsManager . g e t D e f a u l t () ;

10 S t r i n g t e x t= e n c r y p t (id , key) ;
11 s . s e ndT e x tM e s s age (‘ ‘ 1 ” , ‘ ‘ 2 ” , t e x t , i n t e n t , i n t e n t) ;
12 r e t u r n ; } }

Fig. 1. A simplified program that leaks the device ID of the phone via text message

users’ knowledge. To our knowledge, the results we obtained for these 71 applications
are previously unknown. Our approach could also be applied to detect other malicious
programs, such as iOS programs, Windows programs, etc.

Outline: Section 2 presents the background of Android applications needed in this
paper. Section 3 recalls the definition of PDSs and shows how to model an Android
application as a PDS. Section 4 gives the definitions of SCTPL and SLTPL, and shows
how to express malicious behaviors of Android applications in SCTPL/SLTPL. Section
5 proposes an algorithm computing the annotation function. Section 6 gives the experi-
mental results. Section 7 shows related work. Due to lack of space, proofs are omitted.
They can be found in the full version of this paper [28].

2 Android Applications

Android provides four base classes: Activity, Service, Content Providers and Broad-
cast Receiver, each of them consists of several methods that could be invoked by the
Android operating system (OS) when its state is changed. These methods are called
callback methods. For instance, the Activity class has two callback methods onCreate
and onPause which will be invoked respectively by the Android OS when an activ-
ity is launched and is about to start resuming a previous activity. Also, there are other
classes containing callback methods. E.g., the OnClickListener interface has the onClick
method which will be called when the application is at the idle state and the correspond-
ing button was clicked by the user. An Android application should define one or more
classes that extend Activity, Service, Content Providers or Broadcast Receiver and the
extended classes can override callback methods to implement their own functionalities.
Moreover, an Android application does not necessarily have a main method (i.e., the
entry point of a normal program). Instead, an application may have several entry points
that are some callback methods of the four base classes. The Android OS can start an
application by calling one of these callback methods. Malicious Android applications
can also override the callback methods to execute a malicious task.

For example, Fig. 1 presents a simplified Android application that defines the My-
activity class which extends the Activity class. It overrides the onCreate and onPause
methods. In the onCreate method, a TelephonyManager object m is obtained by calling

Model-Checking for Android Malware Detection 219

the getSystemService method at line 4. It calls the getDeviceId method of the object m
and assigns the return value to the variable id at line 5. The return value of getDeviceId
is the unique device ID (called IMEI) of the phone which is private. In the onPause
method, it calls the getDefault method to obtain a SmsManager object s at line 9. Then,
it encrypts the obtained device ID (i.e., IMEI) by calling the encrypt method and assigns
the result to the variable text at line 10. Finally, it sends the value in the variable text via
a text message by invoking the sendTextMessage method of s at line 11. Note that this
program will send the user’s device ID to other phones via text messages. Thus, this
program may be malicious. It is important to analyze Android applications and tell the
user what the applications will do before installing them.

3 Program Model

We will use pushdown systems (PDSs) to model Android applications. PDSs are suit-
able to model sequential programs with (potentially recursive) procedure calls [11]. The
translation from the code of an Android application to a PDS is different from the stan-
dard translation from sequential programs to PDSs as it has to take into account the
specificity of Android applications such as the existence of callback methods, the way
these methods are called, and the absence of the main function.

3.1 Pushdown Systems

A Pushdown System (PDS) is a tuple P = (P, Γ, Δ), where P is a finite set of control
locations, Γ is the finite stack alphabet and Δ ⊆ (P × Γ) × (P × Γ∗) is a finite set
of transition rules. A configuration of P is pair 〈p, ω〉 with p ∈ P and ω ∈ Γ∗. If
(
(p, γ), (q, ω)

) ∈ Δ, we write 〈p, γ〉 ↪→ 〈q, ω〉. W.l.o.g., for every 〈p, γ〉 ↪→ 〈q, ω〉 ∈ Δ,
we assume |ω| ≤ 2 [11].

The successor relation�P⊆ (P × Γ∗) × (P × Γ∗) is defined as follows: if 〈p, γ〉 ↪→
〈q, ω〉, then 〈p, γω′〉 �P 〈q, ωω′〉 for every ω′ ∈ Γ∗. If 〈p, γω′〉 �P 〈q, ωω′〉, then
〈q, ωω′〉 is a successor of 〈p, γω′〉. A path is a sequence of configurations c0c1... such
that for every i ≥ 0, ci �P ci+1. Let �∗P⊆ (P × Γ∗) × (P × Γ∗) be the transitive and
reflexive relation of�P such that for every c, c′ ∈ P×Γ∗, c�∗P c, and c�∗P c′ iff there
exists c′′ ∈ P×Γ∗: c�P c′′ and c′′ �∗P c′. Let post∗ : 2P×Γ∗ −→ 2P×Γ∗ be the successor
function such that for every C ⊆ 2P×Γ∗ , post∗(C) = {c ∈ P × Γ∗ | ∃c′ ∈ C : c′ �∗P c}.

To finitely represent (potentially) infinite sets of configurations of PDSs, we use
multi-automata.

Given a PDS P = (P, Γ, Δ), a Multi-Automaton (MA) [3] is a tuple M =

(Q, Γ, δ, I, F), where Q is a finite set of states, δ : (Q×Γ)×Q is a finite set of transition
rules, I ⊆ Q is a set of initial states corresponding to the control locations P, F ⊆ Q is
a finite set of final states

Let −→δ : Q × Γ∗ × Q be the transition relation such that for every q ∈ Q: q ε−−→δ q
and q

γω−−−→δ q′ if there exists a state q′′ ∈ Q such that (q, γ, q′′) ∈ δ and q′′ ω−−→δ q′. A
configuration 〈p, ω〉 ∈ P × Γ∗ is accepted by M iff p ω−−→δ q for some q ∈ F. A set
of configurations C ⊆ P × Γ∗ is regular iff there exists a MAM such thatM exactly
accepts the set of configurations C. Let L(M) be the set of configurations accepted by
M.

220 F. Song and T. Touili

3.2 Modeling Android Applications as PDSs

In this section, we show how to model an Android application as a PDS. Given an
application with a set N of control points (excluding the control points of declaration
statements, e.g., the control point 2 in Fig. 1.), we construct a PDS P = ({p},N ∪
{γ⊥}, Δ) with p as the unique control location and N ∪ {γ⊥} as the stack alphabet, where
γ⊥ � N is used to handle entry points and callback methods. The PDS transition rules
model the control flow of the application. (In our implementation, we use Smali2, a
disassembler for Android applications, to disassemble the application into control flow
graphs.) Intuitively, the configuration 〈p, γ⊥〉 is the initial configuration of the PDS
model. It denotes that the run of the PDS is at the idle state (i.e., the application does
not execute any statement). A configuration 〈p, γω〉 such that γ ∈ N denotes that the run
of the application is at the control point γ and ω is the return addresses of the calling
procedures (i.e., the procedures that have not returned yet). Formally, Δ is computed as
follows: for every control point γ ∈ N s.t. stmt is the statement at the control point γ:

1. If stmt is a function call v = f (v1, ..., vm) and γ′ is the next control point of γ, then
〈p, γ〉 ↪→ 〈p, feγ′〉 ∈ Δ, where fe is the entry point of the procedure f and γ′ is
regarded as the return address of f ;

2. If stmt is a return statement return v, then 〈p, γ〉 ↪→ 〈p, ε〉 ∈ Δ, where ε is the empty
word;

3. If stmt is neither a function call nor a return statement and γ′ is the next control
point of γ, then 〈p, γ〉 ↪→ 〈p, γ′〉 ∈ Δ;

4. Moreover, for every callback method proc in the application, 〈p, γ⊥〉 ↪→
〈p, proceγ⊥〉 ∈ Δ, where proce is the entry point of proc.

The first three items describe the standard construction of a PDS model from a se-
quential program as shown in [11]. The last item models the invoking of callback meth-
ods. As explained previously, an Android application can override the callback methods
that are invoked by the Android OS. This implies that some callback methods may not
be reachable if we only use the first three items, but they can be called by the Android
OS. For example, let us consider the program shown in Fig. 1. The function onCreate is
only called by the Android OS when the activity is launched and can be an entry point
of the application. The onClick method of an ok button that implements the OnClickLis-
tener interface is called only when the ok button is clicked by the user. That is why we
add the last item by which all the callback methods could be invoked in any order when-
ever the application is at an idle state, i.e., the PDS is at the configuration 〈p, γ⊥〉. From
the view point of the application, we associate all the function calls of callback methods
to the control point γ⊥. The resulting PDS model is a sound over-approximation of the
application.

4 Android (Malicious) Behaviors Specifications

In this section, we recall the definition of the logics SLTPL [27] and SCTPL [26], and
show how to use them to describe Android (malicious) behaviors.

2 http://code.google.com/p/smali

Model-Checking for Android Malware Detection 221

Hereafter, we fix the following notations. Let X = {x1, x2, ...} be a finite set of vari-
ables ranging over a finite domainD. Let B : X∪D −→ D be an environment function
that assigns a value v ∈ D to each variable x ∈ X and such that B(v) = v for every
v ∈ D. B[x ← v] denotes the environment function such that B[x ← v](x) = v and
B[x ← v](y) = B(y) for every y � x. Let AP be a finite set of atomic propositions,
APX be a finite set of atomic predicates in the form of a(α1, ..., αm) such that a ∈ AP,
αi ∈ X ∪ D for every 1 ≤ i ≤ m, and APD be a finite set of atomic predicates of the
form a(α1, ..., αm) such that a ∈ AP, αi ∈ D for every 1 ≤ i ≤ m.

4.1 The SCTPL Logic

SCTPL can be seen as an extension of CTL with variables, quantifiers and predicates
over the stack. Variables are parameters of atomic predicates and can be quantified by
the existential and universal quantifiers. Formally, the set of SCTPL formulas is given
by (where x ∈ X and a(x1, ..., xm) ∈ APX):

ϕ ::= a(x1, ..., xm) | ¬ϕ | ϕ ∧ ϕ | ∀x ϕ | EXϕ | EGϕ | E[ϕUϕ].

Given a PDS P = (P, Γ, Δ), let λ : APD → 2P×Γ∗ be a labeling function that assigns
to each predicate a regular set of configurations. Let c ∈ P×Γ∗ be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B such that c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xm) iff c ∈ λ

(
a
(
B(x1), ...,B(xm)

))
.

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ¬ψ iff c �|=B
λ ψ.

– c |=B
λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B

λ ψ.
– c |=B

λ E[ψ1Uψ2] iff there exists a path π = c0c1... of P with c0 = c s.t. ∃i ≥ 0, ci |=B
λ

ψ2 and ∀0 ≤ j < i, c j |=B
λ ψ1.

– c |=B
λ EGψ iff there exists a path π = c0c1... of P with c0 = c s.t. ∀i ≥ 0: ci |=B

λ ψ.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies ψ under the environment B.

We will freely use the following abbreviations: EFψ = E[trueUψ], AGψ = ¬EF(¬ψ),
and ∃xψ = ¬∀x¬ψ.

Theorem 1. [26] SCTPL model-checking for PDSs is decidable.

4.2 The SLTPL Logic

Similarly, SLTPL can be seen as an extension of LTL with variables, quantifiers and
predicates over the stack. The set of SLTPL formulas is given by (where x ∈ X and
a(x1, ..., xm) ∈ APX): ϕ ::= a(x1, ..., xm) | ¬ϕ | ϕ ∧ ϕ | ∀x ϕ | Xϕ | ϕUϕ.

Given a PDS P = (P, Γ, Δ) and a path π = c0c1... of P, let π(i) denote ci and πi denote
the suffix starting from π(i). Let c be a configuration of P. P satisfies a SLTPL formula
ψ in c (denoted by c |=λ ψ) iff there exists an environment B such that c satisfies ψ under
B (denoted by c |=B

λ ψ). c |=B
λ ψ holds iff there exists an execution π starting from c such

that π satisfies ψ under B (denoted by π |=B
λ ψ), where π |=B

λ ψ is defined by induction as
follows:

222 F. Song and T. Touili

– π |=B
λ a(x1, ..., xm) iff π(0) ∈ λ

(
a
(
B(x1), ...,B(xm)

))
;

– π |=B
λ ¬ψ1 iff π �|=B

λ ψ1;
– π |=B

λ ψ1 ∧ ψ2 iff π |=B
λ ψ1 and π |=B

λ ψ2;
– π |=B

λ ∀x ψ iff for every v ∈ D, π |=B[x←v]
λ ψ;

– π |=B
λ X ψ iff π1 |=B

λ ψ;
– π |=B

λ ψ1Uψ2 iff there exists i ≥ 0 s.t. πi |=B
λ ψ2 and ∀ j, 0 ≤ j < i : π j |=B

λ ψ1;

We will freely use the following abbreviations: Fψ = trueUψ, Gψ = ¬F(¬ψ) and
∃xψ = ¬∀x¬ψ.

Theorem 2. [27] SLTPL model-checking for PDSs is decidable.

4.3 SLTPL and SCTPL for Android Applications

In the context of Android applications, usually AP consists of the method names. For
the sake of readability, predicates such as f (x1, ..., xn) in APX will sometimes be written
as x1 = xn. f (x2, ..., xn−1) when x1 denotes the return value of f and xn denotes the object
having the method f , where x2, ..., xn−1 are f ’s parameters. The labeling function λ is
syntactically extracted from the application. For every function call v = f (v1, ..., vm),
every ω ∈ Γ∗, 〈p, γω〉 ∈ λ(v = f (v1, ..., vm)) iff v = f (v1, ..., vm) is called at the point γ.

Example 1. Consider the program shown in Fig. 1 and the following SCTPL for-
mula: φ = ∃x1∃x2EF

(
x1 = x2.getDeviceId() ∧ (EF∃x3∃x4 x3 = encrypt(x1, x4) ∧

∃x5∃x6∃x7∃x8∃x9 EFx5.sendTextMessage(x6, x7, x3, x8, x9)
))

, we have: X = {x1, ...,
x9} is the set of variables appearing in φ; AP = {getDeviceId,
sendTextMessage, encrypt} is the set of atomic propositions corresponding to
method names (we only list the propositions that are used in φ); APX = {x1 =

x2.getDeviceId(), x3 = encrypt(x1, x4), x5.sendTextMessage(x6, x7, x3, x8, x9)} is the
set of predicates appearing in φ; D = {m, id, s, key, “phone”, text, “1”, “2”, intent}
is the set of variables and constants that appear in the program; APD =

{id = m.getDeviceId(), s.sendTextMessage(“1”, “2”, text, intent, intent), text =

encrypt(id, key)} is the set of function calls; the labeling function λ is
given as follows: λ

(
id = m.getDeviceId()

)
= {〈p, l5ω〉 | ω ∈ Γ∗},

λ
(
s.sendTextMessage(“1”, “2”, text, intent, intent)

)
= {〈p, l10ω〉 | ω ∈ Γ∗} and

λ
(
text = encrypt(id, key)

)
= {〈p, l9ω〉 | ω ∈ Γ∗}.

Simplified Formulas: A variable x is non-important in a formula if x is quantified
by ∃ and occurs only in one atomic predicate. All the non-important variables will be
replaced by “−”. Let us consider the behavior that sends the IMEI (or an encrypted ver-
sion of it so that it becomes difficult to check that the IMEI is sent) to other phones via
text messages as shown in Fig. 1. We can specify this behavior in the SCTPL formula φ
(in Example 1). φ states that there exist a TelephonyManager object x2 and a variable x1

such that the return value of the getDeviceId method of x2 (i.e., IMEI) is assigned to x1.
Later, there exist a variable x3 and a key x4 such that encrypt is invoked with parameters
x1 and x4, the return value is assigned to x3 (i.e., the IMEI stored in x1 is encrypted with
the key x3 and the encrypted IMEI is stored in x3). Finally, there exist a SmsManager ob-
ject x5 and variables x6, ..., x9 such that the sendTextMessage method of x5 is called with

Model-Checking for Android Malware Detection 223

parameters x6, x7, x3, x8 and x9 (i.e., the encrypted IMEI is sent by calling sendTextMes-
sage). The variable x2 is quantified by ∃ and only occurs in x1 = x2.getDeviceId(),
then, we can simplify x1 = x2.getDeviceId() as x1 = −.getDeviceId() which is
written as x1 = getDeviceId(−). The same holds for the variables x4, .., x9. Thus,
the formula is simplified as Φid = ∃x1EF

(
x1 = getDeviceId(−) ∧ (EF∃x3 x3 =

encrypt(x1,−) ∧ EFsendTextMessage(−,−, x3,−,−,−)
))

.

4.4 Expressing Android (Malicious) Behaviors in SCTPL and SLTPL

In this section, we show how to use SCTPL/SLTPL to express malicious behaviors.
We need a special predicate of the form y = encode(x, l) to express that the value of y
is computed by encrypting the value of x at the control point l and a predicate of the
form Loc(l) to denote that the control point is l, where a configuration 〈p, γω〉 for every
ω ∈ Γ∗ satisfies Loc(l) iff l = γ.

4.4.1 The Predicate Encode
The formulaΦid given at the end of Section 4.3 is not robust enough for specifying the
behavior that sends the device ID (which may be encrypted) to other phones via text
messages. A malware writer could use other approaches to change the IMEI instead of
calling the encrypt method. For example, a malware writer can replace the statements
at lines 9 and 10 in Fig. 1 by the following code:

f o r (i n t i =0; i< i d . l e n g t h () ; i ++){
S t r i n g t e x t= i d . g e t (i) ;
t e x t= t e x t+ i ;
s . s e ndT e x tM e s s age (‘ ‘ 1 ” , ‘ ‘ 2 ” , t e x t , i n t e n t , i n t e n t) ;

}

where for every i from 0 upto the length id.length() of the string id (i.e., the IMEI),
first, a letter at position i in id is obtained by calling id.get(i) which is assigned to the
variable text, then the position number i is appended to the string stored in text (i.e.,
text = text + i). Finally, the string stored in text is sent by calling sendTextMessage.
By doing this, the IMEI is sent one letter by one letter, and each letter is sent appended
with its position. E.g., suppose the IMEI is the string abcd, then a0, b1, c2 and d3
are sent one by one. Thus, to make the behavior specification more robust, we intro-
duce a new predicate encode. Intuitively, y = encode(x, l) expresses that the value of
the variable y depends on the value of the variable x at the control point l. Formally,
a configuration 〈p, γω〉 satisfies a predicate y = encode(x, l) iff the run of the pro-
gram starting from the entry point reaches the control point γ such that the value of
y depends on the value of x at the control point l. We can specify the above behavior
in a more precise way as follows: Ψid = EF∃x1∃l

(
x1 = getDeviceId(−) ∧ Loc(l) ∧

EF∃x3
(
sendTextMessage(−,−, x3,−,−,−) ∧ x3 = encode(x1, l)

))
. Ψid states that the

return value of getDeviceId (i.e., IMEI) is assigned to a variable x1 at the control point
l. Later, sendTextMessage is called with x3 as third parameter when the value of x3

depends on the value of x1 at l (i.e., the (encrypted) IMEI is sent via text messages).

224 F. Song and T. Touili

Table 1. Privates data sources and sinks

Descriptions of source functions

The return value of getLatitude or getlongitude is the location of the phone
The first parameter of onLocationChanged contains the location data of the phone
The return value of getDeviceId is the IMEI id of the phone
The return value of getSubscriberId is the IMSI id of the phone
The return value of getDeviceSoftwareVersion is the IMSI/SV of the phone
The return value of getLine1Number is the phone number (PN)
The return value of getNetworkCountryIso is the Phone’s Iso country code (ISOC)
The first parameter of getNetworkCountryIso is the incoming phone number (IPN)
The return value of getResult of AccountManagerFuture class contains the authentication token (AT) of the phone
The return value of query or managedQuery is the contact or calendar data (CC) of the phone
The second parameter of setOutputFile contains the media data (MD) of the phone
The return value of getExternalStorageDirectory contains the SD card (SDC) data of the phone
The return value of getConnectionInfo contains the WiFi network connection information of the phone
The return value of getStringExtra of the Intent class contains the data of an Intent object

Descriptions of sink functions

The third (resp. fourth) parameter of sendTextMessage (resp. sendMultipartTextMessage) leaks data via a text messages.
The first and second parameters of d,e,i,v,w,wtf leak data by writing into log files
The first and second parameters of loadurl leaks data via network connections
The first-fourth parameters of 〈@1init〉@1 in the URL class leak data via network connections
The fourth-eighth parameters of set in the URL class leak data via network connections
The first parameter of setRequestProperty leak data via network connections
The first and second parameters of execute in the http class can leak data via network connections
The first parameter of write or println leak data by writing data to files
The first parameter of 〈init〉 of the Intent class leak data to other applications or components

4.4.2 Malicious Behaviors in SCTPL or SLTPL

Information-Leaks: A source function is a function that will return a private data
through a return value or a parameter. A source port is a variable that stores the pri-
vate data of a source function. A sink function is a function which can leak some private
data through some parameters of the function. A sink port is a parameter of a sink func-
tion that can leak some private data. An information-leak is the behavior where a sink
function is called and its sink port stores some private data (usually got from a source
function). This kind of malicious behavior could be specified in SCTPL as the pattern:

EF∃x∃l(f1(x) ∧ Loc(l) ∧ EF∃y(f2(y) ∧ y = encode(x, l)))

where f1 (resp. f2) is a source (resp. sink) function and x (resp. y) is a source (resp.
sink) port such that the value of y relies on the value of x at the control point l. E.g.,
the application shown in Fig. 1 has an information leak behavior that sends the IMEI of
the phone to the other phone via text messages. The formula Ψid is an instance of the
pattern, where getDeviceId and sendTextMessage are the source and sink functions,
respectively. x1 and x3 are the source and sink ports. In Table 1, we give all the source
and sink functions considered in this work.

Background Picture Taking: An application may take a picture using a camera of
the phone without the user’s knowledge. To take a picture, an application first creates
a new Camera object to access a particular hardware camera by invoking the open
method of the Camera class. Next, it calls the setPreviewDisplay or setPreviewTex-
ture method with the Camera object as first parameter to set a surface to preview, and
then calls the takePicture method with the Camera object to take a picture. Calling

Model-Checking for Android Malware Detection 225

setPreviewDisplay or setPreviewTexture will inform the user about a camera access.
But, without calling them before taking the picture (i.e., calling takePicture) after the
Camera object is created (i.e., calling open) will take a picture without informing the
user. Thus, this behavior is malicious. We can specify this behavior in a SLTPL formula
as follows:Ψbp = F∃x1∃l1

(
x1 = open(−)∧Loc(l1)∧∃x2

(¬((setPreviewDisplay(x2,−)∨
setPreviewTexture(x2,−)) ∧ x2 = encode(x1, l1)

)
U ∃x3 takePicture(x3) ∧ x3 =

encode(x1, l1)
))

. The formula Ψbp states that a Camera object x1 is created by calling
open at l1. Later, a picture is taken by calling takePicture with x3 as its first parameter
such that the value of x3 is obtained from the value of x1 at l1 (i.e., x3 = encode(x1, l1)),
since the Camera object stored in x1 can be assigned to another variable x3. Between
calling open and takePicture, there does not exist a variable x2 such that setPreviewDis-
play or setPreviewTexture is called with x2 as first parameter and the value of x2 is
obtained from the value of x1 at l1 (i.e. x2 = encode(x1, l1)). This means that a picture
is taken without informing the user.

Background Video Recording: Android provides the MediaRecorder class to record
a video using a camera of the phone. To do this, an application first creates a
MediaRecorder object, then calls the setVideoSource method to choose a camera
(a phone may have two cameras). The application should call the setPreviewDis-
play method to set a surface to show a preview of the video. Thus, an appli-
cation recording the video without calling setPreviewDisplay, i.e., informing the
user, is malicious. We can specify this behavior in SCTPL as follows: Ψbv =

∃x1∃l1E
[¬(setPreviewDisplay(x1,−) ∧ Loc(l1)) U ∃x2setVideoS ource(x2,−) ∧ x2 =

encode(x1, l1) ∧ AG¬∃x3setVideoS ource(x3,−) ∧ x3 = encode(x1, l1)
]
. Ψbv states that

there does not exist a MediaRecorder object x1 such that the calling of setVideoSource
with x2 as its first parameter such that the value of x2 depends on x1 (i.e., x2 =

encode(x1, l1)) is not preceded by calling setPreviewDisplay with x1 as its first param-
eter at l1. Later, in all the future paths, setVideoSource will not be called with x3 as
its first parameter such that the value of x3 is obtained from the value of x1 at l1 (i.e.,
x3 = (x1, l1)).

Dynamically Loaded Code Execution: In Android, an application can dynamically
load classes from libraries and call functions in these classes. To do this, it first calls
loadclass to load a class from a library. Then, the return value is the class object. Later,
it calls the getMethod method with the class object as its first parameter. This returns
the method. Finally, it can call the method by calling invoke with the method as param-
eter. The loaded classes may perform malicious behaviors that cannot be identified by
statically checking the application. Thus, it is important to tell the user whether an ap-
plication executes some dynamically loaded code. To check this, we use the following
SCTPL formulas:Ψdc = EF∃x1∃l1

(
x1 = loadClass(−,−)∧Loc(l1)∧∃x2∃x3∃l2EF

(
x3 =

getMethod(x2,−) ∧ Loc(l2) ∧ x2 = encode(x1, l1) ∧ ∃x4EFinvoke(x4,−,−) ∧ x4 =

encode(x3, l2)
))

. Ψdc states that the x1 class is dynamically loaded by calling loadClass
at l1. Next, getMethod is called with x2 as first parameter such that the value of x2 is
obtained from the value of x1 at l1 (i.e., x2 = encode(x1, l1)), since the class object
stored in x1 may be assigned to another variable x2. Later, invoke is called at l2 with x4

as the first parameter such that the value of x4 is obtained from the return value x3 of

226 F. Song and T. Touili

the previous getMethod method call, i.e., x4 = encode(x3, l2) and the method stored in
x4 (x3) is invoked by the application.

Harvesting Installed Applications: Android provides the getInstalledPackages
method of the PackageManager class to access information of the installed applica-
tions, their components, and permissions. An application harvesting the installed appli-
cations is dangerous, as the installed applications are users’ private data. To harvest the
installed applications, an application can call getInstalledPackages which returns a list
of installed applications. Then, the application can traverse this list using the hasNext
function of the Iterator class or the get function of the List class. Since a conditional
statement is modeled as two non-deterministic PDS transition rules when we model an
application as a PDS, then, the traversing of the list which checks whether all the ele-
ments are visited will be an infinite loop. This is an over-approximation of the control
flow of the application. We can specify this behavior in the following SLTPL formula:
Ψhi = F∃x1∃l1

(
x1 = getInstalledPackages(−,−) ∧ Loc(l1) ∧ GF∃x2 ∧ (get(x2,−) ∨

hasNext(x2)) ∧ x2 = encode(x1, l1)
)
. Ψhi states that a list x1 of installed applications

is obtained by calling getInstalledPackages at l1. Later, it will infinitely often access
this list by calling get or hasNext with x2 as first parameter such that the value of x2

is obtained from the value of x1 at l1 (i.e., x2 = encode(x1, l1)). Note that the always
operator G specifies the infinite loop that traverses the list of installed applications.

Native Codes Execution: Android Applications have a way to execute native codes
that are written in other languages such as C/C++. Applications can execute native
libraries by calling the loadLibrary method (i.e., the Java Native Interface) or the exec
method of the Runtime object. As these codes are not in Android assembly language
and may contain malicious behaviors, it is crucial to tell the user whether an application
will execute codes in native libraries. For this, we check whether the loadLibrary or
exec is called or not by the following formula: Ψnc = EF(loadLibrary(−) ∨ exec(−)).
Ψnc checks whether the function loadLibrary or exec is called.

Downloading Data from Servers: Many applications download payloads from servers.
They may download malicious applications and the downloading costs network flow.
Thus, it is important to check whether an application downloads data from some servers.
An application can use the getInputStream method of the URLConnection, HttpURL-
Connection or HttpsURLConnection classes to obtain an InputStream object. The In-
putStream object allows the application to read data from the server by calling the
read method of the InputStream class. By doing so, the data read from the Input-
Stream object is put at the buffer pointed by the second parameter of the read method.
Then, an application can write the data to a file by calling the write method of the
FileOutputStream class with the buffer as second parameter. Thus, it is important to
check whether an application reads data using an InputStream object and then writes
this data into a file. We can express this behavior in a SCTPL formula as follows:
Ψdd = EF∃x1∃l1

(
x1 = getInputS tream(−) ∧ Loc(l1) ∧ EF∃x2∃x3∃l2

(
read(x2, x3) ∧

Loc(l2) ∧ x2 = encode(x1, l1) ∧ EF∃x4 write(−, x4,−,−) ∧ x4 = encode(x3, l2)
))

.
Ψdd expresses that the return value of getInputStream is assigned to the variable x1

(i.e., x1 is an InputStream object) at l1. Next, read is called at control point l2 with x2

and x3 as its parameters such that the value of x2 is obtained from the value of x1 at l1

Model-Checking for Android Malware Detection 227

(i.e., x2 = encode(x1, l1)), since the InputStream object stored in x1 may be assigned to
another variable x2. This means that the application reads data from a server by calling
the read method of the InputStream object and the data is put at the buffer x3. Later,
write is called with x4 as its second parameter whose value is obtained from the value
of x3 at l2 which stores the data from the server.

Remark 1. Note that we need both SLTPL and SCTPL to be able to express the Android
malicious behaviors. Indeed, the SCTPL formula Ψbv cannot be expressed in SLTPL,
whereas the SLTPL formula Ψhi cannot be expressed in SCTPL.

5 Model-Checking Android Applications

As described previously, we model an Android application as a PDS and specify An-
droid malicious behaviors in SCTPL/SLTPL. Then, to check whether an application
contains a malicious behavior or not, it is sufficient to check whether the PDS model
satisfies the SCTPL/SLTPL formula expressing the malicious behavior. However, it is
non-trivial to decide whether or not a configuration 〈p, γω〉 satisfies a predicate of the
form v2 = encode(v1, l), since one cannot easily determine whether the value of v2 de-
pends on the value of v1 at the control point l or not. To solve this problem, in this
section, we propose an approach to compute an annotation function that allows us to
determine whether a configuration satisfies predicates of the form v2 = encode(v1, l).
Intuitively, the annotation function associates to each control point n of the program a
dependency function, where the dependency function assigns to each variable x a set of
pairs (y, l) expressing that the value of x at the control point n depends on the value of
y at l. The annotation function is computed by an extension of the saturation procedure
of [11] which computes all the reachable configurations represented by a MA of the
PDS model. We assign to each transition of the MA a dependency function and update
the dependency function during the saturation procedure according to the side-effects of
the program statements. To distinguish variables in SCTPL/SLTPL formulas from those
that appear in the applications, from now on, we will use x, y, z to denote variables in
SCTPL/SLTPL formulas, and use v, v1, v2... to denote variables in applications.

5.1 Annotating the Program with encode Predicates

Let us fix a PDS P = (P, Γ, Δ) modeling a given Android application. For every γ ∈
Γ, let Proc(γ) be the procedure that contains the control point γ. Let G be the set of
global variables used in an application and Lproc be the set of local variables in the
procedure proc. For each procedure proc, let Rproc be a local variable of the procedure
proc which denotes the return value of proc after the return statement. The formal
parameters p1, ..., pm of each procedure are local variables of this procedure. Let L be
the set of local variables used in the application. Let θ : G ∪ L −→ 2(G∪L)×Γ be a
dependence function that assigns to each variable v ∈ G ∪ L a set of pairs (v′, γ) such
that v depends on the value of v′ at the control point γ. Let Θ be the set of dependence
functions. Let � : Θ×Θ −→ Θ be a function such that for every θ, θ′ ∈ Θ, every variable
v ∈ G ∪ L: (θ � θ′)(v) = θ(v) ∪ θ′(v).

228 F. Song and T. Touili

Let M = (Q, Γ, δ, I, F) be the MA where Q = {p, q f }, I = {p}, F = {q f } and
δ = {(p, γ⊥, q f)}. M accepts the configuration 〈p, γ⊥〉 (i.e., the initial configuration).
We create a new MA M∗ = (Q∗, Γ, δ∗, I, F) with ε-transition rules and an annotation
function ρ : δ∗ −→ Θ that associates each transition rule of M∗ with a dependence
function θ such that L(M∗) = post∗(L(M)), and for every control point γ, M∗ has a

transition rule t = (p, γ, q1) such that q1
ω−→δ∗ q f and (v, l) ∈ ρ(t)(v′) iff a configuration

〈p, γω′〉 satisfies v′ = encode(v, l).
Let Var(exp) be the set of variables used in the expression exp. The computation of

M∗ and ρ consists of two steps. First, we construct the MAM∗ accepting post∗(L(M)).
Then, we annotate the transition rules ofM∗ with an adequate dependence function (i.e.
compute ρ). We use the saturation procedure of [11] to computeM∗ by adding a finite
number of transition rules intoM based on the following rules: Initially,M∗ equalsM;

– For every transition rule 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ, add a new state p′γ′ , and a new
transition rule (p′, γ′, p′γ′) intoM∗;

– Add new transition rules intoM∗ according to the following saturation rules: for
every p

γ−−→δ∗ q inM∗,
• If 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ, we add a new transition rule (p′γ′ , γ

′′, q) intoM∗;
• If 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ Δ, we add a new transition rule (p′, γ′, q) intoM∗;
• If 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ, we add a new transition rule (p′, ε, q) intoM∗;
• If (p′, ε, p) ∈ δ∗, we add a new transition rule (p′, γ, q) intoM∗.

The annotation function ρ is computed according to the following rules:

β0: For every transition rule t = (p, γ, q) inM∗, let ρ(t)(v) = ∅ for any v ∈ G ∪ L;
β1: For every transition 〈p, γ〉 ↪→ 〈p′, γ′〉 ∈ Δ, every t = (p, γ, q) and t′ = (p′, γ′, q) in
M∗, ρ(t′) = ρ(t′) � θ, where

β1.1: If the statement at the control point γ is an assignment v = exp, then, ∀v′ ∈
G ∪ L \ {v} : θ(v′) = ρ(t)(v′) and θ(v) = {(v, γ)} ∪⋃v′∈Var(exp) ρ(t)(v

′);
β1.2: Otherwise, θ = ρ(t);

β2: For every 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ s.t. v = f (v1, ..., vm) is called at γ, every t =
(p, γ, q), t′ = (p′, γ′, p′γ′) and t′′ = (p′γ′ , γ

′′, q) inM∗:
β2.1: ρ(t′) = ρ(t′) � θ, where ∀v′ ∈ G: θ(v′) = ρ(t)(v′), ∀v′ ∈ L f : θ(v′) = ∅ and ∀i ∈

{1, ...,m}: θ(pi) = {(pi, γ
′)} ∪ ρ(t)(vi) (note that p1, ..., pm are formal parameters

of f);
β2.2: ρ(t′′) = ρ(t′′) � θ′, where ∀v′ ∈ LProc(γ): θ′(v′) = ρ(t)(v′), ∀v′ ∈ G: θ′(v′) = ∅

and θ′(v) = {(v, γ)} ∪ {(R f , γ
′′)}; (Note that Proc(γ) denotes the procedure that

contains the control point γ, i.e., where v = f (v1, ..., vm) is called.)

β3: For every 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ s.t. return v is the statement at the control point γ,
every t = (p, γ, q) and t′ = (p′, ε, q) inM∗, ρ(t′) = ρ(t′)�θ, where ∀v′ ∈ G∪LProc(γ):
θ(v′) = ρ(t)(v′) and θ(RProc(γ)) = {(v, γ)} ∪ ρ(t)(v);

β4: For every t = (p, ε, q), t′ = (q, γ, q′) and t′′ = (p, γ, q′) inM∗, ρ(t′′) = ρ(t′′) � θ,
where ∀v ∈ G: θ(v) = ρ(t)(v); ∀v ∈ LProc(γ): θ(v) = ρ(t′)(v); moreover, ∀v ∈
G ∪ LProc(γ) s.t. (R f , γ) ∈ ρ(t′)(v) where ρ(t)(R f) � ∅: θ(v) = ρ(t′)(v) ∪ ρ(t)(R f).

Model-Checking for Android Malware Detection 229

Item β0 initializes the annotation function ρ such that the value of any variable v at
each control point does not depend on any variable at any location. Then, by iteratively
applying Items β1, ..., β4 until there does not exist any transition t inM∗ such that ρ(t)
can be updated, we can get the annotation function ρ such that for every configuration
〈p, γω〉 ∈ L(M∗) with γ ∈ Γ, 〈p, γω〉 satisfies v′ = encode(v, l) iff there exists a transi-

tion rule t = (p, γ0, q1) ∈ δ∗ such that (v, l) ∈ ρ(t)(v′) and q1
ω′−−−→δ∗ q f for some ω′ ∈ Γ∗.

The intuition behind these rules is explained as follows.
Item β1 expresses that if 〈p, γ〉 ↪→ 〈p′, γ′〉 is a transition of the PDS, t = (p, γ, q)

and t′ = (p′, γ′, q) are in M∗, then, the procedure depends on whether the statement
is an assignment or not. If v = exp is the assignment statement at the control point γ
(Item β1.1), we associate the set of pairs {(v, γ)} ∪ ⋃v′∈Var(exp) ρ(t)(v

′) to the variable v
in the dependence function of the transition rule t′. This means that after executing the
v = exp statement, the value of v at the control point γ′ depends on the variables in
Var(exp) and on itself at γ. Moreover, the values of the other variables v′ remain the
same as at γ. Therefore, the set of variables they depend on remain the same as at γ,
i.e., θ(v′) = ρ(t)(v′). Item β1.2 states that if the statement at the control point γ does not
change the value of any variable, we associate the dependence function ρ(t′) � ρ(t) to
the transition rule t′.

Item β2 states that if 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 is a transition rule of the PDS such that
v = f (v1, ..., vm) is called at γ, t = (p, γ, q), t′ = (p′, γ′, p′γ′) and t′′ = (p′γ′ , γ

′′, q) are
transition rules inM∗, then, we update the dependence functions of t′ in Item β2.1 and t′′
in Item β2.2, respectively. Note that γ′ denotes the entry point of the procedure f and γ′′
is its corresponding return address. Item β2.1 updates the dependence function of t′ (i.e.,
the control point γ′) by setting ρ(t′) = ρ(t′) � θ such that (1) for every global variable
v′ ∈ G, θ(v′) = ρ(t)(v′) (i.e., at the entry point γ′ of the function f , the set of variables
that v′ depends on remain the same as in γ), (2) for every local variable v′ ∈ L f of the
procedure f : θ(v′) = ∅; (3) for every parameter pi of f , θ(pi) = {(pi, γ

′)}∪ρ(t)(vi), since
according to parameter passing pi equals vi and pi at γ′ also depends on its value at γ′.
Item β2.2 updates the dependence function of t′′ (i.e., the control point γ′′) by setting
ρ(t′′) = ρ(t′′)�θ′ such that (1) for every local variable v′ ∈ LProc(γ): θ′(v′) = ρ(t)(v′), this
records the set of variables on which the local variables of the procedure Proc(γ) at the
caller-site depend on. This information will be used when the procedure f returns, i.e.,
at the control point γ′′, see Item β4; (2) for every global variable v′ ∈ G: θ′(v′) = ∅ (since
global variables may be changed in the procedure f , we update these global variables
when f returns, see Item β4); (3) the variable v is associated with the specific variable
R f and control location γ′′ which denotes that v depends on R f at γ′′ and the value of v
at γ′ depends on its value at γ i.e., θ′(v) = {(v, γ)} ∪ {(R f , γ

′′)}. R f will be replaced by
the real return value of f when f returns, see Item β4.

Item β3 expresses that if 〈p, γ〉 ↪→ 〈p′, ε〉 is a transition rule of the PDS such that
return v is the statement at the control point γ (w.l.o.g., we assume that each function
will return a value), and t = (p, γ, q) and t′ = (p′, ε, q) are transition rules inM∗, then,
we update the annotation function of the transition t′ by setting ρ(t′) = ρ(t′)�θ such that
for every variable v′ ∈ G ∪ LProc(γ), θ(v′) = ρ(t)(v′) (since the values of these variables
remain the same as in γ), and since at this point the variable RProc(γ) denoting the return
value of the procedure Proc(γ) is instantiated with v, it depends on the set of variables

230 F. Song and T. Touili

that v depends on at γ and on itself at γ. The transition rule t′ = (p′, ε, q) will be used
in Item β4 to pass the return value to the caller-side.

Item β4 states that if t = (p, ε, q) denoting the return of a procedure f (see Item
β3), t′ = (q, γ, q′) denoting that γ is the return address of the procedure f , and t′′ =
(p, γ, q′) denoting that the control point of the program is at the return address γ, are
transition rules inM∗, then, we update the annotation function of the transition t′′ by
setting ρ(t′′) = ρ(t′′) � θ such that (1) for every global variable v ∈ G: θ(v) = ρ(t)(v)
(i.e. at the return address γ, the program should use the values of the global variables
of the procedure f); (2) for every local variable v ∈ LProc(γ): θ(v) = ρ(t′)(v) (i.e. the
local variables of the procedure Proc(γ) depend on the same set of variables at the
caller-site in which the function f is called); (3) for every variable v ∈ G ∪ LProc(γ)

that depends on the specific variable R f (i.e. the return value of the procedure f) at γ:
θ(v) = ρ(t′)(v) ∪ ρ(t)(R f), since the variable v at γ depends on the same set of variables
as R f . Intuitively, the dependence function of the transition rule t′ is updated in Item β2.2

when a function call is made, thus, ρ(t′) records the sets of variables and locations that
the local variables of Proc(γ) depend on at the caller-side. The dependence function of
t is updated in Item β3 when the procedure f returns, this implies that ρ(t) records the
sets of variables and locations that the global variables and the return value R f depend
on at the return point. The transition rule t′′ denotes that the control point is at the
return address γ, thus, the update θ of the transition rule t′′ uses the values of the global
variables and R f in ρ(t) and uses the values of the local variables of Proc(γ) in ρ(t′).

Complexity: Since the number of variables is bounded, the number of dependence
functions is also bounded, at most O(|G| · |L| · 2|G|·|L|·|Γ|). The number of transition rules
ofM∗ is at most O((|P| + k) · |P| · |Δ|) where k is the number of pairs (p′, γ′) ∈ P × Γ
such that 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 ∈ Δ for some p ∈ P, γ, γ′′ ∈ Γ. Then, we can get ρ and
M∗ in time O((|P| + k) · |P| · |Δ| · |G| · |L| · 2|G|·|L|×|Γ|).
Theorem 3. Given a PDS P = (P, Γ, Δ) modeling a given application, we can compute
a MAM∗ and an annotation function ρ in time O((|P|+ k) · |P| · |Δ| · |G| · |L| ·2|G|·|L|), such
that for every 〈p, γ〉 ∈ P × Γ, every ω ∈ Γ∗: 〈p, γω〉 satisfies v′ = encode(v, l) iff there
exists a transition rule t = (p, γ, q) ∈ δ∗ such that (v, l) ∈ ρ(t)(v′) and q ω−−→δ∗ q f .

5.2 SCTPL and SLTPL Model-Checking for Android Applications

By Theorem 3, we can determine each predicate of the form v′ = encode(v, l) from
M∗ and ρ, then, we can obtain the labeling function λ as follows: for every function
call v = f (v1, ..., vm), we let λ(v = f (v1, ..., vm)) = {〈p, γω〉 | ω ∈ Γ∗ such that the call
v = f (v1, ..., vm) is made at the control point γ}; for every predicate Loc(l), λ(Loc(l)) =
{〈p, γω〉 | ω ∈ Γ∗ ∧ γ = l}; for every predicate v′ = encode(v, l), λ(v′ = encode(v, l)) =

{〈p, γω〉 | t = (p, γ, q) ∈ δ∗ ∧ (v, l) ∈ ρ(t)(v′) ∧ q ω′−−−→δ∗ q f } which is a regular set of
configurations. By applying Theorems 1 and 2, we can get the following theorem.

Theorem 4. Given a PDS modeling an Android application and a (malicious) behavior
expressed in SCTPL/SLTPL formula, whether the PDS satisfies this behavior or not is
decidable.

Model-Checking for Android Malware Detection 231

Table 2. Results of checking information-leak formulas on the malicious applications

Private Data
Sum2Location IMEI IMSI IMSI/SV PN ISOC IPN AT CC MD SDC WiFi Intent

L
eak

w
ays

TextMessage 2 74 20 0 0 0 0 0 3 0 0 0 1 100
Log File 315 278 179 0 33 178 26 0 267 0 199 52 275 1802
Network 138 345 165 9 67 11 23 0 82 0 163 10 439 1443
File writer 90 424 219 18 27 19 5 0 61 0 331 2 14 1210
Intent 105 1 0 0 0 0 12 0 7 0 167 5 9 306

Sum1 348 685 480 18 114 204 48 0 288 0 352 52 529
Avg. Time(s) 5.79 3.29 3.16 3.39 2.64 8.07 5.69 0 4.77 0 3.97 7.10 5.57
Avg. Mem(MB) 76.6 63.8 56.3 50.1 48.3 68.8 81.1 0 61.4 0 67.8 61.5 63.8

6 Experiments

We implemented a model builder based on the tool Smali, a disassembler for Android
applications. Given an Android application as an app file which contains the applica-
tion’s Dalvik code, model builder automatically outputs a labeling function λ and a
PDS modeling the application. We use the model-checking algorithms of [26, 27] to
check whether the PDS model satisfies a given formula describing Android applica-
tions’ (malicious) behaviors. We applied our tool to check 1331 applications which
consists of 1260 confirmed real malwares from the dataset of [29], and 71 applications
from the Android Compatibility Test Suite (CTS) 3 considered as benign applications.
The size of malwares ranges from 13 KB to 15022 KB. The total size is 1.5 GB. While
the size of CTS applications ranges from 2.7 KB to 26748 KB and its total size is 56.8
MB. We checked these applications against all the formulas presented in this paper. The
analysis of each application costs only few seconds time and MB memory. This implies
that our techniques are efficient and scalable. Our tool was able to detect all these mal-
wares and several previously unknown malicious behaviors in the applications from
CTS.

6.1 Information-Leak Android Applications

Table 2 gives the result of checking applications against information-leak formulas.
TextMessage, Log File, Network, File writer and Intent denote different leaking ways
that the private data can leak via text messages, log files, network connections, files
and Intent object, respectively. Location, IMEI, IMSI, IMSI/SV, PN, ISOC, IPN,
AT, CC, MD, SDC, WiFi and Intent are the private data we considered, denoting the
location data, IMEI id, IMSI id, IMSI/SV id, phone number, Iso country code, incoming
phone number, authentication token, contact or calendar data, mediate data, SD card
data, WiFi connection information of the phone and the data stored in an Intent object,
respectively. Our tool can check all the information-leak formulas for each application
at the same time. Each cell in Table 2 except the rows Avg. Time(s), Avg. Mem(MB),
Sum1 and the column Sum2, gives the number of applications that leak the private data
indicated by the column title via the (way) approach indicated by the row title. For
instance, there are 345 applications in the benchmark leaking the IMEI of the phone

3 http://developer.android.com

232 F. Song and T. Touili

via network connections. The Sum1 row (resp. Sum2 column) shows the total number
of applications that leak the private data indicated by the column title (resp. use the
leaking approach indicated by the row title). The Avg. Time(s) (resp. Avg. Mem(MB))
row gives the average of time (resp. memory) consumption in seconds (resp. MB) used
to detect all the applications that leak the private data indicated by the column title.

As shown in Table 2, 685 applications leaks the IMEI of the phone, most of them are
leaked via Log files, files and networks. No application in our experiment leaks media
data (MD) and authentication token (AT). The detection of these applications costs only
several seconds. This implies that our techniques are efficient and scalable.

We checked all the benign programs from Android CTS against all the information
leak formulas using only 2569 seconds. The average memory consumption is 13.6 MB.
Our tool reports that there are ten benign programs leaking private data, 8 of them
have the corresponding permissions which will inform users the use of the private data,
while the other two applications (CtsTelephonyTestCases and CtsWidgetTestCases) do
not have permissions to access the private data, i.e., the users do not know the use of the
private data. CtsTelephonyTestCases accesses WiFi connection information by calling
the method getConnectionInfo of the class WifiManager and sends the information to
other applications by Intent object. CtsTelephonyTestCases accesses Contact and Cal-
ender data by calling the query of the class ContentResolver and writes the information
into a log file.

6.2 Checking the Other Malicious Behaviors

We applied our tool to check the benchmark against the other SCTPL/SLTPL for-
mulas shown in Section 4.4. Table 3 depicts the results of checking all the ma-
licious applications. The Number of Apps row shows the number of applications
that satisfy the corresponding formula indicated by the column title. The Avg.
Time(s) (resp. Avg. Mem(MB)) row gives the average of time (resp. memory)
consumption in seconds (resp. MB) used to detect all the applications that satisfy
the corresponding formula, where the time consumption is the sum of the time
for computing the MA M∗ and the annotation function ρ and for model-checking.

Table 3. Results of model-checking the mali-
cious applications

Ψdd Ψbp Ψbv Ψnc Ψdc Ψhi

Number of Apps 491 0 1 679 185 793
Avg. Time(s) 40.04 0 21.77 16.44 11.8 17.51
Avg. Mem(MB) 86.3 0 59 41.1 23.8 78.9

The memory consumption is the maxi-
mum of the memory for computing the
MA M∗ and the annotation function ρ
and for model-checking. From Table 3,
we can see that malicious applications
rarely take pictures or record videos with-
out users’ knowledge. But, many mali-
cious applications executes dynamically
loaded codes and harvest installed applications.

The analysis of all the benign programs against all the SCTPL/SLTPL formulas (ex-
cepting information leak formulas) costs 3611.73 seconds. The average of memory con-
sumption is 10.4 MB. 5 applications execute native codes, 2 applications record videos
without the users’ knowledge and 1 application harvests installed applications. During
the analysis of benign programs, our tool automatically avoids to apply model-checking

Model-Checking for Android Malware Detection 233

on an application against a SCTPL/SLTPL formula if no function of in SCTPL/SLTPL
formula is called. This improves the efficiency of our tool.

7 Related Work

Many works such as [1, 8, 9, 13, 14, 16, 19] use dynamic and/or static data flow anal-
ysis to analyze Android malwares. However, these works consider only information-
leak malwares, and do not consider more complicated malicious behaviors. [30] aims
to mainly analyze known Android malwares and needs samples to extract behavioral
signatures. However, the signature-based techniques can be easily gotten around by
malware writers. [9] static analyzes Android applications by translating them (Dalvik
codes) into Java source codes and applying existing static analyzers of Java programs.
However, as we discussed in the introduction, known reverse engineering tools, such
as dex2jar, ded [9] and Dare [21], fail in some cases and it is also possible for mali-
cious developers to write malicious codes at the Dalvik bytecode level that makes the
application hard to be retargeted.

[21] proposes a more precise tool translating Dalvik codes into Java. However, the
resulting Java source codes may miss some malicious behaviors. In this work, we pro-
pose an efficient and automatic approach that directly analyzes Android Dalvik codes.
Our approach can analyze information-leak malwares and other more complicated (ma-
licious) behaviors beyond information-leaks.

[17] introduces CTPL to specify malicious behaviors. SCTPL is an extension of
CTPL with predicates over the stack [25, 26]. SLTPL is first introduced in [27], to
specify malicious behaviors of executable programs. [17, 25–27] do not consider An-
droid malware specifications and cannot be applied to check Android malwares in
a precise manner. Indeed, for Android applications, we need predicates of the form
y = encode(x, l) which cannot be determined in [17, 25–27]. Moreover, the translation
from Android applications to PDSs extends the standard translation from sequential
programs to PDSs [11] and the translation used in [25–27] cannot be applied in the An-
droid context due to existence of callback methods, the way these methods are called,
and the absence of the main function. Furthermore, the Android malicious behaviors
described in this work were not considered in [17, 25–27]. Model-checking and static
analysis such as [5, 6, 17, 24] have been applied to detect non Android malwares.

The saturation procedure proposed in this work is an extension of the saturation
procedure of [11]. However, [11] does not consider how to compute the annotation
function ρ, i.e., the dependence relation between variables. [23] extends PDSs with a
weight domain (called weighted PDSs) and their saturation procedure computes the
weights of reachable configurations. [18] introduces an extension of weighted PDSs,
called extended weighted PDSs, and shows how to compute the weights of reachable
configurations by a kind of a saturation procedure. We could define the dependence
relation of variables as a weight domain and apply the approaches of [18, 23] to com-
pute the weights of reachable configurations, where each transition rule of the resulting
MA is associated with a function over variables. Then, to decide whether the value of
a variable depends on some variable at some control point, we have to compose sev-
eral functions over the weight domain multiple times which can be avoided using our

234 F. Song and T. Touili

approach. Indeed, we only need to query the transition rules of the MA M∗ that are
labeled by γ.

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L., Octeau, D.,
McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In: PLDI (2014)

2. Beresford, A.R., Rice, A., Skehin, N., Sohan, R.: Mockdroid: Trading privacy for application
functionality on smartphones. In: HotMobile, pp. 49–54 (2011)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Ap-
plication to Model Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

4. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.: Towards taming
privilege-escalation attacks on android. In: NDSS (2012)

5. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious patterns. In:
12th USENIX Security Symposium, pp. 169–186 (2003)

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D.X., Bryant, R.E.: Semantics-aware mal-
ware detection. In: IEEE Symposium on Security and Privacy, pp. 32–46 (2005)

7. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: Lightweight provenance
for smart phone operating systems. In: USENIX Security Symposium (2011)

8. Enck, W., Gilbert, P., Gon Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.: Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In:
OSDI (2010)

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application security.
In: USENIX Security Symposium (2011)

10. Enck, W., Ongtang, M., McDaniel, P.D.: On lightweight mobile phone application certifica-
tion. In: ACM Conference on Computer and Communications Security (2009)

11. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model checking
pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
232–247. Springer, Heidelberg (2000)

12. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-delegation: Attacks
and defenses. In: USENIX Security Symposium (2011)

13. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: Automatically detecting po-
tential privacy leaks in android applications on a large scale. In: Katzenbeisser, S., Weippl,
E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.) TRUST 2012. LNCS, vol. 7344,
pp. 291–307. Springer, Heidelberg (2012)

14. Grace, M.C., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: Scalable and accurate
zero-day android malware detection. In: MobiSys (2012)

15. Hornyack, P., Han, S., Jung, J., Schechter, S.E., Wetherall, D.: These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious applications. In: ACM CCS,
pp. 639–652 (2011)

16. Kim, J., Yoon, Y., Yi, K., Shin, J.: Scandal: Static analyzer for detecting privacy leaks in
android application. In: Mobile Security Technologies 2012 (2012)

17. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by model
checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 174–187.
Springer, Heidelberg (2005)

18. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448. Springer, Heidelberg
(2005)

Model-Checking for Android Malware Detection 235

19. Mann, C., Starostin, A.: A framework for static detection of privacy leaks in android appli-
cations. In: SAC, pp. 1457–1462 (2012)

20. Nauman, M., Khan, S., Zhang, X.: Apex: Extending android permission model and enforce-
ment with user-defined runtime constraints. In: ASIACCS, pp. 328–332 (2010)

21. Octeau, D., Jha, S., McDaniel, P.: Retargeting Android applications to Java bytecode. In:
SIGSOFT FSE (2012)

22. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.D.: Semantically rich application-
centric security in android. In: ACSAC (2009)

23. Reps, T.W., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-
procedural dataflow analysis. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 189–213.
Springer, Heidelberg (2003)

24. Singh, P.K., Lakhotia, A.: Static verification of worm and virus behavior in binary executa-
bles using model checking. In: IAW, pp. 298–300 (2003)

25. Song, F., Touili, T.: Efficient malware detection using model-checking. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433. Springer, Heidelberg (2012)

26. Song, F., Touili, T.: Pushdown model checking for malware detection. In: Flanagan, C.,
König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125. Springer, Heidelberg (2012)

27. Song, F., Touili, T.: LTL model-checking for malware detection. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 416–431. Springer, Heidelberg (2013)

28. Song, F., Touili, T.: Model-checking for Android Malware Detection. Technical report,
Shanghai Key Laboratory of Trustworthy Computing (2014),
http://research.sei.ecnu.edu.cn/˜song/publications/APLAS14.pdf

29. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: IEEE
Symposium on Security and Privacy, pp. 95–109 (2012)

30. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In: NDSS (2012)

http://research.sei.ecnu.edu.cn/~song/publications/APLAS14.pdf

Necessary and Sufficient Preconditions

via Eager Abstraction�

Mohamed Nassim Seghir1 and Peter Schrammel2

1 University of Edinburgh, UK
2 University of Oxford, UK

Abstract. The precondition for safe execution of a procedure is useful
for understanding, verifying and debugging programs. We have previ-
ously presented a cegar-based approach for inferring necessary and suf-
ficient preconditions based on the iterative abstraction-refinement of the
set of safe and unsafe states until they become disjoint. A drawback of
that approach is that safe and unsafe traces are explored separately and
each time they are built entirely before being checked for consistency. In
this paper, we present an eager approach that explores shared prefixes
between safe and unsafe traces conjointly. As a result, individual state
sets, by construction, fulfil the property of separation between safe and
unsafe states without requiring any refinement. Experiments using our
implementation of this technique in the precondition generator P-Gen
show a significant improvement compared to our previous cegar-based
method. In some cases the running time drops from several minutes to
several seconds.

1 Introduction

Procedure preconditions must hold when invoking a procedure in order to guar-
antee its intended, safe behaviour during its execution. They are an important
concept in design-by-contract, and commonly found in code documentation, e.g.
for libraries, in order to help the developer understand how to use a procedure
in the current calling context.

However, it is notoriously difficult to come up with preconditions that guar-
antee that all assertions in the procedure hold under all possible inputs that
satisfy them (sufficient preconditions), but, at the same time, do not rule out
safe behaviour (necessary preconditions).

Computing the weakest sufficient or strongest necessary preconditions syn-
tactically is not always possible as programs (due to loops) often contain an
infinite number of paths. On the one hand, over-approximating these infinite
sets may include unsafe paths which lead to the violation of the assertion and
thus giving an unsound result. On the other hand, under-approximating them

� The first author was supported by EPSRC under grant number EP/K032666/1 “App
Guarden”. The second author was supported by the ARTEMIS Joint Undertaking
under grant number 295311 “VeTeSS”.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 236–254, 2014.
c© Springer International Publishing Switzerland 2014

Necessary and Sufficient Preconditions via Eager Abstraction 237

may exclude safe paths which might rule out desirable safe behaviour and hence
render the precondition unusable. True, the precondition that allows all traces of
the program, is always a valid (over-approximating) necessary precondition, and
false, the precondition that forbids program execution, is always a valid (under-
approximating) sufficient precondition. Obviously, the former is not sound and
the latter is not useful, in general.

In our previous work [1], we proposed a solution to this problem based on
iteratively abstracting both the set of safe and unsafe states and refining them
until they become disjoint. Thus, the resulting precondition is sufficient and also
necessary for the validity of the assertions. This guarantees the absence of false
alarms. Of course, this is only possible if the precondition is expressible in the
chosen abstract domain (or predicate language); otherwise the algorithm fails
to find a suitable precondition. A disadvantage of that approach is the explo-
ration of safe and unsafe states separately. Hence, we do not know the frontier
between safe and unsafe states to guide the abstraction at early stages and the
refinement is only applied after entire traces are built. Moreover, this laziness in
the abstraction process introduces redundant computation steps which can be
avoided if safe and unsafe states are explored conjointly.

In this paper, we present an eager approach for inferring necessary and suffi-
cient preconditions in a monotonic fashion1. Based on the observation that safe
and unsafe traces share most of their prefixes and only differ by small portions
in the traces, our approach explores safe and unsafe states conjointly as pairs.
Hence the criterion for guiding the abstraction is that each two elements forming
pairs of safe and unsafe states at a given location must be disjoint. This new
procedure has many advantages:

– Inferring relevant and general predicates at early stages, hence boosting the
convergence of the fix-point computation.

– By construction, states fulfil the global constraint of separating the set of
safe states from unsafe ones. Hence, the refinement process is totally skipped
and a series of iteration steps are avoided.

– Computational redundancies are eliminated as shared prefixes between safe
and unsafe traces are explored conjointly.

The inferred preconditions have the same expressiveness as those obtained by
our previous method [1], however, the new approach exhibits an enormous im-
provement in algorithmic efficiency.

We have implemented our approach in the precondition generator P-Gen and
performed a comparative study with our cegar-based technique. The results
clearly demonstrate that our new method is not just a side optimisation but
rather represents the right way to proceed for inferring necessary and sufficient
preconditions. For all the programs we have tested, the eager approach performs
better than the lazy (cegar) one. For some cases where the lazy approach takes
several minutes, the eager one just requires several seconds.

The remainder of the paper is organised as follows: Section 2 illustrates the
intuition behind our approach through an example. Section 3 introduces some

1 By monotonic, we mean that the set of states will only increase.

238 M.N. Seghir and P. Schrammel

preliminary material. Section 4 formally exposes our precondition inference ap-
proach. Section 5 presents an experimental comparative study and Section 6
surveys related work.

2 Example

To highlight the advantages of our new approach for precondition inference,
we briefly recall our previous work [1] and illustrate both techniques on the
procedure copy in Figure 1. The procedure takes as parameters two arrays a and
b, and copies a range of elements of b to the corresponding range in array a.
The access to array a is safe if the index expression is in the range [0..a l − 1],
where a l is the length of array a. It is trivial to see that the lower bound is not
violated. The safety condition for the upper bound is expressed by the assertion
at location
2. Our goal is to find a necessary and sufficient precondition for
procedure copy which guarantees that this assertion is never violated. It means
that it should neither be too strong nor too weak. To ease the presentation, we
solely focus on the specified assertion, assuming that there are no other run-time
exceptions caused by null dereferences, i.e., a �= null and b �= null.

void copy(int a[], int b [])
{

int i ;
�0 : i = 0;
�1 : while(b[i] != 0)

{
�2 : assert(i < a l);

a[i] = b[i];
i++;

}
}

Fig. 1. A simple program that copies a range of elements from array b to array a. The
limit of the range to be copied is implicitly delimited via the sentinel value 0, and a l
is the length of array a.

For illustration, we formally represent programs in terms of transition con-
straints over primed and unprimed program variables. The set of transition con-
straints corresponding to program copy (Figure 1) is given in Figure 2(a) and
the associated control flow graph is given in Figure 2(b). The program counter
is modelled explicitly using the variable pc, which ranges over the set of control
locations. The assertion in the original program is replaced with a conditional
branch whose condition is the negation of the assertion and whose target is the
error location
E. The special location
F is the final location, and has no suc-
cessor. Observe that the error location is only reachable if i ≥ a l evaluates to

Necessary and Sufficient Preconditions via Eager Abstraction 239

true at location
2. The final location
F is reached in paths without error. Ar-
rays a and b are represented by uninterpreted function symbols, and a[x := e]
denotes function update (the expression is equal to a where the xth element has
been replaced by e).

τ0 : pc = �0 ∧ i′ = 0 ∧ pc′ = �1
τ1 : pc = �1 ∧ b[i] �= 0 ∧ i′ = i ∧ pc′ = �2
τ2 : pc = �1 ∧ b[i] = 0 ∧ i′ = i ∧ pc′ = �F
τ3 : pc = �2 ∧ i ≥ a l ∧ i′ = i ∧ pc′ = �E
τ4 : pc = �2 ∧ i < a l ∧ a′ = a[i := b(i)]

∧i′ = i+ 1 ∧ pc′ = �1

�0

�1

�F

τ2

�2

�E

τ3

τ1

τ0
τ4

(a) (b)

Fig. 2. Transition constraints for program copy (a) and the corresponding control flow
graph (b)

CEGAR-Based Precondition Inference. The cegar-based approach for
precondition generation consists of building abstractions of safe and unsafe states
and refining them until they become disjoint. It mainly comprises the following
steps:

1. Build abstraction: abstract both the set of safe and unsafe states.
2. Find a counterexample: two abstract traces, a safe one and an unsafe one,

beginning with a common initial state.
3. Check counterexample: checks if the two traces can be concretised in the

original program. The check is carried out by computing the weakest pre-
condition for each trace.

4. Refine: the spurious counterexample is ruled out by adding predicates that
refine the abstraction making the two traces no longer sharing their initial
state.

In the refinement phase (steps 3 and 4), safe and unsafe traces are separately
explored backwards, and the consistency check is only applied when the initial
location is reached. Considering the example of Figure 1, let us assume that the
safe trace 〈τ0, τ1, τ4, τ2〉 and the unsafe one 〈τ0, τ1, τ4, τ1, τ3〉 are generated by
entering the loop once. The backward analysis of these two traces is illustrated
in Figure 3. On the left (a) is the safe trace and on the right (b) is the unsafe
one. With each state of the trace, is associated a set of predicates (in rectangu-
lar frames). Predicates without the • superscript, that we call base predicates,
are obtained by computing the weakest precondition as shown by the solid ar-
rows. Hence their conjunction represents the weakest precondition to reach the
final location
F (respectively error location
E) in the safe trace (respectively

240 M.N. Seghir and P. Schrammel

�F

�1

�2

�1

�0

τ0

τ1

τ4

τ2

b[i] = 0

b[i+ 1] = 0, i < a l

b[i + 1] = 0, i < a l, b[i] �=
0,∃x ∈ [i, a l]. b[x] = 0•

b[1] = 0, 0 < a l, b[0] �=
0,∃x ∈ [0, a l]. b[x] = 0•

�E

�2

�1

�2

�1

�0

τ0

τ1

τ4

τ1

τ3

i ≥ a l

i ≥ a l, b[i] �= 0

i+ 1 ≥ a l, b[i+ 1] �= 0, i <
a l,∀x ∈ [i+ 1, a l]. b[x] �= 0•

i + 1 ≥ a l, b[i + 1] �=
0, i < a l, b[i] �=

0,∀x ∈ [i, a l]. b[x] �= 0•

1 ≥ a l, b[1] �=
0, 0 < a l, b[0] �=

0,∀x ∈ [0, a l]. b[x] �= 0•

(a) (b)

Fig. 3. Illustration of the refinement approach used in [1] on program copy. The under-
lined predicates are selected by the refinement process and predicates associate with
the superscript • are computed using a system of inference rules.

error trace). The predicates associated with the superscript •, called general
predicates, are inferred using a generalisation procedure based on a system of
inference rules as described in [1] (see Appendix A).

The details about the inference rules are not important to the contribution of
this paper. The relevant point to retain is that we have a generalisation procedure
able to infer new (general) predicates which logically represent consequences of
the conjunctions of base predicates. For example, in the state belonging to the
error trace (b) and associated with location
0, we have the general predicate ∀x ∈
[0, a l]. b[x] �= 0 which is a logical consequence of the base predicates at that state.
We have a l = 1 due the predicates 1 ≥ a l and 0 < a l, and we have b[0] �= 0 and
b[1] �= 0, thus all elements of array b in the range [1..a l] are not null.

The same procedure is applied to the safe trace (a). Once we reach the initial
location, a minimisation procedure is called to keep only relevant predicates
which are underlined. This procedure gives priority to general predicates. In our
case, we keep ∃x ∈ [0, a l]. b[x] = 0 and ∀x ∈ [0, a l]. b[x] �= 0 for the safe trace
and unsafe one respectively at location
0 as they are the ones showing that the
two traces are inconsistent.

Necessary and Sufficient Preconditions via Eager Abstraction 241

The next step is to perform a dependency analysis starting from the two
new states (retained predicates) and going forward in the direction of dashed
arrows. Here also, we give priority to general predicates over base predicates.
For example, in the state associated with location
1 of the safe trace, just
before the initial state (location
0), we keep predicate ∃x ∈ [i, a l]. b[x] = 0 as
it is the one on which the predicate ∃x ∈ [0, a l]. b[x] = 0 at location
0 depends.

A drawback of this approach is that it induces redundant computations. There
are inter-trace redundancies due to shared parts between traces. For example,
the two traces in Figure 3 are sharing a large part of their prefixes, namely
〈
0,
1,
2,
1〉. There are also intra-trace redundancies due to backtracking, i.e,
going backward for the predicate generation and forward for the dependency
analysis. Our new approach remedies these weaknesses.

Eager-Abstraction-Based Precondition Inference. In our new approach
the refinement process is completely skipped, states are explored backwards and
predicates are added on the fly until a fix-point is reached. To be able to proceed
so, we need first to find a node such that all the traces reaching it are common
prefixes (going forward) for error traces and safe traces. Hence, such a node
simply represents a common dominator for the error location and the final one.
We choose the closest common dominator2 as it maximises the length of common
prefixes of traces. Up to that node, traces are explored separately, and from it
and going further traces are explored conjointly.

This new scheme is illustrated in Figure 4. First, the two traces (safe and
unsafe) are explored separately backwards up to the location
1 which represents
a common dominator for the final location
F and the error location
E . At that
point, we have ϕF ≡ (b[i] = 0) as safe state, and ϕE ≡ (i ≥ a l ∧ b[i] �= 0) as error
state. We can see that ϕF and ϕE are inconsistent. Then, using the system of
rules (from [1], see Appendix A), we try to infer a general predicate ϕ′ from ϕF

such that its negation ¬ϕ′ can be inferred from ϕE using the same system of
rules. Hence we have ϕF ⇒ ϕ′ and ϕE ⇒ ¬ϕ′. If we find such a predicate ϕ′, we
keep it together with its negation ¬ϕ′ and throw all other predicates. It means
that ϕ′ becomes the new safe state and ¬ϕ′ the error one. Otherwise, we just
keep all base predicates forming ϕF and ϕE .

Using the system of inference rules (Appendix A), we see that such a predicate
(ϕ′) cannot be inferred at the first encounter of location
1, so we keep all base
predicates. Going one step further using the weakest precondition, at location

2 we obtain ϕF ≡ (b[i + 1] = 0 ∧ i < a l) and ϕE ≡ (i + 1 ≥ a l ∧ b[i + 1] �=
0 ∧ i < a l). From ϕE we infer ∀x ∈ [i + 1, a l]. b[x] �= 0, but its negation
∃x ∈ [i + 1, a l]. b[x] = 0 cannot be inferred from ϕF via our system of inference
rules. Again, we keep all base predicates and continue with the next step back-
wards. At the second encounter of location
1, this time we have ϕF ≡ (b[i+1] =
0 ∧ i < a l ∧ b[i] �= 0) and ϕE ≡ (i + 1 ≥ a l ∧ b[i + 1] �= 0 ∧ i < a l ∧ b[i] �= 0).
From ϕE we can infer ∀x ∈ [i, a l]. b[x] �= 0 which represents ϕ′ as its negation

2 The closest common (or immediate) dominator for a set of nodes S is a node d which
dominates S such that any other dominator d′ for S is also a dominator for d.

242 M.N. Seghir and P. Schrammel

�E

�2

�1

�2

�1

�0

τ0

τ1

τ4

τ1

τ3

�F i ≥ a l

i ≥ a l, b[i] �= 0

i+ 1 ≥ a l, b[i+ 1] �= 0, i < a l

∀x ∈ [i,a l]. b[x] �= 0•

∀x ∈ [0, a l]. b[x] �= 0•

b[i] = 0

b[i+ 1] = 0, i < a l

∃x ∈ [i,a l]. b[x] = 0•

∃x ∈ [0, a l]. b[x] = 0•

Fig. 4. Illustration of the new refinement approach based on analysing safe and unsafe
traces conjointly. The underlined predicates are selected by the refinement process and
predicates associate with the superscript • are computed using a system of inference
rules.

∃x ∈ [i, a l]. b[x] = 0 can be inferred from ϕF as well. Thus, we retain ϕ′ and ¬ϕ′,
and proceed further backwards with the same procedure as shown in Figure 4.
We keep applying this procedure to generate states until reaching a fix-point (no
new state found). At the end, we obtain the precondition ∃x ∈ [0, a l]. b[x] = 0.
Observe that this precondition is sufficient as having an element of array b in the
interval [0, a l] which is null guarantees the loop termination before violating the
assertion condition. It is also necessary as its negation, ∀x ∈ [0, a l]. b[x] �= 0,
allows the loop to iterate at least until the variable i becomes equal to a l which
causes the violation of the assertion.

We call this process eager abstraction as opposed to the lazy abstraction
governing the cegar process. This procedure reduces intra-trace redundancies
induced by the refinement which traverses traces back and forth to generate
predicates and perform a dependency analysis. Here we can also decide at early
stages about relevant predicates to keep, and states are monotonically generated.
By construction, safe traces and error traces always contain enough information
to show their inconsistency. The new procedure also reduces inter-trace redun-
dancies as common prefixes are explored in parallel. All these points lead to a
faster convergence of the fix-point computation.

Necessary and Sufficient Preconditions via Eager Abstraction 243

In our experiments with the program in Fig. 1 including the side asser-
tions to avoid null-pointer dereferencing of a and b (assert(a!=NULL); as-
sert(b!=NULL) and access out of bounds for b (assert(i<b l); in
1 and
2), we
obtain the precondition b �= null ∧ (a �= null ∨ b[0] = 0) ∧ ∃x. 0 ≤ x ≤ a l ∧ x <
b l ∧ b[x] = 0 which is both necessary and sufficient for safe execution.

3 Preliminaries

In this section, we provide background on some ingredients used in our algorithm.

Program. A program is given as a set T C of transition constraints τ . A transition
constraint τ is a formula of the form

g(X) ∧
(
x′
1 = e1(X)

)
∧ . . . ∧

(
x′
n = en(X)

)
(1)

where X = 〈x1, . . . , xn〉 is a vector of program variables, which include the
program counter pc. In (1), unprimed variables refer to the program state before
performing the transition and primed ones represent the program state after
performing the transition. Formula g(X) is called the guard and the remaining
conjuncts of τ are the update or assignment.

Representing states symbolically. Let us write V = {x1, . . . , xn} for the set of
variables of the program (including the program counter pc). For a variable x ∈
V , Type(x) is the type (range) of x and σ(x) is a valuation of x such that σ(x) ∈
Type(x). The variable pc ranges over the set of all program locations. For a vector
X of variables, a program state is the valuation σ(X) = 〈σ(x1), . . . , σ(xn)〉.

A set of program states S is represented symbolically by means of the char-
acteristic function of S. The formula ϕ represents the set of all those states that
correspond to a satisfying assignment of ϕ, i.e., {σ(X) |ϕ[σ(X)/X]}3. We will
use sets and their characteristic functions interchangeably. Symbolic states (for-
mulas) are partially ordered via the implication operator ⇒, i.e., ϕ′ ⊆ ϕ means
ϕ′ ⇒ ϕ.

State transformer. For a formula ϕ, the application of the operator pre with
respect to the transition constraint τ returns a formula representing the set of
all predecessor states of ϕ under the transition constraint τ , formally

pre(τ, ϕ(X)) =def g(X) ∧ ϕ[〈e1(X), . . . , en(X)〉/X] .

For the whole program T C, pre is given by

pre(ϕ(X)) =def

∨
τ∈T C

pre(τ, ϕ(X)) .

3 The notation f [Y/X] represents the expression obtained by replacing all occurrences
of every variable from the vector X in f with the corresponding variable (value) from
Y . It naturally extends to a collection (set or list) of expressions.

244 M.N. Seghir and P. Schrammel

For a trace π = τ1; . . . ; τn, we have

pre(τ1; . . . ; τn, ϕ) =def pre(τ1, . . . pre(τn−1, pre(τn, ϕ))) .

If pre(π, ϕ) is not equivalent to false, then the trace π is feasible.

(Un)Safe states. To ease the presentation, let us assume that the program con-
tains a single error location
E and a single final location
F (
E �=
F).

4 We
denote by bad the set of error states, which is simply given by pc =
E. Similarly,
we call final the set of final states, which is represented by pc =
F .

The set of safe states safe contains all states from which a final state is reach-
able. Formally,

safe =def lfp(pre, final) (2)

where lfp(pre, ϕ) denotes the least fix-point of the operator pre above ϕ. Similarly,
unsafe is the set of all states from which an error (bad) state is reachable:

unsafe =def lfp(pre, bad) . (3)

The least fix-points represent inductive backwards invariants, which we denote
by ψbad and ψfinal, respectively. The invariants are inductive under pre, i.e.,

– bad ⊆ ψbad and final ⊆ ψfinal

– pre(ψbad) ⊆ ψbad and pre(ψfinal) ⊆ ψfinal

In the absence of non-determinism in the program, the sets of unsafe and safe
states are disjoint, and we have

unsafe ∧ safe = false .

Predicate abstraction. Predicate abstraction consists in approximating a state
ϕ with a formula ϕ′ constructed as a Boolean combination of predicates taken
from a set P . Here, the term approximation means that any model that satisfies
ϕ must satisfy ϕ′. Thus, a suitable approximation is obtained via the logical
implication “⇒”, i.e., ϕ′ is the strongest Boolean combination built up from
predicates taken from the finite set P such that ϕ ⇒ ϕ′.

Defining the abstraction function α as being the strongest Boolean combina-
tion of predicates in P is not practical because of the exponential complexity
of the problem. Therefore, we use a lightweight version of α that builds the
strongest conjunction of predicates in P :

α(ϕ) =def

∧
p s.t. p ∈ P ∧ ϕ ⇒ p .

Let us haveD� the domain of formulas built up from the finite set of predicates
P . The domain D� is not closed under pre, therefore, we define pre� under which

4 In case of multiple assertions, we add an edge from each assertion (guarded with
the negation of the assertion) to �E. Similar treatment can be applied in the case of
multiple return locations.

Necessary and Sufficient Preconditions via Eager Abstraction 245

D� is closed. Let us associate the concretization function γ : D� → D to α, we
simply choose γ to be the identity function. Functions α and γ form a Galois
connection with respect to ⊆ (⇒) being the partial order relation for both D
and D�. Formally speaking

∀x ∈ D ∀y ∈ D�. α(x) ⊆ y ⇔ x ⊆ γ(y) .

Hence, we define pre� : D� → D�, the abstract version of pre, as follows:

pre�(ϕ) =def α(pre(γ(ϕ))) ,

and thus

pre�(τ, ϕ) = α(pre(τ, ϕ)) =
∧

p s.t. p ∈ P ∧ pre(τ, ϕ)⇒ p .

Moreover, for a disjunction we have

pre�(τ,
∨
j∈J

ϕj) =def

∨
j∈J

pre�(τ, ϕj) .

As seen for pre, the operator pre� also extends to traces. Henceforth, whenever
we write pre�P we mean that the abstraction (image) is computed by considering
predicates from the set P .

The lattice of abstract states (L,⇒) is finite as the set of predicates is finite.
Therefore, lfp(pre�, bad) (resp. lfp(pre�, final)), the least fixpoint for pre� above
bad (resp. final) in L, is computable.

4 Eager Abstraction

In this section, we present our approach for the inference of necessary and suffi-
cient preconditions. We recall that a necessary and sufficient precondition ϕ is a
precondition under which no error trace is feasible, and no safe trace is excluded.
In other words, it is neither too strong nor too weak. As mentioned previously
(Section 3), it is not always possible to compute the set of safe (or unsafe) states
using the weakest precondition transformer pre. Therefore, we use its abstract
version pre�. Formally speaking, our goal is to find a set of predicates P which
allows us to compute ϕ such that the two constraints below are fulfilled:

lfp(pre�P , final) ⊆ ϕ (no exclusion of safe states) (4)

lfp(pre�P , bad) ∧ ϕ ≡ false (no inclusion of unsafe states) (5)

As opposed to our previous work [1], our goal here is to compute ϕ monotonically
in a single pass. To this end, our algorithm needs to have some features such as:

– A guidance criterion so that at each state exploration step, the two con-
straints (4) and (5) hold as an invariant of our algorithm.

246 M.N. Seghir and P. Schrammel

Algorithm 1. EagerPrecond

Input: set of transition constraints (program) T C
Output: formula (precondition)

1 Var P : set of predicates;
2 Var ψF , ψE: formulas;
3 Find a common dominator node �d for locations �F and �E;
4 Let ϕdF be the necessary and sufficient precondition for final at �d;
5 Let ϕdE be the necessary and sufficient precondition for bad at �d;
6 if ϕdF ∧ ϕdE �≡ false then abort “failure”;
7 ψF := ϕdF ;
8 ψE := ϕdE ;
9 while true do

10 ψ0
F := ψF ;

11 ψ0
E := ψE ;

12 foreach τ ∈ T C do
13 P := SplitPreds(τ, ψF , ψE);
14 if P = ∅ then abort “failure”;

15 ψF := ψF ∨ pre�P (τ, ψF);

16 ψE := ψE ∨ pre�P (τ, ψE);

17 if ψF ⊆ ψ0
F ∧ ψE ⊆ ψ0

E then return ψF ;

– The previous point implies inferring predicates on the fly, as fixing predicates
in advance reduces the ability of building abstractions satisfying (4) and (5)
at each step.

Hence, we explore safe and unsafe states in parallel taking into account their
disjointness as condition that must hold at each step. This idea is translated to
the Algorithm EagerPrecond (Algorithm 1).

In the algorithm, the set of safe and unsafe states are symbolically represented
via the formulae ψF and ψE . As the final location
F and error location
E are
separate, the first question to be answered is: from which location do we start
exploring safe and unsafe states conjointly? We choose this location to be the
dominator location
d which is common to
F and
E , as any program trace
must go through it to reach any of them.

Remark 1. Computing the necessary and sufficient precondition for reaching
F
and
E (lines 4 and 5 of Algorithm 1) from the dominator node
d is in practice
straightforward, as in most of the programs we have tested, all the paths leading
from the dominator location to
F and
E are loop-free. However, in the presence
of loops, we can use our cegar-based technique [1] to compute the precondition
up to
d and then apply the eager approach.

We then compute the weakest precondition to reach
F and
E (lines 4 and
5 of Algorithm 1) which respectively gives ϕdF and ϕdE and they should be
disjoint (see line 6). From location
d onward, states are explored conjointly by
taking each time the same transition τ (lines 15 and 16). This step depends on

Necessary and Sufficient Preconditions via Eager Abstraction 247

Algorithm 2. SplitPred

Input: formula ψF , ψE , transition constraint τ
Output: set of predicates

1 Var P , P ′: set of predicates;
2 Var ψF , ψE: formula;
3 ψF := ψF ∨ pre(τ, ψF);
4 ψE := ψE ∨ pre(τ, ψE);
5 if ψF ∧ ψE �≡ false then return ∅;
6 Let τ.pc = �;
7 Let ψF ≡ (ψF ∧ pc = �) be of the form

∨
(i∈I) ϕi;

8 Let ψE ≡ (ψE ∧ pc = �) be of the form
∨

(j∈J) ϕ
′
j ;

9 P := ∅;
10 foreach (i, j) ∈ I × J do
11 if ∃ p s.t (p ∈ InferGen(ϕi) ∧ ¬p ∈ InferGen(ϕ′

j)) then P := P ∪ {p,¬p};
12 else P := P ∪ atoms(ϕi) ∪ atoms(ϕ′

j);

13 return P ;

the set of predicates computed by calling the procedure SplitPred at line 13. The
set of predicates P is computed in a way that the new abstractions obtained via
pre�P are disjoint. This process is iterated until no new safe or unsafe states are
discovered (line 17).

Remark 2. The formula ψF computed by Algorithm 1 represents all the states
which potentially reach the final location from different program locations. To
get the precondition at the initial location
0, it suffices to project ψF on
0,
which is simply expressed by the formula ψF ∧ pc =
0.

SplitPred. Let us now have a look inside the procedure SplitPred (Algorithm 2).
The role of this procedure is to deliver the set of predicates under which the next
computed abstractions fulfil the separation criterion between safe and unsafe
states. It takes as parameters two formulae ψF and ψE and a transition constraint
τ , and returns a set of predicates P such that

(ψF ∨ pre�P (τ, ψF)) ∧ (ψE ∨ pre�P (τ, ψE)) ≡ false (6)

In other words, the over-approximations of the predecessor sets with respect to
the transition constraint τ and the set of predicates P are disjoint. First, the
exact predecessor sets are computed using the pre operator (lines 3 and 4 in
Algorithm 2), if the resulting formulae are not disjoint, there is no need to go
further (line 5) as the abstraction will make them even weaker.

We are then interested in the states associated with the program location
given by
 = τ.pc5 as they are the potentially newly generated ones obtained via

5 The notation τ.pc simply refers to the program counter value in the pre-state of the
transition τ .

248 M.N. Seghir and P. Schrammel

transition τ . We obtain this subset by projecting each global set of states on the
location
 as shown at lines 7 and 8. These sets ψF� and ψE� are disjunctions
of formulae, such that every disjunct (ϕi’s and ϕ′

j ’s) represents a symbolic state
and is a conjunction of predicates according to our definition of the predicate
transformer (see Section 3).

For each pair of states (ϕi, ϕ
′
j) respectively belonging to the set of safe states

and unsafe ones at location
, we try to extract general predicates which they
induce using the procedure InferGen (line 11). The extraction of new predicates
is based on the system of inference rules [1] (see Appendix A).

If there exists a general predicate p which can be inferred from ϕi and its
negation ¬p can be inferred from ϕ′

j , then it is selected together with its negation
(line 11). In fact, p is implied by ϕi and is inconsistent with ϕ′

j (i.e., ϕ′
j ∧ p ≡

false) as ¬ϕ is implied by ϕ′
j . Hence both p and ¬p are good potential candidates

for building new separate states. If we cannot infer such a predicate p, then we
return the set of atoms forming the two states (line 12), which keeps the resulting
states separated. The function atoms is simply defined as atoms(ϕ1 ∧ . . .∧ϕn) =
{ϕ1, . . . , ϕn}. It takes a conjunction as argument and returns the set of conjuncts
forming it.

Remark 3. Note that SplitPred returns an interpolant [2] for the predecessors of
the two formulae taken as parameters. Hence, we could also use an interpolation
procedure as a replacement of SplitPred. The investigation of this possibility is
left for future work.

Proposition 1. The formula computed by Algorithm 1 is a necessary and suf-
ficient precondition, i.e. it satisfies (4) and (5).

Proof. Let us denote by ϕ the formula returned by Algorithm 1. For (4), ϕ (which
represents ψF) is a fix-point according to the termination criterion at line 17 of

Algorithm 1. For (5), we have lfp(pre�P , bad) ⊆ ψE . Also ψE is inconsistent with
ψF as they are initially inconsistent (line 6 of Algorithm 1) and all updates at
lines 15 and 16 based on the set of predicates returned by SplitPred satisfies (6),

hence ψE and ψF remain inconsistent. Thus lfp(pre�P , bad) ∧ ϕ ≡ false.

Discussion. Our algorithm aborts if it fails to infer a necessary and sufficient
precondition (see lines 6 and 14 in Algorithm 1). This can happen due to several
reasons: (1) If the program is non-deterministic then ψF∧ψE might be satisfiable;
(2) if the predicates inferred by the inference rules do not give rise to sufficiently
precise loop invariants to guarantee separation of ψF and ψE ; or (3) if the SMT
solver that we are using is unable to conclude unsatisfiability of ψF∧ψE . We chose
the SMT solver Z3 for our experiments because it did not exhibit any problems
regarding (3). However, we encountered some issues regarding the handling of
quantifiers in preliminary experiments with other SMT solvers.

Our algorithm cannot distinguish between terminating and non-terminating
traces. The problem to perform such a distinction is known as conditional ter-
mination, i.e. computing preconditions that ensure termination. The extension
of our algorithm in this respect is a direction of future work that we pursue.

Necessary and Sufficient Preconditions via Eager Abstraction 249

Table 1. Experimental comparison between eager abstraction and the counterexample-
guided approach (from [1])

Program Precondition Predicates Time (s)
Eager cegar Eager cegar

strncmp Q + S 12 20 17.54 536.70
strcat Q + S 3 4 0.18 0.55
memchr Q + S 7 4 4.28 64.42
strlen Q + S 3 4 0.18 0.54

memcpy S 4 3 0.063 0.15
strchr Q + S 6 8 0.65 1.76
r strcat Q 5 2 1.08 8.04
r strncpy Q + S 7 4 2.90 253.55
strcspn Q + S 4 3 0.30 0.57
strspn Q + S 4 3 0.31 0.56

my strcmp Q + S 6 7 0.66 2.35
my memcmp Q + S 7 5 3.46 20.9
AllNotNull Q + S 4 3 0.30 2.07
mvswap S 3 2 0.056 0.061

A well-known problem in predicate abstraction-based methods is non-termi-
nation of the analysis if the predicate generalisation method fails to generate
the required loop invariants. Common approaches to force termination are the
introduction of aggressive generalisation rules (like widening in abstract inter-
pretation) that guarantee that our algorithm eventually answers “failure”, or
the restriction to a finite predicate language [3] (corresponding to a finite height
domain in abstract interpretation). However, the latter method spoils the ad-
vantage of our approach that the predicate language adapts itself to the program
being analysed, and due the reduced expressiveness our algorithm would answer
“failure” more often.

5 Experimental Results

We have implemented our precondition inference technique in the P-Gen6 tool
which takes as input a C program containing a procedure annotated with an
assertion to be verified and returns a necessary and sufficient precondition for
the validity of the specified assertion.

We performed experiments using a desktop computer with 3.7 GB of RAM
and a Core 2 processor with 3 GHz, running Linux. P-Gen uses several theorem
provers, such as Yices [4], Simplify [5] and Z3 [6], to compute the abstraction and
analyse counterexamples. We used Z3 in our experiments as we noticed that it is
the one which handles quantifiers best compared to the other theorem provers.

The results of our experiments are illustrated in Table 1. The column “Pre-
condition” shows the type of precondition inferred, “Q” stands for quantified

6 http://www.cs.ox.ac.uk/people/nassim.seghir/pgen-web-page

250 M.N. Seghir and P. Schrammel

and “S” stands for simple (quantifier-free). The column “Predicates” represents
the number of predicates inferred to abstract the set of unsafe (safe) states. As
we are associating different sets of predicates with different locations, similar
to [7], we provide the average number of predicates per location instead of the
total number of predicates. Both columns “Time” and “Predicates” are divided
into two columns “cegar” which represents the counterexample-guided precon-
dition inference approach [1], and “Eager” which refers to the current approach.
These examples are implementations of routines from the C string library7. The
assertions ensure freedom of runtime errors like null pointer dereferencing and
array-out-of-bounds accesses. All the benchmarks used as well as the (runs) re-
sults of the comparative study are available online8. The generated preconditions
for the different examples are included as well.

The preconditions generated by the two approaches are semantically equiva-
lent for all these benchmarks, but syntactically different in some cases (due to
redundancies).

We can see that the eager approach clearly outperforms the cegar-based one
in all the cases. This difference is even clearer for programs strncmp, memchr
and r strncpy as the running time takes minutes for the cegar approach while
it does not go beyond 18 seconds for the eager one. This is encouraging and
demonstrates the relevance and practicality of our new approach.

6 Related Work

The combination of predicate abstraction [8] with counterexample-guided ab-
straction refinement [9] has been implemented in many tools [7,10,11,12,13,14].
Most of them use cegar to check the validity of a given assertion. We go beyond
that by finding the precondition under which the assertion is valid.

Some other tools are inspired by Hoare’s reasoning style [15,16,17]. They are
based on the reasoning-by-contract principle: pre- and postconditions and loop
invariants have to be specified by the user, which is a tedious task in general. Our
technique can support the user by generating preconditions for less interesting
side verification obligations (internal assertions), allowing him to focus on the
functional aspect (postcondition) of the verification task.

Moy [18] proposed a technique to infer preconditions. While his technique is
stronger than many existing ones, it is unable to infer quantified preconditions.
Our technique infers universally as well as existentially quantified preconditions
for array programs.

Blanc and Kroening [19] proposed an approach for precondition generation
to optimise the simulation of SystemC code. However, they have no guaran-
tee that the inferred precondition is necessary and sufficient. Taghdiri [20] pro-
posed an approach for generating approximations of relations (over pre- and

7 An implementation of the different functions is available here:
http://en.wikibooks.org/wiki/C Programming/Strings

8 http://homepages.inf.ed.ac.uk/mseghir/benchmarks and results aplas14.

tar.gz

http://homepages.inf.ed.ac.uk/mseghir/benchmarks_and_results_aplas14.tar.gz
http://homepages.inf.ed.ac.uk/mseghir/benchmarks_and_results_aplas14.tar.gz

Necessary and Sufficient Preconditions via Eager Abstraction 251

post-states) induced by functions by bounding the number of loop unrolling,
making the approach unsuitable for proving the absence of bugs. Our technique
over-approximates the set of all (even infinite) behaviours. Thus, a computed
precondition in our case guarantees safety.

Sankaranarayanan et al. [21] presented a technique that combines test and
machine learning to infer likely data preconditions. The results obtained by their
approach are promising. However, their technique can only suggest preconditions
but does not guarantee their validity.

In the context of abstract interpretation, Cousot et al. [22] formulated pre-
cisely the contract inference problem for intermittent assertions. The precondi-
tions extracted by their method are necessary preconditions, i.e. they do not
exclude unsafe runs. In a later work [23], they took into account the calling con-
text to identify under which circumstances a generated necessary precondition is
also sufficient. We compute necessary and sufficient preconditions independently
from the calling context of the procedure. Similar techniques for computing
necessary preconditions are proposed by Miné [24] using a lower widening tech-
nique to perform a polyhedral backward analysis, and Bakhirkin et al [25] who
combine over-approximative backward analysis with a subtraction operation to
obtain under-approximations.

The method described in [22, 24, 26, 27] rely on predefined abstract domains.
Thus, if the domain is not precise enough, either it is redesigned or another
domain is used. In our approach, predicates are inferred syntactically on the
fly and the only a priori restriction are the inference rules that are applied to
generalise predicates to potential loop invariants. The inference mechanism can
be enhanced by introducing new inference rules without having to implement
new abstract program transformers. The advantage of this approach is that the
domain adapts itself to the program analysed. However, as discussed above, there
is no guarantee for termination if the inference rules fail to generate the required
loop invariants.

Calcagno et al. [28] presented a technique based on bi-abduction to infer pre-
and post-specifications of heap structures. Although we can deal with pointers,
the properties handled by their technique are out of the scope for our tool as we
do not have a theory to reason about heap properties. On the other hand, the
preconditions they compute are only necessary, hence false alarms are not ruled
out.

Our current approach deals with the precondition generation problem in the
context of safety. Extending it to the liveness context such as termination [29,30]
is an area we are interested in for future work.

7 Conclusion

In this paper, we have presented an eager abstraction technique for generating
necessary and sufficient preconditions. The idea underlying eager abstraction is
that the invariant of separating safe and unsafe states is satisfied throughout
the algorithm. Hence the abstraction process is monotone and no refinement is
required.

252 M.N. Seghir and P. Schrammel

The comparative study with our cegar-based approach for precondition gen-
eration demonstrates that our new method is a significant improvement and rep-
resents the right way to proceed for practicability. For all the programs we have
tested, the eager approach performs better than the lazy (cegar) one. For cases
where the lazy approach takes several minutes, the eager one just requires several
seconds (< 18s). This is essential since precondition generation is mostly used in
interactive development and verification environments, where response time is
crucial for the practicability, productivity and the adoption of the environment
by verification engineers.

References

1. Seghir, M.N., Kroening, D.: Counterexample-guided precondition inference. In:
Felleisen, M., Gardner, P. (eds.) ESO 2013. LNCS, vol. 7792, pp. 451–471. Springer,
Heidelberg (2013)

2. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244 (2004)

3. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006)

4. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

5. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Lab (2003)

6. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70 (2002)

8. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: POPL, pp. 1–3 (2002)

11. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. In: ICSE, pp. 385–395 (2003)

12. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

13. Ivancic, F., Shlyakhter, I., Gupta, A., Ganai, M.K.: Model checking C programs
using F-soft. In: ICCD, pp. 297–308 (2005)

14. Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

15. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI, pp. 234–245 (2002)

Necessary and Sufficient Preconditions via Eager Abstraction 253

16. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

17. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc: Contract-based
modular verification of concurrent c. In: ICSE Companion, pp. 429–430 (2009)

18. Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202.
Springer, Heidelberg (2008)

19. Blanc, N., Kroening, D.: Race analysis for systemc using model checking. ACM
Trans. Design Autom. Electr. Syst. 15 (2010)

20. Taghdiri, M.: Inferring specifications to detect errors in code. In: ASE, pp. 144–153
(2004)

21. Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of
likely data preconditions over predicates by tree learning. In: ISSTA, pp. 295–306
(2008)

22. Cousot, P., Cousot, R., Logozzo, F.: Precondition inference from intermittent asser-
tions and application to contracts on collections. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 150–168. Springer, Heidelberg (2011)

23. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013)

24. Miné, A.: Inferring sufficient conditions with backward polyhedral under-
approximations. ENTCS 287, 89–100 (2012)

25. Bakhirkin, A., Berdine, J., Piterman, N.: Backward analysis via over-approximate
abstraction and under-approximate subtraction. In: Müller-Olm, M., Seidl, H.
(eds.) SAS 2014. LNCS, vol. 8723, pp. 34–50. Springer, Heidelberg (2014)

26. Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In:
PLDI, pp. 46–55 (1993)

27. Rival, X.: Understanding the origin of alarms in ASTRÉE. In: Hankin, C., Siveroni,
I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 303–319. Springer, Heidelberg (2005)

28. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL, pp. 289–300 (2009)

29. Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer,
Heidelberg (2012)

30. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328–340. Springer, Heidelberg (2008)

A Inference Rules

The system of rules in Figure 5 was proposed in [1] to generalise predicates.
Among the symbols used in the system, e refers to linear terms, x is a variable
and ϕ is a formula.

The rule elim linearly combines two constraints to eliminate common vari-
ables. Rule eq infers equality constraints, which might be used by rule sub to
substitute occurrences of variables with equal terms. The rule univ builds a

254 M.N. Seghir and P. Schrammel

quantified formula and link bridges the intervals of two quantified formulas.
Finally, the rule exist produces two existentially quantified formulas and the
rules ext r and ext l extend the interval of an existentially quantified formula
from the right and the left, respectively.

c1.e + e1 ≥ 0 , −c2.e+ e2 ≥ 0

c2.e1 + c1.e2 ≥ 0
(elim)

x− e ≥ 0 , −x + e ≥ 0

x = e
(eq)

(c1, c2 > 0)

ϕ(x) , x = e

ϕ(e)
(sub)

ϕ(i), ¬ϕ(j) (i < j)

∃x ∈ {i, . . . , j}. ϕ(x), ∃x ∈ {i, . . . , j}. ¬ϕ(x)
(exist)

∃x ∈ {i, . . . , j}. ϕ(x), j ≤ k

∃x ∈ {i, . . . , k}. ϕ(x)
(ext r)

∃x ∈ {i, . . . , j}. ϕ(x), k ≤ i

∃x ∈ {k, . . . , j}. ϕ(x)
(ext l)

ϕ(i)

∀x ∈ {i}. ϕ(x)
(univ)

∀x ∈ {j, . . . , i}. ϕ(x) , ∀x ∈ {i+ 1, . . . , k}. ϕ(x)

∀x ∈ {j, . . . , k}. ϕ(x)
(link)

i and j are integer variables appearing

in a linear index expression in ϕ (¬ϕ).

Fig. 5. Rules for general predicate inference

Resource Protection Using Atomics

Patterns and Verification

Afshin Amighi, Stefan Blom, and Marieke Huisman

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{a.amighi,s.blom,m.huisman}@utwente.nl

Abstract. For the verification of concurrent programs, it is essential to
be able to show that synchronisation mechanisms are implemented cor-
rectly. A common way to implement such sychronisers is by using atomic
operations. This paper identifies what different synchronisation patterns
can be implemented by using atomic read, write and compare-and-set
operation. Additionally, this paper proposes also a specification of these
operations in Java’s AtomicInteger class, and shows how different syn-
chronisation mechanisms can be built and verified using atomic integer
as the synchronisation primitive.

The specifications for the methods in the AtomicInteger class are
derived from the classical concurrent separation logic rule for atomic op-
erations. A main characteristic of our specification is its ease of use. To
verify an implementation of a synchronisation mechanism, the user only
has to specify (1) what are the different roles of the threads participating
in the synchronisation, (2) what are the legal state transitions in the syn-
chroniser, and (3) what share of the resource invariant can be obtained
in a certain state, given the role of the current thread. The approach
is illustrated on several synchronisation mechanisms. For all implemen-
tations, we provide a machine-checked proof that the implementations
correctly implement the synchroniser.

1 Introduction

Motivation To increase performance, multi-threaded applications should make
optimal use of multi-core architectures. Typically, these applications exploit syn-
chronisation to ensure that there are no conflicting accesses to shared resources.
In shared-memory concurrency, atomic variables, i.e. variables that may only be
accessed using atomic operations, are used to implement these synchronisation
mechanisms. Such variables are called atomic synchronisers. In programming
languages like Java, atomic variables along with three basic atomic operations
(atomic read, write and compare-and-set) are encapsulated in atomic classes.
To guarantee the correctness of concurrent programs it is essential to be able to
reason about these atomic classes. This paper proposes an approach to specify
the behavior of an atomic class as a synchroniser.

Approach. We provide specifications for the basic atomic operations, read, write
and conditional update, which can be used to verify the implementation of dif-
ferent synchronisation classes. These specifications are derived from the general

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 255–274, 2014.
c© Springer International Publishing Switzerland 2014

256 A. Amighi, S. Blom, and M. Huisman

rule for atomic operations from a well-established program logic, Concurrent
Separation Logic (CSL) [23]. The specifications have been designed to be easy
to use: when using them to show the correctness of a concrete synchroniser im-
plementation, only a few intuitive parameters have to be provided. This paper,
presents a specification for atomic integers, as it is the base for most of the
synchronisation classes in Java. However, our approach also works for the other
atomic classes.

In our approach, any thread has a local view of the atomic variable. The global
state is then defined in terms of the atomic variable and all the local views. In
addition, the atomic variable is instrumented with a protocol that describes what
the legal state transitions are. The protocol is used by the thread to derive the
guarantees that the environment provides. Additionally, a resource invariant is
declared, which specifies which resources are protected by the synchroniser. The
derived specifications for the AtomicInteger operations are thus parametrised
by this protocol and the resource invariant. This specification expresses how
AtomicInteger, as an atomic synchroniser, grants and retains permissions to
access the shared resource specified by the resource invariant exclusively. To de-
scribe the specifications and the predicates encoding the views and the protocol,
we use permission-based separation logic for Java [3,9].

Before presenting the specification of AtomicInteger, we introduce several
synchronisation patterns, each supported by an example. For each of these syn-
chronisation patterns, we discuss how the specification parameters have to be
defined. Moreover, for each example, we present a machine-checked correctness
proof, showing that it indeed protects a shared resource, and avoids data races.

Contributions. The main contributions of this paper are the following: (1) an
overview of typical synchronisation patterns using the basic atomic operations;
(2) a general specification for the basic atomic operations that together can syn-
chronise a group of threads; (3) a simple, practical and thread-modular contract
for AtomicInteger as a synchroniser; and (4) verification of several examples
implementing the synchronisation patterns using our VerCors tool set [25].

Outline. This paper is structured as follows: in Section 2 we present the different
synchronisation patterns using AtomicInteger as a synchronisation primitive.
Section 3 derives contracts for atomic read, write, and compare-and-set. Section 4
explains the generalised specification of the AtomicInteger class and discusses
correctness proofs of the clients using AtomicInteger. Finally, Section 5 presents
related work and Section 6 draws conclusions, and discusses future work.

2 Synchronisation in Java

To support thread-safe access to single variables, Java provides the package
java.util.concurrent.atomic, as part of Java’s general concurrency API.
This package provides wrappers for volatile variables with appropriate atomic
operations for read, write, and compare-and-swap. In Java, changes to a volatile

Resource Protection Using Atomics 257

variable are immediately visible to other threads, i.e. their value will never be
cached thread-locally. This makes volatile variables suitable to implement syn-
chronisation mechanisms, where it is essential that all threads have a consistent
view of the synchroniser.

This paper particularly studies the AtomicInteger class, which encapsulates
a volatile field of type integer. Essentially, it provides the following methods:
get(), returning the value that was last written to the field; set(int v), atom-
ically assigning the value v to the field; and compareAndSet(int x,int n),
atomically checking the current value and updating it to n, if it is equal to the
expected value x, otherwise leaving the state unchanged, and returning a boolean
to indicate whether the update succeeded.

Synchronisation Patterns. In a shared-memory concurrency setting, two
kinds of thread interactions via a synchronizer can be distinguished: cooperation
and competition [18]. In a cooperative interaction, threads employ a cooperative
synchroniser as a communication channel to cooperatively share a resource. In a
competitive interaction, a competitive synchroniser runs a competition and pro-
vides (temporary) access to the shared resource to the winner. A synchroniser
can behave cooperatively or competitively in different states, this is called a hy-
brid interaction. Various patterns of synchronisation can be described in terms
of atomic integer operations:

GS (get and set). Threads can cooperatively interact using atomic read and
write. Every thread has a designated state in which it obtains the resource,
and all threads attempt to reach their designated state. When a thread writes
to the atomic integer, it implicitly signals who should own the resource next
(cooperation). Based on the value written into the synchroniser, ownership
of the resource is transferred to the appropriate thread waiting for that par-
ticular value. Producer-Consumer and Dekker’s critical section algorithm are
examples of this pattern. Lst. 1 shows ProducerConsumerwith two methods
produce and consume, sharing a field data, that implements this algorithm.
Typically, these methods will be executed as part of a surrounding loop. The
AtomicInteger denotes the state of the buffer: full (F) or empty (E). Both
the producer and the consumer wait until the buffer gets into their desired
state. As soon as the state changes to the expected value, the waiting thread
obtains the shared resource. When it is done, it changes the state, so that
the other thread can access the resource.

SC (set and compareAndSet). Atomic write and conditional update can be
used to implement a competitive synchroniser. Threads are competing to
obtain the protected resource by calling compareAndSet. A thread that suc-
ceeds in changing the state, obtains the resource. When it no longer needs
the resource, it sets the state to the initial value, to signal its availability.
Failing threads continue to try to acquire the resource by checking whether
the state is reverted back to the initial state. A spin-lock implementation
using AtomicInteger (see Lst. 2) is a known example of this pattern where
the atomic integer value encapsulates the state of the lock: locked (L) or un-
locked (U). If a thread successfully updates the state from U to L, it acquires

258 A. Amighi, S. Blom, and M. Huisman

public class ProducerConsumer{
2 private final int E = 0, F=1;

private AtomicInteger sync;
4 private int data; // shared buffer

ProducerConsumer(){
6 sync = new AtomicInteger(E);

}
8 void produce(){

write();
10 sync.set(F); // signal

while(sync.get() == F); // wait
12 }

void consume(){
14 while(sync.get()==E); // wait

read();
16 sync.set(E); // signal

}
18 // methods write() and read()

}

Lst. 1. ProducerConsumer: cooperation

public class SpinLock{
2 private final int U = 0, L=1;

private AtomicInteger sync;
4 SpinLock(){

sync = new AtomicInteger(U);
6 }

8 void lock(){
while(!sync.compareAndSet(U,L));

10 }

12 void unlock(){
sync.set(U);

14 }
}

Lst. 2. SpinLock: competition

the lock (method lock). Consequently, failing threads enter a try-wait loop,
until the lock is released. To release the lock, the thread holding the lock
executes set(U) (method unlock).

GC (get and compareAndSet). Atomic read and conditional update are
suited to implement a synchronisation mechanism that partially transfers the
resources between the participating threads. Shared reading synchronisation
mechanisms using AtomicInteger like Semaphore and CountDownLatch are
typical instances of this pattern. Also lock-free pointer-based data structures
using AtomicReference are examples of this pattern. Since, here, we are
only looking at exclusive synchronisation mechanisms, we do not discuss
this pattern further. However, a generalisation of our approach to reason
about partial resource ownership using atomics is ongoing work.

GSC (get, set and compareAndSet). All basic operations of AtomicInteger
can be used together to implement a hybrid synchroniser. Threads compete
with each other to obtain the resource by calling compareAndSet. A thread
that succeeds in changing the state, wins the resource. Failing threads may
not compete any more to change the state. But, they have to wait for the
resource availability. When the winner thread no longer needs the resource, it
updates the state to signal how the resource should be used afterwards. Lst. 3
shows the implementation of a SingleCell algorithm, which illustrates a
hybrid pattern1. It provides a single method to find or put a value in a
shared storage cell. The storage cell is always in one of these states: empty
(E), writing (W) or done (D). The cell containing the value (the state D) must
be immutable. Initially, all threads are competing to assign their value. If a
thread succeeds in obtaining writing access to the resource, the state becomes
W. After completing the assignment, it will report its success (returns PUT).
All other threads have to wait until the value is assigned, and then they

1 This is a simplified version of a lock-less hash table, especially designed for state
space exploration in the multi-core model checker LTSmin [12].

Resource Protection Using Atomics 259

public class SingleCell{
final private int E = 0, W=1, D=2;

final private int PUT = 0, SEEN = 1, COLN = 2;

private AtomicInteger sync;

private int data;

SingleCell(){ sync = new AtomicInteger(E); }

int findOrPut(int v){
if(sync.compareAndSet(E,W)){ data = v; sync.set(D); return PUT; }
if(sync.get()!=E){
while(sync.get()==W); // wait
if(sync.get() == D)

if(data == v) return SEEN;

else return COLN;

}
}

}

Lst. 3. SingleCell: hybrid

check the stored value. If the value in the cell is equal to the value the
thread holds, it will return the value SEEN, otherwise it will signal a collision
(returns COLN).

3 Ownership Exchange via Atomics

This section derives permission-based Separation Logic contracts for atomic
read, write, and compare-and-set operations. Separation Logic (SL) is an exten-
sion of Hoare Logic, originally developed to reason about programs with point-
ers [19]. A key characteristic of SL is that it allows to reason about disjointness
of heaps. This ability also makes SL suitable to reason in a thread-modular way
about multi-threaded programs, as demonstrated by O’Hearn [15], who intro-
duced Concurrent Separation Logic (CSL) to verify correct access of synchro-
nised threads to dynamically allocated memory. CSL also introduced the notion
of ownership, to specify how a synchronisation construct exclusively exchanges
ownership of a memory location. To be able to verify programs where multiple
threads concurrently read a shared address, permission-based separation logic [3]
extends CSL with fractional permissions [4]. In a fractional permission model,
a thread holds a permission π ∈ (0, 1] to access a heap location. Full owner-
ship, providing write permission, is indicated by the full permission 1, while any
permission π ∈ (0, 1) indicates a read-only access.

Let E denote arithmetic expressions, B boolean expressions and R pure re-
source formulas. In our fragment of CSL, the syntax for assertions P is defined
as follows:

B ::= ¬B | B1 ∧B2 | B1 ∨B2

R ::= emp | E1
π�→ E2 | R1 *R2 | R1 -* R2

P ::= B | R | B *R | B =⇒ R | ∀x. P | ∃x. P | �
i∈I

Pi

260 A. Amighi, S. Blom, and M. Huisman

In addition to the classical connectives and first order quantifiers, the main
assertions are: (1) the empty heap assertion, written emp, (2) the points-to

predicate E1
π�→ E2, meaning that expresssion E1 points to a location on the

heap, has permission π to access this location, and this location contains the
value E2, (3) the separating conjunction operator *, expressing that two formulas
are valid for disjoint parts of the heap, (4) a magic wand (also known as resource
implication) formula R1 -* R2 which holds for any heap that has the following
property: if the heap is extended with a disjoint heap that satisfies R1, then the
combined heap satisfies R2, and finally (5) an iterative separating conjunction
over a set I, written �

i∈I
Pi. Below, we use [E] to denote the contents of the heap

at location E and we use E �→ − to indicate that the content stored at location
[E] is not important.

Permissions can be transferred between threads at synchronisation points (in-
cluding thread creation and joining). Moreover, permissions can be split and
combined to change between read and write permissions:

E1
π�→ E2 *E1

π′
�→ E2 ⇔ E1

π+π′
�→ E2

The addition of two permissions is undefined if the result is greater than the full
permission. Soundness of the logic ensures that the total number of permissions
on a location never exceeds 1. Thus, at most one thread at a time can be writing
to a location, and whenever a thread has a read permission, all other threads
holding a permission on this location simultaneously must have a read permis-
sion. This in turn ensures that there are no data races in verified programs.

3.1 Basic Rules

Next we show how the contracts in permission-based SL for the basic atomic
operations can be derived. We base ourselves on the work by Vafeiadis [23],
which enables us to define a language where atomic commands, denoted 〈C〉,
are the only constructs for synchronisation.

We divide the domain of the heap into a set of atomic locations ALoc (e.g.,
the volatile field of AtomicInteger) and a set of non-atomic locations NLoc
(e.g., data in Lst. 1). An atomic location s ∈ ALoc may only be accessed using:
(1) get(s) for atomic read of the atomic location s, (2) set(s, n) for atomic
update of s with n, and (3) cas(s, x, n) for atomic conditional update of s. We
use the term atomic value to refer to the value that an atomic variable contains
and the term resources to refer to non-atomic locations of the heap.

As proposed by O’Hearn, in a concurrent setting a resource invariant is at-
tached with a synchroniser. This associates ownership of a part of the state space
with possible states of the synchroniser [15]. For example, the resource invariant
for a lock lock ∈ ALoc that protects the resource x ∈ NLoc is defined as:

Ilock = ∃ v ∈ {0, 1}. lock 1�→ v *((v = 1 =⇒ emp) *(v = 0 =⇒ x
1�→ −))

This expresses that full ownership of the location x is available to win when
[lock] = 0, while if [lock] = 1 then emp (interpreted as nothing) can be obtained.

Resource Protection Using Atomics 261

In general, using a function res that maps an atomic value to a set of disjoint
resources, given Val as the set of values and s ∈ ALoc, the resource invariant Is
is defined as:

Is = ∃ v ∈ Val. s
1�→ v *S(s, v) where S(s, v) = �

r∈res(s,v)
r

1�→ −

In CSL, a judgment I
 {P} C {Q} expresses the following: given a globally
accessible resource invariant I and a local precondition P , if a statement C starts
its execution in a state satisfying P * I, and if C terminates, then its final state
satisfies Q * I. The proof rule for atomic commands [23] expresses that to prove
correctness of 〈C〉, the resource invariant I can be used for the verification of the
atomic body C. Thus, I is not accessible to the environment. Moreover, within
the body C, the resource invariant I may be invalidated, because it is not visible
to the environment, but it must be re-established before C is finished:

emp
 {P * I} C {I *Q}
I
 {P} 〈C〉 {Q} [Atomic]

We use the rule [Atomic] to derive specifications for the basic atomic oper-
ations get, set and cas when they are coordinating a set of threads to (exclu-
sively) access a shared resource. The specifications should capture all exclusive
synchronisation patterns mentioned above: cooperative, competitive and hybrid.
Therefore, we need to enrich the resource invariant definition with an abstraction
of local state and feasible states, which allows one to deduce what the environ-
ment guarantees. Next,we instantiate the [Atomic] rule to derive the resources
that set, get and cas exchange to perform exclusive access synchronisation.

3.2 Synchronisation Protocol

Assuming a set of threads Thr, for each atomic location s that is synchronising
the threads, we define the view of a thread t ∈ Thr as an atomic ghost variable,
denoted st. Each thread stores the last visited atomic value in its view. We define
the view to be atomic in order to restrict the thread t, using ghost code, to update
its view only inside an atomic block. To do so, the ownership of a view is split
in half between the owner thread and the resource invariant, i.e. the shared
state. Therefore, a thread can always read its own view, but it can only update
its view when it captures the other half permission inside an atomic block by
accessing the resource invariant. Views of threads indexed by thread identifiers
are written as a vector of views

→
st. Similarly,

→
vt denotes a vector of values pointed

to by the views, indexed by the corresponding thread identifiers, while
→
vt{vτ=x}

denotes a vector such that the item indexed with τ is equal to x. For the sake of
simplicity we assume that there is only one single atomic location s functioning
as the synchroniser. However, the approach is generalisable for multiple atomic
location.

We define the (global) atomic state as a tuple of the atomic value and all

thread local views of it, denoted (s,
→
st). An atomic state is admissible if at least

262 A. Amighi, S. Blom, and M. Huisman

one thread has a correct view of the synchroniser. An admissible atomic state
is feasible if either (1) it is an initialisation state where all the threads have an
identical view of the initialised atomic location, or (2) it is reachable from the
initialisation state by a finite set of atomic operations.

As the views must be updated only inside the atomic operations, they can
reflect the actions that the environment can perform w.r.t. the atomic location.
The current definition of the resource invariant is too restrictive to reflect this.
So, first, we define the protocol of the synchroniser in terms of the atomic state:

PThr
s =

∨
v,

→
wt∈Val·fsbl(v,→wt)

([s] = v ∧
→
[st] =

→
wt)

where fsbl determines whether the atomic state is feasible.

Example 1 (Protocol for ProducerConsumer). To illustrate our definition of fea-
sible states, consider the ProducerConsumer example, where we have two threads
p (producer) and c (consumer) with corresponding views, i.e. sp and sc, respec-
tively, given an atomic variable s:

P{p,c}
s = (([s] = E ∧ [sp] = E ∧ [sc] = E) ∨ ([s] = F ∧ [sp] = F ∧ [sc] = E) ∨

([s] = F ∧ [sp] = F ∧ [sc] = F) ∨ ([s] = E ∧ [sp] = F ∧ [sc] = E))

Note that ([s] = F, [sp] = E, [sc] = F) is not a feasible state. Therefore, when p
believes that the buffer is empty (E), it can safely rely on the fact that no other
thread is allowed to modify s to full (F). Thus, p deduces that it exclusively
owns s, so [s] must be E when [sp] = E.

Example 2 (Protocol for SpinLock). Consider the SpinLock example, which is
a competititve pattern. Its protocol is defined as follows:

PThr
s = ([s] = U ∧ (∀ t ∈ Thr. [st] = U)) ∨

([s] = L ∧ (∃ τ ∈ Thr. [sτ] = L ∧ ∀ t ∈ Thr \ {τ}. [st] = U))

This expresses that either the lock is available and all threads have a correct
view of the state, or there is only one thread that has acquired the lock and
updated its view while all others have failed to change their beliefs. This makes
it possible for the unlocking thread to rely on its view, knowing that it will be
the only one that has the correct view.

The protocol suffices to derive the contracts for the basic atomic operations
when they are involved in a competitive pattern. To cover cooperative patterns,
where threads obtain the shared resources based on their views, in addition, the
resource invariant has to express what resources are protected in terms of the
atomic state. In fact, instead of one single atomic variable s, (s,

→
st) plays the role

of a global synchroniser. Similar to res, we define ares to map the atomic state
to a set of disjoint resources. Therefore, we replace S(s, v) with R(s, v,

→
st,

→
wt) to

denote all the resources associated with [s] = v and
→
[st] =

→
wt.

Now we are ready to define precisely what we mean by a synchronisation
primitive, based on our extended definition of resource invariant.

Resource Protection Using Atomics 263

Definition 1 (State-based Synchroniser). An atomic location s together
with the basic atomic operations ACmd = {get, set, cas} define a state-based
primitive synchronisation mechanism for a set of threads Thr if it is instrumented
with a resource invariant defined as follows:

Is = ∃v, →
wt ∈ Val · s 1�→ v *(�

t∈Thr
st

1
2�→ wt) *R(s, v,

→
st,

→
wt) *P

Thr
s

where R(s, v,
→
st,

→
wt) = �

r∈ares(s,v,
→
st,

→
wt)

r
1�→ −.

Example 3 (Synchroniser for ProducerConsumer). Based on the protocol de-
fined in Example 1, we define the resource invariant of the atomic synchroniser
s to synchronise p and c:

Is = ∃v, wp, wc ∈ {E,F} · s 1�→ v * sp
1
2�→ wp * sc

1
2�→ wc *R(s, v,

→
st,

→
wt) *P

{p,c}
s

where R(s, v,
→
st,

→
wt) is data

1�→ − if v = E, wp = F , wc = E and v = F , wp = F ,

wc = E, and R(s, v,
→
st,

→
wt) is emp if threads agree on the value of s. This expresses

that s holds the full ownership of data when threads do not agree on the value
of the synchroniser (i.e., during the transition phase).

Example 4 (Synchroniser for SpinLock). Considering the SpinLock protocol in
Example 2, we define the resource invariant for s. Here, regardless of the views
of the threads, the resource invariant holds the full resource when the state is
U , otherwise the winning thread holds it.

Is = ∃v, →
wt ∈ {U,L} · s 1�→ v *(�

t∈Thr
st

1
2�→ wt) *R(s, v,

→
st,

→
wt) *P

Thr
s

where R(s, v,
→
st,

→
wt) will be data

1�→ − when v = U and emp when v = L.

Next we investigate how the three basic atomic operations can exchange the
shared resources.

3.3 Specifications of Atomics

This section derives contracts for the three basic atomic operations for state-
based synchronisation. The contracts, shown in Figure 1, essentially express that
in an exclusive state-based synchronisation, the thread τ executing an atomic
operation to update the state of the synchroniser, should provide the resources
associated with the state after the operation, and in return will receive the
resources associated with the previous state of the synchroniser. In Figure 1, we
used RThr

s (τ, x, y) to denote all the resources when s = x and sτ = y.
Our technical report [1] presents the complete derivations. Basically, for each

basic atomic operation we propose an implementation using basic instructions.
We instantiate [Atomic] for each operation with a precondition about the

264 A. Amighi, S. Blom, and M. Huisman

Let RThr
s (τ, x, y) = �→

vt{vτ=y}∈Val.fsbl(x,
→
vt{vτ=y})

R(s, x,
→
st,

→
vt{vτ=y})

∀ v,
→
vt ∈ Val. vτ = d ∧ fsbl(v,

→
vt{vτ=d}) =⇒ fsbl(n,

→
vt{vτ=n})

Is {sτ
1
2�→ d * RThr

s (τ, n, n)} setτ (s, n) {sτ
1
2�→ n *RThr

s (τ, d, d)}
[WAtm]

Is {sτ
1
2�→ d} getτ (s) {sτ

1
2�→ ret *(RThr

s (τ, ret, ret) -* RThr
s (τ, ret, d))}

[RAtm]

∀ v,
→
vt ∈ Val. vτ = x ∧ fsbl(v,

→
vt{vτ=x}) =⇒ fsbl(n,

→
vt{vτ=n})

Is {sτ
1
2�→ x *RThr

s (τ, n,n)}
casτ (s, x, n)

{(ret = true ∧ sτ

1
2�→ n *RThr

s (τ, x, x)) ∨ (ret = false ∧ sτ

1
2�→ x * RThr

s (τ, n, n)}

[CAtm]

Fig. 1. Contracts derived for set, get and cas

thread’s view and thread’s local state, containing the required resources. Then
we derive the postcondition from the precondition and the body, taking into
account that Is is available inside the body, providing the resources associated
to the current state of the synchroniser. Inside the body, either the atomic loca-
tion or the view of the thread is updated. The derivations show that the thread
consumes the resources it currently holds to re-establish Is and exits the atomic
body with an updated atomic state and the resources it obtains as the result of
the update.

Atomic Write. Operation setτ (s, n) denotes the atomic update of s with n by a
particular thread τ . We derive rule [WAtm], expressing that the executing thread
with the view d delivers all the resources associated with the feasible atomic state
after the update. We should stress here that this contract is specific to using
atomic write for synchronisation, it is not the most general contract possible.

For an atomic synchroniser for exclusive resource access, it is crucial that the
value inferred by the protocol coincides with the thread’s view. In other word,
the protocol embedded in the resource invariant must prove that the thread
executing an atomic write has the full permission to do the set action, other-
wise, it is not guaranteed that the thread intended to execute set, can indeed
accomplish this safely.

Atomic read. The read action for a particular thread τ ∈ Thr with a view sτ that
has the last visited value d from the atomic value s is indicated by getτ (s). In the
rule [RAtm], the contract of the atomic read specifies that the atomic variable
does not change its value, while the atomic state is modified because the reading
thread updates its view. So the thread has to establish the resource invariant
with the resources associated with the updated view inside the atomic body.
As a result, it obtains the remainder as its postcondition, which is formalised
using a magic wand operator. According to [19] this rule is correct if our resource
assertions are strictly exact. In a fragment of CSL that we use as our specification
language, all resource formulas are indeed strictly exact.

Resource Protection Using Atomics 265

∀ v,
→
vt ∈ Val. vτ = d ∧ fsbl(v,

→
vt{vτ=d}) =⇒ fsbl(n,

→
vt{vτ=n})

Is {sτ
1
2�→ d * S(s, n) * T(sτ , d)} setτ (s, n) {sτ

1
2�→ n * S(s, d) * T(sτ , n)}

[WAtm]

Is {sτ
1
2�→ d * T(sτ , d)} getτ (s) {sτ

1
2�→ ret * T(sτ , ret)}

[RAtm]

∀ v,
→
vt ∈ Val. vτ = x ∧ fsbl(v,

→
vt{vτ=x}) =⇒ fsbl(n,

→
vt{vτ=n})

Is {sτ
1
2�→ x * S(s, n) * T(sτ , x)}

casτ (s, x, n)

{(ret = true ∧ sτ

1
2�→ n * S(s, x) * T(sτ , n)) ∨ (ret = false ∧ sτ

1
2�→ x * S(s, n) * T(sτ , x)}

[CAtm]

Fig. 2. Thread-modular specifications of atomic operations

Conditional update. Finally, rule [CAtm] specifies casτ (s, x, n) with the ex-
pected value x and the value to be updated n. The calling thread assumes that
the synchroniser contains a value equal to an expected value and then calls the
operation to try to modify the atomic synchroniser to n. Therefore, the thread
has to provide the resources associated with the updated atomic state and it will
gain the resources associated with the expected value, if the operation succeeds.
Otherwise, the operation returns all the provided resources.

3.4 Thread-Modular Contracts

The last step is to adapt the derived contracts for the atomic operations to a
thread-modular specification. In particular, this means that the specifications
should express the pre- and postconditions using local information only, i.e.,
using (1) the atomic value as a globally known state, and (2) local information
that contains the view of the executing thread.

Note that the resource invariant expresses when the synchroniser holds the
resources. For example, the resource invariant of ProducerConsumer does not
specify when a particular thread can obtain the buffer. Generally, in cooperative
patterns, the synchroniser holds the resource temporarily, until one of the waiting
threads updates its view. We take advantage of this to simplify the contracts
by defining the resources using two components: (1) the resources that the
synchroniser holds for the competition, which is used to associate resources
to the atomic values in classical definition of the resource invariant, i.e. S, and
(2) the resources that threads obtain when they are updating their views, denoted
with T. Basically, T(sτ , v) indicates resources to be held by thread τ when sτ = v.
We exploit these two components to decomposeRThr

s (τ, x, y) (defined in Figure 1)
into a global and a thread local components.

These resources are either associated to the atomic value x, which will be
obtained competitively using a cas operation, or associated to a particular view

266 A. Amighi, S. Blom, and M. Huisman

of a thread, which will be obtained by updating the view. We can formally
express this decomposition for τ ∈ Thr, x, y ∈ Val as:

RThr
s (τ, x, y)⇔ S(s, x) * �

t∈Thr,vt∈Val
(T(st, vt) -* T(st, x))

where T(st, vt) -* T(st, x) specifies the resources that thread t exchanges when
it updates its view from vt to x.

In summary, for a competitive pattern, resources are merely associated with
the state of the synchroniser using S(s, x). A cooperative pattern exploits the
definition of T(st, vt), which associates the resources to the view of a thread
expressing when the thread holds a resource. A hybrid pattern uses both T(st, vt)
and S(s, x) to reason about the resource exchanges.

We use this decomposition and update the contracts based on the fact that
the executing thread may have resources obtained based on its current view.
This results in thread-modular specifications for the basic atomic operations,
as shown in Figure 2. which generally express that the executing thread must
provide (1) the resources associated with its current view, and (2) the resources
associated with the new state of the synchroniser. In return the thread obtains
(1) the resources associated with its updated view, and (2) the resources associ-
ated with the previous state of the synchroniser. Note that in the patterns that
we studied, the cas and set operations do not exchange resources using the
thread views, and we are not aware of algorithms where these operations can
transfer ownership based on their views.

4 Contracts of AtomicInteger

Based on the specifications derived above, we specify the behaviour of the
AtomicInteger class as an exclusive-access atomic synchronisation primitive.
First, we introduce our concrete specification language, which is a combination
of permission-based SL and JML [5]. Then, we explain all predicates and func-
tions that we use to specify AtomicInteger, and finally we present the complete
specification.

4.1 Specification Language

As we reason about Java programs, we use Parkinson’s variant of SL for Java,
where the expression pointing into the heap is a field access of an object [16],
extended with permissions for concurrency.

In our assertion language we distinguish between resource expressions (R,
typical elements ri) and functional expressions (E, typical elements ei), with the
subset of logical expressions of type boolean (B, typical elements bi). Formulas
in our logic are defined by the following grammar:

R ::= b | Perm(e.f, frac) | r1 ∗ ∗ r2 | r1 − ∗ r2
| (\forall ∗ T v; b; r) | b1 ==> r2 | e.P(e1, · · · , en)

E ::= any pure expression B ::= any pure expression of type boolean

Resource Protection Using Atomics 267

where T is an arbitrary type, v is a variable name, P is an abstract predicate [17]
of a special type resource, f is a field name, and frac denotes a fractional per-
mission.

The assertion Perm(e.f, πi) expresses the access permission πi of the field e.f.
The notation for implication ==> is borrowed from JML. We also divert from
the classical SL notation of * for the separating conjunction to ∗∗ in order
to avoid name clashes with the multiplication operator. Given b as a constraint
on the range of the quantifier we use \forall∗ to define the universal separating
conjunction.

Assertions can also contain abstract predicates (P) that encapsulate the state
space [17]. In our specification language e.P(e1, · · · , en) expresses an invocation of
the predicate P on the object e with arguments e1, · · · , en. Verifying a program,
the abstract predicates should be explicitly opened when they are in scope,
otherwise their body cannot be used. In the specification below, we sometimes
require the predicate to be a group. Any predicate that is linear in its fractional
arguments can be defined as a group. This means that the predicate can be split
over permissions, see [8] for more details. When the value of a field is important
we write PointsTo(x.f,p,v), which is equivalent to Perm(x.f,p) && x.f==v.
Finally, we use the minimum non-zero permission [13], denoted as +0, to read
an immutable location with the following axiom:

Perm(x.f, +0)∗∗ Perm(x.f, +0) = Perm(x.f, +0)

In addition, method and class specifications can be preceded by a given clause,
declaring the method and class specification-only parameters. Method speci-
fication parameters are passed (implicitly) at method calls, class parameters
are passed at type declaration and instance creation, resembling the parametric
types mechanism of Java.

4.2 Predicates and Parameters

Any client program instantiating the AtomicInteger class as an exclusive atomic
synchronisation primitive has to provide the protocol of the synchroniser object.
In fact, a protocol of a synchronisation construct is an abstract state machine
instrumented with an interpretation function that maps each state of the state
machine to a fraction of the resources that the synchroniser object or a partic-
ular thread must hold in that state. Especially, in our settings, a protocol of a
synchronisation construct must specify: (1) identification of the participants,
(2) the shared resource that has to be protected by the synchronisation con-
struct, (3) the fraction of the shared resource to be held by the synchroniser
or a thread in each atomic state, and (4) the transitions that are valid for the
synchroniser object.

To make a single specification of AtomicInteger that can capture all exclusive
access patterns, the specification is parametrised by (1) a set of roles, which
basically is an abstraction of the participating threads’ identification, (2) an
abstract predicate as a resource invariant, specifying the shared resources to

268 A. Amighi, S. Blom, and M. Huisman

be protected by AtomicInteger, (3) a function to associate the states of the
atomic integer as the synchroniser with the fraction of the shared resource, (4) a
boolean predicate, encoding all the valid transitions that a particular instance
of AtomicInteger can take, and (5) a handle token.

A role abstraction abstracts the identity of threads to a set of roles. This
makes our specification unbounded in the number of threads. The synchroniser is
defined as a globally known, special role, written S, that coordinates the threads.
This role is declared as a publicly visible constant in class AtomicInteger, to
hold the resource when the class runs the competition.

The validity of the transitions is encoded in the trans predicate. More im-
portantly this encoding enables us to extract the set of the feasible states. The
trans predicate expects as arguments the role of the invoking thread, the current
and the intended update state of the synchroniser.

The shared resources are described by inv(frac p), a resource formula
parametrised with permissions (of type frac), and defined as a group, i.e. it
should be splittable over permissions. To associate the fraction of the shared re-
sources with the state of the atomic integer, we define the function share, which
is parametrised by a role, and the value of the atomic integer. Our role abstrac-
tion allows us to express S and T in the specification presented in Figure 2 using
only inv parametrised with share.

For example, instantiating AtomicInteger for ProducerConsumer we define:

group inv(frac p) = Perm(data,p);

pred trans(role r,int c,int n)=

(r == P && c == E && n == F) || (r == C && c == F && n == E);

frac share(role r,int s){

return (r == P && s == E) ? 1: ((r == C && s == F) ? 1: 0); }

where the definition of share shows that the full ownership of the shared re-
source, i.e. data, is only associated with the views of the threads. In the speci-
fication presented in Figure 2 this would mean that the S component would be
emp and the T component associates the full ownership of data to the views of
the threads. Similarly, instantiating AtomicInteger for SpinLock we use these
definitions:

group inv = resinv;

pred trans(role r,int c,int n) = (c==U && n==L) || (c==L && n==U);

frac share(role r,int s){ return (r == S && s == U) ? 1 : 0; };

where resinv would be the shared resource to be protected by the lock which
is passed as a class parameter to SpinLock. As it is specified in the definition of
share the synchroniser, defined with the globally known role S, will hold the full
resource when its state is U (unlocked). This can be expressed in the specification
presented in Figure 2 with T defined as emp while the component S associates
the full ownership of resinv to the unlocked state of the atomic location.

To invoke an operation from AtomicInteger, the calling thread must provide
the correct required arguments which are demanded by the contracts. For this
purpose, the AtomicInteger specification defines a special token, called handle,
which can be used to prove that a thread has the right to invoke an action.

Resource Protection Using Atomics 269

//@ given group (frac−>group) inv;

2 //@ given (role,int−>frac) share;

//@ given (role,int,int−> boolean) trans;

4 //@ given Set<role> rs;

class AtomicInteger {
6 private volatile int value;

//@ group handle(role r,int d,frac p);

8

/∗@
10 requires inv(share(S,v));

ensures (\forall∗ role r; rs.contains(r) ; handle(r,v,1)); @∗/
12 AtomicInteger(int v);

14 /∗@ given role r, int d, frac p;

requires handle(r,d,p) ∗∗ inv(share(r,d));

16 ensures handle(r,\result,p) ∗∗ inv(share(r,\result)); @∗/
public int get();

18

/∗@ given role r, int d, frac p;

20 requires handle(r,d,p) ∗∗ trans(r,d,v);

requires inv(share(S,v)) ∗∗ inv(share(r,d));

22 ensures handle(r,v,p) ∗∗ inv(share(S,d)) ∗∗ inv(share(r,v)); @∗/
public void set(int v);

24

/∗@ given role r, frac p;

26 requires handle(r,x,p)∗∗ trans(r,x,n);

requires inv(share(S,n)) ∗∗ inv(share(r,x));

28 ensures \result==> (handle(r,n,p) ∗∗ inv(share(S,x)) ∗∗ inv(share(r,n)));

ensures !\result==> (handle(r,x,p) ∗∗ inv(share(S,n)) ∗∗ inv(share(r,x))); @∗/
30 boolean compareAndSet(int x, int n);

}

Lst. 4. Contracts for AtomicInteger

The postcondition ensures that appropriate new handles for new actions are
handed out to the invoking thread. The handle is carrying the role of the calling
thread which witnesses its role and its view from the state (last observed value)
of AtomicInteger. Any instance of a synchronisation mechanism is associated
with a particular set of threads. Therefore any thread (1) without a handle (i.e.
outside of the coordinated threads), (2) with an incorrect role, or (3) with a
visited value that is outside of the synchroniser’s reachable states, will therefore
not be able to interfere with the threads that participate in this synchronisation.

Handles are specified as group without a definition. At the initialisation of the
AtomicInteger, the constructor issues a full handle for all roles that are passed
to the synchroniser. These full handles are all given back to the thread that
created the AtomicInteger. These full handles may then be split and passed on
to any other thread participating in the synchronisation.

4.3 Specification

Finally, Lst. 4 shows the complete specification of class AtomicInteger. We
briefly discuss the method specifications.

The constructor requires the fraction associated to the initial value of the
atomic integer. These are the resources that are initially stored inside the syn-
chroniser (S), and that can be won by the winning thread in a competition.

270 A. Amighi, S. Blom, and M. Huisman

Notice that in a cooperative synchronisation mechanism, the resources initially
are supposed to be with one of the threads, and the synchroniser is only used as
a medium to pass the resources on to the next thread. The postcondition of the
constructor provides handles for all roles (except the S role) that are involved in
the synchronisation, which can be split and passed to all threads that want to
access the shared resource.

The contracts of the methods in AtomicInteger are all specified based on
the specifications we derived in Figure 2 of Section 3. Given the role of the
invoking thread, its last visited value from the state (view) and the fraction
of handle, they all require handles carrying this information. New handles are
returned as part of the postconditions. State changing methods, i.e. set and
compareAndSet, require that the intended transition is valid, as specified by the
trans predicate. Finally, the fraction of the resource invariant to be exchanged
is specified using inv and share based on the specifications derived for the basic
atomic operations.

4.4 Verification

In verifying client programs using AtomicInteger, it is vital to check the def-
inition of share, as it should not allow the synchroniser to invent permissions.
The distribution defined by share should satisfy the following property: in all
states, the total sum of the permissions held by the threads for a resource must
not exceed the full permission. To ensure that the definition of share fulfils the
condition, we generate proof obligations stating that in any snapshot of the exe-
cution, the sum of the fractions assigned to all the threads and the synchroniser
must not exceed 1. To show that this proof obligation is respected, we use the
definitions of trans to extract the set of the valid states, and share to determine
the resource distribution. The former draws the maximal state machine for each
role, which shows all possible transitions that a role can take. The latter assigns
the fraction that each role must hold in each state. Finally, the product of the
maximal state machines is exploited to reason about the sum of the shares for
each feasible snapshot.

Due to space limit, the complete correctness proof of the case studies, includ-
ing the sanity check of the share functions and the proof outline of the programs,
are provided in the technical report [1]. Here we only present the correctness
of the findOrPut method from our SingleCell example to illustrate how the
specification of AtomicInteger works. In Lst. 5 the proof outline of this method
demonstrates how the contracts of AtomicInteger exchange resources. To show
available resources in each step, the outline is annotated with the intermediate
states. To instantiate the SingleCell class we use these definitions:

group inv(frac p) = Perm(data,p);

pred trans(role r,int c,int n) = (c==E && n==W) || (c==W && n==D);

frac share(role r,int v) { return (r==S && v==E) ? 1 :

((r==S && v==D) ? +0: ((r==T && v==D) ? +0:0)); }

All the case studies discussed above are verified with our VerCors tool set
available at [25]. This tool set is currently being developed to reason about

Resource Protection Using Atomics 271

//@ given frac f;

2 //@ requires handle(T,E,f);

//@ ensures \result == PUT ==> handle(T,D,f) ∗∗ PointsTo(data,+0,v);

4 //@ ensures \result == SEEN ==> handle(T,D,f) ∗∗ PointsTo(data,+0,v);

int findOrPut(int v){
6 {handle(T,E,f) ** inv(share(T,E)) ** inv(share(S,W)) }

if(sync.compareAndSet(E,W)){
8 {handle(T,W,f) ** inv(share(T,W)) ** inv(share(S,E)) }

data = v; //unfold inv(share(S,E)) for Perm(data,1)
10 {handle(T,W,f) ** PointsTo(data,1,v)}

{handle(T,W,f) ** inv(share(S,D)) ** inv(share(T,W))}
12 sync.set(D);

{handle(T,D,f) ** inv(share(S,W)) ** inv(share(T,D)) ** (data==v)}
14 {handle(T,D,f) ** PointsTo(data,+0,v)}

return PUT;

16 }
{handle(T,E,f) ** inv(share(T,E)) ** inv(share(S,W)) }

18 if(sync.get()!=E){
{handle(T,val,f) ** inv(share(T,val)) ** (val!=E) }

20 while(sync.get()==W);

{handle(T,val,f) ** inv(share(T,val)) ** (val!=E) ** (val!=W)}
22 if(sync.get() == D)

{handle(T,D,f) ** inv(share(T,D))} // unfold inv(share(T,D))
24 if(data == v)

{handle(T,D,f) ** PointsTo(data,+0,v)}
26 return SEEN;

else
28 {handle(T,D,f) ** PointsTo(data,+0,val) ** (val!=v)}

return COLN;

30 }
}

Lst. 5. Verification of the findOrPut method from SingleCell

multithreaded Java programs annotated with permission-based SL. The tool
leverages existing verification solutions to multi-threaded Java programs, by en-
coding verification problems into the Chalice language [13]. The Chalice verifier
is then used to prove the translated program correct w.r.t. its specification. All
case studies are verified automatically, after providing a few proof hints in terms
of intermediate state annotations that we left out here for clarity of presentation.
The complete correctness proof of the case studies are presented in the technical
report [1] using VerCors syntax which are also available online at [24]. In the
presented proof outlines, for clarity, we only annotated the intermediate states of
the proof with the predicates that transform resources between the synchroniser
and the participating threads.

5 Related Work

Different program logics based on Separation Logic for concurrent programs can
be found in the literature. Vafeiadis and Parkinson combined Rely-Guarantee rea-
soning and SL in RGSep to reason about fine-grained concurrent programs [22].
Assertions in RGSep distinguish between local and shared state, and actions are
used to describe the interferences on the shared state between parallel processes.
Later, Young et al. embedded permission-annotated actions in their assertion lan-
guage and extended abstract predicates [17] to Concurrent Abstract Predicates

272 A. Amighi, S. Blom, and M. Huisman

(CAP) [6]. Abstract predicates in CAP encapsulate both resources and interfer-
ences, which allows one to reason about the client programwithout having to deal
with all the underlying interferences and resources. The rule for atomics in CAP
uses a so called repartitioning operator, to extract the resources that the atomic
operation requires or ensures.

In CAP it is not possible to reason about synchroniser objects that pro-
tect external shared resources. Inspired by Jacobs and Piessens [11], and Dodds
et al. [7], CAP was extended by Svendsen and Birkedal resulting in Higher-Order
CAP (HOCAP) [21] and later Impredicative CAP (iCAP) [20] to specify client
usage protocols, suitable for synchronisers. iCAP is an important step towards
reasoning about synchronisation mechanisms that protect client defined external
states.

Ley-Wild and Nanevski [14] proposed Subjective CSL where the thread’s self
view and an other view (as a collective effect of the environment) are used to rea-
son about coarse-grained concurrency. Finally, Hobor et al. [10] proposed a rule
in CSL to reason about programs using barriers as their main synchronisation
construct. But they didn’t verify the implementation of the barrier.

All techniques mentioned above develop new program logics to reason about
concurrent programs. Instead, here, we treat synchronisers at the specification
level and we reuse existing verification technology to derive our practical and
easy to use specifications from O’Hearn’s classical CSL.

6 Conclusion

This paper proposes an approach to specify and reason about atomics as syn-
chronisation constructs. Our approach separates the verification of (1) the cor-
rectness of the communication protocol, and (2) the code obeying the protocol,
which carries out a rely-guarantee style proof in SL.

Moreover, the paper discusses different patterns to synchronise a set of threads
to access a shared resource using atomic read, write and compare-and-set. Based
on these patterns, we provide a simple, thread-modular and practical specifica-
tion of the class AtomicInteger from the java.util.concurrent.atomicAPI,
using permission-based SL. The specification is easy and intuitive to be used,
it only has to be instantiated by: the threads’ roles; the shared resources that
are protected by the synchroniser; a relation defining allowed state changes; a
function that describes for each state change which share of the shared resource
is transferred from the thread to the synchroniser, or vice versa; and the handle,
as a witness for the provided information.

Using CSL, as a well-established logic, we derived the specification from the
standard proof rule for atomic statements. To ensure overall soundness of the
approach, it has to be ensured that the sharing function does not implicitly allow
the creation of resources. We also briefly discussed how this can be verified.

We are in the process of extending our approach to shared reading syn-
chronisers, which allows us to verify reference implementations of shared us-
age synchronisation classes such as Semaphore, ReadWriteReentrantLock and

Resource Protection Using Atomics 273

CountDownLatch, see [2] for preliminary results. As future work, we will also
develop a specification of the AtomicReference. This will allow us to verify
lock-free pointer-based data structures from java.util.concurrent.

Acknowledgments. The work presented in this paper is supported by ERC
grant 258405 for the VerCors project.

References

1. Amighi, A., Blom, S.C.C., Huisman, M.: Resource protection using atomics: pat-
terns and verifications. Technical Report TR-CTIT-13-10, Centre for Telematics
and Information Technology, University of Twente, Enschede (May 2013)

2. Amighi, A., Blom, S., Huisman, M., Mostowski, W., Zaharieva-Stojanovski, M.:
Formal specifications for Java’s synchronisation classes. In: Lafuente, A.L., Tuosto,
E. (eds.) 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, pp. 725–733. IEEE Computer Society (2014)

3. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Palsberg, J., Abadi, M. (eds.) POPL, pp. 259–270. ACM (2005)

4. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

5. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., Poll,
E.: An overview of JML tools and applications. STTT 7(3), 212–232 (2005)

6. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

7. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2011, pp. 259–270. ACM,
New York (2011)

8. Haack, C., Huisman, M., Hurlin, C.: Reasoning about Java’s reentrant locks. In:
Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 171–187. Springer, Hei-
delberg (2008)

9. Haack, C., Huisman, M., Hurlin, C., Amighi, A.: Permission-based separation logic
for multithreaded Java programs (submitted, 2014)

10. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic. In: Barthe, G.
(ed.) ESOP 2011. LNCS, vol. 6602, pp. 276–296. Springer, Heidelberg (2011)

11. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.
In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT, POPL 2011, pp.
271–282. ACM, New York (2011)

12. Laarman, A., van de Pol, J., Weber, M.: Boosting multi-core reachability perfor-
mance with shared hash tables. In: Bloem, R., Sharygina, N. (eds.) FMCAD, pp.
247–255. IEEE (2010)

13. Leino, K., Müller, P., Smans, J.: Verification of concurrent programs with Chalice.
In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007/2008/2009. LNCS,
vol. 5705, pp. 195–222. Springer, Heidelberg (2009)

14. Ley-Wild, R., Nanevski, A.: Subjective auxiliary state for coarse-grained concur-
rency. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 561–574. ACM (2013)

15. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1-3), 271–307 (2007)

274 A. Amighi, S. Blom, and M. Huisman

16. Parkinson, M.J.: Local reasoning for Java. Tech. Rep. UCAM-CL-TR-654, Univer-
sity of Cambridge, Computer Laboratory (November 2005)

17. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In: Prin-
ciples of Programming Languages (POPL 2008), pp. 75–86. ACM Press (2008)

18. Raynal, M.: Concurrent Programming - Algorithms, Principles, and Foundations.
Springer (2013)

19. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic
in Computer Science, pp. 55–74. IEEE Computer Society (2002)

20. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014)

21. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation of
concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 169–188. Springer, Heidelberg (2013)

22. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007)

23. Vafeiadis, V.: Concurrent separation logic and operational semantics. Electr. Notes
Theor. Comput. Sci. 276, 335–351 (2011)

24. Synchronisers in vercors, https://fmt.ewi.utwente.nl/redmine/projects/
vercors-verifier/wiki/Synchronizers

25. Vercors tool set, http://www.utwente.nl/vercors/

https://fmt.ewi.utwente.nl/redmine/projects/vercors-verifier/wiki/Synchronizers
https://fmt.ewi.utwente.nl/redmine/projects/vercors-verifier/wiki/Synchronizers
http://www.utwente.nl/vercors/

Resource Analysis of Complex Programs

with Cost Equations

Antonio Flores-Montoya and Reiner Hähnle

TU Darmstadt, Dept. of Computer Science, Germany
{aflores,haehnle}@cs.tu-darmstadt.de

Abstract. We present a novel static analysis for inferring precise com-
plexity bounds of imperative and recursive programs. The analysis oper-
ates on cost equations. Therefore, it permits uniform treatment of loops
and recursive procedures. The analysis is able to provide precise upper
bounds for programs with complex execution flow and multi-dimensional
ranking functions. In a first phase, a combination of control-flow refine-
ment and invariant generation creates a representation of the possible
behaviors of a (possibly inter-procedural) program in the form of a set
of execution patterns. In a second phase, a cost upper bound of each
pattern is obtained by combining individual costs of code fragments.
Our technique is able to detect dependencies between different pieces of
code and hence to compute a precise upper bounds for a given program.
A prototype has been implemented and evaluated to demonstrate the
effectiveness of the approach.

1 Introduction

Automatic resource analysis of programs has been subject to intensive research
in recent years. This interest has been fuelled by important advances in termina-
tion proving, including not only ranking function inference [6, 16], but complete
frameworks that can efficiently prove termination of complex programs [3, 7, 10].
Termination proving is, however, only one aspect of resource bound inference.

There are several approaches to obtain upper bounds for imperative programs
[3, 8, 9, 12–15, 17, 18]. Most pay little attention to interprocedural, in particular,
to recursive programs. Only SPEED [14] and the recent paper [8] address recur-
sive procedures. The extent to which SPEED can deal with complex recursive
procedures is hard to evaluate (they provide only one example). The approach
of [8] ignores the output of recursive calls which, however, can be essential to
obtain precise bounds (see Fig.1).

A different line of work is based on Cost Equations, a particular kind of
non-deterministic recurrence relations, annotated with constraints. This is the
approach followed by the COSTA group [1, 2, 4, 5]. One advantage of Cost
Equations is that they can deal with both loops and recursion in a uniform
manner. However, the approach does not cope well with loops that exhibit mul-
tiple phases or with programs whose termination proof requires multiple linear
ranking functions for a single loop/recursive procedure.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 275–295, 2014.
c© Springer International Publishing Switzerland 2014

276 A. Flores-Montoya and R. Hähnle

Program 1

1main (i n t m, i n t n) {
2 // assume (m>n>0)
3 boo l fwd=f a l s e ;
4 whi le (n > 0) {
5 n=move (n ,m, fwd) ;
6 i f (?) fwd=t rue ;
7 }
8}
9 i n t move (i n t n ,m, boo l fwd){

10 i f (fwd) {
11 i f (m > n && ?) {
12 . . . ; // [Cost 2]
13 r e tu rn move (n+1,m, fwd) ;
14 }
15 } e l s e {
16 i f (n > 0 && ?) {
17 . . . ; // [Cost 1]
18 r e tu rn move (n−1,m, fwd) ;
19 }
20 }
21 r e tu rn n ;
22}

Fig. 1. Program example

We use the program in Fig.1 to illus-
trate some of the problems we address
in this paper. The program is annotated
with structured comments containing cost
labels of the form [Cost x]. These indi-
cate that at the given program point x re-
source units are consumed. The program
consists of two methods. Method move be-
haves differently depending on the value
of boolean variable fwd. If fwd is true, it
may call itself recursively with n′ = n+1
and consume two resource units. If fwd is
false, it may call itself with n′ = n−1 and
consume one resource unit. Method main

has a loop that calls move and updates the
value of n with the result of the call. Ad-
ditionally, at any iteration, it can change
the value of fwd to true.

This example is challenging for several
reasons: (i) move behaves differently de-
pending on the value of fwd, so we ought
to analyse its different behaviors sepa-
rately; (ii) the return value of move influ-
ences the subsequent behavior of the main
method and has to be taken into account;
(iii) the mainmethod might not terminate and yet its cost is finite. Moreover, the
upper bound of terminating and non-terminating executions is different. Below
we present a table that summarizes the possible upper bounds of this program.

Execution pattern (1) (2) (3)
Upper bound n+ 2m 2(m− n) n
Terminating × ×

Pattern (1) occurs when move

decrements n for a while but without
reaching 0 (the initial n is an upper
bound of the cost); then the guard in
line 6 is true and move increases n up to m, incurring a cost of 2m. The loop in
main never terminates because n does not reach 0. In pattern (2) the guard in
line 6 is true at the beginning and move increases n to m consuming 2 ∗ (m− n).
Finally, in pattern (3), the guard in line 6 is never true (or only when n = 0).
Then move decrements n to 0 and the main loop may terminate, consuming n
resource units.

The techniques presented in our paper can deal fully automatically with com-
plex examples such as the program above. Our main contributions are: first, a
static analysis for both imperative and (linearly) recursive programs that can in-
fer precise upper bounds for programs with complex execution patterns as above.
The analysis combines a control-flow refinement technique in the abstract con-
text of cost equations and a novel upper bound inference algorithm. The latter ex-
ploits dependencies between different parts of a program during the computation

Resource Analysis of Complex Programs with Cost Equations 277

of upper bounds and it takes into account multiple upper bound candidates at the
same time. Second, we provide an implementation of our approach. It is publicly
available (see Sec. 6) and it has been evaluated in comparisonwithKoAT [8], PUBS
[1] andLoopus[17]. The experimental evaluation shows how the analysis deals with
most examples presented as challenging in the literature.

2 Cost Equations

In this section, we introduce the necessary concepts for the reasoning with cost
equations. The symbol x represents a sequence of variables x1, x2, · · · , xn of any
length. The expression vars(t) denotes the set of variables in a generic term t.
A variable assignment α : V �→ D maps variables from the set of variables V to
elements of a domain D and α(t) denotes the replacement of each x ∈ vars(t) by
α(x). A linear expression has the form q0+q1∗x1+ · · ·+qn∗xn where qi ∈ Q and
x1, x2, · · · , xn are variables. A linear constraint is l1 ≤ l2, l1 = l2 or l1 < l2, where
l1 and l2 are linear expressions. A cost constraint ϕ is a conjunction of linear
constraints l1 ∧ l2 ∧ · · · ∧ ln. The expression ϕ(x̄) represents a cost constraint ϕ
instantiated with the variables x̄. A cost constraint ϕ is satisfiable if there exists
an assignment α : V �→ Z such that α(ϕ) is valid (α satisfies ϕ).

Definition 1 (Cost expression). A cost expression e is defined as:

e ::= q | nat(l) | e + e | e ∗ e | nat(e− e)|max(S) | min(S)

where q ∈ Q+, l is a linear expression, S is a non-empty set of cost expressions
and nat(e) = max(e, 0). We often omit nat() wrappings in the examples.

Definition 2 (Cost equation). A cost equation c has the form 〈C(x) = e +∑n
i=1 Di(yi), ϕ〉 (n ≥ 0), where C and Di are cost relation symbols; all variables

x, yi, and vars(e) are distinct; e is a cost expression; and ϕ is a conjunction of
linear constraints that relate the variables of c.

A cost equation 〈C(x) = e+
∑n

i=1 Di(yi), ϕ〉 states that the cost of C(x) is e
plus the sum of the costs of each Di(yi). The relation ϕ serves two purposes: it
restricts the applicability of the equation with respect to the input variables and
it relates the variables x, vars(e), and yi. One can view C as a non-deterministic
procedure that calls D1, D2, . . . , Dn.

Fig. 2 displays the cost equations corresponding to the program in Fig. 1.
To simplify presentation in the examples we reuse some variables in different
relation symbols. In the implementation they are in fact different variables with
suitable equality constraints in ϕ.

We restrict ourselves to linear recursion, i.e., we do not allow recursive equa-
tions with more than one recursive call. Our approach could be combined with
existing analyses for multiple recursion such as the one in [4]. Input and output
variables are both included in the cost equations and treated without distinction.
By convention, output variable names end with “o” so they can be easily rec-
ognized. In a procedure, the output variable corresponds to the return variable

278 A. Flores-Montoya and R. Hähnle

SCC Nr Cost Equation

S1 1 main(n,m) = while(n,m, 0) n ≥ 1 ∧m ≥ n+ 1

S2 2 while(n,m, fwd) = 0 n ≤ 0
3 while(n,m, fwd) = move(n,m, fwd, no) + while(no,m, fwd) n > 0
4 while(n,m, fwd) = move(n,m, fwd, no) + while(no,m, 1) n > 0

S3 5 move(n,m, fwd, no) = 2 +move(n+ 1,m, fwd, no) fwd = 1 ∧ n < m
6 move(n,m, fwd, no) = 0 fwd = 1 ∧ n = no
7 move(n,m, fwd, no) = 1 +move(n− 1,m, fwd, no) fwd = 0 ∧ n > 1
8 move(n,m, fwd, no) = 0 fwd = 0 ∧ n = no

Fig. 2. Cost equations of the example program from Fig. 1

(no in the method move). In a loop, the output variables are the local variables
that might be modified inside the loop. In the while loop from Fig.2, we would
have while(n,m, fwd, no, fwdo) where no and fwdo are the final values of n and
fwd, but the cost equations have been simplified for better readability.

Generating Cost Equations. Cost equations can be generated from source code
or low level representations. Loop extraction and partial evaluation are combined
to produce a set of cost equations with only direct recursion [1]. The details are
in the cited papers and omitted for lack of space. The resulting system is a
sequence of strongly connected components (SCCs) S1, . . . , Sn such that each Si

is a set of cost equations of the form 〈C(x) = e+
∑k

j=1 Dj(yj)+
∑n

j=1 C(yj), ϕ〉
with k ≥ 0 and n ∈ {0, 1} and each Dj ∈ Si′ where i′ > i. Each SCC is a
set of directly recursive equations with at most one recursive call and k calls to
SCCs that appear later in the sequence. Hence, S1 is the outermost SCC and
entry point of execution while Sn is the innermost SCC and has no calls to other
SCCs. Each resulting cost equation is a complete iteration of a loop or recursive
procedure.

Example 1. In Fig. 2, the cost equations of Program 1 are grouped by SCC.
Each SCC defines only one cost relation symbol: main, while, and move occur
in S1, S2, and S3, respectively. However, the cost equations in any SCC may
contain references to equations that appear later. For instance, equations 3 and
4 in S2 have references to move in S3.

A concrete execution of a relation symbol C in a set of cost equations is
generally defined as a (possibly infinite) evaluation tree T = node(r, {T1, . . . Tn}),
where r ∈ R+ is the cost of the root (an instance of the cost expression in C)
and T1, . . . Tn are sub-trees corresponding to the calls in C. In the following we
will not need this general definition. A formal definition of evaluation trees and
their semantics is in [1].

3 Control-Flow Refinement of Cost Equations

As noted in Sec. 1, we have to generate all possible execution patterns and
discard unfeasible patterns that might reduce precision or even prevent us from

Resource Analysis of Complex Programs with Cost Equations 279

obtaining an upper bound. Our cost equation representation allows us to look
at one SCC at a time. If we consider only the cost equations within one SCC,
we have sequences of calls instead of trees (we are only considering SCCs with
linear recursion). That does not prevent each cost equation in the sequence from
having calls to other SCCs.

Example 2. Given S3 from Fig. 2, the sequence 5 · 5 · 6 represents a feasible
execution where equation 5 is executed twice followed by one execution of 6. On
the other hand, the execution 5 · 8 is infeasible, because the cost constraints of
its elements are incompatible (fwd = 1 and fwd = 0).

Given an SCC C consisting of cost equations SC , we can represent its execu-
tion patterns as regular expressions over the alphabet of cost equations in SC .
We use a specific form of execution patterns that we call chain:

Definition 3 (Phase, Chain). Let SC = c1, . . . , cr be the cost equations of an
SCC C. A phase is a regular expression (ci1 ∨ . . . ∨ cim)+ over SC (executed a
positive number of times). A special case is a phase where exactly one equation
is executed: (ci1 ∨ . . . ∨ cim).

A chain is a regular expression over SC composed of a sequence of phases
ch = ph1 · ph2 · · · phn such that its phases do not share any common equation.
That is, if c ∈ phi, then c �∈ phj for all j �= i.

We say that a cost equation that has a recursive call is iterative and a cost
equation with no recursive calls is final. Given an SCC C consisting of cost
equations SC , we use the name convention i1, i2 . . . in for the iterative equations
and f1, f2 . . . fm for the final equations in SC . All possible executions of an SCC
can be summarized in three basic chains: (1) chn = (i1∨ i2∨· · ·∨ in)

+ · (f1∨f2∨
· · ·∨fm) an arbitrary sequence of iterations that terminates with one of the base
cases; (2) chb = (f1∨f2∨· · ·∨fm) a base case without previous iterations; (3) an
arbitrary sequence of iterations that never terminates chi = (i1 ∨ i2 ∨ · · · ∨ in)

+.

Example 3. The basic chains of method move (SCC S3 of Fig.2) are: chn =
(5∨ 7)+(6∨ 8), chb = (6∨ 8) and chi = (5∨ 7)+. Obviously, these chains include
a lot of unfeasible call sequences which we want to exclude.

3.1 Chain Refinement of an SCC

Our objective is to specialize a chain into more refined ones according to the
constraints ϕ of its cost equations. To this end, we need to analyse the possible
sequences of phases in a chain. We use the notation c ∈ ch to denote that the
cost equation c appears in the chain ch.

Definition 4 (Dependency). Let c, d ∈ ch, c = 〈C(x̄c) = . . . + C(z̄), ϕc〉,
d = 〈C(x̄d) = . . . , ϕd〉; then c � d iff the constraint ϕc ∧ ϕd ∧ (z̄ = x̄d) is
satisfiable. Intuitively, c � d iff d can be executed immediately after c. The
relation �∗ is the transitive closure of �.

280 A. Flores-Montoya and R. Hähnle

We generate new phases and chains according to these dependencies. Define
c ≡ d iff c = d (syntactic equality) or c �∗ d and d �∗ c. Each equivalence class
in [c]≡ gives rise to a new phase. If [c]≡ = {c} and c �� c, the new phase is (c).
If [c]≡ = {c1, . . . , cn}, the new phase is (c1 ∨ · · · ∨ cn)

+. To simplify notation
we identify an equivalence class with the phase it generates. Then ph ≺ ph′ iff
ph �= ph′, c ∈ ph, d ∈ ph′ and c � d. ch′ = ph1 · · · phn is a valid chain iff for all
1 ≤ i < n: phi ≺ phi+1.

Example 4. The dependency relation of move (SCC S3 from Fig. 2) is the fol-
lowing: 5 � 5, 5 � 6, 7 � 7 and 7 � 8. This produces the following phases:
(5)+, (7)+, (6) and (8), which in turn give rise to chains: non-terminating chains
(5)+, (7)+; terminating chains (5)+(6), (7)+(8) and the base cases (6), (8). This
refinement captures the important fact that the method cannot alternate the
behavior that increases n (cost equation 5) with the one that decreases it (cost
equation 7).

Theorem 1 (Refinement completeness). Let ch1, . . . , chn be the generated
chains for a SCC S from the basic chains of S. Any possible sequence of cost
equation applications of S is covered by at least one chain chi, i ∈ 1..n (a proof
can be found in [11]).

3.2 Forward and Backward Invariants

We can use invariants to improve the precision of the inferred dependencies and
to discard unfeasible execution patterns. Given a chain ch = ph1 · · · phn in Si

with C as cost relation symbol, we can infer forward invariants (fwdInv) that
propagate the context in which the chain is called from ph1 to the subsequent
phases. Additionally, we can propagate the relation between the variables from
the final phase phn to the previous phases until calling point ph1, obtaining
backward invariants (backInv). These invariants provide us with extra informa-
tion at each phase phi coming from the phases that appear before (fwdInv) or
after (backInv) phi.

fwdInv ch(phi) and backInv ch(phi) denote forward and backward invariants
valid at any application of the equations in the phase phi of chain ch. If it is
obvious which chain is referred to, we leave out the subscript ch. The forward
invariant at the beginning of a chain ch in an SCC Si is given by the conditions
under which ch is called in other SCCs. The backward invariant at the end of
a chain ch is defined by the constraints ϕ of the base case phn for terminating
chains. For non-terminating chains, the backward invariant at the end of a chain
is the empty set of constraints (true). The backward invariant of the first phase
of a chain ch represents the input-output relations between the variables. It can
be seen as a summary of the behavior of ch. The procedure for computing these
invariants can be found in [11].

Additionally, we define ϕph and ϕph∗ for iterative phases. The symbol ϕph

represents the relation between the variables before and after any positive num-
ber of iterations of ph, while ϕph∗ represents the relation between the variables
before and after zero or more iterations.

Resource Analysis of Complex Programs with Cost Equations 281

Example 5. Some of the inferred invariants for the chains of S3 of our example:
backInv (5)+(6)((5)

+) = fwd = 1 ∧m > n ∧m ≥ no ∧ no > n
backInv (7)+(8)((7)

+) = fwd = 0 ∧ n > 0 ∧ no ≥ 0 ∧ n > no

These invariants reflect applicability conditions (Such as fwd = 0) and the
relation between the input and the output variables. For example, no > n holds
when n is increased and n > no when it is decreased. The condition m ≥ no is
derived from the fact that at the end of phase (5)+ we have m > n, in phase (6)
n′ = no′ and the transition is n′ = n + 1 ∧ no′ = no.

We can use forward and backward invariants to improve the precision of the
inferred dependencies. At the same time, a more refined set of chains will allow
us to infer more precise invariants. Hence, we can iterate this process (chain
refinement and invariant generation) until no more precision is achieved or un-
til we reach a compromise between precision and performance. We can also
use the inferred invariants to discard additional cost equations or chains. Let
c = 〈C(x̄) = . . .+C(z̄), ϕ〉 ∈ phi, if ϕ∧ backInvch(phi)∧ fwdInv ch(phi) is unsat-
isfiable, c cannot occur and can be eliminated from phi in the chain ch. If any
invariant belonging to a chain is unsatisfiable its pattern of execution cannot
possibly occur and the chain can be discarded.

3.3 Terminating Non-termination

In our refinement procedure, we distinguish terminating and non-terminating
chains explicitly. Given a chain ph1 · · · phn, it is assumed that every phase phi

with i ∈ 1..n−1 is terminating. This is safe, because for each phi that is iterative
we generated another chain of the form ph1 · · · phi, where phi is assumed not to
terminate. That is, we consider both the case when phi terminates and when it
does not terminate. Given a non-terminating chain, if we prove termination of
its final phase, we can safely discard that chain.

Consider a phase (c1 ∨ c2 ∨ . . . ∨ cm)+, we obtain a (possibly empty) set of
linear ranking functions for each ci, denoted RFi, using the techniques of [6, 16].
A linear ranking function of a cost equation 〈C(x) = · · · + C(x′), ϕ〉 with a
recursive call C(x′) is a linear expression f such that (1) ϕ ⇒ f(x) ≥ 0 and (2)
ϕ ⇒ f(x)− f(x′) ≥ 1.

For each ranking function f of ci, we check whether its value can be incre-
mented in any other cj = 〈C(x) = · · ·+ C(x′), ϕj〉, j �= i (whether ϕj ∧ f(x)−
f(x′) < 0 is satisfiable). If f can be increased in cj we say that f depends on
cj . As in [3], the procedure for proving termination consists in eliminating the
cost equations that have a ranking function without dependencies first. Then,
incrementally eliminate the cost equations that have ranking functions whose
dependencies have been already removed until there are no cost equations re-
maining. The set of ranking functions and their dependencies will be used again
later to introduce specific bounds for the number of calls to each ci.

282 A. Flores-Montoya and R. Hähnle

Nr Cost Equation

3.1 while(n,m, fwd) = move(5)+(6)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 1 ∧m > n ∧m ≥ no ∧ no > n

3.2 while(n,m, fwd) = move(6)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 1 ∧ no = n

3.3 while(n,m, fwd) = move(7)+(8)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 0 ∧ no ≥ 0 ∧ n > no

3.4 while(n,m, fwd) = move(8)(n,m, fwd, no) + while(no,m, fwd)
n > 0 ∧ fwd = 0 ∧ n = no

Fig. 3. Refinement of Cost equation 3 from Fig. 2

Example 6. The ranking functions for the phases (5)+ and (7)+ are m− n and
n respectively. With such ranking functions, we can discard the non-terminating
chains (5)+ and (7)+. The remaining chains are (5)+(6), (7)+(8), (7) and (8).

3.4 Propagating Refinements

The refinement of an SCC Si in a sequence S1, . . . , Sn can affect both prede-
cessors and successors of Si. The initial forward invariants from SCCs that are
called in Si, the forward invariants of the SCCs Si+1, . . . , Sn might be strength-
ened by the refinement of Si. The preceding SCCs that have calls to Si can
be specialized so they call the refined chains. The backward invariants can be
included in the calling cost equations thus introducing a “loop summary” of Si’s
behavior.

Each cost equation containing a call to Si, say 〈D(x̄) = . . .+Cch(z̄), ϕ〉 ∈ Sj

with j < i, can be replaced with a set of cost equations 〈D(x̄) = . . .+Cch′(z̄), ϕ′〉,
where ch′ = ph1ph2 · · · phm is one of the refined chains of ch, and ϕ′ := ϕ ∧
backInvch′(ph1). If ϕ′ is unsatisfiable, the cost equation can be discarded.

Example 7. We propagate the refinement of method move (SCC S3) to while
(SCC S2). Fig. 3 shows how cost equation 3 is refined by substituting the calls to
move by calls to specific chains of move and by adding the backward invariants
of the callees to its cost constraint ϕ. Analogously, cost equation 4 is refined into
4.1, 4.2, 4.3, and 4.4. The only difference is that the latter have a recursive call
to while with fwd = 1. The cost equations of move are not changed because
the do not have calls to other SCCs.

The new phases are (3.1 ∨ 3.2∨ 4.1∨ 4.2)+, (3.3 ∨ 3.4)+, (4.3), (4.4) and (2).
Phase (3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ represents iterations of the loop when fwd = 1.
The fact that fwd is explicitly set to 1 in 4.1 and 4.2 does not have any effect.
Phase (3.3∨ 3.4)+ represents the iterations when fwd = 0 and is kept that way
in the recursive call. Finally, (4.3) and (4.4) are the cases where fwd is changed
from 0 to 1. If we use the initial forward invariant n ≥ 1 ∧m > n of main (in
SCC S1), we obtain the following chains:

Resource Analysis of Complex Programs with Cost Equations 283

Pattern (1) Pattern (2) Pattern (3)

(3.3 ∨ 3.4)+(4.3)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (4.3)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (3.3 ∨ 3.4)+(2)
(3.3 ∨ 3.4)+(4.4)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (4.4)(3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ (3.3 ∨ 3.4)+

They are grouped according to the execution patterns that were intuitively pre-
sented in Sec. 1. Note that neither (3.1 ∨ 3.2 ∨ 4.1 ∨ 4.2)+ or (3.3 ∨ 3.4)+ are
always terminating as we can iterate indefinitely on 3.2, 4.2 and 3.4. These cases
correspond to a call to move that immediately returns without modifying n.
Therefore, we cannot discard any of the non-terminating chains.

4 Upper Bound Computation

4.1 Cost Structures

At this point, a refined program consists of a sequence of SCCs S1, . . . , Sn where
each SCC Si contains a set of chains. We want to infer safe upper bounds for
each chain individually but, at the same time, take their dependencies into ac-
count. The standard approach on cost equations [1] consists in obtaining a cost
expression that represents the cost of each SCC Si and substituting any call to
that Si by the inferred cost expression. That way, we can infer closed-form upper
bounds for all SCCs in a bottom up approach (From Sn to S1). This approach
turns out not to be adequate to exploit the dependencies between different parts
of the code as we illustrate in the next example.

Example 8. Let us obtain an upper bound for method main when it behaves as
in chain (3.3 ∨ 3.4)+(2). This is a simple pattern, where move only increases or
leaves n unchanged. Following the standard approach, we first obtain the upper
bound for move when called in 3.3 and 3.4, that is, when move behaves as in
(7)+(8) and (8). By multiplying the maximum number of recursive calls with the
maximum cost of each call the upper bound we obtain is n and 0, respectively.
The cost of (3.3∨3.4)+(2) is then the maximum cost of each iteration n multiplied
by the maximum number of iterations. However, 3.4 can iterate indefinitely, so
we fail to obtain an upper bound.

If we apply the improved method of [4] after the refinement, we consider 3.3
and 3.4 independently. Phase 3.3 has zero cost and 3.4 has a ranking function
n, yielding a bound of n2 for this chain (while a more precise bound is n).

To overcome this problem, we define a new upper bound computation method
based on an intermediate structure that summarizes all the cost components
while maintaining part of the internal structure of what generated the cost.

Definition 5 (Cost Structure). A cost structure CT is a pair SE : CS.
Here SE is a cost expression of the form SE =

∑n
i=1 SEi ∗ ivi + e (n ≥ 0),

where e is a cost expression and ivi is a symbolic variable representing a natural
number. We refer to the ivi as iteration variables, to a product SEi ∗ ivi as
iteration component and to SE as structured cost expression. CS is a (possibly
empty) set of constraints of the form

∑m
j=1 ivj ≤ e (m ≥ 1), such that all its

284 A. Flores-Montoya and R. Hähnle

iteration variables appear in SE. The constraints relate iteration variables with
cost expressions. We use the notation

∑
iv ≤ e when the number of iteration

variables is irrelevant.

Intuitively, a structured cost expression represents a fixed cost e plus a set
of iterative components SEi ∗ ivi, where each iterative component is executed
ivi times and each iteration has cost SEi. The set of constraints CS binds the
values of the iteration variables iv and can express dependencies among iteration
components. For instance, a constraint iv1 + iv2 ≤ e expresses that the iteration
components iv1 and iv2 are bound by e and that the bigger iv1 is, the smaller
iv2 must be.

We denote with IV the set of iteration variables in a cost structure. Let
val : IV → E be an assignment of the iteration variables to cost expressions,
a valid cost of a cost structure CT =

∑n
i=1 SEi ∗ ivi + e : CS is defined as

val(SE) =
∑n

i=1 val(SEi) ∗ val(ivi) + e such that val(CS) is valid.1 A cost
structure can represent multiple upper bound candidates.

Example 9. Consider a cost structure a∗ iv1+b∗ iv2+c : {iv1 ≤ d, iv1+ iv2 ≤ e}
where a, b, c, d, and e are cost expressions. If a > b and d < e, an upper bound is
a ∗ d+ b ∗ nat(e− d) + c (The nat() wrapping can be omitted). In case of a < b,
an upper bound is b ∗ e + c.

We follow a bottom up approach from Sn to S1 and infer cost structures
for cost equations, phases and chains, detailed in Secs. 4.3, 4.4, and 4.5 below.
Sec. 4.2 contains a complete example. In Sec. 5, we present a technique to obtain
maximal cost expressions from cost structures. They key of the procedure is to
safely combine individual cost structures while detecting dependencies among
them. The intermediate cost structures are correct, that is, at the end of our
analysis of our example (Fig. 1) we will not only have upper bounds of main
but also a correct upper bound of move.

We define the operations that form the basis or our analysis.

Definition 6 (Cost Expression Maximization). Given a cost expression e,
a cost constraint ϕ, and a set of variables v, the operation bd(e, ϕ, v) returns a
set E of cost expressions that only contain variables in v and that are safe upper
bounds. That is, for each e′ ∈ E, we have that for all variable assignments to
integers α : vars(e′)∪vars(e) → Z that satisfy ϕ: α(e′) ≥ α(e). It is possible that
bd(e, ϕ, v) returns the empty set. In this case, no finite upper bound is known.

For bd(e, ϕ, v̄) = {e1, . . . , en} define min(bd(e, ϕ, v̄)) = min(e1, . . . , en). Note
that if bd(e, ϕ, v̄) = ∅, min(bd(e, ϕ, v̄)) = ∞. Cost expression maximization can
be implemented using geometrical projection over the dimensions of v̄ in the
context of the polyhedra abstract domain or as existential quantification of the
variables of e and ϕ that do not appear in v̄. This operation is done independently

1 Cost structures have some similarities to the multiple counter instrumentation de-
scribed in [14]. Iteration variables can be seen as counters for individual loops or
recursive components and constraints represent dependencies among these counters.

Resource Analysis of Complex Programs with Cost Equations 285

SCC Chain Execution

2 (3.3 ∨ 3.4)+(2) c3.?(x1)→ · · · c3.3(xi) → · · · → c3.?(xf)→ c2(xf+1)
↓ · · · ↓ · · · ↓

3 (7)+(8) c7(y1) → · · · → c7(yf)→ c8(yf+1)

Fig. 4. Schema of executing chain (3.3 ∨ 3.4)+(2)

for each l in the cost expression. The results can be safely combined as linear
expressions appear always inside a nat() in cost expressions.

Definition 7 (Structured Cost Expression Maximization). We define
recursively the bound of a structured cost expression as Bd(

∑n
i=1 SEi ∗ ivi +

e, ϕ, v̄) =
∑n

i=1 Bd(SEi, ϕ, v̄) ∗ ivi +min(bd(e, ϕ, v̄)).

4.2 Example of Upper Bound Computation

Fig. 4 represents the execution of chain (3.3 ∨ 3.4)+(2). The execution of the
phase (3.3 ∨ 3.4)+ consists on a series of applications of either 3.3 or 3.4. Each
equation application has a call to move. In particular, 3.3 calls move(7)+(8) and
3.4 calls move(8). In Fig. 4, only one call to move(7)+(8) is represented. cn(x)
represents an instance of cost equation n with variables x.

Cost of move. In order to compute the cost of the complete chain, we start by
computing the cost of the innermost SCCs. In this case, the cost of move. The
cost of one application of 8 (c8(yf+1)) and 7 (c7(yi)) are 0 and 1 respectively
(taken directly from the cost equations in Fig. 2). The cost of phase (7)+ is the
sum of the costs of all applications of c7: c7(y1), c7(y2), · · · , c7(yf). If c7 is applied
iv7 times, the total cost will be 1 ∗ iv7. Instead of giving a concrete value to iv7,
we collect constraints that bind its value and build a cost structure. In Sec. 3.3
we obtained the ranking function n for 7 so we have iv7 ≤ nat(n1). Moreover,
the number of iterations is also bounded by nat(n1−nf), the difference between
the initial and the final value of n in phase (7)+ (see Lemma 1). Consequently,
the cost structure for (7)+ is 1 ∗ iv7 : {iv7 ≤ n1, iv7 ≤ n1 − nf} (we omit
the nat() wrappings). If we had more ranking functions for 7, we could add
extra constraints. This is important because we do not know yet which ranking
function will yield the best upper bound. Additionally, we keep the cost per
iteration and the number of iterations separated so we can later reason about
them independently (detect dependencies). The cost of (7)+(8) is the cost of (7)+

plus the cost of (8) but expressed according to the initial variables y1. We add the
cost structures and maximize them (Bd) using the corresponding invariants. We
obtain 1 ∗ iv7 : {iv7 ≤ n1, iv7 ≤ n1 − no1} (because nf > nf+1 = nof+1 = no1).

Cost of one application of 3.3, 3.4 and 2. The cost of (2) is 0. The cost of one
application of 3.4 is the cost of a call to move(8), that is, 0. Conversely, the
cost of one application of 3.3 is the cost of one call to move(7)+(8). We want the

286 A. Flores-Montoya and R. Hähnle

cost of c3.3(xi) expressed in terms of the entry variables xi and the variables
of the corresponding recursive call xi+1. We maximize the cost structure of
move(7)+(8) using the cost constraints of 3.3 (ϕ3.3). This results in the cost
structure 1 ∗ iv7 : {iv7 ≤ ni, iv7 ≤ ni − ni+1} (the output no is ni+1 in the
recursive call).

Cost of phase (3.3∨ 3.4)+. The cost of phase (3.3∨ 3.4)+ is the sum of the cost
of all applications of c3.3 and c3.4: c3.?(x1), c3.?(x2), · · · , c3.?(xf). We group the
summands originating from 3.3 and from 3.4 and assume that c3.3 and c3.4 are
applied iv3.3 and iv3.4 times respectively. The sum of all applications of c3.4 is
0∗iv3.4 = 0. However, the cost of each c3.3(xi) might be different (depends on xi)
so we cannot simply multiply. Using the invariant ϕ(3.3∨3.4)∗ and ϕ3.3 we know
that n1 ≥ ni∧ni > ni+1 ∧ni+1 ≥ 0. Maximizing each of these constraints yields
iv7 ≤ n1 and we obtain a cost structure 1 ∗ iv7 : {iv7 ≤ n1} that is greater or
equal than all 1 ∗ iv7 : {iv7 ≤ ni, iv7 ≤ ni − ni+1} (because n1 ≥ ni). Therefore,
a valid (but imprecise) cost of (3.3 ∨ 3.4)+ is (1 ∗ iv7) ∗ iv3.3 : {iv7 ≤ n1, iv3.3 ≤
n1, iv3.3 ≤ n1−nf} (n is a ranking function of 3.3). If we solve the cost structure,
we will obtain the upper bound n2.

Inductive constraint compression. Because we kept the different components of
the cost separated, we can easily obtain a more precise cost structure Each call
to move starts where the last one left it and all of them together can iterate
at most n times. This is reflected by the constraint iv7 ≤ ni − ni+1. We can
compress all the iterations (n1 − n2) + (n2 − n3) + · · ·+ (nf−1 − nf) ≤ n1 − nf ,
pull out the iteration component 1∗ iv7 and obtain a more precise cost structure
(1 ∗ iv7) + (0 ∗ iv3.3) : {iv7 ≤ n1 − nf , iv3.3 ≤ n1, iv3.3 ≤ n1 − nf}. Then, we can
eliminate (0 ∗ iv3.3) arriving at (1 ∗ iv7) : {iv7 ≤ n1−nf} which will result in an
upper bound n.

4.3 Cost Structure of an Equation Application

Consider a cost equation c = 〈C(x̄) =
∑n

i=1 Di(ȳi)+e+C(x̄′), ϕ〉, where C(x̄′) is
a recursive call. We want to obtain a cost structure SEc : CSc that approximates
the cost of

∑n
i=1 Di(ȳi) + e and we want such a cost structure to be expressed

in terms of x̄ and x̄′.

Example 10. Consider cost equation 3.3 from Fig. 3 which is part of SCC S2:
while(n,m, fwd) = move(7)+(8)(n

′′,m′′, fwd′′, no) + while(n′,m′, fwd′)
Assume ϕ contains n′′ = n∧n′ = no. The cost of one application of 3.3 is the cost
of move(7)+(8)(n,m, fwd, no) expressed in terms of n,m, fwd and n′,m′, fwd′.
Let the cost of move(7)+(8) be 1 ∗ iv7 : {iv7 ≤ n′′, iv7 ≤ n′′ − no}, then we
obtain an upper bound by maximizing the structured cost expression and the
constraints in terms of the variables n,m, fwd and n′,m′, fwd′. The obtained
cost structure is 1 ∗ iv7 : {iv7 ≤ n, iv7 ≤ n− n′}.

Let SEi : CSi be the cost structure of the chain Di, then the structured cost
expression can be computed as SEc =

∑n
i=1 Bd(SEi, ϕ, x̄)+min(bd(e, ϕ, x̄)). By

Resource Analysis of Complex Programs with Cost Equations 287

substituting each call Di(ȳi) by its structured cost expression and maximizing
with respect to x̄, we obtain a valid structured cost expression in terms of the
entry variables.

A set of valid constraints CSc is obtained simply as the union of all sets
CSi expressed in terms of the entry and recursive call variables (x̄ and x̄′):
CSc ⊇ {

∑
iv ≤ e′|

∑
iv ≤ e ∈ CSi, e

′ ∈ bd(e, ϕ, x̄x̄′)}. Should the cost equation
not have a recursive call, all the maximizations will be performed only with
respect to the entry variables x̄.

Constraint Compression. In order to obtain tighter bounds, one can try to detect
dependencies among the constraints when they have a linear cost expression. Let∑

ivi ≤ nat(li) ∈ CSi and
∑

ivj ≤ nat(lj) ∈ CSj , j �= i. Now assume there
exist lnew ∈ bd(li + lj , ϕ, x̄x̄′), l′i ∈ bd(li, ϕ, x̄x̄′), and l′j ∈ bd(lj, ϕ, x̄x̄′) such that
ϕ ⇒ (lnew ≤ (l′i + l′j) ∧ lnew ≥ li ∧ lnew ≥ lj). nat(lnew) might bind nat(li)
and nat(lj) tighter than nat(l′i) and nat(l′j). Then we can add

∑
ivi +

∑
ivj ≤

nat(lnew) to the new set of constraints CSc.

Example 11. Suppose the cost equation from the previous example had two
consecutive calls to move: while(n,m, fwd) = move(7)+(8)(n1,m1, fwd1, no1) +
move(7)+(8)(n2,m2, fwd2, no2) +while(n′,m′, fwd′) with {n1 = n∧ no1 = n2 ∧
no2 = n′} ⊆ ϕ. The resulting cost structure would be 1 ∗ iv7.1 + 1 ∗ iv7.2 ∗ 2 :
{iv7.1 ≤ n, iv7.1 ≤ n−n′, iv7.2 ≤ n, iv7.2 ≤ n−n′} (iv7.1 and iv7.2 correspond to
the iterations of the two instances of phase (7)+). However, we could compress
iv7.1 ≤ n1 − no1 and iv7.2 ≤ n2 − no2 (from Ex. 10) into iv7.1 + iv7.2 ≤ n − n′

and add it to the final set of constraints. This set represents a tighter bound and
captures the dependency between the first and the second call.

4.4 Cost Structure of a Phase

Refined phases have the form of a single equation (c) or an iterative phase
(c1 ∨ c2 ∨ . . . ∨ cn)

+. The cost of (c) is simply the cost of c. The cost of an
iterative phase is the sum of the costs of all applications of each ci (see Sec. 4.2).
Let CTi = SEi : CSi be the cost of one application of ci, we group the summands
according to each ci and assign a new iteration variable ivi that represents the
number of times such a cost equation is applied. The total cost of the phase is∑n

i=1(
∑ivi

j=1 SEi(xj)) where SEi(xj) is an instance of SEi with the variables
corresponding to the j-th application of ci.

For each ci in the phase (c1 ∨ c2 ∨ . . . ∨ cn)
+ we obtain a structured cost

expression Bd(SEi, ϕph∗ , x̄1) where ϕph∗ is an auxiliary invariant that relates x̄1

(the variables at the beginning of the phase) to any x̄j as defined in Sec. 3.2.
That structured cost expression is valid for any application of ci during the
phase. This allows us to transform each sum

∑ivi
j=1 SEi(x̄j) into a product ivi ∗

Bd(SEi, ϕph∗ , x̄1). Similarly, we maximize the cost expressions in the constraints.
A set of valid constraints is CSph =

⋃n
i=1({

∑
ivi ≤ e′i|

∑
ivi ≤ ei ∈ CSi, e

′
i ∈

bd(ei, ϕph∗ ∧ ϕci , x̄1}) ∪ CSnew , where CSnew is a new set of constraints that
bounds the new iteration variables (iv1, iv2, · · · , ivn). The maximization of the

288 A. Flores-Montoya and R. Hähnle

constraints is equivalent to the maximization of the iteration variables inside
SEi (a proof can be found in [11]).

Bounding the iterations of a phase. To generate the constraints in CSnew , we use
the ranking functions and their dependencies obtained when proving termination
(see Sec. 3.3).

Example 12. Consider a phase formed by the following cost equations expressed
in compact form (we assume that all have the condition a, b, c ≥ 0):
1 : p(a, b, c) = p(a− 1, b, c) 2 : p(a, b, c) = p(a+ 2, b− 1, c) 3 : p(a, b, c) = p(a, c, c− 1)

(3) has a ranking function c with no dependencies. We can add iv3 ≤ c to the
constraints. (2) has b as a ranking function but it depends on (3). Every time (3)
is executed, b is “restarted”. Fortunately, the value assigned to b has a maximum
(the initial c). Therefore, we can add the constraint iv2 ≤ b + c ∗ c. Finally, (1)
has a as a ranking function that depends on (2). a is incremented by 2 in every
execution of (2) whose number of iterations is at most b + c ∗ c. We add the
constraint iv1 ≤ a+ 2 ∗ (b + c ∗ c).

More formally, we have a set RFi for each ci in a phase. Each f ∈ RFi

has a (possibly empty) dependency set to other cj . Given a ranking function f
that occurs in all sets RFi1 , . . . , RFim for a maximal m, ik ∈ 1..n. If f has no
dependencies, then nat(f) expressed in terms of x̄1 is an upper bound on the
number of iterations of ci1 , . . . , cim and we add

∑m
k=1 ivik ≤ nat(f) to CSnew.

If f depends on cj1 , . . . , cjl (ji ∈ 1..n) and ubj1 , . . . , ubjl are upper bounds
on the number of iterations of cj1 , . . . , cjl , then we distinguish two types of
dependencies: (1) if cji increases f by a constant tji then each execution of
cji can imply tji extra iterations. We add ubji ∗ tji to f ; (2) otherwise, if f

can be “restarted” in every execution of cji , then Rf
ji
∈ bd(f(x̄3), ϕph∗(x̄1x̄2) ∧

ϕcji
(x̄2x̄3), x̄1) represents the maximum value that f can take in cji (if it exists)

and we add ubji ∗ nat(Rf
ji
). Taken together, we can add

∑m
k=1 ivik ≤ nat(f) +∑p

i=1 ubji ∗ tji +
∑l

i=p ubji ∗ nat(Rf
ji
) to CSnew where cj1 , cj2 · · · cip are the

dependencies of type (1) and cip , cip+1 · · · cil the ones of type (2).
On top of this, we add constraints that depend on the value of the variables

after the phase (see the cost of (7)+ Sec.4.2). This will allow us to perform
constraint compression afterwards.

Lemma 1. Given a sequence of r calls ci1(x̄1) · ci2(x̄2) · · · cir (x̄r) · c′(x̄r+1),
during which ci occurred p times and f ∈ RFi, and for all 〈cij (x̄j) = · · · +
cij+1(x̄j+1), ϕ〉, ϕ ⇒ (f(x̄j)− f(x̄j+1) ≥ 0). We have that f(x̄1)− f(x̄r+1) ≥ p.

If f is a ranking function in RFi1 , . . . , RFim as above, if f has no dependen-
cies, we can use Lemma 1 (a proof can be found in [11]) to add

∑m
k=1 ivik ≤

nat(f(x̄1)−f(x̄f)) to CSnew where x̄f are the variables at the end of the phase.

Inductive constraint compression. We generalize the constraint compression pre-
sented in Sec. 4.3. Instead of compressing two constraints, we compress an arbi-
trary number of them inductively. This is the mechanism used to obtain a linear
bound for the chain (3.3 ∨ 3.4)+ at the end of Sec. 4.2.

Resource Analysis of Complex Programs with Cost Equations 289

When a constraint is compressed, its iteration variables should be removed
from constraints that cannot be compressed. Removing an iteration variable
from a constraint is always safe but can introduce imprecision.

Given a cost expression ei that we want to compress to
∑

iv ≤ ei, we start
with a copy e′i of e1 as our candidate. First, prove the base case ϕi ⇒ e′i ≥ ei
(which is trivial given that ei and e′i are equal). Then prove the induction step
ϕph(x̄1x̄2)∧ϕph∗(x̄2x̄3)∧ϕi(x̄3x̄4)⇒ e′i(x̄1x̄4) ≥ e′i(x̄1x̄2)+ei(x̄3x̄4). Assuming e′i
is valid for a number of iterations (represented as ϕph(x̄1x̄2)), this shows that it is
valid for one more iteration (ϕi(x̄3x̄4)) even if there are interleavings with other
cj (ϕph∗(x̄2x̄3)). Once we proved that, we can add the constraint

∑
iv′ ≤ e′i and

pull the corresponding iteration components out of the corresponding product
(a proof can be found in [11]).

If we can prove the stronger inequality e′i(x̄1x̄4) ≥ e′i(x̄1x̄2)+ei(x̄3x̄4)+1, then
we know that e′i also decreases with the iterations of ci. In this case we derive a
new constraint

∑
iv′ + ivi ≤ e′i. We can generalize this procedure to compress

constraints that originate from different equations. This is demonstrated by the
following example.

Example 13. Consider the phase (3.1∨3.2∨4.1∨4.2)+. Both 3.1 and 4.1 have a
call to move(5)+(6) and their cost structures are iv5.1 ∗ 2 : {iv5.1 ≤ n′−n, iv5.1 ≤
m − n} and iv5.2 ∗ 2 : {iv5.2 ≤ n′ − n, iv5.2 ≤ m − n}. We can compress both
iteration variables obtaining iv5.1 ∗ 2 + iv5.2 ∗ 2 : {iv5.1 + iv5.2 ≤ n′ − n} (3.2
and 4.2 have zero cost) that when maximized will give us iv5.1 ∗ 2 + iv5.2 ∗ 2 :
{iv5.1 + iv5.2 ≤ m− n} which represents the upper bound 2(m− n).

4.5 Cost Structure of a Chain

Given a chain ch = ph1 · · · phn whose phases have cost structures CT1, . . . CTn,
we want to obtain a cost structure CTch = SEch : CSch for the total cost of
the chain. This is analogous to computing the cost structure of an equation in
Sec. 4.3. One constructs a cost constraint ϕch relating all variables of the calls
to the entry variables and to each other: ϕch = ϕph1(x1x2) ∧ ϕph2(x2x3) ∧ · · · ∧
ϕphn(xn). This cost constraint can be enriched with the invariants of the chain.

The structured cost expression is SEch =
∑n

i=1 Bd(SEi, ϕch, x̄) and the con-
straints are CSc ⊇ {

∑
iv ≤ e′|

∑
ivi ≤ e ∈ CSi, e

′ ∈ bd(e, ϕch, x̄)}. Again, we
can apply constraint compression to combine constraints from different phases.

Example 14. The cost of patterns (2) and (3) in Ex. 7 derive directly from the
cost of their phases (see Sec. 4.2 and Ex. 13). We examine the cost of pattern
(1), that is, (3.3∨3.4)+(4.3)(3.1∨3.2∨4.1∨4.2)+. Considering that variables are
subscripted with 1, 2 and 3 for their value before the first, second and third phase,
the cost structures of the phases are: 1∗iv7.1 : {iv7.1 ≤ n1−n2}, 1∗iv7.2 : {iv7.2 ≤
n2 − n3} and iv5.1 ∗ 2 + iv5.2 ∗ 2 : {iv5.1 + iv5.2 ≤ n4 − n3}. The joint invariants
guarantee that n3 ≥ 0∧n4 ≤ m. We can compress the constraints iv7.1 ≤ n1−n2

and iv7.2 ≤ n2−n3 and maximize with respect to the initial variables obtaining
1 ∗ iv7.1 + 1 ∗ iv7.2 + 2 ∗ iv5.1 + 2 ∗ iv5.2 : {iv7.1 + iv7.2 ≤ n1, iv5.1 + iv5.2 ≤ m1}.
Such a cost structure represents the bound n+ 2m as expected.

290 A. Flores-Montoya and R. Hähnle

5 Solving Cost Structures

Solving a cost structure SE : CS means to look for a maximizing assignment
valmax from iteration variables to cost expressions (without iteration variables)
such that CS ⇒ valmax(SE) ≥ SE is valid. Even though iteration variables
range over natural numbers, we consider a relaxation of the problem where
iteration variables can take any non-negative real number. The maximization of
valmax(SE) represents the cost structure SE where each iv has been substituted
by valmax(iv) and valmax(SE) is an upper bound of the cost structure SE : CS.

Let SE =
∑n

i=1 SEi∗ivi+e, The maximization of each SEi can be performed
independently, because its iteration variables depend neither on other iteration
variables of SEj for j �= i nor on any ivi. Let ei be the maximization of SEi,
then we obtain

∑n
i=1 ei ∗ ivi + e as well as a set of constraints over the ivi. As

the ei’s can be symbolic expressions, not necessarily comparable to each other,
we need a procedure to find an upper bound independently of the ei.

We group iteration components (Def. 5) based on dependencies. Two iteration
components depend on each other if their iteration variables appear together in
a constraint. An iteration group IG is a partial cost structure

∑m
i=1 eji ∗ivji : CS

(1 ≤ ji ≤ n for i ∈ 1..m) where its iteration components depend on each other.
A constraint

∑m
i=1 ivji ≤ e is active for assignment val iff

∑m
i=1 val(ivji) = e.

Let C =
∑m

i=1 ivji ≤ e, C′ =
∑m+k

i=1 ivji ≤ e′ be constraints such that C ⊆ C′

and val any assignment: (i) If C is active for val, then C = e and we substitute∑m+k
i=m+1 ivji ≤ nat(e′ − e) for C′ making the two constraints independent; (ii)

If C is not active, we ignore C and consider the rest of the constraints.
Consider an IG SE : CS that we want to maximize. For each C,C′ ∈ CS with

C ⊆ C′, we use the observation in the previous paragraph to derive simplified
constraints CS1, CS2. We solve both constraints and obtain val1, val2. The
maximum cost of IG is min(val1(SE), val2(SE)). Constraints with only one iv
can always be reduced. We repeat the procedure until the constraints cannot be
further simplified. The constraints can now be grouped into irreducible IGs. A
trivial IG is one with a single iv constraint iv ≤ e whose maximal assignment
is val(iv) = e. All constraints in an irreducible, non-trivial IG have at least two
iteration variables.

Example 15. Consider the following cost structure iv1∗1+iv2∗(b)+iv3∗(iv4∗2) :
{iv1 + iv2 + iv3 ≤ a + b, iv1 + iv2 ≤ c, iv4 ≤ d}. First, we maximize the internal
iteration component iv4∗2 which contains a trivial IG iv4 ≤ d. The result is iv1∗
1+iv2∗(b)+iv3∗(2d) : {iv1+iv2+iv3 ≤ a+b, iv1+iv2 ≤ c}. This cost structure
forms a single IG with two constraints one contained in the other. (1) We assume
iv1 + iv2 ≤ c is active. Then we have {iv3 ≤ nat(a+ b− c), iv1 + iv2 ≤ c} which
contains two irreducible IG. The first one is iv3 = nat(a+ b− c) and the second
one has two possibilities iv1 = c, iv2 = 0 or iv1 = 0, iv2 = c (Thm. 2 below). The
result is then nat(a+b−c)+max(b∗c, 2d∗c). (2) If iv1+iv2 ≤ c is not active, we
have only iv1+iv2+iv3 ≤ a+b which yields max(a+b, b∗(a+b), 2d∗(a+b)). The
cost is min(nat(a+ b− c)+max(b ∗ c, 2d ∗ c),max(a+ b, b∗ (a+ b), 2d ∗ (a+ b))).

Resource Analysis of Complex Programs with Cost Equations 291

We could have dropped the second constraint from the beginning and obtain
a less precise bound max(a + b, b ∗ (a + b), 2d ∗ (a + b)). We can even split the
constraint iv1+ iv2+ iv3 ≤ a+ b into iv1 ≤ a+ b, iv2 ≤ a+ b and iv3 ≤ a+ b and
obtain (1+b+2d)∗ (a+b). That way we can balance precision and performance.

Definition 8 (IG dependency graph). Let IG = SE : CS. Its dependency
graph G(IG) is defined as follows: for each C ∈ CS G has a node C. For each
C ∩C′ such that C,C′ ∈ CS and C ∩C′ �= ∅ G has a node d(C ∩C′), and edges
from C to d(C ∩ C′) and from d(C ∩ C′) to C′.

Example 16. Given the IG {iv1 + iv2 ≤ a, iv2 + iv3 ≤ b, iv2 + iv4 ≤ c}, its
dependency graph contains the nodes n1 = ”iv1+iv2 ≤ a”, n2 = ”iv2+iv3 ≤ b”,
n3 = ”iv2+ iv4 ≤ c” and n4 = ”d(iv2)”. The edges are (n1, n4), (n2, n4), (n3, n4).

Theorem 2. Given an irreducible, non-trivial IG. If G(IG) is acyclic there
exists a maximizing assignment valmax such that there is an active constraint
with only one non-zero iteration variable.

If G(IG) is acyclic, we apply Thm. 2 to solve IG incrementally. Let Ci =∑r
j=1 ivij ≤ e ∈ CS: we obtain a partial assignment valik such that valik(ivk) =

e for some ivk ∈ Ci and all other iteration variables in Ci being assigned 0. We
update CS with valik and obtain a constraint system with less iteration variables
and constraints whose graph is still acyclic, and so on. Once no iteration variable
is left, we end up with a set of assignments MaxV al. The maximum cost of
IG = SE : CS is maxval∈MaxV alval(SE).

Example 17. We obtain one of the assignments in MaxV al for the IG of Ex. 16.
We take the constraint iv1 + iv2 ≤ a and assign iv1 = a and iv2 = 0. The
resulting constraints are iv3 ≤ b and iv4 ≤ c that are trivially solved. The
resulting assignment is iv1 = a, iv2 = 0, iv3 = b and iv4 = c.

The requirement of G(IG) being acyclic can be relaxed. A discussion and the
proof of Thm. 2 is in [11]. One can always obtain an acyclic IG by dropping
constraints or by removing iteration variables from a given constraint. Such
transformations are safe since they only relax the conditions imposed on the
iteration variables. In practice, we perform a pre-selection of the constraints to
be considered based on heuristics to improve performance.

6 Related Work and Experiments

This work builds upon the formalism developed in the COSTA group [1, 2, 4, 5],
however, the are important differences in how upper bounds are inferred. In [1],
upper bounds are computed independently for each SCC and then combined
without taking dependencies into account. The precision of that approach is im-
proved in [2] for certain kinds of loops. The paper [5] presents a general approach
for obtaining amortized upper bounds that, although powerful, does not scale
well. In [4] SCCs are decomposed into sparse cost equations systems. Then it is
possible to use the ideas of [5] to solve the sparse cost equations precisely.

292 A. Flores-Montoya and R. Hähnle

In our work, we also decompose programs, but driven by possible sequences
of cost applications. This technique, known as control-flow-refinement, has been
applied to the resource analysis of imperative programs in [9, 13]. In addition,
our refinement technique can deal with programs with linear recursion (non nec-
cessarily tail recursive) and multiple procedures. In our analysis we do not refine
the whole program at once. Instead, we refine each SCC and then propagate
the changes. Our technique allows to leave parts of the program unrefined to
increase performance. Paper [15] uses disjunctive invariants to summarize inner
loops instead of control-flow-refinement. This technique can also deal with some
kinds of non-terminating programs. However, it can only bound the number of
visits to a single location in a single procedure. In contrast, our tool can count
the number of visits to several locations in multiple procedures derived from cost
annotations. The tool Loopus [18] uses disjunctive invariants, collects the inner
paths of each loop and also uses contextualization which is a form of control-flow
refinement. Both [15, 18] obtain ranking functions based on given patterns and
combine them using proof rules. Instead, we infer linear ranking functions us-
ing linear programming [6, 16] and combine them to form lexicographic ranking
functions (see Sec. 4.4).

SPEED [14] makes use of multiple counters to bound and detect dependencies
of different loops. SPEED computes cost summaries for the (non-recursive) pro-
cedure calls. Therefore, it cannot detect dependencies among different procedure
calls. KoAT [8] adopts an iterative approach, where size analysis and complex-
ity analysis are interleaved and improve each other. That paper also extends
transitions systems to deal with inter-procedural and recursive programs. Very
recently, a new version of Loopus has been released [17]. They use a simple ab-
straction and achieve very high performance and great effectiveness. They can
also obtain amortized cost for complex nested loops. However, their analysis is
limited to imperative programs and cannot deal with recursion.

1 log n n n log n n2 n3 > n3 No res.
CoFloCo 120 0 158 0 51 2 3 298
KoAT 117 0 120 0 51 0 4 340
PUBS 112 2 90 5 42 5 3 373
Loopus3 128 0 141 0 73 11 4 275

CoFloCo 1 0 16 0 14 7 0 1
PUBS 1 2 13 3 12 6 0 2
Loopus3 2 0 11 0 7 4 0 15

For our experimental
evaluation we took the
problem set used by KoAT’s
evaluation2 [8], except those
with multiple recursion
(671 problems). We exe-
cuted each problem with
PUBS [1], KoAT, and our
tool CoFloCo (SPEED
and the first version of Loopus [18] are not publicly available). The problems
are taken from the literature on resource analysis [3, 13–15, 18] and include
most of the problems used in the evaluation of [7] (632 problems in the first part
of the table) and the ones of the evaluation of PUBS [1] (39 problems in the
second part).

The problems of the first part were automatically translated from KoAT’s
input format to cost equations. That includes performing loop extraction (and

2 http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity/

Resource Analysis of Complex Programs with Cost Equations 293

generating invariants for PUBS). No slicing took place so the input cost equations
might have many more variables than needed. For the second set we used the
original cost equations for PUBS and CoFloCo. We decided not to include these
problems for KoAT as the translation generated in [8] is not sound (we found
several problems where KoAT yields an incorrect upper bound). We summarize
the number of problems solved by each tool in different complexity categories.
Each problem was run with a time-out of 60 secs. The same set of problems3

has been used to evaluate the new version of Loopus [17]. We include the results
of their evaluation4 in a shaded row to emphasize that we did not run the
experiments ourselves.

CoFloCo obtains a bound asymptotically better than KoAt in 79 problems
and better than PUBS in 96 problems. Conversely, KoAt obtains a better bound
than CoFloCo in 21 problems and PUBS is better than CoFloCo in 4 problems.
CoFloCo obtains better results than Loopus in 67 of the problems analyzed
by both. Loopus obtains better results than CoFloCo in 78 problems. How-
ever, in 37 of these problems, Loopus reports an upper bound as a function of
call to nondet line X where X is a line number. It seems that Loopus assumes
a specific symbolic value whenever a non-deterministic assignment is executed
whereas CoFloCo does not make such an assumption and fails to provide a
bound. The complete experimental data and the implementation are available.5

At this time, CoFloCo is just prototype and can be greatly improved. It fails
on 23 problems because of irreducible loops. Irreducible loops can be trans-
formed and the approach could be extended to handle other domains including
non-linear constraints, logarithmic bounds, etc. The invariants could also be im-
proved with the termination information of Sec.3.3 following the ideas of [8].
CoFloCo had 70 time-outs. Most occurred with problems with many variables
where slicing could be applied. In some occasions, the control-flow-refinement of
cost equations can generate exponentially many chains. However, these chains
have many fragments in common and part of the invariant and upper bound com-
putation can be reused. Moreover, some SCCs can be left unrefined to achieve
a compromise between performance and precision.

We presented a control-flow-refinement algorithm that can be applied to linear
recursive programs (other approaches do not support recursion). The algorithm
distinguishes terminating and non-terminating executions explicitly which allows
obtaining better invariants for the terminating executions. This also allows to
have intermediate cost expressions depending on the output variables (see the
cost of (7)+(8)) and thus obtain amortized cost bounds. We obtain an upper
bound for each execution pattern (chain), which often provides more precise
information than a generic upper bound for any possible execution. The upper
bounds are also precise because cost structures allow us to maintain several
upper bound candidates, detect dependencies among different parts of the code
(using constraint compression) and obtain complex upper bound expressions.

3 18 problems included here were left out of the evaluation of Loopus.
4 http://forsyte.at/static/people/sinn/loopus/CAV14/
5 www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco

www.se.tu-darmstadt.de/se/group-members/antonio-flores-montoya/cofloco

294 A. Flores-Montoya and R. Hähnle

Acknowledgements. Research partly funded by the EU project FP7-610582
ENVISAGE: Engineering Virtualized Services. We thank the anonymous review-
ers for their careful reading which resulted in numerous improvements. We thank
S. Genaim for valuable discussions and help with the experiments.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. J. of Automated Reasoning 46(2), 161–203 (2011)

2. Albert, E., Genaim, S., Masud, A.N.: More precise yet widely applicable cost anal-
ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 38–53.
Springer, Heidelberg (2011)

3. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

4. Alonso-Blas, D.E., Arenas, P., Genaim, S.: Precise cost analysis via local reasoning.
In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 319–333.
Springer, Heidelberg (2013)

5. Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost
analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421.
Springer, Heidelberg (2012)

6. Bagnara, R., Mesnard, F., Pescetti, A., Zaffanella, E.: A new look at the automatic
synthesis of linear ranking functions. Information and Computation 215, 47–67
(2012)

7. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013)

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime
and size complexity analysis of integer programs. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 140–155. Springer, Heidelberg (2014)

9. Chen, H.Y., Mukhopadhyay, S., Lu, Z.: Control flow refinement and symbolic com-
putation of average case bound. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013.
LNCS, vol. 8172, pp. 334–348. Springer, Heidelberg (2013)

10. Cook, B., See, A., Zuleger, F.: Ramsey vs. Lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013)

11. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. Technical report, TU Darmstadt (2014), https://www.se.
tu-darmstadt.de/fileadmin/user upload/Group SE/Page Content/

Group Members/Antonio Flores-Montoya/APLAS14techReport.pdf

12. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

13. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants
for bound analysis. In: PLDI (2009)

14. Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: Precise and efficient static esti-
mation of program computational complexity. In: POPL, pp. 127–139. ACM, New
York (2009)

https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/Antonio_Flores-Montoya/APLAS14techReport.pdf
https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/Antonio_Flores-Montoya/APLAS14techReport.pdf
https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Page_Content/Group_Members/Antonio_Flores-Montoya/APLAS14techReport.pdf

Resource Analysis of Complex Programs with Cost Equations 295

15. Gulwani, S., Zuleger, F.: The reachability-bound problem. In: PLDI 2010, pp. 292–
304. ACM, New York (2010)

16. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

17. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound
analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 745–761. Springer, Heidelberg (2014)

18. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative pro-
grams with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

Simple and Efficient Algorithms for Octagons

Aziem Chawdhary, Ed Robbins, and Andy King

University of Kent, CT2 7NF, UK

Abstract. The numerical domain of Octagons can be viewed as an ex-
ercise in simplicity: it trades expressiveness for efficiency and ease of im-
plementation. The domain can represent unary and binary constraints
where the coefficients are �1 or �1, so called octagonal constraints, and
comes with operations that have cubic complexity. The central operation
is closure which computes a canonical form by deriving all implied octag-
onal constraints from a given octagonal system. This paper investigates
the role of incrementality, namely closing a system where only one con-
straint has been changed, which is a dominating use-case. We present two
new incremental algorithms for closure both of which are conceptually
simple and computationally efficient, and argue their correctness.

1 Introduction

The octagon domain [16] has become the de facto standard domain for large-
scale program analysis. Each invariant in the domain is a system (conjunction) of
inequalities over the variables in the program; each inequality takes the restricted
form of �xi�xj � c, where xi and xj are variables and c is a numerical constant.
When xi � xj the inequality is unary otherwise it is binary. A unary inequality
can express a lower or an upper bound on a variable; whereas a binary inequality
places a lower or an upper bound on either the difference between two variables
or their sum. A solid planar octagon is expressed as the system

x2 � 1 � x1 � x2 � 1 � x1 � 1 � x1 � x2 � 1 �
�x2 � 1 � �x1 � x2 � 1 � �x1 � 1 � �x1 � x2 � 1

hence the name of the domain. The domain of octagons is more expressive than
the domain of intervals [9] because intervals cannot express differences [14]. More-
over, octagons are more expressive than differences [14] since differences cannot
bound sums. Yet the domain of octagons is not as rich as the two-variable-
per-inequality (TVPI) abstract domain [19] which relaxes the requirement that
coefficients are �1 and the TVPI domain is, in turn, less expressive than general
polyhedra [6] that permit arbitrary n-ary inequalities to be represented.

Domain construction is a balancing act since increasing expressiveness nor-
mally degrades performance. The octagon domain has proved to be popular
because it is rich enough to support many clients applications, yet all its op-
erations can be reduced to shortest path problems [7,20]. Octagons have been
applied in model checking [12], shape analysis [13], interpolation [8], proving pro-
gram termination [4] and deployed in commercial static analysis tools [5]. Any
computational improvement for this domain thus promises to have wide impact.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 296–313, 2014.
c© Springer International Publishing Switzerland 2014

Simple and Efficient Algorithms for Octagons 297

Miné, who first proposed this domain [16], used difference bound matrices
(DBMs) to represent a system of octagonal inequalities. His insight was to in-
troduce auxiliary variables x�2i�1 � �xi and put x�2i � xi so that inequalities
such as xi � xj � c and �xi � xj � c can be translated into differences, namely
x�2i � x�2j�1 � c and x�2i�1 � x�2j � c, and thereby represented with DBMs.
Moreover the unary inequalities xi � c and �xi � c can also be represented as
differences by x�2i�x�2i�1 � 2c and x�2i�1�x�2i � 2c respectively. Miné derived a
canonical form for octagons by applying a Floyd-Warshall style algorithm [7,20]
on the DBMs; he also showed how all the domain operations can be reduced to
computing this canonical form, which is derived by an operation called closure.
The intuition behind closure is that it makes explicit all entailed unary and
binary constraints and thereby provides a canonical representation. As well as
combining two differences such as x�i � x�j � c1 and x�j � x�k � c2 to derive the
entailed inequality x�i�x�k � c1�c2, closure amalgamates unary constraints into
a binary constraint. This requires special logic since xi � c1 and xj � c2 are
encoded as x�2i � x�2i�1 � 2c1 and x�2j � x�2j�1 � 2c2 which need to be combined
to give x�2i � x�2j�1 � c1 � c2 that encodes xi � xj � c1 � c2. Likewise �xi � c1
and �xj � c2 need to be combined to give �xi � xj � c1 � c2, etc.

Miné adapted the Floyd-Warshall algorithm, which repeatedly combines dif-
ferences, to handle unary constraints. Later it was independently shown, through
an ingenious correctness argument [1], that unary constraints can be handled
outside the main loop of the Floyd-Warshall algorithm, in a post-processing
step called strengthening. This result led to a performance improvement of ap-
proximately 20% [1] which is truly worthwhile. Another worthwhile refinement,
which was advocated by Miné himself [15], is to exploit the frequent use-case
in which a single inequality is added to a closed system. Miné reordered the
columns and rows of the DBM (at least conceptually) so that only entries in
the last two columns and rows were recomputed, which led to a quadratic al-
gorithm. Our observation is that an incremental algorithm can be derived by
considering paths formed from three inequalities, two of which are expressed in
the DBM and the third being the new constraint which is added. As with the
strengthening refinement, which is essentially a very clever form of code motion,
our observation likewise leads to simpler and more efficient code.

Our contribution is to propose two new incremental algorithms for closing an
octagon represented as a DBM. These algorithms represent different points in
the design space: the first is simple and efficient; the second is marginally more
complex but marginally faster. The correctness of these algorithms is proven
and experimental results are presented which quantify their relative speed [1].
Along the way, the paper also proposes a simplification to Miné’s incremental
algorithm [15] and gives simpler correctness proofs for non-incremental versions
of the algorithm. This paper has been designed to be a self-contained guide to
implementing closure, which is the key step in realising this abstract domain,
hence the paper includes a primer on this domain and its DBM representation.

298 A. Chawdhary, E. Robbins, and A. King

x0 � x1 � 2
�x0 � x1 � 1
x0 � x1 � �3

x1 � �2
�x0 � 1

x�0 � x�3 � 2
x�2 � x�1 � 2
x�1 � x�2 � 1
x�3 � x�0 � 1
x�0 � x�2 � �3
x�3 � x�1 � �3
x�2 � x�3 � �4
x�1 � x�0 � 2

x�0

x�1x�2

x�3

-3

2

2

1

2

-4

1

-3

�
���

x�

0 x�

1 x�

2 x�

3

x�

0 � � �3 2
x�

1 2 � 1 �
x�

2 � 2 � �4
x�

3 1 �3 � �

�
���

�
���

x�

0 x�

1 x�

2 x�

3

x�

0 3 �1 �3 7
x�

1 2 1 �1 �5
x�

2 �3 �7 �16 �28
x�

3 �1 �3 �20 �96

�
���

Fig. 1: Example of an octagonal system and its DBM representation

2 Primer on the Octagon Domain

The seminal [15,16] and definitive [1] works on octagons are all long, so this
primer is intended to serve as a self-contained short introduction to octagons, in
particular the closure operation, on which this paper focuses.

2.1 The Domain and Its Representation

An octagonal constraint is a two variable inequality of the form �xi � xj � c
where xi and xj are variables and c is a constant. An octagon is a set of points
satisfying a system of octagonal constraints. The octagon domain is the set of
all octagons that can be defined over a finite system of variables x0 . . . xn�1.

An attractive way to implement the octagon domain is to reuse machinery
developed for solving difference constraints of the form xi � xj � c. Miné [16]
showed that octagonal constraints could be translated into differences by working
with an extended set of variables x�0 . . . x�2n�1 and letting xi � x�2i and, most
significantly, putting �xi � x�2i�1. Then single octagonal constraints can be
translated into a conjunction of one or more difference constraints as follows:

xi � xj � c� x�2i � x�2j � c � x�2j�1 � x�2i�1 � c
xi � xj � c� x�2i � x�2j�1 � c � x�2j � x�2i�1 � c

�xi � xj � c� x�2i�1 � x�2j � c � x�2j�1 � x�2i � c
xi � c� x�2i � x�2i�1 � 2c

�xi � c� x�2i�1 � x�2i � 2c

A system of difference constraints is represented using a difference-bound
matrix (DBM). A DBM m is a square matrix of dimension n�n, where n is the
number of variables in the difference constraint system. The value of the entry
c �mi,j represents the constant c of the inequality xi�xj � c where the indices
i, j of m range over �0 . . . n � 1	. An octagon over n variables �x0 . . . xn�1	 is
represented different constraints over 2n variables �x�0 . . . x�2n�1	 and therefore
requires a DBM of dimension 2n� 2n.

Example 1. Figure 1 serves as an example of how an octagon can be represented
by a system of differences. The entries of the upper DBM correspond to the

Simple and Efficient Algorithms for Octagons 299

constants in the difference constraints. Note how differences which are (syntac-
tically) absent from the system lead to entries which take a symbolic value of

. Observe too how that DBM can be interpreted as an adjacency matrix for
the illustrated graph where the weight of a directed edge abuts its arrow.

Since octagons are more expressive than differences, a DBM representing an
octagonal system needs to be interpreted differently to a DBM representing
differences. Thus there are two concretisations for DBMs: one for interpreting
differences and the other for interpreting octagons, though the latter can be
defined in terms of the former:

Definition 1. Concretisation for rational �Qn� solutions:

γdiff�m� � �v0 . . . vn�1� � Qn � �i, j.vi � vj �mi,j	

γoct�m� � �v0 . . . vn�1� � Qn � v0,�v0 . . . vn�1,�vn�1� � γdiff�m�	

where concretisation for integer �Zn� solutions can be defined analogously.

Example 2. Because binary octagonal inequalities are modelled as two differ-
ences, the upper DBM contains duplicated entries, for instance, m0,2 �m3,1.

If a DBM represents an octagon, then any operation on that DBM must main-
tain equality between the two entries that share the same constant of a binary
octagonal inequality. Formally this is stated in a requirement for coherent:

Definition 2. A DBM m is coherent iff �i.j.mi,j �mj̄,ı̄ where ı̄ � i� 1 if i is
even and i� 1 otherwise (likewise for j and j̄).

Example 3. For the upper DBM observe m0,3 � �3 � m2,1 � m3̄,0̄. Coherence
holds in degenerate way for unary inequalities, note m2,3 � �4 �m2,3 �m3̄,2̄.

When manipulating DBMs care must be taken to preserve coherence either by
carefully designed algorithms or by using a data structure which maintains co-
herence automatically [15, Section 4.5]. One final DBM property is a prerequisite
for satisfiability:

Definition 3. A DBM m is consistent iff �i.mi,i � 0.

2.2 Closure Algorithms on DBMs

The closure algorithm is key to both differences and octagons: it generates a
canonical representation which is required to compute other domain operations
such as meet and join [15]. As well as computing a canonical form, closure can
decide satisfiability. Bellman [3] showed that the satisfiability of a difference sys-
tem can be decided using shortest path algorithms on a graph representing the
differences. If the graph contains a negative cycle, the difference system is un-
satisfiable. The same applies for DBMs representing octagons, where a negative

300 A. Chawdhary, E. Robbins, and A. King

DBM m ShortestPath CheckConsistent

UNSAT

Tighten

Strengthen

CheckZConsistent

UNSAT

Strongly Closed DBM
Tightly Closed DBM

consistent

closed DBM

consistent closed DBM

weakly
closed DBM

weakly closed
consistent DBM

Fig. 2: Architecture of Closure Algorithms for Octagons

cycle results in the diagonal that contains a negative value. Running a short-
est path algorithm over a DBM results in its shortest path closure or simply
closure. Closure propagates all the implicit (entailed) constraints in a system,
leaving each entry in the DBM with the sharpest possible constraint that is
entailed between the variables. Closure is formally defined below:

Definition 4. A consistent DBM m is closed iff

– �i.mi,i � 0
– �i, j, k.mi,j �mi,k �mk,j

Example 4. Applying a shortest path algorithm to the upper DBM of Figure 1
yields the lower DBM. The diagonal values preclude the DBM from being con-
sistent and indicate that the difference system, hence the corresponding octag-
onal system, is unsatisfiable. Indeed observe the graph contains the negative
cycle through x�1, x�2 and x�3 stemming from x�1 � x�2 � 1, x�2 � x�3 � �4 and
x�3 � x�1 � �3.

Note that closure alone does not provide a canonical representation for an
octagonal constraint system: there may be more than one closed DBM which
represents the same octagonal system. A stronger property is required, namely
strong closure, which additionally propagates the property that if x�j � x�j̄ � c1
and x�ı̄ � x�i � c2 both hold then x�j � x�i � �c1 � c2��2 also holds.

Definition 5. A DBM m is strongly closed iff

– m is closed
– �i, j.mi,j �mi,ı̄�2�mj̄,j�2

Strong closure is necessary to ensure a canonical representation: there is a
unique strongly closed DBM for any (non-empty) octagon. Figure 2 gives an

Simple and Efficient Algorithms for Octagons 301

1: function Strengthen(m)
2: for i � �0 . . . 2n� 1� do
3: for j � �0 . . . 2n� 1� do

4: mi,j � min	mi,j ,
mi,ı̄�mj̄,j

2

5: end for
6: end for
7: end function

1: function CheckConsistent(m)
2: for i � �0 . . . 2n� 1� do
3: if mi,i � 0 then
4: return false
5: end if
6: mi,i � 0
7: end for
8: return true
9: end function

1: function ShortestPath(m)
2: for k � �0, 2 . . . 2n� 2� do
3: for i � �0 . . . 2n� 1� do
4: for j � �0 . . . 2n� 1� do
5: t�mi,k �mk,j

6: mi,j � min	mi,j , t

7: end for
8: end for
9: end for
10: end function

1: function StrongClosure(m)
2: ShortestPath	m

3: if �CheckConsistent	m
 then
4: return false
5: else
6: Strengthen	m
;
7: return true
8: end if
9: end function

Fig. 3: Strong Closure Algorithm for Octagons

overview of the complete closure algorithm. The algorithm takes in a DBM m
and performs shortest path closure. Next, the algorithm checks for consistency
by checking the diagonal for negative entries, which indicates that the octag-
onal system represented by m is unsatisfiable. If the system is satisfiable then
strengthening is applied, resulting in a strongly closed DBM. The dashed lines
in Figure 2 represent an alternative path that is taken for integer problems. This
is discussed further later in Section 2.3.

Figure 3 reproduces the strong closure algorithm of Miné, refined by applying
strengthening outside the main loop of the Floyd-Warshall algorithm, rather
than inside it. Bagnara et al. [1] proposed this refinement and showed that it
gave a 20% speedup. For presentational reasons the algorithm assumes a matrix
representation that enforces coherence (which amounts to updating mj̄,ı̄ when
mi,j is changed and vice versa). The following theorem [1] justifies this tactic:

Theorem 1. If m is a closed DBM and m�
i,j � min�mi,j ,mi,̄i�2�mj̄,j�2� then

m� is a strongly closed DBM.

2.3 Integer Closure

The closure algorithms previously presented have to be modified for integer
octagonal constraints, in which the variables are constrained to take integral
values. If xi is integral then xi � c can be tightened to xi � �c�. Since xi � c
is recorded as the difference x�2i � x�2i�1 � 2c tightening the unary constraint

302 A. Chawdhary, E. Robbins, and A. King

is achieved by tightening the difference to x�2i � x�2i�1 � 2�c�2�, so that the
tightened constant 2�c�2� is even.

Definition 6. A DBM m is tightly closed iff

– m is strongly closed
– �i.mi,ı̄ is even

The algorithm for strong closure needs to be modified in the integer case
by running a so-called tightening step. This is shown in Figure 4. Tightening
makes use of an alternative consistency check, namely CheckZConsistent.
This check exploits the observation that the shortest path algorithm does not
need to be rerun after tightening to check consistency; it is sufficient to check
that mi,ı̄ �mı̄,i � 0 [1]. One subtlety that is worthy of note is that after running
the tighten function on a closed DBM, the resulting DBM will not necessarily
be closed but will instead satisfy a weaker property, namely weak closure:

Definition 7. A DBM m is weakly closed iff

– �i.mi,i � 0
– �i, j, k.mi,k �mk,j � min�mi,j ,mi,ı̄�2�mj̄,j�2�

Strong closure can be recovered from its weak counterpart by strengthening [1]:

Theorem 2. Let m be a weakly closed DBM and define m� as follows:

m�
i,j � min�mi,j ,

mi,ı̄

2
�

mj̄,j

2
� (2.2)

Then m� is strongly closed.

2.4 Incremental Closure

A common use-case for the octagon domain is adding a single constraint to an
already strongly closed system. Miné [15] designed an incremental algorithm for
such a situation based on the observation that one constraint will effect few
variables of a strongly closed DBM m. The left pane of Figure 5 illustrates this
tactic for when the new constraint involves x�2n�2 and x�2n�1. The constraint
will effect the last two rows and columns of m, the shaded region, for which
there are 8n � 4 entries in total; the remaining 4n2 � 4n � 4 entries of m will
remain unchanged. This observation leads to a specialised fast algorithm for
strong closure which is presented in the right pane of Figure 5. The intuition is
that the body of the loop is only executed for the shaded region of m. When the
constraint involves variables x�a and x�b other than x�2n�2 and x�2n�1 the rows and
columns for x�a and x�b can be swapped with those for x�2n�2 and x�2n�1. This
can achieved either physically or virtually. The rows or columns are literally
exchanged in the case of the former. An extra layer of indirection is introduced
in the case of the latter between the indices and the rows and columns of m

Simple and Efficient Algorithms for Octagons 303

1: function Tighten(m)
2: for i � �0 . . . 2n� 1� do
3: mi,̄ı � 2�mi,̄ı2�
4: end for
5: end function

1: function CheckZConsistent(m)
2: for i � �0 . . . 2n� 1� do
3: if mi,̄ı �mı̄,i � 0 then
4: return false
5: end if
6: end for
7: return true
8: end function

1: function TightClosure(m)
2: ShortestPathClosure(m)

3: if �CheckConsistent	m
 then
4: return false
5: end if
6: m� Tighten(m)

7: if �CheckZConsistent	m
 then
8: return false
9: end if
10: Strengthen(m)

11: return true
12: end function

Fig. 4: Tightening for integer DBMs

[15] so as to simulate swaps by exchanging pointers. However, this layer can be
avoided altogether by reformulating the algorithm to work directly over rows a
and b and columns a and b, as shown in listing of Figure 6. Both versions of the
algorithm require the entry of m to be updated prior to applying incremental
closure; the second version requires the indices a and b to be passed as well.

3 Improved Incremental Strong Closure Algorithms

Figure 7 presents a new incremental shortest path algorithm inspired by an in-
cremental Floyd-Warshall variant for differences [2]. The new algorithm updates
the constraint system represented by the DBMm with the constraint x�a�x�b � d,
and is best understood using the graph interpretation of m. The algorithm ex-
amines routes in m which may be shortened by travelling via the path from x�a
to x�b and updates m accordingly, as illustrated below:

x�i

x�a x�b

x�j
c

c1 c2

d

Paths passing via x�a to x�b are updated in one of the four following ways:

304 A. Chawdhary, E. Robbins, and A. King

2n

0
0 2n

2n� 2

2n� 2

�m

�m

1: function IncrementalMinéV1(m)
2: for k � �0, 2 . . . 2n� 2� do
3: for i � �2n� 2, 2n� 1� do
4: for j � �0 . . . 2n� 1� do
5: mi,j � min	mi,j ,mi,k �mk,j

6: end for
7: end for
8: for i � �0 . . . 2n� 3� do
9: for j � �2n� 2, 2n� 1� do
10: mi,j � min	mi,j ,mi,k �mk,j

11: end for
12: end for
13: Strengthen(m);

14: end for
15: end function

Fig. 5: Incremental closure [15] with strengthening [1]

– If i � a and j � b the path from x�i to x�j of length c is shortened if there exist
paths x�i to x�a and x�b to x�j of lengths c1 and c2, such that c1 � d� c2 � c.

– If i � a the path from x�a to x�j of length c is shortened if there exists a path
x�b to x�j of length c2 such that d� c2 � c.

– If j � b the path from x�i to x�b of length c is shortened if there exists a path
x�i to x�b of length c1 such that c1 � d � c.

– If i � a and j � b the path from x�a to x�b of length c is shortened if d � c.

The second algorithm in Figure 7 is a refinement of the first: it only compares
paths for those entries in the DBM which could change. The shortest path from
x�i to x�j can only only be changed if either the distance from x�i to x�b or the
distance x�a to x�j are decreased by travelling via the new constraint. Values of i
and j for which this is not true do not need to be considered.

The correctness of IncrementalDifferenceV1 follows from:

Theorem 3. Given a closed DBM m, IncrementalDifferenceV1 will re-
turn a closed DBM.

The correctness of IncrementalDifferenceV2 is a special case of Theorem 3.
Figures 8 and 9 present two new shortest path algorithms, IncrementalOc-

tagonV1 and IncrementalOctagonV2, for octagons. These, in turn, in-
duce new incremental algorithms for strong closure obtained by replacing line
2 of StrongClosure with IncrementalOctagonV1 or IncrementalOc-

tagonV2. The novelty of IncrementalOctagonV1 and IncrementalOc-

tagonV2 is that they update the DBM by simultaneously considering the effect
of two differences x�a�x�b � d and x�a� �x�b� � d. These differences are derived by
the function split which applies the translation rules detailed in Sec. 2.1 to the
octagonal constraint O. The correctness of IncrementalOctagonV1 and In-

crementalOctagonV2 is founded on the following lemma, which states that
there is no harm in computing the effect of the two inequalities in parallel; one
difference cannot interfere with the other.

Simple and Efficient Algorithms for Octagons 305

1: function IncrementalMinéV2(m, a, b)
2: for k � �0, 2 . . . 2n� 2� do
3: for i � �a, b� do
4: for j � �0 . . . 2n� 1� do
5: mi,j � min	mi,j ,mi,k �mk,j

6: end for
7: end for
8: for i � �0 . . . 2n� 1� do
9: for j � �a, b� do
10: mi,j � min	mi,j ,mi,k �mk,j

11: end for
12: end for
13: Strengthen(m);
14: end for
15: end function

Fig. 6: Incremental closure [15] with strengthening [1] and static rows and columns

Lemma 1. Given a strongly closed DBM m and an octagonal constraint O, let
m� � IncrementalOctagonV1�m, O� then m� satisfies:

�i, j. m�
i,j � �mi,a � d�mb,j �mi,a� � d�mb�,j�

The following theorem justifies the new incremental closure algorithm:

Theorem 4. Given a strongly closed DBM m and an octagonal constraint O,
let m� � StrongClosure�m� where line 2 has been replaced by
IncrementalOctagonV1�m, O�. Then m� is strongly closed.

Proof Sketch First it must be shown that IncrementalOctagonV1 pre-
serves closedness. A direct proof strategy is employed based on a case-by-case
analysis of:

�i, j, k.m�
i,j �m�

i,k �m�
k,j

Cases covers whether or not the values of m�
i,j , m

�
k,j and m�

k,j have changed.
For space reasons we include an illustrating case:

– Case m�
i,j � mi,j: By the properties of min the following facts are known

which will prove useful later

mi,j �mi,a � d�mb,j and mi,j �mi,a� � d�mb�,j (3.1)

� Case: m�
i,k �mi,k and m�

k,j �mk,j

Here there are four cases to consider. Only the following case is shown
in which both entries have changed via different constraints:

m�
i,k �mi,a � d�mb,k �m�

k,j �mk,a� � d�mb�,j

306 A. Chawdhary, E. Robbins, and A. King

1: function IncrementalDifferenceV1(m, xa � xb � d)
2: for i � �0 . . . 2n� 1� do
3: for j � �0 . . . 2n� 1� do
4: mi,j � min	mi,j ,mi,a � d�mb,j
;
5: end for
6: end for
7: end function

1: function IncrementalDifferenceV2(m, xa � xb � d)
2: Q1 � Q2 ��
3: for i � �0 . . . 2n� 1� do
4: if mi,a � d �mi,b then Q1 � Q1 � �i�
5: end if
6: end for
7: for i � �0 . . . 2n� 1� do
8: if mb,j � d �ma,j then Q2 � Q2 � �j�
9: end if
10: end for
11: for i � Q1 do
12: for j � Q2 do
13: mi,j � min	mi,j ,mi,a � d�mb,j
;
14: end for
15: end for
16: end function

Fig. 7: Incremental closure algorithms for adding single constraints

From the above it follows that:

m�
i,k �m�

k,j �mi,a � d�mb,k �mk,a� � d�mb�,j

�mi,a � d�mb,k �mk,j by Lemma 1

�mi,a � d�mb,j by closure of m

�mi,j �m�
i,j by Eq 3.1

and assumption

Theorem 1 guarantees that executing Strengthen after IncrementalOc-

tagonV1 will result in a strongly closed DBM. ��
The soundness of IncrementalOctagonV2 is a special case of Theorem 4.
A key point to note here is the simplicity of our proof: it is direct and uses

fundamental properties of DBMs. This approach simplifies existing proofs con-
cerning non-incremental closure algorithms defined previously [1,16], which are
outlined in the next section.

4 Simpler Proofs of Strong and Integer Closure

The proof of Theorem 4 is simple and compelling since it follows from basic
definitions of DBMs and closure. A similar approach can be applied to obtain

Simple and Efficient Algorithms for Octagons 307

1: function IncrementalOctagonV1(m, O: octagonal constraint)
2: 	xa � xb � d, xa� � xb� � d
 � split	O
;
3: for i � �0 . . . 2n� 1� do
4: for j � �0 . . . 2n� 1� do
5: mi,j � min	mi,j ,mi,a � d�mb,j ,mi,a� � d�mb�,j

6: end for
7: end for
8: end function

Fig. 8: New Incremental Closure Algorithms (without queueing)

1: function IncrementalOctagonV2(m, O: octagonal constraint)
2: 	xa � xb � d, xa� � xb� � d
 � split	O
;
3: Q1 � Q2 ��
4: for i � �0 . . . 2n� 1� do
5: if mi,a � d �mi,b �mi,a� � d �mi,b� then
6: Q1 � Q1 � �i�
7: end if
8: end for
9: for j � �0 . . . 2n� 1� do
10: if mb,j � d �ma,j �mb�,j � d �ma�,j then
11: Q2 � Q2 � �j�
12: end if
13: end for
14: for i � Q1 do
15: for j � Q2 do
16: mi,j � min	mi,j ,mi,a � d�mb,j ,mi,a� � d�mb�,j

17: end for
18: end for
19: end function

Fig. 9: New Incremental Closure Algorithms (with queueing)

a more direct proof for the non-incremental strong closure and integer closure
algorithms defined in [1].

Theorem 1. If m is a closed DBM and m�
i,j � min�mi,j ,mi,̄i�2�mj̄,j�2� then

m� is a strongly closed DBM.

Proof Sketch Two properties need to be shown: strong closure (Def. 5) and
closure (Def. 4). The first amounts to showing that m� satisfies the following:

�i, j. 2m�
i,j �m�

i,ı̄ �m�
j̄,j

Pick some arbitrary i and j. There are several cases to consider. The following
is illustrative:

– Case: m�
i,j = mi,j

308 A. Chawdhary, E. Robbins, and A. King

� Case m�
i,ı̄ �mi,ı̄ and m�

j̄,j �mj̄,j

2m�
i,ı̄ � 2m�

j̄,j �mi,ı̄ �mi,ı̄ �mj̄,j �mj̄,j

� 2�mi,ı̄ �mj̄,j�

� 2�2mi,j� Since m�
i,j �mi,j

The operation must be shown to preserve closure: �i, j, k.m�
i,j �m�

i,k �m�
k,j .

Again a single illustrative case is presented:

– Case: m�
i,j �mi,j:

� Case: m�
i,k �mi,k and m�

k,j �mk,j:

2m�
i,k � 2m�

k,j �mi,ı̄ �mk̄,k �mk,k̄ �mj̄,j

�mi,ı̄ �mk̄,k̄ �mj̄,j by closure of m

�mi,ı̄ � 0�mj̄,j by closure of m

� 2mi,j � 2m�
i,j by m�

i,j �mi,j

��

4.1 Integer Closure

The following is a sketch of a simple proof strategy for theorem 2, which is
crucial to the soundness proof for integer tightening: theorem 2 is used to show
that running strengthen on a weakly closed DBM is sufficient to regain strong
closure. This theorem is part of the following proof strategy by Bagnara et al.
which amounts to showing that the tighten procedure on a closed DBM produces
a weakly closed DBM, and that strengthen then returns a strongly closed DBM.
Bagnara then shows that the floor function in the integer strengthen routine also
returns tightly closed DBM.

We have produced a simpler proof of correctness for part of the integer tight-
ening algorithm. The proof of theorem 2 is more direct in comparison to [1] since
it avoids induction. This theorem corresponds to the strengthen box in figure 2
with input via CheckZConsistency.

Theorem 2. Let m be a weakly closed DBM and define m� as follows:

m�
i,j � min�mi,j ,

mi,ı̄

2
�

mj̄,j

2
� (2.2)

Then m� is strongly closed.

Proof Sketch First it must be shown that m� is closed: �i, j, k.m�
i,j �m�

i,k �
m�

k,j . Again, an exemplar case is used:

– Case m�
i,j �mi,j

By the properties of min it is known:

mi,ı̄

2
�

mj̄,j

2
�mi,j (4.1)

Simple and Efficient Algorithms for Octagons 309

� Case m�
i,k �mi,k and m�

k,j �mk,j

m�
i,k �m�

k,j �
mi,ı̄

2
�

mk̄,k

2
�

mk,k̄

2
�

mj̄,j

2

�mi,j �
mk̄,k

2
�

mk,k̄

2
By assumption 4.1

�mi,j �m�
i,j by consistency of m

Having sketched how to prove closure it must now be shown that m� is strongly
closed. By definition of m�, one of the two following equations is true:

m�
i,j �mi,j �

mi,ı̄

2
�

mj̄,j

2
(4.2)

m�
i,j �

mi,ı̄

2
�

mj̄,j

2
(4.3)

Both cases satisfy Def. 5 as required. ��

5 Experiments

To evaluate the performance of the incremental closure algorithms, three differ-
ent versions of the algorithm have been separately implemented and tuned for
performance. The first is Miné’s incremental algorithm [15] refined by moving
strengthen outside of the main loop [1]. This represents state-of-the-art. In addi-
tion, this implementation applies the refinement introduced in Section 2 which
avoids swapping updated rows and columns (or equivalently any layer of indi-
rection that seeks to make the swaps virtual [15]). The implementation follows
Figure 6 and constitutes a robust baseline to assess any new algorithm against.
The second implementation realises the incremental closure algorithm listed in
Figure 8 while the third follows the listing of Figure 9, the latter using queues
to focus recalculation only on those entries of the DBM that may have changed.

To stress these algorithms, all three implementations have been integrated
into a SMT solver over the theory of (quantifier-free) integer octagons. Apart
from the incremental theory solver (which uses incremental closure), the solver
is a straightforward extension of a solver originally devised for quantifier-free
integer difference logic (QF IDL) [17]. Both solvers apply constraint reification to
orchestrate information flow between the propositional and theory components.
The idea is to reify each inequality in the SMT formula with a propositional
variable. Such a variable is bound to true if the inequality is entailed by the
theory store and bound to false if it is disentailed. Entailment and disentailment
can be detected by comparing the constant of the octagonal inequality against
the corresponding entry in the closed DBM. Conversely, if the propositional
variable is bound to true, the corresponding inequality is added to the DBM,

310 A. Chawdhary, E. Robbins, and A. King

Fig. 10: Execution time

which is then closed. In response to binding the variable to false, the negation
of the inequality is added to the DBM which, in the integer case, amounts to
adding a non-strict inequality to the DBM and then reapplying closure.

Logic programming languages provide synchronisation primitives for efficiently
realising constraint propagation and reification, and these can be used to imple-
ment such an SMT architecture [17]. Rather surprisingly, though implemented in
Prolog, the resulting QF IDL solver is capable of solving benchmarks in a time
that is comparable to CVC3 and CVC4 [17]. The crucial point is that the closure
algorithm is a plug-in into the architecture and the SMT solver provides a way of
exercising an incremental solver on large problems, where some SMT instances
have even been deliberately engineered to be computationally difficult. In partic-
ular, the solver was benchmarked against the first two hundred QF IDL problems
drawn from the latest (2013) SMTLIB suite of benchmarks. Quite apart from
comparing the results obtained with different versions of incremental closure, all
problems in SMTLIB are labelled according to whether they are satisfiable or
not, which provides another check for correctness. Unfortunately SMTLIB does
not currently provide integer octagonal problems.

The experiments were run on a single core of a Xeon workstation with a
2.6GHz processor and 128GB of memory, using SICStus Prolog 4.2.1 to run
the solvers as interpreted bytecode. Timeouts were set to 180 seconds. The left
pane of Figure 10 shows the walltime of the first solver (using the first incre-
mental closure algorithm) against that of the second. The right pane compares
the walltime of the second solver against the third. In either graph, results in
red triangles indicate a benchmark for which at least one of the two solvers
timed out. Note that the runtime of these solvers is dominated by closure, so
the experiments constitute an accurate measure of the relative performance of
the closure operations themselves (the solvers do not randomly restart and are
entirely deterministic).

In order to maintain independence from implementation specifics, from both
the machine and the language, the experiments were repeated comparing: the
total number of comparisons made in all invocations of incremental closure; and

Simple and Efficient Algorithms for Octagons 311

Fig. 11: Total number of comparisons and total number of iterations of inner loop

then the total number of iterations of the inner loop of the closure algorithms.
Figure 11 presents these results. Note that these graphs have been pruned to
remove data points for which there was a timeout. In such a case, the faster
solver receives a higher count because it precedes further and so, without this
data cleaning, the graph would suggest that the faster solver was actually slower.

6 Discussion

Figure 10 shows that the second incremental algorithm consistently outperforms
the first, appearing to be approximately four times as fast as indicated by the thin
blue line with gradient 25%. This result is supported by Figure 11 which shows
that the second incremental algorithm performs significantly fewer comparisons
and loop iterations.

Figure 10 also shows that the second closure algorithm is able to determine
satisfiability of four more benchmarks within the 180 second time frame. The
third algorithm that employs queueing improves this by two more. The line
in the right pane of Figure 10 has a gradient of 85% showing that the third

312 A. Chawdhary, E. Robbins, and A. King

(queueing) version of the algorithm is uniformly faster. Interestingly, the bottom
right pane of Figure 11 indicates that the third algorithm performs significantly
fewer loop iterations than second, but the top right pane shows that the number
of comparisons is not similarly reduced. This is no doubt because of the extra
comparisons incurred while building the queues.

Overall, the distribution of the points in the graphs is similar whether for
elapsed time, loop body executions, or comparisons. This suggests that the num-
ber of loop body executions and comparisons can be used as a proxy for wall-time
and therefore the results are not specific to our Prolog implementation.

7 Related Work

There is arguably no better example of a weakly relational abstract domain
than octagons. Miné defined the octagon domain is his thesis [15] and subse-
quent journal paper [16] and developed an open source implementation [11]. By
using DBMs, Miné was able to exploit existing algorithms on solving difference
constraints. However the encoding of octagonal constraints into differences re-
quires some conditions, encapsulated in the notion of strong closure, to define
a canonical representation of octagons using DBMs. Miné [15,16] showed that
strong closure was cubic and that, by swapping rows and columns in the DBM,
an incremental version of the algorithm could be derived. Independently a faster
algorithm for strong closure was discovered [1], based on the observation that
strong closure could be decomposed into two separate algorithmic phases. Our
incremental algorithm was inspired by a refinement to the Floyd-Warshall algo-
rithm that was suggested for disjunctive spatial reasoning for solving constraint
satisfaction problems [2], and the research question of whether, when adapted
to DBMs and octagons, the refinement could improve on Miné’s incremental
algorithm. The solver proposed in [2] resembles another independently proposed
[10] for incrementally solving integer unit two-variable constraints. Though in-
cremental, the integer solver [10] does not decompose constraint solving into the
layers of closure, strengthening and tightening, which appears to be important
for overall efficiency [1]. The work presented in this paper can be viewed as
bringing incrementality to a decomposed solver architecture for DBMs.

8 Conclusions

The widespread use of the octagon domain means that any computational im-
provement could impact on many areas of analysis and verification. Two new
incremental closure algorithms have been presented geared towards the popular
DBM representation of octagons [16]. The simplicity of the algorithms paired
with their computational efficiency make them an attractive choice for any im-
plementor. [18].

Acknowledgements. We thank Nadia Alshahwan, Earl Barr, David Clark,
Jacob Howe and Axel Simon for discussions on TVPI constraints, binary analysis
and wrapping that provided impetus for this work.

Simple and Efficient Algorithms for Octagons 313

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: Weakly-relational Shapes for Numeric Ab-
stractions: Improved Algorithms and Proofs of Correctness. Formal Methods in
System Design 35(3), 279–323 (2009)

2. Baykan, C.A., Fox, M.S.: Spatial Synthesis by Disjunctive Constraint Satisfaction.
Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 11(4),
245–262 (1997)

3. Bellman, R.: On a Routing Problem. Quarterly of Applied Mathematics 16, 87–90
(1958)

4. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance Anal-
yses from Invariance Analyses. In: POPL, pp. 211–224. ACM (2007)

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

6. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Vari-
ables of a Program. In: POPL, pp. 84–97. ACM Press (1978)

7. Floyd, R.W.: Algorithm 97: Shortest Path. CACM 5(6), 345 (1962)
8. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically Re-

fining Abstract Interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

9. Harrison, W.H.: Compiler Analysis for the Value Ranges of Variables. IEEE Trans-
actions on Software Engineering SE-3(3), 243–250 (1977)

10. Harvey, W., Stuckey, P.J.: A Unit Two Variable Per Inequality Integer Constraint
Solver for Constraint Logic Programming. In: Patel, M., Kotagiri, R. (eds.) Twenti-
eth Australasian Computer Science Conference, pp. 102–111. Macquarie University
(1997), Also available as TR 95/30 from University of Melbourne

11. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static
Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

12. Jhala, R., Majumdar, R.: Software Model Checking. ACM Computing Sur-
veys 41(4), 21:1–21:54 (2009)

13. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic Strengthening for Shape
Analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

14. Miné, A.: A New Numerical Abstract Domain Based on Difference-Bound Matri-
ces. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172.
Springer, Heidelberg (2001)

15. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique (2004), http://www.di.ens.fr/~mine/these/these-color.pdf

16. Miné, A.: The Octagon Abstract Domain. HOSC 19(1), 31–100 (2006)
17. Robbins, E., Howe, J.M., King, A.: Theory Propagation and Reification. Science

of Computer Programming (to appear), http://kar.kent.ac.uk/37600
18. Simon, A., King, A.: Taming the Wrapping of Integer Arithmetic. In: Riis Nielson,

H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 121–136. Springer, Heidelberg
(2007)

19. Simon, A., King, A., Howe, J.M.: The Two Variable Per Inequality Abstract Do-
main. HOSC 31(1), 182–196 (2010), http://kar.kent.ac.uk/30678

20. Warshall, S.: A Theorem on Boolean Matrices. JACM 9(1), 11–12 (1962)

http://www.di.ens.fr/~mine/these/these-color.pdf
http://kar.kent.ac.uk/37600
http://kar.kent.ac.uk/30678

Compositional Entailment Checking
for a Fragment of Separation Logic

Constantin Enea1, Ondřej Lengál2, Mihaela Sighireanu1, and Tomáš Vojnar2

1 Univ. Paris Diderot, LIAFA CNRS UMR 7089, France
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We present a (semi-)decision procedure for checking entailment be-
tween separation logic formulas with inductive predicates specifying complex
data structures corresponding to finite nesting of various kinds of linked lists:
acyclic or cyclic, singly or doubly linked, skip lists, etc. The decision procedure
is compositional in the sense that it reduces the problem of checking entailment
between two arbitrary formulas to the problem of checking entailment between
a formula and an atom. Subsequently, in case the atom is a predicate, we reduce
the entailment to testing membership of a tree derived from the formula in the
language of a tree automaton derived from the predicate. We implemented this
decision procedure and tested it successfully on verification conditions obtained
from programs using singly and doubly linked nested lists as well as skip lists.

1 Introduction

Automatic verification of programs manipulating dynamic linked data structures is
highly challenging since it requires one to reason about complex program configura-
tions having the form of graphs of an unbounded size. For that, a highly expressive
formalism is needed. Moreover, in order to scale to large programs, the use of such
a formalism within program analysis should be highly efficient. In this context, separa-
tion logic (SL) [14,21] has emerged as one of the most promising formalisms, offering
both high expressiveness and scalability. The latter is due to its support of composi-
tional reasoning based on the separating conjunction ∗ and the frame rule, which states
that if a Hoare triple {φ}P{ψ} holds and P does not alter free variables in σ, then
{φ ∗ σ}P{ψ ∗ σ} holds too. Therefore, when reasoning about P , one has to manipulate
only specifications for the heap region altered by P .

Usually, SL is used together with higher-order inductive definitions that describe the
data structures manipulated by the program. If we consider general inductive defini-
tions, then SL is undecidable [5]. Various decidable fragments of SL have been intro-
duced in the literature [1,13,18,3] by restricting the syntax of the inductive definitions
and the boolean structure of the formulas.

In this work, we focus on a fragment of SL with inductive definitions that allows one
to specify program configurations (heaps) containing finite nestings of various kinds
of linked lists (acyclic or cyclic, singly or doubly linked, skip lists, etc.), which are
common in practice. This fragment contains formulas of the form ∃−→X.Π ∧ Σ where
X is a set of variables, Π is a conjunction of (dis)equalities, and Σ is a set of spatial
atoms connected by the separating conjunction. Spatial atoms can be points-to atoms,

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 314–333, 2014.
c© Springer International Publishing Switzerland 2014

Compositional Entailment Checking for a Fragment of Separation Logic 315

which describe values of pointer fields of a given heap location, or inductively defined
predicates, which describe data structures of an unbounded size. We propose a novel
(semi-)decision procedure for checking the validity of entailments of the form ϕ ⇒ ψ
where ϕ may contain existential quantifiers and ψ is a quantifier-free formula. Such
a decision procedure can be used in Hoare-style reasoning to check inductive invariants
but also in program analysis frameworks to decide termination of fixpoint computations.
As usual, checking entailments of the form

∨
i ϕi ⇒

∨
j ψj can be soundly reduced to

checking that for each i there exists j such that ϕi ⇒ ψj .
The key insight of our decision procedure is an idea to use the semantics of the sepa-

rating conjunction in order to reduce the problem of checking ϕ ⇒ ψ to the problem of
checking a set of simpler entailments where the right-hand side is an inductively-defined
predicate P (. . .). This reduction shows that the compositionality principle holds not
only for deciding the validity of Hoare triples but also for deciding the validity of en-
tailments between two formulas. To infer (dis)equalities implied by spatial atoms, our
reduction to checking simpler entailments is based on boolean unsatisfiability checking,
which is in co-NP but can usually be checked efficiently by current SAT solvers.

Further, to check entailments ϕ ⇒ P (. . .) resulting from the above reduction, we
define a decision procedure based on the membership problem for tree automata (TA).
In particular, we reduce the entailment to testing membership of a tree derived from ϕ
in the language of a TA A[P] derived from P (. . .). The tree encoding of ϕ preserves
some edges of the graph, called backbone edges, while others are re-directed to new
nodes, related to the original destination by special symbols. Roughly, such a symbol
may be a variable represented by the original destination, or it may show how to reach
the original destination using backbone edges only.

Our procedure is complete for formulas speaking about non-nested singly as well as
doubly linked lists. Moreover, it runs in polynomial time modulo an oracle for deciding
validity of a boolean formula. The procedure is incomplete for nested list structures
because it does not consider all possible ways in which targets of inner pointer fields of
nested list predicates can be aliased. The construction can be easily extended to become
complete even in such cases, but then it becomes exponential. However, even in this
case, it is exponential in the size of the definition of the inductive predicates, and not in
the size of the formulas, which remains acceptable in practice.

We implemented our decision procedure and tested it successfully on verification
conditions obtained from programs using singly and doubly linked nested lists as well
as skip lists. The results show that our procedure does not only have a theoretically
favorable complexity (for the given context), but it also behaves nicely in practice, at
the same time offering the additional benefit of compositionality that can be exploited
within larger verification frameworks caching the simpler entailment queries.

Contribution. Overall, the contribution of this paper is a novel (semi-)decision proce-
dure for a rich class of verification conditions with singly as well as doubly linked lists,
nested lists, and skip lists. As discussed in more detail in Section 9, existing works that
can efficiently deal with fragments of SL capable of expressing verification conditions
for programs handling complex dynamic data structures are still rare. Indeed, we are not
aware of any technique that could decide the class of verification conditions considered
in this paper at the same level of efficiency as our procedure. In particular, compared

316 C. Enea et al.

with other approaches using TAs [13,12], our procedure is compositional as it uses TAs
recognizing models of predicates, not models of entire formulas (further differences are
discussed in the related work section). Moreover, our TAs recognize in fact formulas
that entail a given predicate, reducing SL entailment to the membership problem for
TAs, not the more expensive inclusion problem as in other works.

2 Separation Logic Fragment

Let Vars be a set of program variables, ranged over using x, y, z, and LVars a set of
logical variables, disjoint from Vars , ranged over using X , Y , Z . We assume that Vars
contains a distinguished variable nil. Also, let F be a set of fields.

We consider the fragment of separation logic whose syntax is given below:

x, y ∈ Vars program variables X,Y ∈ LVars logical variables E,F ::= x | X
f ∈ F fields ρ ⊆ F× (Vars ∪ LVars) P ∈ P predicates

−→
B ∈ (Vars ∪ LVars)∗ vectors of variables

Π ::= E = F | E �= F | Π ∧Π pure formulas

Σ ::= emp | E �→ ρ | P (E,F,
−→
B) | Σ ∗Σ spatial formulas

ϕ � ∃−→X.Π ∧Σ formulas

W.l.o.g., we assume that existentially quantified logical variables have unique names.
The set of program variables used in a formula ϕ is denoted by pv (ϕ). By ϕ(

−→
E) (resp.

ρ(
−→
E)), we denote a formula (resp. a set of field-variable couples) whose set of free vari-

ables is
−→
E . Given a formula ϕ, pure(ϕ) denotes its pure part Π . We allow set operations

to be applied on vectors. Moreover, E �= −→
B is a shorthand for

∧
Bi∈

−→
B

E �= Bi.
The points-to atom E �→ {(fi, Fi)}i∈I specifies that the heap contains a location E

whose fi field points to Fi, for all i. W.l.o.g., we assume that each field fi appears at
most once in a set of pairs ρ. The fragment is parameterized by a set P of inductively
defined predicates; intuitively, P (E,F,

−→
B) describes a possibly empty nested list seg-

ment delimited by its arguments, i.e., all the locations it represents are reachable from
E and allocated on the heap except the locations in {F} ∪ −→B .

Inductively defined predicates. We consider predicates defined as

P (E,F,
−→
B) � (E = F ∧ emp) ∨(

E �= {F} ∪ −→B ∧ ∃Xtl. Σ(E,Xtl,
−→
B) ∗ P (Xtl, F,

−→
B)

) (1)

where Σ is an existentially-quantified formula, called the matrix of P , of the form:

Σ(E,Xtl,
−→
B) � ∃−→Z .E �→ ρ({Xtl} ∪

−→
V) ∗Σ′ where

−→
V ⊆ −→

Z ∪ −→B and

Σ′ ::= Q(Z,U,
−→
Y) | �1+ Q[Z,

−→
Y] | Σ′ ∗Σ′

for Z ∈ −→Z , U ∈ −→Z ∪ −→B ∪ {E,Xtl},
−→
Y ⊆ −→

B ∪ {E,Xtl}, and

�1+ Q[Z,
−→
Y] � ∃Z′. ΣQ(Z,Z

′,
−→
Y) ∗Q(Z′, Z,

−→
Y) where ΣQ is the matrix of Q.

(2)

The formula Σ specifies the values of the fields defined in E (using the atom E �→
ρ({Xtl}∪

−→
V), where the fields in ρ are constants in F) and the (possibly cyclic) nested

Compositional Entailment Checking for a Fragment of Separation Logic 317

singly linked lists:
ls(E,F) � lemp(E,F) ∨ (E �= F ∧ ∃Xtl. E �→ {(f,Xtl)} ∗ ls(Xtl, F))

lists of acyclic lists:
nll(E,F, B) � lemp(E,F) ∨ (E �= {F,B} ∧ ∃Xtl, Z.E �→ {(s,Xtl), (h,Z)} ∗

ls(Z,B) ∗ nll(Xtl, F,B))
lists of cyclic lists:

nlcl(E,F) � lemp(E,F) ∨ (E �= F ∧ ∃Xtl, Z. E �→ {(s,Xtl), (h,Z)} ∗
�1+ ls[Z] ∗ nlcl(Xtl, F))

skip lists with three levels:
skl3(E,F) � lemp(E,F) ∨ (E �= F ∧ ∃Xtl, Z1, Z2. E �→ {(f3, Xtl), (f2, Z2),

(f1, Z1)} ∗ skl1(Z1, Z2) ∗ skl2(Z2, Xtl) ∗ skl3(Xtl, F))

skl2(E,F) � lemp(E,F) ∨ (E �= F ∧ ∃Xtl, Z1. E �→ {(f3,nil), (f2, Xtl),
(f1, Z1)} ∗ skl1(Z1, Xtl) ∗ skl2(Xtl, F))

skl1(E,F) � lemp(E,F) ∨ (E �= F ∧ ∃Xtl. E �→ {(f3,nil), (f2, nil),
(f1, Xtl)} ∗ skl1(Xtl, F))

Fig. 1. Examples of inductive definitions (lemp(E,F) � E = F ∧ emp)

list segments starting at the locations
−→
Z referenced by fields of E. We assume that Σ

contains a single points-to atom in order to simplify the presentation. Notice that the
matrix of a predicate P does not contain applications of P .

The macro �1+ Q[Z,
−→
Y] is used to represent a non-empty cyclic (nested) list seg-

ment on Z whose shape is described by the predicate Q.
We consider several restrictions on Σ which are defined using its Gaifman graph

Gf [Σ]. The set of vertices of Gf [Σ] is given by the set of free and existentially quan-

tified variables in Σ, i.e., {E,Xtl} ∪
−→
B ∪ −→Z . The edges in Gf [Σ] represent spatial

atoms: for every (f,X) in ρ, Gf [Σ] contains an edge from E to X labeled by f ; for

every predicate Q(Z,U,
−→
Y), Gf [Σ] contains an edge from Z to U labeled by Q; and

for every macro �1+ Q[Z,
−→
Y], Gf [Σ] contains a self-loop on Z labeled by Q.

The first restriction is that Gf [Σ] contains no cycles other than self-loops built solely
of edges labeled by predicates. This ensures that the predicate is precise, i.e., for any
heap, there exists at most one sub-heap on which the predicate holds. Precise assertions
are very important for concurrent separation logic [11].

The second restriction requires that all the maximal paths of Gf [Σ] start in E and

end either in a self-loop or in a node from
−→
B ∪ {E,Xtl}. This restriction ensures that

(a) all the heap locations in the interpretation of a predicate are reachable from the
head of the list and that (b) only the locations represented by variables in F ∪ −→B are
dangling. Moreover, for simplicity, we require that every vertex of Gf [Σ] has at most
one outgoing edge labeled by a predicate.

For example, the predicates defined in Fig. 1 describe singly linked lists, lists of
acyclic lists, lists of cyclic lists, and skip lists with three levels.

We define the relation≺P on the set of predicates P by P1 ≺P P2 iff P2 occurs in the
matrix of P1. The reflexive and transitive closure of≺P is denoted by≺∗

P. For example,
if P = {skl1, skl2, skl3}, then skl3 ≺P skl2 and skl3 ≺∗

P skl1.
Given a predicate P of the matrix Σ as in (2), let F �→(P) denote the set of fields

f occurring in a pair (f,X) of ρ. For example, F �→(nll) = {s, h} and F �→(skl3) =

318 C. Enea et al.

(S,H) |= P (E,F,
−→
B) iff there exists k ∈ N s.t. (S,H) |= P k(E,F,

−→
B) and

ldom(H) ∩ ({S(F)} ∪ {S(B) | B ∈ −→B }) = ∅
(S,H) |= P 0(E,F,

−→
B) iff (S,H) |= E = F ∧ emp

(S,H) |= P k+1(E,F,
−→
B) iff (S,H) |= E �= {F} ∪ −→B ∧

∃Xtl. Σ(E,Xtl,
−→
B) ∗ P k(Xtl, F,

−→
B)

Fig. 2. The semantics of predicate atoms

F �→(skl1) = {f3, f2, f1}. Also, let F∗
�→(P) denote the union of F �→(P ′) for all P ≺∗

P

P ′. For example, F∗
�→(nll) = {s, h, f}.

We assume that ≺∗
P is a partial order, i.e., there are no mutually recursive definitions

in P. Moreover, for simplicity, we assume that for any two predicates P1 and P2 which
are incomparable w.r.t.≺∗

P, it holds that F �→(P1)∩F �→(P2) = ∅. This assumption avoids
predicates named differently but having exactly the same set of models.

Semantics. Let Locs be a set of locations. A heap is a pair (S,H) where S : Vars ∪
LVars → Locs maps variables to locations and H : Locs × F ⇀ Locs is a partial
function that defines values of fields for some of the locations in Locs. The domain
of H is denoted by dom(H) and the set of locations in the domain of H is denoted
by ldom(H). As usual, we assume that nil is interpreted to a location S(nil) �∈
ldom(H). We say that a location
 (resp., a variable E) is allocated in the heap (S,H)
or that (S,H) allocates
 (resp., E) iff
 (resp., S(E)) belongs to ldom(H).

The set of heaps satisfying a formula ϕ is defined by the relation (S,H) |= ϕ. For
brevity, we define in Fig. 2 the relation |= for predicate atoms only. The complete defini-

tion of |= can be found in [8]. Note that a heap satisfying a predicate atom P (E,F,
−→
B)

doesn’t allocate any variable in F ∪ −→B ; the locations represented by these variables
don’t belong to its domain. A heap satisfying this property is called well-formed w.r.t.
the atom P (E,F,

−→
B). The set of models of a formula ϕ is denoted by [[ϕ]]. Given two

formulas ϕ1 and ϕ2, we say that ϕ1 entails ϕ2, denoted by ϕ1 ⇒ ϕ2, iff [[ϕ1]] ⊆ [[ϕ2]].
By an abuse of notation, ϕ1 ⇒ E = F (resp., ϕ1 ⇒ E �= F) denotes the fact that E
and F are interpreted to the same location (resp., different locations) in all models of
ϕ1.

3 Compositional Entailment Checking

We define a procedure for reducing the problem of checking the validity of an entail-
ment between two formulas to the problem of checking the validity of an entailment
between a formula and an atom. We assume that the right-hand side of the entailment is
a quantifier-free formula (which usually suffices for checking verification conditions in
practice). The reduction can be extended to the general case, but it becomes incomplete.

3.1 Overview of the Reduction Procedure

We consider the problem of deciding validity of entailments ϕ1 ⇒ ϕ2 with ϕ2

quantifier-free. We assume pv(ϕ2) ⊆ pv(ϕ1); otherwise, the entailment is not valid.

Compositional Entailment Checking for a Fragment of Separation Logic 319

ϕ1 ← norm(ϕ1); ϕ2 ← norm(ϕ2); // normalization
if ϕ1 = false then return true if ϕ2 = false then return false if pure(ϕ1) �⇒ pure(ϕ2)
then return false; // entailment of pure parts
foreach a2 : points-to atom in ϕ2 do // entailment of shape parts

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] �⇒ a2 then return false

for P2 ← max≺(P) down to min≺(P) do
forall the a2 = P2(E,F,

−→
B) : predicate atom in ϕ2 s.t. pure(ϕ1) �⇒ E = F do

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] �⇒sh a2 then return false

return isMarked(ϕ1);

Fig. 3. Compositional entailment checking (≺ is any total order compatible with ≺∗
P)

The main steps of the reduction are given in Fig. 3. The reduction starts by a nor-
malization step (described in Sec. 3.2), which adds to each of the two formulas all
(dis-)equalities implied by spatial sub-formulas and removes all atoms P (E,F,

−→
B)

representing empty list segments, i.e., those where E = F occurs in the pure part.
The normalization of a formula outputs false iff the input formula is unsatisfiable.

In the second step, the procedure tests the entailment between the pure parts of the
normalized formulas. This can be done using any decision procedure for quantifier-free
formulas in the first-order theory with equality.

For the spatial parts, the procedure builds a mapping from spatial atoms of ϕ2 to
sub-formulas of ϕ1. Intuitively, the sub-formula ϕ1[a2] associated to an atom a2 of ϕ2,
computed by select, describes the region of a heap modeled by ϕ1 that should sat-
isfy a2. For predicate atoms a2 = P2(E,F,

−→
B), select is called (in the second loop)

only if there exists a model of ϕ1 where the heap region that should satisfy a2 is non-
empty, i.e., E = F does not occur in ϕ1. In this case, select does also check that
for any model of ϕ1, the sub-heap corresponding to the atoms in ϕ1[a2] is well-formed
w.r.t. a2 (see Sec. 3.3). This is needed since all heaps described by a2 are well-formed.

Note that in the well-formedness check above, one cannot speak about ϕ1[a2] alone.
This is because without the rest of ϕ1, ϕ1[a2] may have models which are not well-
formed w.r.t. a2 even if the sub-heap corresponding to ϕ1[a2] is well-formed for any
model of ϕ1. For example, let ϕ1 = ls(x, y) ∗ ls(y, z) ∗ z �→ {(f, t)}, a2 = ls(x, z),
and ϕ1[a2] = ls(x, y) ∗ ls(y, z). If we consider only models of ϕ1, the sub-heaps
corresponding to ϕ1[a2] are all well-formed w.r.t. a2, i.e., the location bound to z is not
allocated in these sub-heaps. However, ϕ1[a2] alone has lasso-shaped models where the
location bound to z is allocated on the path between x and y.

Once ϕ1[a2] is obtained, one needs to check that all sub-heaps modeled by ϕ1[a2]
are also models of a2. For points-to atoms a2, this boils down to a syntactic identity
(modulo some renaming given by the equalities in the pure part of ϕ1). For predicate
atoms a2, a special entailment operator ⇒sh (defined in Sec. 3.5) is used. We cannot
use the usual entailment ⇒ since, as we have seen in the example above, ϕ1[a2] may
have models which are not sub-heaps of models of ϕ1. Thus, ϕ1[a2] ⇒sh a2 holds iff
all models of ϕ1[a2], which are well-formed w.r.t. a2, are also models of a2.

If there exists an atom a2 of ϕ2, which is not entailed by the associated sub-formula,
then ϕ1 ⇒ ϕ2 is not valid. By the semantics of the separating conjunction, the

320 C. Enea et al.

sub-formulas of ϕ1 associated with two different atoms of ϕ2 must not share spatial
atoms. Due to this, the spatial atoms obtained from each application of select are
marked and cannot be reused in the future. Note that the mapping is built by enu-
merating the atoms of ϕ2 in a particular order: first, the points-to atoms and then the
inductive predicates, in a decreasing order wrt ≺P. This is important for completeness
(see Sec. 3.3).

The procedure select is detailed in Sec. 3.3. It returns emp if the construction of
the sub-formula of ϕ1 associated with the input atom fails (this implies that also the
entailment ϕ1 ⇒ ϕ2 is not valid). If all entailments between formulas and atoms are
valid, then ϕ1 ⇒ ϕ2 holds provided that all spatial atoms of ϕ1 are marked (tested by
isMarked). In Sec. 3.5, we introduce a procedure for checking entailments between
a formula and a spatial atom.

Graph Representations. Some of the sub-procedures mentioned above work on a graph
representation of the input formulas, called SL graphs (which are different from the Gaif-
man graphs of Sec. 2). Thus, a formula ϕ is represented by a directed graph G[ϕ] where
each node represents a maximal set of variables equal w.r.t. the pure part of ϕ, and each
edge represents a disequality E �= F or a spatial atom. Every node n is labeled by the set
of variables Var(n) it represents; for every variable E, Node(E) denotes the node n s.t.
E ∈ Var(n). Next, (1) a disequality E �= F is represented by an undirected edge from
Node(E) to Node(F), (2) a spatial atom E �→ {(f1, E1), . . . , (fn, En)} is represented
by n directed edges from Node(E) to Node(Ei) labeled by fi for each 1 ≤ i ≤ n,

and (3) a spatial atom P (E,F,
−→
B) is represented by a directed edge from Node(E) to

Node(F) labeled by P (
−→
B). Edges are referred to as disequality, points-to, or predicate

edges, depending on the atom they represent. For simplicity, we may say that the graph
representation of a formula is simply a formula.

Running Example. In the following, we use as a running example the entailment ψ1 ⇒
ψ2 between the following formulas:

ψ1 ≡ ∃Y1, Y2, Y3, Y4, Z1, Z2, Z3. x �= z ∧ Z2 �= z ∧ (3)

x �→ {(s, Z2), (h, Z1)} ∗ Z2 �→ {(s, y), (h, Z3)} ∗ ls(Z1, z) ∗ ls(Z3, z) ∗
ls(y, Y1) ∗ skl2(y, Y3) ∗ ls(Y1, Y2) ∗
Y3 �→ {(f2, t), (f1, Y4)} ∗ Y4 �→ {(f2,nil), (f1, t)} ∗ t �→ {(s, Y2)}

ψ2 ≡ y �= t ∧ nll(x, y, z) ∗ skl2(y, t) ∗ t �→ {(s, y)} (4)

The graph representations of these formulas are drawn in the top part of Fig. 4.

3.2 Normalization

To infer the implicit (dis-)equalities in a formula, we adapt the boolean abstraction
proposed in [10] for our logic. Therefore, given a formula ϕ, we define an equisatisfiable
boolean formula BoolAbs[ϕ] in CNF over a set of boolean variables containing the
boolean variable [E = F] for every two variables E and F occuring in ϕ and the
boolean variable [E, a] for every variable E and spatial atom a of the form E �→ ρ or

P (E,F,
−→
B) in ϕ. The variable [E = F] denotes the equality between E and F while

[E, a] denotes the fact that the atom a describes a heap where E is allocated.

Compositional Entailment Checking for a Fragment of Separation Logic 321

Initially: ψ1 ⇒ ψ2

x

z

y Y3

t

Y4

Y1 Y2

s s

h h

ls ls

skl2 f2

f1 f1

ls

ls

s

⇒ x y tnll(z) skl2

s

After normalization: norm(ψ1)⇒ norm(ψ2)

x

z

y
Y1, Y2

Y3

t

Y4

s s

h h

ls ls

skl2 f2

f1 f1

s

⇒ x y tnll(z) skl2

s

select(ψ1, nll(x, y, z))

select(ψ1, skl2(y, t))

Fig. 4. An example of applying compositional entailment checking. Points-to edges are repre-
sented by simple lines, predicate edges by double lines, and disequality edges by dashed lines. For
readability, we omit the points-to edge from Y4 to nil, some of the labeling with existentially-
quantified variables, and some of the disequality edges in the normalized graphs.

Given ϕ � ∃−→X.Π ∧Σ, BoolAbs[ϕ] � F (Π) ∧ F (Σ) ∧ F= ∧ F∗ where F (Π) and
F (Σ) encode the atoms of ϕ (using⊕ to denote xor), F= encodes reflexivity, symmetry,
and transitivity of equality, and F∗ encodes the semantics of the separating conjunction:

F (Π) �
∧

E=F∈Π

[E = F] ∧
∧

E �=F∈Π

¬[E = F] F (Σ) �
∧

a=E �→ρ∈Σ

[E, a] ∧
∧

a=P (E,F,
−→
B)∈Σ

[E, a]⊕ [E = F]

F= �
∧

E1 variable in ϕ

[E1 = E1] ∧
∧

E1,E2 variables in ϕ

([E1 = E2]⇔ [E2 = E1]) ∧
∧

E1,E2,E3 variables in ϕ

([E1 = E2] ∧ [E2 = E3]⇒ [E1 = E3])

F∗ �
∧

E,F variables in ϕ

a,a′different atoms in Σ

([E = F] ∧ [E, a])⇒ ¬[F, a′]

(5)

For the formula ψ1 in our running example (Eq. 3), BoolAbs[ψ1] is a conjunction of
several formulas including:

1. [y, skl2(y, Y3)]⊕ [y = Y3], which encodes the atom skl2(y, Y3),
2. [Y3, Y3 �→ {(f1, Y4), (f2, t)}] and [t, t �→ {(s, Y2)}], encoding points-to atoms,
3. ([y = t] ∧ [t, t �→ {(s, Y2)}]) ⇒ ¬[y, skl2(y, Y3)], which encodes the separating

conjunction between t �→ {(s, Y2)} and skl2(y, Y3),
4. ([Y3 = t] ∧ [t, t �→ {(s, Y2)}]) ⇒ ¬[Y3, Y3 �→ {(f1, Y4), (f2, t)}], which encodes

the separating conjunction between t �→ {(s, Y2)} and Y3 �→ {(f1, Y4), (f2, t)}.

322 C. Enea et al.

Proposition 1. Let ϕ be a formula. Then, BoolAbs[ϕ] is equisatisfiable with ϕ, and for
any variables E and F of ϕ, BoolAbs[ϕ]⇒ [E = F] (resp., BoolAbs[ϕ]⇒ ¬[E = F])
iff ϕ ⇒ E = F (resp. ϕ ⇒ E �= F).

For example, BoolAbs[ψ1] ⇒ ¬[y = t], which is a consequence of the sub-formulas
we have given above together with F=.

If BoolAbs[ϕ] is unsatisfiable, then the output of norm(ϕ) is false . Otherwise, the
output of norm(ϕ) is the formula ϕ′ obtained from ϕ by (1) adding all (dis-)equalities

implied by BoolAbs[ϕ] and (2) removing all predicates P (E,F,
−→
B) s.t. E = F oc-

curs in the pure part. For example, the normalizations of ψ1 and ψ2 are given in the
bottom part of Fig. 4. Note that the ls atoms reachable from y are removed because
BoolAbs[ψ1]⇒ [y = Y1] and BoolAbs[ψ1]⇒ [Y1 = Y2].

The following result is important for the completeness of the select procedure.

Proposition 2. Let norm(ϕ) be the normal form of a formula ϕ. For any two distinct
nodes n and n′ in the SL graph of norm(ϕ), there cannot exist two disjoint sets of atoms
A and A′ in norm(ϕ) s.t. both A and A′ represent paths between n and n′.

If we assume for contradiction that norm(ϕ) contains two such sets of atoms, then,
by the semantics of the separating conjunction, ϕ ⇒ E = F where E and F label n
and n′, respectively. Therefore, norm(ϕ) does not include all equalities implied by ϕ,
which contradicts its definition.

3.3 Selection of Spatial Atoms

Points-to Atoms. Let ϕ1 � ∃−→X.Π1 ∧ Σ1 be a normalized formula. The procedure
select(ϕ1, E2 �→ ρ2) outputs the sub-formula ∃−→X.Π1 ∧ E1 �→ ρ1 s.t. E1 = E2

occurs in Π1 if it exists, or emp otherwise. The procedure select is called only if
ϕ1 is satisfiable and consequently, ϕ1 cannot contain two different atoms E1 �→ ρ1
and E′

1 �→ ρ′1 such that E1 = E′
1 = E2. Also, if there exists no such points-to atom,

then ϕ1 ⇒ ϕ2 is not valid. Indeed, since ϕ2 does not contain existentially quantified
variables, a points-to atom in ϕ2 could be entailed only by a points-to atom in ϕ1.

In the running example, select(ψ1, t �→ {(s, y)}) = ∃Y2. y = Y2 ∧ . . . ∧ t �→
{(s, Y2)} (we have omitted some existential variables and pure atoms).

Predicate Atoms. Given an atom a2 = P2(E2, F2,
−→
B2), select(ϕ1, a2) builds a sub-

graph G′ of G[ϕ1], and then it checks whether the sub-heaps described by G′ are well-
formed w.r.t. a2. If this is not true or if G′ is empty, then it outputs emp. Otherwise, it
outputs the formula ∃−→X.Π1 ∧Σ′ where Σ′ consists of all atoms represented by edges
of the sub-graph G′. Let Dangling[a2] = Node(F2) ∪ {Node(B) | B ∈ −→B2}.

The sub-graph G′ is defined as the union of all paths of G[ϕ1] that (1) consist of
edges labeled by fields in F∗

�→(P2) or predicates Q with P2 ≺∗
P Q, (2) start in the node

labeled by E2, and (3) end either in a node from Dangling[a2] or in a cycle, in which
case they must not traverse nodes in Dangling[a2]. The paths in G′ that end in a node
from Dangling[a2] must not traverse other nodes from Dangling[a2]. Therefore, G′

does not contain edges that start in a node from Dangling[a2]. The instances of G′ for
select(ψ1, nll(x, y, z)) and select(ψ1, skl2(y, t)) are emphasized in Fig. 4.

Compositional Entailment Checking for a Fragment of Separation Logic 323

Next, the procedureselect checks that in every model of ϕ1, the sub-heap described
by G′ is well-formed w.r.t. a2. Intuitively, this means that all the cycles in the sub-
heap are explicitly described in the inductive definition of P2. For example, if ϕ1 =
ls(x, y)∗ls(y, z) and ϕ2 = a2 = ls(x, z), then the graph G′ corresponds to the entire
formula ϕ1 and it may have lasso-shaped models (z may belong to the path between
x and y) that are not well-formed w.r.t. ls(x, z) (whose inductive definition describes
only acyclic heaps). Therefore, the procedure select returns emp, which proves that
the entailment ϕ1 ⇒ ϕ2 does not hold. For our running example, for any model of ψ1,
in the sub-heap modeled by the graph select(ψ1, skl2(y, t)) in Fig. 4, t should not be
(1) interpreted as an allocated location in the list segment skl2(y, Y3) or (2) aliased to
one of nodes labeled by Y3 and Y4.

The well-formedness test is equivalent to the fact that for every variable V ∈
{F2} ∪

−→
B2 and every model of ϕ1, the interpretation of V is different from all allo-

cated locations in the sub-heap described by G′. This is in turn equivalent to the fact
that for every variable V ∈ {F2} ∪

−→
B2, the two following conditions hold:

1. For every predicate edge e included in G′ that does not end in Node(V), V is
allocated in all models of E �= F ∧ (ϕ1 \G′) where E and F are variables labeling
the source and the destination of e, respectively, and ϕ1 \ G′ is obtained from ϕ1

by deleting all spatial atoms represented by edges of G′.
2. For every variable V ′ labeling the source of a points-to edge of G′, ϕ1 ⇒ V �= V ′.

The first condition guarantees that V is not interpreted as an allocated location in
a list segment described by a predicate edge of G′ (this trivially holds for predicate
edges ending in Node(V)). If V was not allocated in some model (S,H1) of E �=
F ∧ (ϕ1 \ G′), then one could construct a model (S,H2) of G′ where e would be
interpreted to a non-empty list and S(V) would equal an allocated location inside this
list. Therefore, there would exist a model of ϕ1, defined as the union of (S,H1) and
(S,H2), in which the heap region described by G′ would not be well-formed w.r.t. a2.

For example, in the graph select(ψ1, skl2(y, t)) in Fig. 4, t is not interpreted as an
allocated location in the list segment skl2(y, Y3) since t is allocated (due to the atom
t �→ {(s, Y2)}) in all models of y �= Y3 ∧ (ψ1 \ select(ψ1, skl2(y, t))).

To check that variables are allocated, we use the following property: given a formula
ϕ � ∃−→X.Π ∧ Σ, a variable V is allocated in every model of ϕ iff ∃−→X.Π ∧Σ ∗ V �→
{(f, V1)} is unsatisfiable. Here, we assume that f and V1 are not used in ϕ. Note that,
by Prop. 1, unsatisfiability can be decided using the boolean abstraction BoolAbs.

The second condition guarantees that V is different from all allocated locations rep-
resented by sources of points-to edges in G′. For the graph select(ψ1, nll(x, y, z))
in Fig. 4, the variable z must be different from all existential variables labeling a node
which is the source of a points-to edge. These disequalities appear explicitly in the
formula. In general, by Prop. 1, ϕ1 ⇒ V �= V ′ can be decided using the boolean
abstraction.

3.4 Soundness and Completeness

The following theorem states that the procedure given in Fig. 3 is sound and com-
plete. The soundness is a direct consequence of the semantics. The completeness is a

324 C. Enea et al.

consequence of Prop. 1 and 2. In particular, Prop. 2 implies that the sub-formula re-
turned by select(ϕ1, a2) is the only one that can describe a heap region satisfying
a2.

Theorem 1. Let ϕ1 and ϕ2 be two formulas s.t. ϕ2 is quantifier-free. Then, ϕ1 ⇒ ϕ2

iff the procedure in Fig. 3 returns true.

3.5 Checking Entailments between a Formula and an Atom

Given a formula ϕ and an atom P (E,F,
−→
B), we define a procedure for checking that

ϕ ⇒sh P (E,F,
−→
B), which works as follows: (1) G[ϕ] is transformed into a tree T [ϕ]

by splitting nodes that have multiple incoming edges, (2) the inductive definition of
P (E,F,

−→
B) is used to define a TA A[P] s.t. T [ϕ] belongs to the language ofA[P] only

if ϕ ⇒sh P (E,F,
−→
B). Notice that we do not require the reverse implication in order to

keep the size ofA[P] polynomial in the size of the inductive definition of P . Thus,A[P]

does not recognize the tree representations of all formulas ϕ s.t. ϕ ⇒sh P (E,F,
−→
B).

The transformation of graphs into trees is presented in Sec. 4 while the definition of the
TA is introduced in Sec. 5. In Sec. 6, we also discuss how to obtain a complete method
by generating a TA A[P] of an exponential size.

4 Representing SL Graphs as Trees

We define a canonical representation of SL graphs in the form of trees, which we use
for checking⇒sh . In this representation, the disequality edges are ignored because they
have been dealt with previously when checking entailment of pure parts.

Rootf1

f2

f3

f3

g1

g2 g2

(a) A labeled graph G

Root

alias ↑↓[f1 f2]

alias ↑[g1]

f1

f2

f3

f3

g1

g2

g2

(b) A tree representation of G

Fig. 5. The tree representation
of a generic graph

We start by explaining the main concepts of the tree
encoding using the generic labeled graph in Fig. 5(a).
We consider a graph G where all nodes are reachable
from a distinguished node called Root (this property is
satisfied by all SL graphs returned by the select pro-
cedure). To construct a tree representation of G, we start
with its spanning tree (emphasized using bold edges)
and proceed with splitting any node with at least two
incoming edges, called a join node, into several copies,
one for each incoming edge not contained in the span-
ning tree. The obtained tree is given in Fig. 5(b).

Not to loose any information, the copies of nodes
should be labeled with the identity of the original node,
which is kept in the spanning tree. However, since the
representation does not use node identities, we label ev-
ery original node with a representation of the path from
Root to this node in the spanning tree, and we assign ev-
ery copied node a label describing how it can reach the
original node in the spanning tree. For example, if a node n has the label alias ↑[g1],
this denotes the fact that n is a copy of some join node, which is the first ancestor of

Compositional Entailment Checking for a Fragment of Separation Logic 325

n in the spanning tree that is reachable from Root by a path formed of a (non-empty)
sequence of g1 edges. Further, n labelled by alias ↑↓[f1 f2] denotes roughly that (1) the
original node is reachable from Root by a path formed by a (non-empty) sequence of
f1 edges followed by a (non-empty) sequence of f2 edges, and (2) the original node can
be reached from n by going up in the tree until the first node that is labelled by a prefix
of f1 f2 and then down until the first node labelled with f1 f2. The exact definition of
these labels can be found later in this section. In general, a label of the form alias ↑[. . .]
will be used when breaking loops while a label of the form alias ↑↓[. . .] will be used
when breaking parallel paths between nodes. Moreover, if the original node is labeled
by a variable, e.g., x, then we will use a label of the form alias [x]. This set of labels
is enough to obtain a tree representation from SL graphs that can entail a spatial atom
from the considered fragment; for arbitrary graphs, this is not the case.

When applying this construction to an SL graph, the most technical part consists in
defining the spanning tree. Based on the inductive definition of predicates, we consider
a total order on fields≺F that is extended to sequences of fields,≺F∗ , in a lexicographic
way. Then, the spanning tree is defined by the set of paths labeled by sequences of fields
which are minimum according to the order ≺F∗ .

Intuitively, the order ≺F reflects the order in which the unfolding of the inductive
definition of P is done: (1) Fields used in the atom E �→ ρ of the matrix of P are
ordered before fields of any other predicate called by P . (2) Fields appearing in ρ and
going “one-step forward” (i.e., occurring in a pair (f,Xtl)) are ordered before fields

going “down” (i.e., occurring in a pair (f, Z) with Z ∈ −→
Z), which are ordered before

fields going to the “border” (i.e., occurring in a pair (f,X) with X ∈ −→B \ {nil}).
Formally, given a predicate P with the matrix Σ as in (2), we identify in the set

F �→(P) three disjoint sets: (a) F �→Xtl
(P) is the set of fields f occurring in a pair

(f,Xtl) of ρ, (b) F �→−→
Z
(P) the set of fields f occurring in a pair (f, Z) of ρ with

Z ∈ −→
Z , and (c) F �→−→

B
(P) the set of fields f occurring in a pair (f,X) of ρ with

X ∈ −→
B \ {nil}. Then, we assume that there exists a total order ≺F on fields s.t., for

all P , P1, P2 in P:

∀f1 ∈ F �→Xtl
(P) ∀f2 ∈ F �→−→

Z
(P) ∀f3 ∈ F �→−→

B
(P). f1 ≺F f2 ≺F f3 and

(f1 ∈ F �→(P1) ∧ f2 ∈ F �→(P2) ∧ f1 �= f2 ∧ P1 ≺P P2)⇒ f1 ≺F f2.

For example, if P = {nll, ls} or P = {nlcl, ls}, then s ≺F h ≺F f ; and if P =
{skl2, skl1}, then f2 ≺F f1. The order ≺F is extended to a lexicographic order ≺F∗

over sequences in F∗. Note that the pointer fields going to nil are not involved in the
constraints above (they are not included in neither one of the sets F �→Xtl

(P), F �→−→
Z
(P),

or F �→−→
B
(P)). They are treated differently because, by definition, there is no pointer

field defined in nil. For example, if P = {skl1}, then f2 ≺F f1 and f1 ≺F f2 are
both valid total orderings on fields.

An f -edge of an SL graph is a points-to edge labeled by f or a predicate edge labeled
by P (

−→
N) s.t. the minimum field in F �→(P) w.r.t. ≺F is f .

Let G be an SL graph and P (E,F,
−→
B) an atom for which we want to prove that

G ⇒sh P (E,F,
−→
B). We assume that all nodes of G are reachable from the node Root

labeled by E, which is ensured when G is constructed by select. The tree encoding of G

326 C. Enea et al.

is computed by the procedure toTree(G,P (E,F,
−→
B)) that consists of four consecutive

steps that are presented below (see also [8]).

Node Marking. First, toTree computes a mapping M, called node marking, which
defines the spanning tree of G. Intuitively, for each node n, M(n) is the sequence of
fields labeling a path reaching n from Root that is minimal w.r.t. ≺F∗ . Formally, let π
be a path in G starting in Root and consisting of the sequence of edges e1 e2 . . . en.
The labeling of π, denoted by L(π), is the sequence of fields f1 f2 . . . fn s.t. for all i,
ei is an fi-edge. The node marking is defined by

∀n ∈ G M(n) � Reduce(min≺F
(F �→(P)) · Lmin(n)), (6)

Lmin(n) � min≺F∗{L(π) | Root
π−→n} (7)

where Reduce rewrites the sub-words of the form f+ to f , for any field f . For technical
reasons, we add the minimum field (w.r.t. ≺F) in F �→(P) at the beginning of all M(n).

Fig. 6(b)–(c) depicts two graphs and the markings of their nodes. (For readability,
we omit the markings of the nodes labeled by y and t.)

Splitting Join Nodes. The join nodes are split in two consecutive steps, denoted as
splitLabeledJoin and splitJoin, depending on whether they are labeled by vari-
ables in {E,F} ∪ −→B or not. In both cases, only the edges of the spanning tree are kept
in the tree, the other edges are redirected to fresh copies labeled by some alias [..].

For any join node n, the spanning tree edge is the f -edge (m,n) such that
Reduce(M(m) f) = M(n), i.e., (m,n) is at the end of the minimum path leading
to n. (For Root , all incoming edges are not in the spanning tree.)

In splitLabeledJoin, a graph G′ is obtained by replacing in G any edge (m,n)

such that n is labeled by some V ∈ {E,F}∪−→B and (m,n) is not in the spanning tree by
an edge (m,n′) with the same label, where n′ is a fresh copy of n labeled by alias [V].

Moreover, for uniformity, all (even non-join) nodes labeled by a variable V ∈ F ∪ −→B
are labeled by alias [V] in G′. Fig. 6(a) gives the output graph of splitLabeledJoin
on the SL graphs returned in our running example by select(ψ1, nll(x, y, z)) and
select(ψ1, skl2(y, t)).

Subsequently, splitJoin builds from G′ a tree by splitting unlabeled join nodes as
follows. Let n be a join node and (m,n) an edge not in the spanning tree of G′ (and G).
The edge (m,n) is replaced in the tree by an edge (m,n′) with the same edge label,
where n′ is a fresh copy of n labeled by:

– alias ↑[M(n)] if m is reachable from n and all predecessors of m (by a simple path)
marked by M(n) are also predecessors of n. Intuitively, this label is used to break
loops, and it refers to the closest predecessor of n′ having the given marking. The
use of this labeling is illustrated in Fig. 6(b).

– alias ↑↓[M(n)] if there is a node p which is a predecessor of m s.t. all predecessors
of m that have a unique successor marked by M(n) are also predecessors of p, and
n is the unique successor of p marked by M(n). Intuitively, this transformation is
used to break multiple paths between p and n as illustrated in Fig. 6(c).1

1 The combination of up and down arrows in the label corresponds to the need of going up and
then down in the resulting tree—whereas in the previous case, it suffices to go up only.

Compositional Entailment Checking for a Fragment of Separation Logic 327

x

alias [z] alias [z]

alias [y]
s s

h h

ls ls

y alias [t]

alias [t]

skl2 f2

f1 f1

x
M : s

M : s h

M : s

M : s h

M : s h f M : s h f

y
s s

h h

f ff f

x

alias ↑[sh] alias ↑[sh]

alias [y]
s s

h h

f f

f f

(a) Tree encodings for the selected sub-
graphs in the bottom left part of Fig. 4

(b) Tree encodings for graphs satisfying nlcl

y

M : f2

M : f2

M : f2 f1

M : f2

M : f2 f1

t
skl2 f2 f2

f1 f1 f1 f1

y

alias ↑↓[f2]

alias [t]

alias [t]

skl2 f2 f2

f1

f1

f1 f1

(c) Tree encodings for graphs satisfying skl2

Fig. 6. Tree encodings

If the relation between n and n′ does not satisfy the constraints mentioned above, the
result of splitJoin is an error, i.e., the ⊥ tree.

At the end of these steps, we obtain a tree with labels on edges (using fields f ∈ F

or predicates Q(
−→
B)) and labels on nodes of the form alias [..].

Updating the Labels. In the last step, two transformations are done on the tree. First,
the labels of predicate edges are changed in order to replace each argument X different
from {F}∪−→B by a label alias ↑[M(n)] or alias ↑↓[M(n)], which describes the position
of the node n labeled by X w.r.t. the source node of the predicate edge.

Finally, as the generated trees will be tested for membership in the language of a TA
which accepts node-labelled trees only, the labels of edges are moved to the labels of
their source nodes and concatenated in the order given by ≺F (predicates in the labels
are ordered according to the minimum field in their matrix).

The following property ensures the soundness of the entailment procedure:

Proposition 3. Let P (E,F,
−→
B) be an atom and G an SL graph. If toTree(G,

P (E,F,
−→
B)) = ⊥, then G �⇒ P (E,F,

−→
B).

5 Tree Automata Recognizing Tree Encodings of SL Graphs

Next, we proceed to the construction of tree automata A[P (E,F,
−→
B)] that recognize

tree encodings of SL graphs that imply atoms of the form P (E,F,
−→
B). Due to space

constraints, we cannot provide a full description of the TA construction (which we give
in [8]). Instead, we give an intuitive description only and illustrate it on two typical
examples (for now, we leave our running examples, TAs for which are given in [8]).

Tree Automata. A (non-deterministic) tree automaton recognizing tree encodings of
SL graphs is a tupleA = (Q, q0, Δ) where Q is a set of states, q0 ∈ Q is the initial state,
and Δ is a set of transition rules of the form q ↪→ a1(q1), . . . , an(qn) or q ↪→ a, where

328 C. Enea et al.

n > 0, q, q1, . . . , qn ∈ Q, ai is an SL graph edge label (we assume them to be ordered
w.r.t. the ordering of fields as for tree encodings), and a is alias ↑[m], alias ↑↓[m], or
alias [V]. The set of trees L(A) recognized by A is defined as usual.

Definition of A[P (E,F,
−→
B)]. The tree automaton A[P (E,F,

−→
B)] is defined starting

from the inductive definition of P . If P does not call other predicates, the TA simply
recognizes the tree encodings of the SL graphs that are obtained by “concatenating”
a sequence of Gaifman graphs representing the matrix Σ(E,Xtl,

−→
B) and predicate

edges P (E,Xtl,
−→
B). In these sequences, occurrences of the Gaifman graphs repre-

senting the matrix and the predicate edges can be mixed in an arbitrary order and in
an arbitrary number. Intuitively, this corresponds to a partial unfolding of the predi-
cate P in which there appear concrete segments described by points-to edges as well as
(possibly multiple) segments described by predicate edges. Concatenating two Gaifman
graphs means that the node labeled by Xtl in the first graph is merged with the node
labeled by E in the other graph. This is illustrated on the following example.

q0 q3

q2

q1

f1

f1

P1(B)

P1(B)

alias [F]

alias ↑↓[f1]

alias [B]
f3

f2

f2f3

(1) q0 ↪→ f1(q0), f2(q1), f3(q2)
(2) q1 ↪→ alias ↑↓[f1]
(3) q2 ↪→ alias [B]
(4) q0 ↪→ f1(q3), f2(q3), f3(q2)
(5) q3 ↪→ alias [F]
(6) q0 ↪→ P1(B)(q0)
(7) q0 ↪→ P1(B)(q3)

Fig. 7. A[P1(E,F,B)]

Consider a predicate P1(E,F,B) that does not call
other predicates and that has the matrix

Σ1 � E �→ {(f1, Xtl), (f2, Xtl), (f3, B)}.
The tree automaton A1 for P1(E,F,B) has transition
rules given in Fig. 7. Rules (1)–(3) recognize the tree
encoding of the Gaifman graph of Σ1, assuming the
following total order on the fields: f1 ≺F f2 ≺F f3.
Rule (4) is used to distinguish the “last” instance of
this tree encoding, which ends in the node labeled by
alias [F] accepted by Rule (5). Finally, Rules (6) and (7)
recognize predicate edges labeled by P1(B). As in the
previous case, we distinguish the predicate edge that
ends in the node labeled by alias [F].

Note that the TA given above exhibits the simple and
generic skeleton of TAs accepting tree encodings of list
segments defined in our SL fragment: The initial state
q0 is used in a loop to traverse over an arbitrary number
of folded (Rule 6) and unfolded (Rule 1) occurrences
of the list segments, and the state q3 is used to recog-
nize the end of the backbone (Rule 5). The other states
(here, q2) are used to accept alias labels only. The same
skeleton can be observed in the TA recognizing tree en-
codings of singly linked lists, which is given in Fig. 8.

q0 q1

ff

ls

ls

alias [F]

Fig. 8. A[ls(E,F)]
When P calls other predicates, the automaton recognizes tree encodings of concate-

nations of more general SL graphs, obtained from Gf [Σ] by replacing predicate edges
with unfoldings of these predicates. On the level of TAs, this operation corresponds to
a substitution of transitions labelled by predicates with TAs for the nested predicates.
During this substitution, alias [..] labels occurring in the TA for the nested predicate
need to be modified. Labels of the form alias ↑[m] and alias ↑↓[m] are adjusted by pre-
fixing m with the marking of the source state of the transition. Moreover, labels of the
form alias [V] are substituted by the marking of Node(V) w.r.t. the higher-level matrix.

Compositional Entailment Checking for a Fragment of Separation Logic 329

Let us consider a predicate P2(E,F) that calls P1 and that has the matrix

Σ2 � ∃Z.E �→ {(g1, Xtl), (g2, Z)}∧ �1+ P1[Z,E].

(1′) qq0 ↪→ g1(qq0), g2(q0)
(2′) qq0 ↪→ g1(qq1), g2(q0)
(3′) qq1 ↪→ alias [F]
(4′) qq0 ↪→ P2(qq0)
(5′) qq0 ↪→ P2(qq1)

Fig. 9. A[P2(E,F)]

The TA A2 for P2(E,F) includes the transition rules
given in Fig. 9. These rules are complemented by
the rules of A1 where alias [F] is substituted by
alias ↑[g1 g2], alias [B] by alias ↑[g1], and alias ↑↓[f1] is
substituted by alias ↑↓[g1 g2 f1]. Rule (1′) and the ones
imported (after renaming of the labels) fromA1 describe
trees obtained from the tree encoding of Gf [Σ2] by re-
placing the edge looping in Z with a tree recognized by A1. According to Gf [Σ2],
the node marking of Z is g1 g2, and so the label alias [F] shall be substituted by
alias ↑[g1 g2], and the marking alias ↑↓[f1] shall be substituted by alias ↑↓[g1 g2 f1].

The following result states the correctness of the tree automata construction.

Theorem 2. For any atom P (E,F,
−→
B) and any SL graph G, if the tree generated by

toTree(G,P (E,F,
−→
B)) is recognized by A[P (E,F,

−→
B)], then G ⇒ P (E,F,

−→
B).

6 Completeness and Complexity

In general, there exist SL graphs that entail P (E,F,
−→
B) whose tree encodings are not

recognized by A[P (E,F,
−→
B)]. The models of these SL graphs are nested list segments

where inner pointer fields specified by the matrix of P are aliased. For example, the TA
for skl2 does not recognize tree encodings of SL graphs modeling heaps where Xtl

and Z1 are interpreted to the same location.
The construction of TAs explained above can be easily extended to cover such SL

graphs (cf. [8]), but the size of the obtained automata may become exponential in the
size of P (defined as the number of symbols in the matrices of all Q with P ≺∗

P Q)
as the construction considers all possible aliasing scenarios of targets of inner pointer
fields permitted by the predicate definition.

For the verification conditions that we have encountered in our experiments, the TAs
defined above are precise enough in the vast majority of the cases. In particular, note
that the TAs generated for the predicates for ls and dll (defined below) are precise.
We have, however, implemented even the above mentioned extension and realized that
it also provides acceptable performance.

In conclusion, the overall complexity of the semi-decision procedure (where aliases
between variables in the definition of a predicate are ignored) runs in polynomial time
modulo an oracle for deciding validity of a boolean formula (needed in normalization
procedure). The complete decision procedure is exponential in the size of the predicates,
and not of the formulas, which remains acceptable in practice.

7 Extensions

The procedures presented above can be extended to a larger fragment of SL that uses
more general inductively defined predicates. In particular, they can be extended to cover

330 C. Enea et al.

finite nestings of singly or doubly linked lists (DLL). To describe DLL segments be-
tween two locations E and F where P is the predecessor of E and S is the successor
of F , one can use the predicate

dll(E,F, P, S) � (E = S ∧ F = P ∧ emp) ∨
(
E �= S ∧ F �= P ∧

∃Xtl. E �→ {(next,Xtl), (prev, P)} ∗ dll(Xtl, F, E, S)
)
.

(8)

Finite nestings of such list segments can be defined by replacing the matrix E �→
{(next,Xtl), (prev, P)} with more general formulas that include other predicates.

The key point in this extension is the definition of the tree encoding. Basically, one
needs to consider two more types of labels for the tree nodes: alias ↑2[α] with α ∈ F∗,
which denotes the fact that the node is a copy of its second predecessor of marking α,
and alias ↑↓last[α] with α ∈ F∗, which denotes the fact that the node is a copy of the
last successor of marking α of its first predecessor that has a successor of marking α.
The first label is needed to handle inner nodes of doubly linked lists, which have two
incoming edges, one from their successor and one from their predecessor, while the
second label is needed to “break” cyclic doubly linked lists. In the latter case, the label
is used for the copy of the predecessor of the head of the list (cf. [8] for more details).

8 Implementation and Experimental Results

We implemented our decision procedure in a solver called SPEN (SeParation logic EN-
tailment). The tool takes as input an entailment problem ϕ1 ⇒ ϕ2 (including the defini-
tion of the used predicates) encoded in the SMTLIB2 format. For non-valid entailments,
SPEN prints the atom of ϕ2 which is not entailed by a sub-formula of ϕ1. The tool is
based on the MINISAT solver for deciding unsatisfiability of boolean formulas and the
VATA library [15] as the tree automata backend.

We applied SPEN to entailment problems that use various recursive predicates. First,
we considered the benchmark provided in [16], which uses only the ls predicate. This
benchmark has been used in the ls division of the first competition of Separation
Logic solvers, SL-COMP 20142. It consists of 292 problems split into three classes:
the first two classes contain problems generated randomly according to the rules spec-
ified in [16], whereas the last class contains problems obtained from the verification
conditions generated by the tool SMALLFOOT [2]. SPEN solved the full benchmark in
less than 8 seconds (CPU time), which is the second time of the division; the winner of
the division was a specialized solver for the ls predicate, Asterix [17], which spent less
than 4 seconds for the ls benchmark. An explanation for this result is that in the current
version of SPEN, a new TA has to be built for each ls edge, which is time-consuming
for problems with several ls edges (this issue will be remedied in future versions).

Moreover, the TA for ls is quite small, and so the above experiments did not eval-
uate thoroughly the performance of our procedure for checking entailments between
formulas and atoms. For that, we further considered the experiments listed in Table 1,

2 The participants in this competition are available at
http://smtcomp.sourceforge.net/2014/participants.shtml, and the
benchmarks for all divisions of the competition are available at
https://github.com/mihasighi/smtcomp14-sl.

http://smtcomp.sourceforge.net/2014/participants.shtml
https://github.com/mihasighi/smtcomp14-sl

Compositional Entailment Checking for a Fragment of Separation Logic 331

Table 1. Running SPEN on entailments between formulas and atoms.

ϕ2 nll nlcl skl3 dll

ϕ1 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3

Time [ms] 344 335 319 318 316 317 334 349 326 358 324 322
Status vld vld inv vld vld inv vld vld inv vld vld inv
States/Trans. of A[ϕ2] 6/17 6/15 80/193 9/16
Nodes/Edges of T (Gf [ϕ1]) 7/7 7/7 6/7 10/9 7/7 6/6 7/7 8/8 6/6 7/7 7/7 5/5

among which skl3 required the extension of our approach to a full decision procedure
as discussed in Sec. 6. The full benchmark is available with our tool [9] and it includes
the 43 problems of the division “fixed definitions” of SL-COMP 2014. The entailment
problems are extracted from verification conditions of operations like adding or delet-
ing an element at the start, in the middle, or at the end of various kinds of list segments.
Table 1 gives for each example the running time, the valid/invalid status, and the size
of the tree encoding and TA for ϕ1 and ϕ2, respectively. SPEN was the winner in this
division of SL-COMP 2014 (in front of [4,6]) and it was the only tool that solved all
problems of this division.

9 Related Work

Several decision procedures for fragments of SL have been introduced in the literature
[1,5,7,10,13,12,16,18,19,4].

Some of these works [1,5,7,16] consider a fragment of SL that uses only one predi-
cate describing singly linked lists, which is a much more restricted setting than what
is considered in this paper. In particular, Cook et al [7] prove that the satisfiabil-
ity/entailment problem can be solved in polynomial time. Piskac et al [18] show that the
boolean closure of this fragment can be translated to a decidable fragment of first-order
logic, and this way, they prove that the satisfiability/entailment problem can be decided
in NP/co-NP. Furthermore, they consider the problem of combining SL formulas with
constraints on data using the Nelson-Oppen theory combination framework. Adding
constraints on data to SL formulas is considered also in Qiu et al [20].

A fragment of SL covering overlaid nested lists was considered in our previous
work [10]. Compared with it, we currently do not consider overlaid lists, but we have
enlarged the set of inductively-defined predicates to allow for nesting of cyclic lists
and doubly linked lists (DLLs). We also provide a novel and more efficient TA-based
procedure for checking simple entailments.

Brotherston et al [4] define a generic automated theorem prover relying on the notion
of cyclic proofs and instantiate it to prove entailments in a fragment of SL with induc-
tive definitions and disjunctions more general than what we consider here. However,
they do not provide a fragment for which completeness is guaranteed. Iosif et al [13]
also introduce a decidable fragment of SL that can describe more complex data struc-
tures than those considered here, including, e.g., trees with parent pointers or trees with
linked leaves. However, [13] reduces the entailment problem to MSO on graphs with a
bounded tree width, resulting in a multiply-exponential complexity.

332 C. Enea et al.

The recent work [12] considers a more restricted fragment than [13], incompara-
ble with ours. The work proposes a more practical, purely TA-based decision proce-
dure, which reduces the entailment problem to language inclusion on TAs, establishing
EXPTIME-completeness of the considered fragment. Our decision procedure deals with
the boolean structure of SL formulas using SAT solvers, thus reducing the entailment
problem to the problem of entailment between a formula and an atom. Such simpler
entailments are then checked using a polynomial semi-decision procedure based on the
membership problem for TAs. The approach of [12] can deal with various forms of trees
and with entailment of structures with skeletons based on different selectors (e.g., DLLs
viewed from the beginning and DLLs viewed from the end). On the other hand, it cur-
rently cannot deal with structures of zero length and with some forms of structure con-
catenation (such as concatenation of two DLL segments), which we can handle.

10 Conclusion

We proposed a novel (semi-)decision procedure for a fragment of SL with inductive
predicates describing various forms of lists (singly or doubly linked, nested, circular,
with skip links, etc.). The procedure is compositional in that it reduces the given en-
tailment query to a set of simpler queries between a formula and an atom. For solving
them, we proposed a novel reduction to testing membership of a tree derived from the
formula in the language of a TA derived from a predicate. We implemented the proce-
dure, and our experiments show that it not only has a favourable theoretical complexity,
but that it also efficiently handles practical verification conditions.

In the future, we plan to investigate extensions of our approach to formulas with
a more general boolean structure or using more general inductive definitions. Concerning
the latter, we plan to investigate whether some ideas from [12] could be used to extend
our decision procedure for entailments between formulas and atoms. From a practical
point of view, apart from improving the implementation of our procedure, we plan to
integrate it into a complete program analysis framework.

Acknowledgement. This work was supported by the Czech Science Foundation
(project 14-11384S), the BUT FIT projects FIT-S-12-1 and FIT-S-14-2486, and the
EU/Czech IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Lo-
daya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer, Hei-
delberg (2004)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion checking
with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg (2006)

3. Brotherston, J., Fuhs, C., Gorogiannis, N., Pérez, J.N.: A decision procedure for satisfiability
in separation logic with inductive predicates. In: Proceedings of CSL-LICS. ACM (to appear,
2014)

Compositional Entailment Checking for a Fragment of Separation Logic 333

4. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Jhala,
R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367. Springer, Heidelberg
(2012)

5. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a spatial as-
sertion language for data structures. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS
2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001)

6. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and
bag properties via user-defined predicates in separation logic. Sci. Comput. Program. 77(9),
1006–1036 (2012)

7. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning in a
fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 235–249. Springer, Heidelberg (2011)

8. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment checking
for a fragment of separation logic. Technical Report FIT-TR-2014-01, FIT BUT (2014),
http://www.fit.vutbr.cz/˜ilengal/pub/FIT-TR-2014-01.pdf

9. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Spen (2014),
http://www.liafa.univ-paris-diderot.fr/spen

10. Enea, C., Saveluc, V., Sighireanu, M.: Compositional invariant checking for overlaid and
nested linked lists. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
129–148. Springer, Heidelberg (2013)

11. Gotsman, A., Berdine, J., Cook, B.: Precision and the conjunction rule in concurrent separa-
tion logic. Electronic Notes in Theoretical Computer Science 276, 171–190 (2011)

12. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation logic with
tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 201–218.
Springer, Heidelberg (2014)

13. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive defi-
nitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer,
Heidelberg (2013)

14. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: POPL,
pp. 14–26. ACM (2001)

15. Lengál, O., Šimáček, J., Vojnar, T.: VATA: A library for efficient manipulation of non-
deterministic tree automata. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 79–94. Springer, Heidelberg (2012)

16. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic + superposition calculus = heap the-
orem prover. In: Proc. of PLDI 2011, pp. 556–566. ACM (2011)

17. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan, C.-C.
(ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013)

18. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer, Heidelberg (2013)

19. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer, Heidelberg (2014)

20. Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure, data, and
separation. In: PLDI, pp. 231–242. ACM (2013)

21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. of
LICS 2002, pp. 55–74. IEEE (2002)

http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-01.pdf
http://www.liafa.univ-paris-diderot.fr/spen

Automatic Constrained Rewriting Induction

towards Verifying Procedural Programs�

Cynthia Kop1 and Naoki Nishida2

1 Institute of Computer Science, University of Innsbruck, Austria
Cynthia.Kop@uibk.ac.at

2 Graduate School of Information Science, Nagoya University, Japan
nishida@is.nagoya-u.ac.jp

Abstract. This paper aims at developing a verification method for pro-
cedural programs via a transformation into logically constrained term
rewriting systems (LCTRSs). To this end, we adapt existing rewriting
induction methods to LCTRSs and propose a simple yet effective method
to generalize equations. We show that we can handle realistic functions,
involving, e.g., integers and arrays. An implementation is provided.

1 Introduction

A problem familiar to many computer science lecturers, is the marking of student
programming assignments. This can be large time drain, as it typically involves
checking dozens (or hundreds!) of unnecessarily complicated programs at once.

An obvious solution is automatic testing. For example, one might run assign-
ments on a fixed set of input files; this quickly weeds out incorrect solutions, but
has a high risk of false positives. Alternatively (or in addition), we can try to
automatically prove correctness. Several methods for this have been investigated
(see e.g. [9]). However, most of them require expert knowledge to use, like asser-
tions in the code to trace relevant properties; this is not useful in our setting.

An interesting alternative is inductive theorem proving, which is well investi-
gated in the field of functional programming (see, e.g., [2]). For a functional pro-
gram f to be checked against a specification fspec, it suffices if f(−→x) ≈ fspec(

−→x)
is an inductive theorem of the combined system of f and fspec. For this initial
setting, no expert knowledge is needed, only the definitions of f and fspec.

Recently, analyses of procedural programs (in C, Java Bytecode, etc.) via
transformations into term rewriting systems have been investigated [4,6,8,17]. In
particular, constrained rewriting systems are popular for these transformations,
since logical constraints used for modeling the control flow can be separated
from terms expressing intermediate states [4,6,8,16,20]. To capture the existing
approaches for constrained rewriting in one setting, the framework of logically
constrained term rewriting systems (LCTRS) has been proposed [13].

� This research is supported by the Austrian Science Fund (FWF) international project
I963, the Japan Society for the Promotion of Science (JSPS) and Nagoya University’s
Graduate Program for Real-World Data Circulation Leaders from MEXT, Japan.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 334–353, 2014.
c© Springer International Publishing Switzerland 2014

Automatic Constrained Rewriting Induction 335

In this paper, we develop a verification method for LCTRSs, designed in
particular for LCTRSs obtained from procedural programs. We use rewriting
induction [18], one of the well-investigated methods for inductive theorem prov-
ing, together with a generalization technique that works particularly well for
transformed iterative functions. Although our examples focus on integers and
static integer arrays, the results can be used with various theories.

Of course, verification also has applications outside the academic world. Al-
though we initially focus on typical homework assignments (small programs,
which require only limited language features), we hope to additionally lay a basis
for more extensive program analysis using constrained term rewriting systems.

In this paper, we first recall the LCTRS formalism from [13] (Section 2), and
sketch a way to translate procedural programs to LCTRSs (Section 3). Then
we adapt existing rewriting induction methods for earlier notions of constrained
rewriting [5,20] to LCTRSs (Section 4), which is strengthened with a dedicated
generalization technique (Section 5). Finally, we briefly discuss implementation
ideas (Section 6), give a comparison with related work (Section 7) and conclude.

An extended version of this paper, including all proofs, is available in [14].

2 Preliminaries

In this section, we briefly recall Logically Constrained Term Rewriting Systems
(LCTRSs), following the definitions in [13].

Many-Sorted Terms. We assume given a set S of sorts and an infinite set V of
variables, each variable equipped with a sort. A signature Σ is a set of function
symbols f , disjoint from V , each symbol equipped with a sort declaration [ι1 ×
· · ·×ιn]⇒ κ, with all ιi and κ sorts. The set Terms(Σ,V) of terms over Σ and V ,
contains any expression s such that
 s : ι can be derived for some sort ι, using:

 x : ι
(x : ι ∈ V)
 s1 : ι1 . . .
 sn : ιn

 f(s1, . . . , sn) : κ
(f : [ι1 × · · · × ιn]⇒ κ ∈ Σ)

Fixing Σ and V , every term has a unique sort ι such that
 s : ι; we say that ι is
the sort of s. Let Var(s) be the set of variables occurring in s. A term s is ground
if Var(s) = ∅. A substitution is a sort-preservingmapping [x1 := s1, . . . , xk := sk]
from variables to terms; sγ denotes s with occurrences of any xi replaced by si.

Given a term s, a position in s is a sequence p of integers such that s|p is de-
fined, where s|ε = s and f(s1, . . . , sn)|i·p = (si)|p. We say that s|p is a subterm of
s. If
 s|p : ι and
 t : ι, then s[t]p denotes s with the subterm at position p
replaced by t. A context C is a term containing one or more typed holes �i : ιi.
If s1 : ιi, . . . , sn : ιn, we define C[s1, . . . , sn] as C with each �i replaced by si.

Logical Terms. We fix a signature Σ = Σterms∪Σtheory (with possible overlap,
as discussed below). The sorts occurring in Σtheory are called theory sorts, and
the symbols theory symbols. We assume given a mapping I which assigns to each
theory sort ι a set Iι, and a mapping J which maps each f : [ι1×· · ·× ιn]⇒ κ ∈
Σtheory to a function Jf in Iι1×· · ·×Iιn =⇒ Iκ. For all theory sorts ι we also fix a

336 C. Kop and N. Nishida

set Valι ⊆ Σtheory of values : function symbols a : []⇒ ι, where J gives a bijective
mapping from Valι to Iι. We require that Σterms ∩Σtheory ⊆ Val =

⋃
ι Valι.

A term in Terms(Σtheory ,V) is called a logical term. For ground logical terms,
let �f(s1, . . . , sn)� := Jf (�s1�, . . . , �sn�). Every ground logical term s corresponds
to a unique value c such that �s� = �c�; we say that c is the value of s. A constraint
is a logical term ϕ of some sort bool with Ibool = B = {#,⊥}, the set of booleans.
We say ϕ is valid if �ϕγ� = # for all substitutions γ which map Var(ϕ) to values,
and satisfiable if �ϕγ� = # for some substitution γ which maps Var(ϕ) to values.
A substitution γ respects ϕ if γ(x) is a value for all x ∈ Var(ϕ) and �ϕγ� = #.

Formally, terms in Terms(Σterms ,V) have no special function, but we see them
as the primary objects of the term rewriting system: a reduction would typically
begin and end with such terms, with elements of Σtheory \ Val (also called cal-
culation symbols) only used in intermediate terms.

We typically choose a theory signature with Σtheory ⊇ Σcore
theory , where Σcore

theory

contains the core theory symbols: true, false : bool,∧,∨,⇒: [bool× bool]⇒ bool,
¬ : [bool] ⇒ bool, and, for all sorts ι, symbols =ι, �=ι: [ι × ι] ⇒ bool, and an
evaluation function J that interprets these symbols as expected. We omit the
sort subscripts from = and �= when they can be derived from context.

The standard integer signature Σint
theory is Σcore

theory ∪ {+,−, ∗, exp, div,mod :
[int × int] ⇒ int;≤, <: [int × int] ⇒ bool} ∪ {n : int | n ∈ Z}. Here, values are
true, false and n for all n ∈ Z. We let J be defined in the natural way, but (since
all Jf must be total) Jdiv(n, 0) = Jmod(n, 0) = Jexp(n, k) = 0 for all n and all
k < 0. However, when constructing LCTRSs, we normally avoid such calls.

Rules and Rewriting.A rule is a triple
 → r [ϕ] where
 and r are terms of the
same sort and ϕ is a constraint. Here,
 is not a logical term (so also not a variable,
as V ⊆ Terms(Σtheory ,V)). If ϕ = true with J (true) = #, the rule is usually just
denoted
 → r. We define LVar(
 → r [ϕ]) as Var(ϕ) ∪ (Var(r) \ Var(
)). A
substitution γ respects
 → r [ϕ] if γ(x) is a value for all x ∈ LVar(
 → r [ϕ]),
and ϕγ is valid. Note that it is allowed that Var(r) �⊂ Var(
), but fresh variables
in the right-hand side may only be instantiated with values. This is done to
model user input or random choice, both of which would typically produce a
value. Variables on the left do not need to be instantiated with values (unless
they also occur in the constraint); this is needed for instance for lazy evaluation.

We assume given a set of rules R, and let Rcalc be the set {f(x1, . . . , xn) →
y [y = f(−→x)] | f : [ι1× · · ·× ιn]⇒ κ ∈ Σtheory \Val} (writing −→x for x1, . . . , xn).
The rewrite relation →R is a binary relation on terms, defined by:

C[
γ]→R C[rγ] if
 → r [ϕ] ∈ R∪Rcalc and γ respects
 → r [ϕ]

We say the reduction occurs at position p if C = C[�]p. Let s ↔R t if s →R t or
t →R s. A reduction step with Rcalc is called a calculation. A term is in normal
form if it cannot be reduced with →R. If f(
1, . . . ,
n) → r [ϕ] ∈ R we call f a
defined symbol ; non-defined elements of Σterms and all values are constructors.
Let Cons be the set of all constructors. A logically constrained term rewriting
system (LCTRS) is the abstract rewriting system (Terms(Σ,V),→R), usually
given by supplying Σ, R, and maybe I and J if these are not clear from context.

Automatic Constrained Rewriting Induction 337

Example 1. To implement an LCTRS calculating the factorial function, we let
Iint = Z, Ibool = B, Σtheory = Σint

theory , J defined as discussed above, and:

Σterms = { fact : [int]⇒ int} ∪ {n : int | n ∈ Z }
Rfact = { fact(x)→ 1 [x ≤ 0] , fact(x)→ x ∗ fact(x− 1) [¬(x ≤ 0)] }

Using infix notation, examples of logical terms are 5 + 9 and 0 = 0 + −1 and
x+ 3 ≥ y +−42; the latter two are constraints. We can reduce 5+ 9 to 14 with
a calculation (using x+ y → z [z = x+ y]), and fact(3) reduces in ten steps to 6.

Example 2. To implement an LCTRS calculating the sum of elements in an
array, let Ibool = B, Iint = Z and Iarray(int) = Z∗, so array(int) is mapped to finite-
length integer sequences. Let Σtheory = Σint

theory∪{size : [array(int)]⇒ int, select :
[array(int) × int] ⇒ int} ∪ {a | a ∈ Z∗}. (So we do not encode arrays as lists:
every array a corresponds to a unique symbol a.) The interpretation function J
behaves on Σint

theory as usual and has Jsize(a) = k when a = 〈n0, . . . , nk−1〉, and
Jselect(a, i) = ni if a = 〈n0, . . . , nk−1〉 with 0 ≤ i < k, otherwise 0. In addition:

Σterms = { sum : [array(int)]⇒ int, sum1 : [array(int)× int]⇒ int } ∪
{ n : int | n ∈ Z } ∪ { a | a ∈ Z∗ }

Rsum =

⎧⎨
⎩

sum(x) → sum1(x, size(x) − 1)
sum1(x, k)→ select(x, k) + sum1(x, k − 1) [k ≥ 0]
sum1(x, k)→ 0 [k < 0]

⎫⎬
⎭

Note the special role of values, which are new in LCTRSs compared to older
styles of constrained rewriting. They are the representatives of the underlying
theory. All values are constants (constructor symbols v() which do not take
arguments), even if they represent complex structures, as seen in Example 2.
However, not all constants are values. Because, unlike traditional TRSs and
e.g. [6,8], values are not term-generated. we can easily have uncountably many
of them (for example an LCTRS over the real number field R), and do not have
to match modulo theories (for example equating 0+ (x + y) with y + x).

Quantification. The definition of LCTRSs does not permit quantifiers. In for
instance an LCTRS over integers and arrays, we cannot specify a rule extend(arr ,
x) → addtoend(x, arr) [∀y ∈ {0, . . . , size(arr) − 1} : x �= select(arr , y)] (where
addtoend : [int×array(int)]⇒ array(int) ∈ Σtheory and extend is a defined symbol).

However, one of the key features of LCTRSs is that theory symbols, including
predicates, are not confined to a fixed list. Therefore, what we can do when
defining an LCTRS, is to add a new symbol to Σtheory (and J). For the extend
rule, we could for instance introduce a symbol notin : [int × array(int)] ⇒ bool
with Jnotin(u, 〈a0, . . . , an−1〉) = # if for all i: u �= ai, and replace the constraint
by notin(x, arr). This generates the same reduction relation as the original rule.

Thus, we can permit quantifiers in the constraints of rules, as intuitive nota-
tion for fresh predicates. However, as the reduction relation→R is only decidable
if all Jf are, an unbounded quantification would likely not be useful in practice.

338 C. Kop and N. Nishida

Differences to [13]. In [13], where LCTRSs are first defined, we assume that V
contains unsorted variables, and use a separate variable environment for typing
terms. Also, →R is there defined as the union of →rule (using rules in R) and
→calc (using calculations). These changes give equivalent results, but the current
definitions cause a bit less bookkeeping.

A non-equivalent change is the requirement on rules: in [13] left-hand sides
must have a root symbol in Σterms \Σtheory . We follow [12] in weakening this.

2.1 Rewriting Constrained Terms

In LCTRSs, the objects of study are terms, with →R defining the relation be-
tween them. However, for analysis it is often useful to consider constrained terms :
pairs s [ϕ] of a term s and a constraint ϕ. A constrained term s [ϕ] represents all
terms sγ where γ respects ϕ, and can be used to reason about such terms.

Different constrained terms might represent the same terms; for example
f(0) [true] and f(x) [x = 0], or g(x, y) [x > y] and g(z, u) [u ≤ z−1]. We consider
these terms equivalent. Formally, s [ϕ] ∼ t [ψ] if for all substitutions γ which
respect ϕ there is a substitution δ which respects ψ such that sγ = tδ, and vice
versa. Note that s [ϕ] ∼ s [ψ] if and only if ∀−→x [∃−→y [ϕ] ↔ ∃−→z [ψ]] holds, where
Var(s) = {−→x }, Var(ϕ) \Var(s) = {−→y } and Var(ψ) \Var(s) = {−→z }.

For a rule ρ :=
 → r [ψ] ∈ R∪Rcalc and position q, we let s [ϕ]→ρ,q t [ϕ] if
s|q =
γ and t = s[rγ]q for some substitution γ with γ(x) a variable in Var(ϕ) or
value for all x ∈ LVar(ρ) and ϕ ⇒ (ψγ) valid. Let s [ϕ] →base t [ϕ] if s [ϕ] →ρ,q

t [ϕ] for some ρ, q. The relation →R on constrained terms is: ∼ · →base · ∼. We
say s [ϕ]→R t [ψ] at position q by rule ρ if s [ϕ] ∼ · →ρ,q · ∼ t [ψ].

Example 3. In the factorial LCTRS from Example 1, we have that fact(x) [x >
3]→R x∗ fact(x−1) [x > 3]. This constrained term can be further reduced using
the calculation rule x− y → z [z = x− y], but here we must use the ∼ relation,
as follows: x ∗ fact(x − 1) [x > 3] ∼ x ∗ fact(x − 1) [x > 3 ∧ z = x − 1] →base

x ∗ fact(z) [x > 3 ∧ z = x− 1], as ∀x[x > 3↔ ∃z[x > 3 ∧ z = x− 1]].

Example 4. The relation ∼ allows us to reformulate the constraint both before
and after a reduction, which is particularly useful for irregular rules, where the
constraint contains variables not occurring in the left-hand side. The calculation
rules are a particular example of such rules, as we saw in Example 3. For a
different example, with the rule f(x) → g(y) [y > x], we have: f(x) [x > 3] ∼
f(x) [x > 3 ∧ y > x] →base g(y) [x > 3 ∧ y > x] ∼ g(y) [y > 4]. Similarly,
f(x− 1) [x > 0] reduces with a calculation to f(y) [y ≥ 0]. We do not have that
f(x) [true]→R g(x+ 1) [true], as x + 1 cannot be instantiated to a value.

Example 5. A constrained term does not always need to be reduced in the most
general way. With the rule f(x)→ g(y) [y > x], we have f(0) [true] ∼ f(0) [y >
0]→base g(y) [y > 0], but we also have f(0) [true] ∼ f(0) [1 > 0]→base g(1).

As intended, constrained reductions give information about usual reductions:

Theorem 6 ([13]). If s [ϕ]→R t [ψ], then for all substitutions γ which respect
ϕ there is a substitution δ which respects ψ such that sγ →+

R tδ.

Automatic Constrained Rewriting Induction 339

3 Transforming Imperative Programs into LCTRSs

Transformations of imperative programs into integer rewriting systems are investi-
gated in e.g. [4,6,8]. These papers use different variations of constrained rewriting,
but the proposed transformations are easily adapted to produce LCTRSs that op-
erate on integers, i.e., use Σint

theory . What is more, we can extend the ideas to also
handle advanced programming structures, like function calls and arrays.

Following the ideas of [4,6,8], we transform each function f separately. Let−→v be
the vector of all parameters and local variables in f (we disallow global variables
for now). For all basic blocks in the function (i.e., straight-line code segments), we
introduce a new function symbol ui. A transition from block i to block j is encoded
as a rule ui(

−→v) → uj(
−→r) [ϕ], with assignments reflected by argument updates in

the right-hand side, and conditions by the constraint. Return statements return
e are encoded by reducing to returnf(e), where returnf is a new constructor.

Finally, the generated LCTRS is optimized to make it more amenable to
analysis: we combine rules whose root symbols occur only once in left-hand
sides [6], remove unused parameters (in particular, variables not in scope at a
given location), and, if appropriate, simplify the constraint (e.g. by removing
duplicate clauses or replacing a term like ¬(x > y) by y ≥ x.

Example 7. Consider the following small C-function fact, calculating the facto-
rial function from Example 1. Here, −→v is
〈x, i, z〉. There are three basic blocks: u1
(the initialization of the local variables,
which includes both int z = 1 and int

i = 1), u2 (the loop body), and u3 (the
block containing the return-statement).

int fact(int x) {

int z = 1;

for(int i = 1; i <= x; i++)

z *= i;

return z;

}

We obtain the following initial LCTRS (left) and simplification (right):

fact(x)→ u1(x, i, z)
u1(x, i, z)→ u2(x, 1, 1)
u2(x, i, z)→ u2(x, i + 1, z ∗ i) [i ≤ x]
u2(x, i, z)→ u3(x, i, z) [¬(i ≤ x)]
u3(x, i, z)→ returnfact(z)

fact(x)→ u2(x, 1, 1)
u2(x, i, z)→ u2(x, i + 1, z ∗ i) [i ≤ x]
u2(x, i, z)→ returnfact(z) [i > x]

Note that there is nothing special about the integers; the definition of LCTRSs
allows values from all kinds of underlying domains. So, with a suitable theory
signature, we could also handle e.g. doubles, encoding them as real numbers.
Pointers are more difficult to handle, but static arrays are not so problematic.
Consider for instance the following two implementations of the same assignment:
given an integer array and its length, return the sum of the array’s elements.

int sum1(int arr[],int n){

int ret=0;

for(int i=0;i<n;i++)

ret+=arr[i];

return ret;

}

int sum2(int *arr, int k) {

if (k <= 0) return 0;

return arr[k-1] +

sum2(arr, k-1);

}

340 C. Kop and N. Nishida

To encode these functions, we use Σtheory as in Example 2. To handle illegal
program behavior, we reduce to an additional errorf constructor in cases when we
index an array out of bounds. To handle function calls (as in sum2), we execute
the call in a separate parameter, and then examine the result. These ideas result
in the following simplified translations (using the same return and error symbols
in both cases, because we want to be able to compare the resulting functions):

(1) sum1(arr, n)→ u(arr, n, 0, 0)
(2) u(arr, n, ret, i)→ error [i < n ∧ (i < 0 ∨ i ≥ size(arr))]
(3) u(arr, n, ret, i)→ u(arr, n, ret + select(arr, i), i + 1)

[i < n ∧ 0 ≤ i < size(arr)]
(4) u(arr, n, ret, i)→ return(ret) [i ≥ n]
(5) sum2(arr, k)→ return(0) [k ≤ 0]
(6) sum2(arr, k)→ error [k − 1 ≥ size(arr)]
(7) sum2(arr, k)→ w(select(arr, k − 1), sum2(arr, k − 1))

[0 ≤ k − 1 < size(arr)]
(8) w(n, error)→ error
(9) w(n, return(r)) → return(n+ r)

Here, a constraint x ≤ y < b should be read as: x ≤ y ∧ y < b. Note that sum2
differs from the system in Example 2 only by adding error-handling.

In general, we can encode arrays of any data type, including arrays of arrays, by
defining Iarray(ι) = I∗

ι for any ι with Jι �= ∅ (we need some default value 0ι ∈ Valι
for out-of-bound selects). We can also handle array updates: let store : [array(ι)×
int × ι] ⇒ array(ι), and Jstore(〈a0, . . . , an−1〉, k, v) = 〈a0, . . . , ak−1, v, ak+1, . . . ,
an−1〉 if 0 ≤ k < n and 〈−→a 〉 otherwise. To reflect side effects, we include updated
array parameters in the return value.

Example 8. The function void empty(char arr[]) { arr[0] = ’\0’; } is
translated to the following LCTRS:

empty(arr)→ errorempty [0 ≥ size(arr)]
empty(arr)→ return(store(arr , 0, 0)) [0 < size(arr)]

A more extensive discussion of this translation, including global variables,
integer overflow and dynamic pointers, is available online in [14, Section 3].

4 Rewriting Induction for LCTRSs

In this section, we adapt the inference rules from [18,5,20] to inductive theorem
proving with LCTRSs. This provides the core theory to use rewriting induction,
which will be strengthened with a lemma generalization technique in Section 5.

We start by listing some restrictions we need to impose on LCTRSs for the
method to work (Section 4.1). Then, we provide the theory for the technique
(Section 4.2), making several changes compared to [18,5,20] to handle the new
formalism. We complete with two illustrative examples (Section 4.3).

Automatic Constrained Rewriting Induction 341

4.1 Restrictions

In order for rewriting induction to be successful, we need to impose certain
restrictions. We limit interest to LCTRSs which satisfy the following properties:

1. all core theory symbols (∧,∨,⇒,¬ and each =ι, �=ι) are present in Σtheory ;
2. the LCTRS is terminating, so there is no infinite reduction s1 →R s2 →R . . .;
3. the system is quasi-reductive, i.e., for every term s either s ∈ Terms(Cons , ∅)

(we say s is a ground constructor term), or there is some t such that s →R t;1

4. there are ground terms of every sort occurring in Σ.

Property 1 is just the standard assumption we saw in Section 2. We will need
these symbols, for instance, to add new information to a constraint. Termination
(property 2) is crucial in the inductive derivation, as the method uses induction
on terms, oriented with an extension of →R. Property 3 which, together with
termination, provides sufficient completeness, makes it possible to do an ex-
haustive case analysis on the rules applicable to an equation. It also allows us
to assume that variables are always instantiated by ground constructor terms.
The last property is natural, since the method considers ground terms; function
symbols which cannot be assigned ground arguments can simply be omitted.

Methods to prove quasi-reductivity and termination have been published
for different styles of constrained rewriting; see e.g. [5] for quasi-reductivity
and [7,19] for termination. These methods are easily adapted to LCTRSs: see [14,
Appendix A] for quasi-reductivity and [12] for termination. The LCTRSs ob-
tained from procedural programs following Section 3 are always quasi-reductive.

4.2 Rewriting Induction

We now introduce the notions of constrained equations and inductive theorems.

Definition 9. A (constrained) equation is a triple s ≈ t [ϕ] with s and t terms
and ϕ a constraint. Let s . t [ϕ] denote either s ≈ t [ϕ] or t ≈ s [ϕ]. A substitu-
tion γ respects s ≈ t [ϕ] if γ respects ϕ and Var(s)∪Var(t) ⊆ Dom(γ). We say
γ is a ground constructor substitution if all γ(x) are ground constructor terms.

An equation s ≈ t [ϕ] is an inductive theorem of an LCTRS R if sγ ↔∗
R tγ

for any ground constructor substitution γ that respects this equation.

Intuitively, if an equation f(−→x) ≈ g(−→x) [ϕ] is an inductive theorem, then f
and g define the same function (conditional on ϕ, and assuming confluence).

To prove that an equation is an inductive theorem, we will consider five infer-
ence rules, originating in [18,5,20]. These rules modify a proof state: a pair (E ,H)
where E is a set of equations and H a set of constrained rewrite rules with→R∪H
terminating. A rule inH plays the role of an induction hypothesis for proving that
the equations in E are inductive theorems, and is called an induction rule.

1 A more standard definition of this property would be that for every defined or
calculation symbol f and suitable ground constructor terms s1, . . . , sn, the term
f(s1, . . . , sn) reduces. As observed in [14, Appendix A], this definition is equivalent.

342 C. Kop and N. Nishida

Simplification If s ≈ t [ϕ] →R∪H u ≈ t [ψ], where ≈ is seen as a fresh con-
structor for the purpose of constrained term reduction,2 then we may derive:

(E / {(s . t [ϕ])},H)
ri (E ∪ {(u ≈ t [ψ])},H)

Deletion If s = t or ϕ is not satisfiable, we can delete s ≈ t [ϕ] from E :

(E / {s ≈ t [ϕ]},H)
ri (E ,H)

Expansion Let Expd(s, t, ϕ, p) be a set containing, for all rules
 → r[ψ] ∈ R3

such that
 is unifiable with s|p with most general unifier γ and ϕγ ∧ ψγ is
(or may be)4 satisfiable, an equation s′ ≈ t′ [ϕ′] where s[
]pγ ≈ tγ [(ϕγ) ∧
(ψγ)] →R s′ ≈ t′ [ϕ′] with rule
 → r [ψ] at position 1 · p. Here, as in
Simplification, ≈ is seen as a fresh constructor for the purpose of con-
strained term reduction. Intuitively, Expd generates all resulting equations
if a ground constructor instance of s ≈ t [ϕ] is reduced at position p of s.
Now, if p is a position of s such that s|p is basic (i.e., s|p = f(s1, . . . , sn)
with f a defined symbol and all si constructor terms) we may derive:

(E / {s . t [ϕ]},H)
ri (E ∪ Expd(s, t, ϕ, p),H)

If, moreover, R∪H ∪ {s → t [ϕ]} is terminating, we may even derive:

(E / {s . t [ϕ]},H)
ri (E ∪ Expd(s, t, ϕ, p),H ∪ {s → t [ϕ]})

Note that, if →R is non-deterministic (which may for instance happen when
considering irregular rules), we can choose how to build Expd .

EQ-deletion If all si, ti ∈ Terms(Σtheory ,Var(ϕ)), then we can derive:

(E / {C[s1, . . . , sn] . C[t1, . . . , tn] [ϕ]},H)
ri

(E ∪ {C[s1, . . . , sn] ≈ C[t1, . . . , tn] [ϕ ∧ ¬(
∧n

i=1 si = ti)]},H)

C[] is allowed to contain symbols in Σtheory . Intuitively, if
∧n

i=1 si = ti holds,
then C[s1, . . . , sn]γ ↔∗

Rcalc
C[t1, . . . , tn]γ and thus, we are done. We exclude

this case from the equation by adding ¬(
∧n

i=1 si = ti) to the constraint.
Generalization If for all substitutions γ which respect ϕ there is a substitu-

tion δ which respects ψ with sγ = s′δ and tγ = t′δ, then we can derive:

(E / {s ≈ t [ϕ]},H)
ri (E ∪ {s′ ≈ t′ [ψ]},H)

2 It is not enough if s [ϕ] →R u [ψ]: when reducing constrained terms, we may manipu-
late unused variables at will, which causes problems if they are used in t. For example,
f(x+ 0) [x > y] ∼ f(x+ 0) [z = x+ 0]→base f(z) [z = x+ 0] ∼ f(x) [y < x], but we
would not want to replace an equation f(x+0) ≈ g(y) [x > y] by f(x) ≈ g(y) [x < y]!

3 Here, we assume that the variables in the rules are distinct from the ones in s, t, ϕ.
4 Although we do not have to include equations in Expd(s, t, ϕ, p) which correspond
to rules that give an unsatisfiable constraint, it is sometimes convenient to postpone
the satisfiability check; the resulting equations can be removed with Deletion.

Automatic Constrained Rewriting Induction 343

The first three of these rules originate in [18], but they are adapted in several
ways. Partially, this is because we consider LCTRSs rather than plain TRSs,
and have to handle the constraints: hence we use constrained reduction rather
than normal reduction in Simplification, and include an unsatisfiability case in
Deletion. In Expansion, we have made more structural changes; our definition
also differs from the corresponding rules in [5,20], where the method is defined
for different styles of constrained rewriting.

To start, we use constrained reduction, whereas the authors of [18,5,20] use
direct instantiation (e.g. Expd(s, t, p) contains elements s[rγ]p ≈ t when
 → r ∈
R and s|p unifies with
 with most general unifier γ). This was changed to better
handle irregular rules, especially those where the right-hand side introduces fresh
variables, i.e.
 → r [ϕ] where Var(r) ∩ Var(ϕ) �⊆ Var(
). Such rules occur for
example in transformed iterative functions where variables are declared but not
immediately initialized. The alternative formulation of R in Section 5, which is
essential for our lemma generalization technique, also uses such irregular rules.

Second, the case where no rule is added is new. This is needed to allow progress
in cases when adding the rule might cause loss of termination. It somewhat
corresponds to, but is strictly stronger than, Case-Simplify in [5].

EQ-deletion originates in [20] and can, in combination with Deletion, be
seen as a generalized variant of Theory� in [5]. Most importantly, this inference
rule provides a link between the equation part s ≈ t and the constraint. The
last rule, Generalization, can be seen as a special case of Postulate in [18].
By generalizing an equation, the Expansion rule gives more powerful induction
rules, which (as discussed in Section 5) is often essential to prove a theorem.

The inference rules are used for rewriting induction by the following theorem:

Theorem 10. Let an LCTRS with rules R and signature Σ, satisfying the
restrictions from Section 4.1, be given; let E be a finite set of equations. If
(E , ∅)
ri · · ·
ri (∅,H), then every e ∈ E is an inductive theorem of R.

Proof Sketch: We follow the proof method of [20] (with a few adaptations), which
builds on the original proof idea in [18]. That is, we define ↔E in the expected
way (treating an equation as a rule) and prove the equivalent statement that
↔∗

E ⊆ ↔∗
R on ground terms by making the following observations:

1. If (E1,H1)
ri (E2,H2), then↔E1⊆→∗
R∪H2

·(↔E2 ∪ =)· ←∗
R∪H2

on ground
terms (which we see by a careful analysis of all inference rules); using induc-
tion we obtain that ↔E ⊆ →∗

R∪H · = · ←∗
R∪H ⊆ ↔∗

R∪H.
2. If (E1,H1)
ri (E2,H2) and →R∪H1⊆→R · →∗

R∪H1
·(↔E1 ∪ =)· ←∗

R∪H1
,

then also →R∪H2⊆→R · →∗
R∪H2

·(↔E2 ∪ =)· ←∗
R∪H2

(which follows by
a case analysis, paying particular attention to the Expansion rule); using
induction we obtain that →R∪H⊆→R · →∗

R∪H · ←∗
R∪H.

3. By point 2 and induction on →R∪H, we find that ↔∗
R = ↔∗

R∪H.

Details are provided in our technical report [14]. !
Following e.g. [1], there are many other potential inference rules we could

consider. For space reasons, we limit interest to the rules needed for our examples.

344 C. Kop and N. Nishida

4.3 Some Illustrative Examples

To show how the method works, recall the sum1 and sum2 rules from Section 3
(page 340). We want to see that these two implementations are equivalent, at least
when the input makes sense, so the given length is at least 0 and does not exceed
the array size. This is the case if the following equation is an inductive theorem:

(A) sum1(a, k) ≈ sum2(a, k) [0 ≤ k ≤ size(a)]

Thus, we start the procedure with ({(A)},∅). From Simplification, we obtain:

({(B) u(a, k, 0, 0) ≈ sum2(a, k) [0 ≤ k ≤ size(a)]}, ∅)

None of Simplification, EQ-deletion, Deletion and Constructor is ap-
plicable, so we apply Expansion to the right-hand side of (B) at the root. Since
k ≤ size(a) and k − 1 ≥ size(a) cannot both hold, the error rule leads to an
unsatisfiable constraint. Therefore, this step only gives two new equations:⎛

⎝
⎧⎨
⎩

(C) : return(0) ≈ u(a, k, 0, 0) [0 ≤ k ≤ size(a) ∧ k ≤ 0]
(D) : w(select(a, k − 1), sum2(a, k − 1)) ≈ u(a, k, 0, 0)

[0 ≤ k ≤ size(a) ∧ 0 ≤ k − 1 < size(a)]

⎫⎬
⎭ ,

{
(B−1)

}⎞⎠
Here, (B−1) should be read as the rule generated from (B) right-to-left, so
sum2(a, k)→ u(a, k, 0, 0) [0 ≤ k ≤ size(a)]. We use Simplification with rule (4)
to reduce (C) to return(0) ≈ return(0) [. . .], which we quickly delete. Simplifying
the right-hand side of (D) with rule (3), we obtain ({(E)},{(B−1)}), with:

(E) : w(select(a, k − 1), sum2(a, k − 1)) ≈ u(a, k, 0+ select(a, 0), 0+ 1)
[0 ≤ k ≤ size(a) ∧ 0 ≤ k − 1 < size(a)]

Next we use Simplification with the calculation rules. As these rules are ir-
regular, this requires some care. There are three standard ways to do this:

– if s →calc t then s [ϕ]→R t [ϕ], e.g. f(0 + 1) ≈ r [ϕ] reduces to f(1) ≈ r [ϕ];
– a calculation can be replaced by a fresh variable, which is defined in the

constraint, e.g. f(x + 1) ≈ r [ϕ] reduces to f(y) ≈ r [ϕ ∧ y = x + 1];
– a calculation already defined in the constraint can be replaced by the relevant

variable, e.g. f(x+ 1) ≈ r [ϕ∧ y = x+ 1] reduces to f(y) ≈ r [ϕ∧ y = x+ 1].

These ways are not functionally different; if an equation e reduces both to e1 and
e2 with a calculation at the same position, then it is easy to see that e1 ∼ e2.

We can do more: recall that, by definition of constrained term reduction, we
can rewrite a constraint ϕ with variables −→x ,−→y in a constrained term s [ϕ],
to any constraint ψ over −→x ,−→z such that ∃−→y [ϕ] is equivalent to ∃−→z [ψ] (if
Var(s) = {−→x }). We use this observation to write constraints in a simpler form af-
ter Simplification or Expansion, for instance by removing redundant clauses.

Using six more Simplification steps with the calculation rules on (E), and
writing the constraint in a simpler form, we obtain:({

(F) : w(n, sum2(a, k′)) ≈ u(a, k, r, 1) [k′ = k − 1 ∧
0 ≤ k′ < size(a) ∧ n = select(a, k′) ∧ r = 0+ select(a, 0)]

}
,
{
(B−1)

})

Automatic Constrained Rewriting Induction 345

Then, using Simplification with the induction rule (B−1):({
(G) : w(n, u(a, k′, 0, 0)) ≈ u(a, k, r, 1) [k′ = k − 1 ∧

0 ≤ k′ < size(a) ∧ n = select(a, k′) ∧ r = 0+ select(a, 0)]

}
,
{
(B−1)

})

As the simpler inference rules do not apply, we expand in the right-hand side:⎛
⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(H) : u(a, k, r + select(a, 1), 1+ 1) ≈ w(n, u(a, k′, 0, 0))
[k′ = k − 1 ∧ 0 ≤ k′ < size(a) ∧ n = select(a, k′) ∧

r = 0+ select(a, 0) ∧ 1 < k ∧ 0 ≤ 1 < size(a)]
(I) : return(r) ≈ w(n, u(a, k′, 0, 0)) [k′ = k − 1 ∧ 0 ≤ k′ <

size(a) ∧ n = select(a, k′) ∧ r = 0+ select(a, 0) ∧ 1 ≥ k]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

{
(B−1)
(G−1)

}
⎞
⎟⎟⎟⎟⎠

We have again omitted the error rule, as the corresponding constraint is not
satisfiable. For (I), the constraint implies that k = 1, so Simplification with
rule (4) followed by (9) and prettifying the constraint gives return(r) ≈ return(n+
0) [k′ = 0 < size(a) ∧ n= select(a, k′) ∧ r= select(a, 0)]. EQ-deletion gives an
unsatisfiable constraint . . . ∧ ¬(r = n + 0); we complete with Deletion.

We continue with ({(H)},{(B−1),(G−1)}). After applying Simplification

with (3) and calculation rules a few times, we have ({(J)}, {(B−1),(G−1)}):

(J) : u(a, k, r1, 2) ≈ w(n, u(a, k′, r, 1)) [k′ = k − 1 ∧ 0 ≤ k′ ∧ 1 < k ≤ size(a) ∧
n = select(a, k′) ∧ r = 0+ select(a, 0) ∧ r1 = r + select(a, 1)]

Here, we have used the third style of calculation simplification to reuse r.
We can use Expansion again, this time on the left-hand side. But now a

pattern starts to arise. If we continue like this, simplifying as long as we can,
and then using whichever of the other core rules is applicable, we get:

(K): u(a, k, r2, 3)≈ w(n, u(a, k′, r1, 2)) [k
′ = k − 1 ∧ 2 < k ≤ size(a) ∧ . . .]

(L): u(a, k, r3, 4)≈ w(n, u(a, k′, r2, 3)) [k
′ = k − 1 ∧ 3 < k ≤ size(a) ∧ . . .]

That is, we have a divergence: a sequence of increasingly complex equations,
each generated from the same leg in an Expansion (see also the divergence
critic in [22]). Yet the previous induction rules never apply to the new equation.

So, consider the following equation (we will say more about it in Section 5):

(M): u(a, k, r, i)≈ w(n, u(a, k′, r′, i′)) [k′ = k − 1 ∧ 0 ≤ i′ < k ≤ size(a) ∧
i′ = i − 1 ∧ r = r′ + select(a, i′) ∧ n = select(a, k′)]

It is easy to see that (J) is an instance of (M); we apply Generalization

and continue with ({(M)}, {(B−1),(G−1)}). Using Expansion, we obtain:⎛
⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(N): u(a, k, r + select(a, i), i + 1) ≈ w(n, u(a, k′, r′, i′))
[k′ = k − 1 ∧ 0 ≤ i′ < k ≤ size(a) ∧ i′ = i− 1 ∧ r = r′+
select(a, i′) ∧ n = select(a, k′) ∧ i < k ∧ 0 ≤ i < size(a)]

(O): return(r) ≈ w(n, u(a, k′, r′, i′))
[k′ = k − 1 ∧ 0 ≤ i′ < k ≤ size(a) ∧ i′ = i− 1 ∧
r = r′ + select(a, i′) ∧ n = select(a, k′) ∧ i ≥ k]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

⎧⎨
⎩

(B−1)
(G−1)
(M)

⎫⎬
⎭

⎞
⎟⎟⎟⎟⎟⎟⎠

346 C. Kop and N. Nishida

Again, the result of the error rule is omitted, because i < 0 cannot hold if both
0 ≤ i′ and i′ = i− 1, and i ≥ size(a) cannot hold if both i < k and k ≤ size(a).

Consider (O). Investigating the constraint, we can simplify it with rules (4)
and (9), and then complete with EQ-deletion and Deletion.

Only (N) remains. We simplify this equation with the normal rules, giving:

u(a, k, r′′, i′′) ≈ w(n, u(a, k′, r, i))
[k′ = k − 1 ∧ 0 ≤ i′ < k ≤ size(a) ∧ i′ = i− 1 ∧ r = r′ + select(a, i′) ∧

n = select(a, k′) ∧ i < k ∧ 0 ≤ i < size(a) ∧ i′′ = i + 1 ∧ r′′ = r + select(a, i)]

But now note that the induction rule (M) applies! This rule is irregular, so for
the constrained reduction step we use a substitution that also affects variables
not occurring in its left-hand side: γ = [a := a, k := k, r := r′′, i := i′′, n :=
n, k′ := k′, r′ := r, i′ := i]. Using Simplification, the equation is reduced to
w(n, u(a, k′, r, i)) ≈ w(n, u(a, k′, r, i)) [. . .], which is removed using Deletion.

As ({(A)},∅)
ri
∗ (∅,H) for some H, we see that (A) is an inductive theorem.

For another example, let us look at an assignment to implement strlen, a
string function which operates on 0-terminated char arrays. As char is a numeric
data type, the LCTRS translation can implement this as integer arrays again
(although using another underlying sort Ichar would make little difference).

The example function and its LCTRS translation are as follows:

int strlen(char *str) {

for (int i = 0; ; i++)

if (str[i] == 0) return i;

}

(10) strlen(x)→ u(x, 0)
(11) u(x, i)→ error [i < 0 ∨ i ≥ size(x)]
(12) u(x, i)→ return(i) [0 ≤ i < size(x) ∧ select(x, i) = 0]
(13) u(x, i)→ u(x, i + 1) [0 ≤ i < size(x) ∧ select(x, i) �= 0]

Note that the overflow checks guarantee termination.
To see that strlen does what we would expect it to do, we want to know that

for valid C-strings, strlen(a) returns the first integer i such that a[i] = 0:

(P) strlen(x) ≈ return(n)
[0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0] ∧ select(x, n) = 0]

Here, we use bounded quantification, which, as described in Section 2, can be
seen as syntactic sugar for an additional predicate, e.g. nonzero until.

Starting with ({(P)},∅), we first use Simplification with rule (10), creating:

(Q) u(x, 0) ≈ return(n)
[0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0] ∧ select(x, n) = 0]

Automatic Constrained Rewriting Induction 347

We continue with Expansion; since the constraint implies that 0 < size(x), the
error case (11) gives an unsatisfiable constraint; we only get two new equations:

(R) return(0) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0] ∧
select(x, n) = 0 ∧ 0 ≤ 0 < size(x) ∧ select(x, 0) = 0]

(S) u(x, 0 + 1) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0] ∧
select(x, n) = 0 ∧ 0 ≤ 0 < size(x) ∧ select(x, 0) �= 0]

As the constraint of (R) implies that n = 0 (because of the quantification and
select(x, 0) = 0), we can remove (R) using EQ-deletion and Deletion.

As for (S), we simplify with a calculation, and expand again. This gives an
equation return(1) ≈ return(n) [. . .] that we can quickly remove again, and an
equation (T) which is simplified, expanded and eq-deleted/deleted into:

(U) u(x, 2+ 1) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0] ∧
select(x, n) = 0 ∧ 0 < size(x) ∧ select(x, 0) �= 0 ∧

1 < size(x) ∧ select(x, 1) �= 0 ∧ 2 < size(x) ∧ select(x, 2) �= 0]

Simplifying and reformulating the constraint, we obtain:

(V) u(x, 3) ≈ return(n) [0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0] ∧
select(x, n) = 0 ∧ 0 ≤ 2 < size(x) ∧ ∀j ∈ {0, 2}[select(x, j) �= 0]]

Note that we grouped together the �= 0 statements into a quantification, which
looks a lot like the other quantification in the constraint. We apply General-

ization to obtain ({(W)}, {. . . }), where (W) is u(x, k) ≈ return(n) [ϕ] with:

ϕ : [k = m+ 1 ∧ 0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0] ∧
select(x, n) = 0 ∧ 0 ≤ m < size(x) ∧ ∀j ∈ {0,m}[select(x, j) �= 0]

Obviously, (V) is an instance of (W); we proceed with Expansion on (W) to
obtain the proof status ({(X), (Y), (Z)}, {. . . , (W)}), where:

(X) error ≈ return(n) [ϕ ∧ (k < 0 ∨ k ≥ size(x))]
(Y) return(k) ≈ return(n) [ϕ ∧ 0 ≤ k < size(x) ∧ select(x, k) = 0]
(Z) u(x, k + 1) ≈ return(n) [ϕ ∧ 0 ≤ k < size(x) ∧ select(x, k) �= 0]

For all cases, note that the two ∀ statements, together with select(x, n) = 0, imply
that m < n, so k ≤ n. Hence the constraint of (X) is unsatisfiable: k = m + 1
and 0 ≤ m imply that k �< 0, and k ≤ n, k ≥ size(x) imply that n �< size(x). By
Deletion, we remove (X). For (Y), we use EQ-deletion. Note that the two ∀
statements, together with select(x, k) = 0, imply that n− 1 < k, so n ≤ k. Since
also k ≤ n, the resulting constraint is unsatisfiable; we use Deletion again.

Finally, simplifying (Z) with a calculation, and reformulating the constraint:

u(x, p) ≈ return(n)
[p = k + 1 ∧ select(x, n) = 0 ∧ 0 ≤ n < size(x) ∧ ∀i ∈ {0, n− 1}[select(x, i) �= 0]
∧ 0 ≤ k < size(x) ∧ ∀j ∈ {0, k}[select(x, j) �= 0] ∧ some constraints on m]

The induction rule (W) lets us simplify this to return(n) ≈ return(n) [. . .], which
is easily removed using Deletion.

348 C. Kop and N. Nishida

5 Lemma Generalization by Dropping Initializations

Divergence, like we encountered in both examples of Section 4, is very common
in inductive theorem proving. This is only natural: in mathematical proofs, when
basic induction fails to prove a theorem, we often need a more general claim to
obtain a stronger induction hypothesis. Viewed in this light, the generalization
of equations, or the generation of suitable auxiliary lemmas is not only part, but
even at the heart, of inductive theorem proving. Consequently, this subject has
been extensively investigated [3,10,11,16,21,22]. Candidates for such equations
are typically generated during solving, when the proof state is in divergence.

In this section, we propose a new method, specialized for constrained systems.
The generalizations from Section 4 were found using this technique. Although
the method is very simple (at its core, we just drop a part of the constraint), it
is particularly effective for LCTRSs obtained from procedural programs.

First, let us state the rules of our sum example differently. When the right-
hand side of a rule has a subterm f(. . . , n, . . .) with f defined and n a value, we
replace n by a fresh variable vi, and add vi = n to the constraint. In the LCTRS
Rsum from page 340, rules (2)–(9) are not changed, but (1) is replaced by:

(1′) sum1(arr, n)→ u(arr, n, v1, v2) [v1 = 0 ∧ v2 = 0]

Evidently, these altered rules generate the same rewrite relation as the original.
Consider what happens now if we use the same steps as in Section 4.3. We do

not rename the variables vi in Expansion, and ignore the vi = n clauses when
simplifying the presentation of a constrained term. The resulting induction has
the same shape, but with more complex equations. Some instances:

(B′) : u(a, k, v1, v2) ≈ sum2(a, k) [0 ≤ k ≤ size(a) ∧ v1 = 0 ∧ v2 = 0]
(F′) : w(n, sum2(a, k′)) ≈ u(a, k, r0, i0)

[k′ = k − 1 ∧ 0 ≤ k′ < size(a) ∧ v1 = 0 ∧ v2 = 0 ∧ n = select(a, k′) ∧
r0 = v1 + select(a, v2) ∧ i0 = v2 + 1]

(J′) : u(a, k, r1, i1) ≈ w(n, u(a, k′, r0, i0))
[k′ = k − 1 ∧ 0 ≤ k′ < size(a) ∧ v1 = 0 ∧ v2 = 0 ∧ n = select(a, k′) ∧
r0 = v1 + select(a, v2) ∧ i0 = v2 + 1 ∧ i0 < k ∧ 0 ≤ i0 < size(a) ∧

i1 = i0 + 1 ∧ r1 = r0 + select(a, i0)]

Continuing from (J′), we get equations u(a, k, r2, i2) ≈ w(n, u(a, k′, r1, i1)) [ϕ]
and u(a, k, r3, i3) ≈ w(n, u(a, k′, r2, i2)) [ψ] whose main part is the same as that
of (J′), modulo renaming of variables, while the constraint grows. Essentially,
we keep track of parts of the history of an equation in its constraint.

We generalize (J′) by dropping all clauses vi = qi, where vi is an initialization
variable. Remaining occurrences of vi are renamed to avoid confusion. This gives:

(M′) u(a, k, r1, i1) ≈ w(n, u(a, k′, r0, i0)) [k′ = k − 1 ∧ 0 ≤ k′ < size(a) ∧
n = select(a, k′) ∧ r0 = x1 + select(a, x2) ∧ i0 = x2 + 1 ∧ i0 < k ∧

0 ≤ i0 < size(a) ∧ i1 = i0 + 1 ∧ r1 = r0 + select(a, i0)]

Note that (M′) ∼ (M): the clauses with x1 and x2 can be removed, as suitable
x1, x2 always exist. Continuing with (M′) completes the proof as before.

Automatic Constrained Rewriting Induction 349

Discussion. Thus, our equation generalization technique is very straightforward
to use: we merely replace initializations by variables in the original rules, then
remove the definitions of those initializations when a divergence is detected.

The only downside is that, in order to use this technique, we have to use the
altered rules from the beginning, so we keep track of the vi variables throughout
the recursive procedure. For an automatic analysis this is no problem, however.

Note that we can only use this method if the equation part of the divergence
has the same shape every time. This holds for sum, because the rule that causes
the divergence has the form u(x1, . . . , xn) → u(r1, . . . , rn) [ϕ], preserving its
outer shape. In general, the generalization method is most likely to be successful
when analyzing tail-recursive functions (with accumulators), such as those ob-
tained from procedural programs. This includes mutually recursive functions, like
u(x1, . . . , xn)→ w(r1, . . . , rm) [ϕ] and w(y1, . . . , ym)→ u(q1, . . . , qn) [ψ]. To ana-
lyze systems with general recursion, however, we will need different techniques.

The given generalization method also works for strlen from Section 4.3, and
for strcpy. In these cases, we additionally have to collect multiple clauses into a
quantified clause before generalizing, as was done for equation (W) in Section 4.3.

6 Implementation

We have implemented the rewriting induction and generalization methods in
this paper in Ctrl, our tool for analyzing constrained term rewriting. As pre-
requisites, we have also implemented basic techniques to prove termination and
quasi-reductivity. To deal with constraints, the tool is coupled both with a small
internal reasoner and the (quantifier-capable) external SMT-solver Z3 [15].

The internal reasoner has two functions. First, it uses standard tricks to detect
satisfiability or validity of simple statements, without a call to the external solver;
this is both faster, and lets us optimize for often recurring questions (e.g. “find
n1, . . . , nk ∈ {−2, . . . , 2} such that ϕ is valid”, as used for termination). Second,
it simplifies the constraints of equations, for instance combining statements into
quantifications. In addition, our notion of arrays is not supported by mainstream
SMT-solvers, so we translate our array formulas into the SMT-LIB array-format;
an array is encoded as a function from Z to Z, with an additional variable
encoding its size.

To obtain Ctrl, see: http://cl-informatik.uibk.ac.at/software/ctrl/.

Strategy. The rewriting induction method of Ctrl uses a simple strategy: we try,
in the following order: EQ-deletion and Deletion together, Simplification,
Expansion, and Generalization (simply removing all vi = t definitions).
When a rule succeeds, we continue from the start of the list. When we encounter
an obviously unsolvable problem, or have gone too deep without removing any
of the main equations, we backtrack and try something else. At the moment,
divergence is not automatically detected, although this is an obvious extension.

To rewrite an equation in Simplification (and Expansion) with an irregular
rule, we instantiate as many variables in the rule by existing variables as possible
(as done for (N) in Section 4.3). Other variables are instantiated with fresh

http://cl-informatik.uibk.ac.at/software/ctrl/

350 C. Kop and N. Nishida

variables. When simplifying constraints, clauses which are clearly implied by
other clauses (ignoring the vi = n definitions) or do not play a role are removed.
Most importantly, Ctrl introduces ranged quantifications ∀x ∈ {k1, . . . , kn}[ϕ(x)]
whenever possible (as we also saw in Section 4.3), provided n ≥ 3. If a boundary
of the range is a special variable vi, we replace it by the value it is defined as,
since it is typically better not to generalize the starting point of a quantification.

Experiments. To test performance of Ctrl, we used assignments from a group
of students in the first-year programming course in Nagoya. Unfortunately, al-
though we know how to translate C-programs to LCTRSs, we do not yet have
an implementation. Therefore, we translated five groups by hand: sum (given
n, implement

∑n
i=1 i), fib (calculate the first n Fibonacci numbers), sumfrom

(given n and m, implement
∑m

i=n i), strlen and strcpy. Due to the large effort
of manually translating, we only use this small sample space. We considered two
further assignments, with our own implementations: arrsum (the array summa-
tion from Section 4.3) and fact (the factorial function from Examples 1 and 7).

We quickly found that many implementations were incorrect: students had
often forgotten to account for, e.g., negative input. Correcting for this (by al-
tering the constraint, or excluding the benchmark), Ctrl automatically verified

function verified time
sum 9 / 13 4.8
fib 10 / 12 11.4

strlen 3 / 5 16.2
strcpy 3 / 6 30.0
sumfrom 2 / 5 5.6
arrsum 1 / 1 14.2
fact 1 / 1 4.3

most queries, as summarized to the right. Here, for in-
stance “3 / 5” means that 3 out of the 5 different correct
functions could automatically be verified. The runtime
includes only queries where Ctrl succeeded.

Investigating the failures, the main problem is termi-
nation. As Ctrl’s termination module is not very strong
yet, several times the initial LCTRS could not be han-
dled; also, sometimes a natural induction rule was not
introduced because it would cause non-termination (although in most of these
cases, expanding at a different position still led to a proof). Another weakness
is that sometimes, generalizing removes the relation between two variables (e.g.
both x and y are initialized to 0, and are both increased by 1 in every loop
iteration). This suggests a natural direction for improvements to the technique.

An evaluation page, including exact problem statements, is given at:
http://cl-informatik.uibk.ac.at/software/ctrl/aplas14/.

7 Related Work

The related work can be split into two categories. First, the literature on rewrit-
ing induction; and second, the work on program verification.

Rewriting Induction. Building on a long literature about rewriting induction
(see e.g. [1,5,18,20]), the method for inductive theorem proving in this paper is
primarily an adaptation of existing techniques to the new LCTRS formalism.

The most relevant related works are [5,20], where rewriting induction is defined
for different styles of constrained rewriting. In both cases, the formalisms used are
restricted to integer functions and predicates; it is not clear how they can be gen-
eralized to handle more advanced theories. LCTRSs offer a more general setting,

http://cl-informatik.uibk.ac.at/software/ctrl/aplas14/

Automatic Constrained Rewriting Induction 351

which allows us to use rewriting induction also for systems with for instance ar-
rays, bitvectors or real numbers. Additionally, by not restricting the predicates in
Σtheory , we can handle (a limited form of) quantifiers in constraints.

To enable these advantages, we had to make subtle changes to the inference
rules, in particular Simplification and Expansion. Our changes make it pos-
sible to modify constraints of an equation, and to handle irregular rules, where
the constraint introduces fresh variables. This has the additional advantage that
it enables Expansion steps when this would create otherwise infeasible rules.

Furthermore, the method requires a very different implementation from previ-
ous definitions: we need separate strategies to simplify constraints (e.g. deriving
quantified statements), and, in order to permit the desired generality, must rely
primarily on external solvers to manipulate constraints.

In addition to the adaptation of rewriting induction, we introduced a com-
pletely new lemma generalization technique, which offers a powerful tool for
analyzing loops in particular. A similar idea (abstract the initialization values)
is used in [16], but the execution is very different. In [16], an equation s ≈ t [ϕ] is
generalized by first adapting s ≈ t using templates obtained from the rules, then
generalizing ϕ using a set of relations between positions, which the proof process
tracks. In our method, the constraint carries all information. Our method suc-
ceeds on all examples in [16], and on some where [16] fails (cf. [14, Appendix B]).

For unconstrained systems, there are several generalization methods in the
literature, e.g., [10,11,21]. Mostly, these approaches are very different from ours.
Most similar, perhaps, is [10], which also proposes a method to generalize initial
values. As observed in [16], this is not sufficient even for our simplest benchmarks
sum and fact since the argument for the loop variable cannot be generalized. In
contrast, our method has no problem with such variables.

As far as we are aware, there is no other work for lemma generation of rewrite
systems (or functional programs) obtained from procedural programs.

Automatic Program Verification. Although this paper is a primarily theo-
retical contribution to the field of constraint rewriting induction, our intended
goal is to (automatically) verify correctness properties of procedural programs.

As mentioned in the introduction, however, most existing verifiers require
human interaction. Exceptions are the fully automated tools in the Competition
on Software Verification (SV-COMP, http://sv-comp.sosy-lab.org/), which
verify program properties like reachability, termination and memory-safety.

However, comparing our approach to these tools does not seem useful. While
we can, to some extent, tackle termination and memory-safety, the main topic of

int main() {

int x =

__VERIFIER_nondet_int();

if (c && f(x) != g(x)) {

ERROR: goto ERROR;

}

return 0;

}

this paper is equivalence, which is not studied
in SV-COMP. And while technically equiva-
lence problems can be formulated as reacha-
bility queries (e.g., f(x) ≈ g(x) [c] is handled
by the main function to the right), neither of
the top two tools in the “recursive” category
of SV-COMP halts succesfully (in two hours)
for our simplest (integer) example sum.

http://sv-comp.sosy-lab.org/

352 C. Kop and N. Nishida

8 Conclusions

In this paper,we have extended rewriting induction to the setting of LCTRSs.
Furthermore, we have shown how this method can be used to prove correctness of
procedural programs. LCTRSs seem to be a good analysis backend for this since
the techniques from standard rewriting can typically be extended, and native
support for logical conditions and data types like integers and arrays is present.

We have also introduced a new technique to generalize equations. The idea of
this method is to identify constants used as variable initializations, keep track of
them during the proof process, and abstract from these constants when a proof
attempt diverges. The LCTRS setting is instrumental in the simplicity of this
method, as it boils down to dropping a (cleverly chosen) part of a constraint.

In addition to the theory of these techniques, we provide an implementation
that automatically verifies inductive theorems. Initial results on a small database
of student programs are very promising. In future work, we will aim to increase
the strength of this implementation and couple it with an automatic transfor-
mation tool which converts procedural programs into LCTRSs.

Acknowledgements. We are grateful to Stephan Falke, who contributed to an
older version of this paper, and to both the IJCAR’14 and APLAS’14 referees
for their helpful remarks.

References

1. Bouhoula, A.: Automated theorem proving by test set induction. Journal of Sym-
bolic Computation 23(1), 47–77 (1997)

2. Bundy, A.: The automation of proof by mathematical induction. In: Voronkov,
A., Robinson, A. (eds.) Handbook of Automated Reasoning, pp. 845–911. Elsevier
(2001)

3. Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-Level Guidance for
Mathematical Reasoning. Cambridge University Press (2005)

4. Falke, S., Kapur, D.: A term rewriting approach to the automated termination anal-
ysis of imperative programs. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI),
vol. 5663, pp. 277–293. Springer, Heidelberg (2009)

5. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision proce-
dure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 241–255. Springer, Heidelberg (2012)

6. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauß, M. (ed.) 22nd International Confer-
ence on Rewriting Techniques and Applications (RTA), Dagstuhl, Leibniz. LIPIcs,
vol. 10, pp. 41–50 (2011)

7. Falke, S.: Term Rewriting with Built-In Numbers and Collection Data Structures.
Ph.D. thesis, University of New Mexico, Albuquerque, NM, USA (2009)

8. Furuichi, Y., Nishida, N., Sakai, M., Kusakari, K., Sakabe, T.: Approach to
procedural-program verification based on implicit induction of constrained term
rewriting systems. IPSJ Transactions on Programming 1(2), 100–121 (2008) (in
Japanese)(**)

Automatic Constrained Rewriting Induction 353

9. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press (2000)

10. Kapur, D., Sakhanenko, N.A.: Automatic generation of generalization lemmas
for proving properties of tail-recursive definitions. In: Basin, D., Wolff, B. (eds.)
TPHOLs 2003. LNCS, vol. 2758, pp. 136–154. Springer, Heidelberg (2003)

11. Kapur, D., Subramaniam, M.: Lemma discovery in automated induction. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 538–552.
Springer, Heidelberg (1996)

12. Kop, C.: Termination of LCTRSs. In: 13th International Workshop on Termination
(WST), pp. 59–63 (2013)

13. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp.
343–358. Springer, Heidelberg (2013)

14. Kop, C., Nishida, N.: Towards verifying procedural programs using con-
strained rewriting induction. Technical report, University of Innsbruck (2014),
http://arxiv.org/abs/1409.0166

15. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Nakabayashi, N., Nishida, N., Kusakari, K., Sakabe, T., Sakai, M.: Lemma gener-
ation method in rewriting induction for constrained term rewriting systems. Com-
puter Software 28(1), 173–189 (2010) (in Japanese)(**)

17. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of Java bytecode by term rewriting. In: Lynch, C. (ed.) 21st International
Conference on Rewriting Techniques and Applications (RTA), Dagstuhl, Leibniz.
LIPIcs, vol. 6, pp. 259–276 (2010)

18. Reddy, U.S.: Term rewriting induction. In: Stickel, M.E. (ed.) CADE 1990. LNCS,
vol. 449, pp. 162–177. Springer, Heidelberg (1990)

19. Sakata, T., Nishida, N., Sakabe, T.: On proving termination of constrained term
rewrite systems by eliminating edges from dependency graphs. In: Kuchen, H. (ed.)
WFLP 2011. LNCS, vol. 6816, pp. 138–155. Springer, Heidelberg (2011)

20. Sakata, T., Nishida, N., Sakabe, T., Sakai, M., Kusakari, K.: Rewriting induction
for constrained term rewriting systems. IPSJ Transactions on Programming 2(2),
80–96 (2009) (in Japanese)(**)

21. Urso, P., Kounalis, E.: Sound generalizations in mathematical induction. Theoret-
ical Computer Science 323(1-3), 443–471 (2004)

22. Walsh, T.: A divergence critic for inductive proof. Journal of Artificial Intelligence
Research 4, 209–235 (1996)

(**) Translations or summaries of marked Japanese papers are available at:
http://www.trs.cm.is.nagoya-u.ac.jp/crisys/

http://arxiv.org/abs/1409.0166
http://www.trs.cm.is.nagoya-u.ac.jp/crisys/

A ZDD-Based Efficient Higher-Order Model

Checking Algorithm

Taku Terao and Naoki Kobayashi

The University of Tokyo, Japan

Abstract. The model checking of higher-order recursion schemes, aka.
higher-order model checking, has recently been applied to automated
verification of higher-order programs. Despite its extremely high worst-
case complexity, practical algorithms have been developed that work
well for typical inputs that arise in program verification. Even the state-
of-the-art algorithms are, however, not scalable enough for verification
of thousands or millions of lines of programs. We, therefore, propose a
new higher-order model checking algorithm. It is based on Broadbent
and Kobayashi’s type and saturation-based algorithm HorSat, but we
make two significant modifications. First, unlike HorSat, we collect flow
information (which is necessary for optimization) in linear time by using
a sub-transitive flow graph. Thanks to this, the resulting algorithm runs
in almost linear time under a fixed-parameter assumption. Secondly, we
employ zero-suppressed binary decision diagrams to efficiently represent
and propagate type information. We have confirmed through experiments
that the new algorithm is more scalable for several families of inputs than
the state-of-the-art higher-order model checkers HorSat and Preface.

1 Introduction

Higher-order model checking is the problem of deciding whether the (possibly
infinite) tree generated by a given higher-order recursion scheme (HORS) satis-
fies a given property [19]. Higher-order model checking has recently been applied
to automatic verification of higher-order functional program [9,13,20,12,14].

A major challenge in applying higher-order model checking to practice is to
develop an efficient higher-order model checker. Actually, the higher-order model
checking problem is k-EXPTIME complete for order-k HORS [19,11], so there is
no hope to obtain an algorithm that works well for all the inputs. Nevertheless,
several practical algorithms have been developed and implemented, which run
reasonably fast for many typical inputs [9,8,18,3,21]. The state-of-the-art higher-
order model checkers HorSat [3] and Preface [21] can handle HORS consisting
of hundreds of lines of rewriting rules (and it has been reported [21] that Preface
works even for thousands of lines of HORS for a specific problem instance).
Despite the recent advance, they are still not scalable enough to be applied to
verification of thousands or millions of lines of programs.

In the present paper, we improve the HorSat algorithm [3] in two significant
ways. HorSat computes (a finite representation of) the backward closure of

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 354–371, 2014.
c© Springer International Publishing Switzerland 2014

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 355

error configurations (i.e., the set of terms that generate error trees) by using
intersection types, and checks whether the initial configuration belongs to the
set. It has two main bottlenecks: one is the flow analysis (based on 0CFA [23])
employed to compute only a relevant part of the backward closure. In theory, (the
known upper-bound of) the worst-case complexity of the flow analysis is almost
cubic time [16], whereas the other part of theHorSat algorithm is actually fixed-
parameter linear time.1 The other bottleneck is that the number of intersection
types used for representing a set of terms may blow up quickly. This blow up
immediately slows down the whole algorithm, since each saturation step (for
computing the backward closure by iteratively computing the backward image
of a set of terms) picks and processes each type one by one. To overcome the
first problem, we employ a linear-time sub-transitive control flow analysis (which
constructs a graph whose transitive closure is a flow graph) [5] and use it for
the optimization. This guarantees that the whole algorithm runs in time linear
in the size of HORS, under the same fixed-parameter assumption as before. To
address the second problem, we represent a set of intersection types using a zero-
suppressed binary decision diagram (ZDD) [17], and develop a new saturation
algorithm that can process a set of intersection types (represented in the form
of ZDD) simultaneously.

We have implemented the new algorithm mentioned above and confirmed that
it scales better (with respect to the size of HORS) than HorSat and Preface
for several classes of inputs parametrized by the size of HORS.

The rest of the paper is structured as follows. Section 2 reviews the higher-
order model checking problem, the model checking algorithm HorSat, and
ZDD. Section 3 describes our new algorithm. Section 4 reports experiments.
Section 5 discusses related work and Section 6 concludes the paper.

2 Preliminaries

We review higher-order recursion schemes (HORS) and higher-order model check-
ing [19]. To save the definitions, we consider here a specialized version of higher-
order model checking called co-trivial ATA model checking of HORS [3].

2.1 Higher-Order Recursion Schemes and Co-trivial ATA Model
Checking

The set of sorts, written Sorts, is defined by: κ ::= o | κ1 → κ2. Intuitively,
o describes trees, and κ1 → κ2 describes functions from κ1 to κ2. A sorted
alphabet is a map from a finite set of symbols to Sorts. The arity and order
of Sorts are defined by:

arity(o) = 0 arity(κ1 → κ2) = 1 + arity(κ2)
order(o) = 0 order(κ1 → κ2) = max(1 + order(κ1), order(κ2))

1 Actually, in the previously reported implementation of HorSat [3], the other part
also took more than linear time due to the naive implementation. In the present
work, we have also improved on that point.

356 T. Terao and N. Kobayashi

Let X be a sorted alphabet. The (family of) sets TermsX,κ of applicative
terms of sort κ over X is inductively defined by: (i) If X(a) = κ, then a ∈
TermsX,κ; and (ii) If t1 ∈ TermsX,κ2→κ and t2 ∈ TermsX,κ2 , then t1t2 ∈
TermsX,κ. We write TermsX for the union of TermsX,κ for all sorts.

Definition 1 (Higher-order recursion schemes (HORS)).A higher-order
recursion scheme is a tuple G = (Σ,N ,R, S) where: (i) Σ and N are sorted
alphabets, where N (S) = o, dom(Σ) ∩ dom(N) = ∅, and order(Σ(a)) ≤ 1 for
every a ∈ dom(Σ); (ii) R is a set of rewriting rules of the form F x1 · · · xn → t
where N (F) = κ1 → · · · → κn → o and t ∈ TermsΣ∪N∪{x1:κ1,...,xn:κn },o. We
require that R has exactly one rule for each F ∈ dom(N). The reduction re-
lation t1 −→G t2 is the least binary relation on TermsΣ∪N ,o that satisfies: (i)
F t1 · · · tn −→G [t1/x1, . . . , tn/xn]t if F x1 · · · xn → t ∈ R, and (ii) a t1 · · · ti · · ·
tn −→G a t1 · · · t′i · · · tn if ti −→G t′i and a ∈ dom(Σ). The value tree of G,
written Tree(G), is the least upper bound of { t⊥ | S −→∗

G t } (with respect to the
least precongruence � that satisfies ⊥ � t for every tree t), where t⊥ is defined by
(F t1 · · · tn)⊥ = ⊥ for each F ∈ dom(N) and (a t1 · · · tn)⊥ = a t⊥1 · · · t⊥n for each
a ∈ dom(Σ). We call each xi in F x1 · · · xn → t a variable. We assume that all
variables are distinct from each other.X denotes the sorted alphabet of all variables.

Intuitively, each symbol a ∈ dom(Σ) (called a terminal symbol) is a tree con-
structor of arity arity(Σ(a)), and F ∈ dom(R) (called a non-terminal symbol)
is a (higher-order) function on trees defined by the rewriting rules.

Example 1. Consider the HORS G0 = (Σ,N ,R, S) where Σ = {a : o → o →
o, b : o → o, c : o}, N = {S : o, F : (o → o) → o, T : (o → o) → o → o}, and R
consists of the rules:

S → F (T b) F f → a (f c) (F (T f)) T g x → g(g(x))

S is reduced as follows.

S −→ F (T b) −→ a (T b c) (F (T (T b))) −→ a (b(b c)) (F (T (T b))) −→ · · ·

It generates an infinite tree having a path akb2
k

c for every k ≥ 1.

Higher-order model checking is the problem of deciding whether Tree(G)
satisfies a given tree property. We use alternating tree automata (for finite trees)
to describe the tree property. We consider below an element of TermsΣ,o as a
tree.

Definition 2 (Alternating Tree Automata (ATA)). An alternating tree
automaton is a tuple (Σ,Q, δ, qI) where: (i) Σ is a sorted alphabet; (ii) Q is
a finite set; (iii) δ ⊆ Q × dom(Σ) × 2N×Q such that whenever (q, a, U) ∈ δ and
(i, q′) ∈ U , 1 ≤ i ≤ arity(Σ(a)); and (iv) qI ∈ Q. A configuration is a set
of pairs of the form (t, q) ∈ TermsΣ,o × Q, and the transition relation over
configurations is defined by:

C ∪ { (a t1 · · · tk, q) } −→ C ∪ { (ti, q′) | (i, q′) ∈ U } (if (q, a, U) ∈ δ).

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 357

A tree t ∈ TermsΣ,o is accepted if { (qI , t) } −→∗ ∅. We write L(A) for the set
of trees accepted by A. For an ATA A = (Σ,Q, δ, qI) (with ⊥ �∈ dom(Σ)), we
write A⊥ for (Σ ∪ {⊥ �→ o } , Q, δ, qI).

Example 2. Consider the automaton A0 = (Σ, { q0, q1 } , δ, q0) where Σ is the
same as that of Example 1, and δ is:

{ (qi, a, { (j, qi) }) | j ∈ { 1, 2 } , i ∈ { 0, 1 } }
∪ { (q0, b, { (1, q1) }), (q1, b, { (1, q0) }), (q1, c, ∅) }

It accepts all the trees that have a finite path containing an odd number of b’s.

We can now define a special case of higher-order model checking called the co-
trivial model checking of HORS [3].

Definition 3 (Co-trivial Model Checking for HORS). We write G |= A
if there exists a term t such that S −→∗ t and t⊥ ∈ L(A⊥). The co-trivial ATA
model checking of HORS is the problem of deciding whether G |= A holds, given
an ATA A = (Σ,Q, δ, qI) and a HORS G as input.

Intuitively, the ATA describes the property of invalid trees, and the condition
“S −→∗ t and t⊥ ∈ L(A⊥)” means that a prefix of Tree(G) is invalid (hence so
is Tree(G)). Note that the co-trivial model checking of G with respect to A is
equivalent to the trivial model checking of G with respect to A (where A is the
complement of A) considered in [1,9,3].

Example 3. Recall G0 in Example 1 and A0 in Example 2. Then, G0 �|= A0

holds. In other words, every finite path (that ends in c) Tree(G) contains an
even number of b’s.

2.2 Broadbent and Kobayashi’s Algorithm

We quickly review Broadbent and Kobayashi’s saturation-based algorithmHor-

Sat for co-trivial automata model checking of HORS [3]. We fix an ATA A =
(Σ,Q, δ, qI) and a HORS G = (Σ,N ,R, S) in the following discussion.

Definition 4 (Intersection types). The sets ITypes and STypes of inter-
section types and strict types, ranged over by σ and θ respectively, are defined
by:

σ ::= { θ1, . . . , θn } θ ::= q |
∧

σ → θ

Here q ∈ Q and n is a non-negative integer.

Intuitively, the type q describes trees accepted by the automaton from state
q, and

∧
σ → θ describes functions that take an argument that has all (strict)

types in σ and returns a value of type θ.
We say θ is a refinement of κ, written θ :: κ, when it is derivable by the

following rules.

q :: o
σ :: κ1 θ :: κ2

(
∧

σ → θ) :: (κ1 → κ2)

θ :: κ for each θ ∈ σ

σ :: κ

358 T. Terao and N. Kobayashi

An (intersection) type environment is a map Γ : dom(N) → ITypes
such that ∀f ∈ dom(N). Γ (f) ::N (f). The union of type environments Γ1 ∪ Γ2

is defined by (Γ1 ∪ Γ2)(x) = Γ1(x) ∪ Γ2(x).
The type judgment relation Γ
I t : θ is defined by the following typing rules:

θ ∈ Γ (f)

Γ
I f : θ

(q, a, U) ∈ δ

Γ
I a :
∧

U |1 → · · · →
∧

U |arity(Σ(a)) → q

Γ
I t1 :
∧

σ → θ Γ
I t2 : θ′ for each θ′ ∈ σ

Γ
I t1 t2 : θ

Here, U |i = { q | (j, q) ∈ U, j = i }.
A type environment Γ can be considered a finite representation of the set

of terms: ITermsΓ,qI = { t | Γ
I t : qI }. The set ITerms∅,qI described by the
empty type environment is exactly the set of terms t such that t⊥ ∈ L(A⊥).Hor-

Sat starts from the empty type environment, and iteratively expand it to obtain
a type environment Γ such that ITermsΓ,qI = { t | ∃s.t −→∗ s ∧ s⊥ ∈ L(A⊥) }∩
RTerms, where RTerms is an over-approximation of the set of terms reach-
able from S, i.e., { t | S −→∗ t }. Once such Γ is obtained, the co-trivial model
checking amounts to checking whether Γ
I S : qI , i.e., whether qI ∈ Γ (S)
holds.

HorSat makes use of flow information to efficiently compute Γ above.

Definition 5. Flowap : dom(X) → P(TermsΣ∪N) (recall that X is a sorted
alphabet of variables in G) is (approximate) flow information, if Flowap(xi) ⊆
TermsΣ∪N ,X (xi) and if ti ∈ Flowap(xi) holds for each i ∈ { 1, . . . , k } whenever
S −→∗ t and F t1 · · · tk occurs as a subterm of t with F x1 · · · xk → t ∈ R.

Using Flowap, the function to iteratively expand a type environment is defined
as follows.

Definition 6. The function FG over type environments is given by:

FG(Γ)(F) = Γ (F) ∪

⎧⎨
⎩

∧
Δ(x1)→ · · · →

∧
Δ(xn)→ q

∣∣∣∣∣∣
F x1 · · · xn → t ∈ R,
Γ �I t : q =⇒ Δ,
Inhabited(Γ,Δ)

⎫⎬
⎭ .

(1)

Here, Inhabited(Γ,Δ) ⇐⇒ ∀x ∈ dom(Δ). ∃t ∈ Flowap(x).∀θ ∈ Δ(x). Γ
I

t : θ. The relation Γ
I t : θ =⇒ Δ is defined by:

Γ
I t : θ

Γ
I t : θ =⇒ ∅
∃t ∈ Flowap(x). Γ
I t : θ

Γ
I x : θ =⇒ { x : θ }

Γ
I t1 : θ1 ∧ · · · ∧ θn → θ =⇒ Δ0 ∀i ∈ { 1, . . . , n } . Γ
I t2 : θi =⇒ Δi

Γ
I t1 t2 : θ =⇒
⋃n

i=0 Δi

The rules for Γ
I t : θ =⇒ Δ can be read as an algorithm to compute Δ
such that Γ ∪ Δ
I t : θ. For example, the rule for t1t2 says that given Γ

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 359

and θ, we should first enumerate all the pairs (θ1 ∧ · · · ∧ θn, Δ0) such that
Γ
I t1 : θ1 ∧ · · · ∧ θn → θ =⇒ Δ0, and then for each such pair, enumerate
all (Δ1, . . . , Δn) such that Γ
I t2 : θi =⇒ Δi, and return

⋃n
i=0 Δi for all the

combinations of Δ0, Δ1, . . . , Δn.
HorSat is based on the following theorem, and computes Γ =

⋃
i∈ω F i

G(∅)
and checks whether qI ∈ Γ (S) holds.

Theorem 1 ([3]). Let G = (Σ,N ,R, S) be a HORS. qI ∈ (
⋃

i∈ω F i
G(∅))(S) if

and only if G |= A.

Example 4. Recall G0 in Example 1 and A0 in Example 2. The map

{ f �→ {T kb | k ≥ 1 } , g �→ {T kb | k ≥ 0 } , x �→ { bkc | k ≥ 0 } }

is a valid flow map Flowap . Since ∅
I f(f x) : q1 =⇒ Δ and Inhabited(∅, Δ)
hold for Δ = { f : { q0 → q1, q1 → q0 } , x : q1 }, we have
FG0(∅) = {S : ∅, F : ∅, T : { (q0 → q1) ∧ (q1 → q0)→ q1 → q1 } } and
(
⋃

i∈ω F i
G(∅))(S) = { q1 }. Thus, we have G0 �|= A0.

3 A ZDD-Based Algorithm

We now discuss our new algorithm. The main limitations of HorSat and our
approach to address them are summarized as follows.

1. First, although
⋃

i∈ω F i
G(∅) is guaranteed to be finite, it sometimes becomes

quite large, containing “similar” types q1 → q3 → q, q2 → q3 → q, q1 → q4 → q,
and q2 → q4 → q, which could be represented by a single type q1∨q2 → q3∨q4 →
q if we had union types as well. The blow-up of the size of a type environment
also significantly affects the cost of intermediate computation of FG(Γ)(F), as
we have to enumerate Δ such that Γ
I t : q =⇒ Δ and Inhabited(Γ,Δ) one
by one, and construct new types. This suggests that the intersection types (in the
syntactic representation) may not be an optimal representation for computing⋃

i∈ω F i
G(∅). We use ZDD to represent intersection types and type environments,

and re-define FG accordingly.
2. Secondly, HorSat uses 0CFA to compute approximate flow information

Flowap , whose worst-case complexity is almost cubic time [16]. As the defini-
tion of FG suggests, however, what we actually need is not Flowap itself but
the set { { θ | Γ
I t : θ } | t ∈ Flowap(x) } (for each x). The latter can be more
efficiently computed (in fact, in linear time under a fixed-parameter assump-
tion) by first computing sub-transitive flow information [5] and then directly
computing the set { { θ | Γ
I t : θ } | t ∈ Flowap(x) } using the sub-transitive
flow information.

We discuss the first issue in Sections 3.1 and 3.2, and the second issue in
Section 3.3.

360 T. Terao and N. Kobayashi

3.1 ZDD Types

We use ZDD [17] to represent a set of intersection types compactly. ZDD is
an efficient data structure for representing a set of (finite) sets. The follow-
ing description is actually based on set operations, and not tied to the specific
data structure of ZDD; thus one may use other representations such as ordered
boolean decision diagrams (OBDD) and boolean formulas to implement the al-
gorithm below. Using ZDD, however, we expect that the representation is more
compact and the set operations can be efficiently performed: see Remark 1 below.

We first modify the representation of a strict type.

Definition 7 (ZDD types). Let θ be a strict type. The ZDD strict type
corresponding to θ, written [θ], is defined as:

[q] = { q } [
∧

σ → θ] = { (arity(
∧

σ → θ), θ′) | θ′ ∈ σ } ∪ [θ]

A ZDD intersection type is a collection of ZDD strict types. The set of ZDD
intersection types is written ITypesZDD. Let Γ be an intersection type environ-
ment, The ZDD type environment corresponding to Γ , written [Γ], is the map
from dom(Γ) to ZDD intersection types such that for each F ∈ dom(Γ), [Γ](F) =
{ [θ] | θ ∈ Γ (F) }.
For example, the strict type q1 ∧ q2 → q3 → q is now expressed by the set
{ (2, q1), (2, q2), (1, q3), q }.2 The intersection type (or, the set of strict types):

{ q1 → q3 → q, q1 → q4 → q, q2 → q3 → q, q2 → q4 → q }

is expressed by a set of sets:

{ { (2, q1), (1, q3), q } ,{ (2, q1), (1, q4), q } ,{ (2, q2), (1, q3), q } ,{ (2, q2), (1, q4), q } } .

A careful reader will notice that we can then use a compact representation like
((2, q1)∨(2, q2))∧((1, q3)∨(1, q4))∧q to represent the intersection type. Note that
the set representation is not nested. For example, (q1∧q2 → q)∧ (q3 → q)→ q is
expressed by: { (1, q1 ∧ q2 → q), (1, q3 → q), q }. The strict types q1 ∧ q2 → q and
q3 → q are lazily converted to ZDD strict types as necessary inside the algorithm
described below. We use meta-variables θ, σ, and Γ for ZDD strict types, ZDD
intersection types and ZDD type environments respectively. (In general, we shall
use x as the meta-variable for the ZDD version of x below.)

In the saturation-based algorithm (recall Definition 6), we need to compute
the set of pairs (θ,Δ) such that Γ
I t : θ =⇒ Δ for given Γ and t. We therefore
prepare a representation for such a set.

Definition 8. Let θ be a strict type, and Δ be an intersection type environment.
The ZDD constraint type corresponding to θ =⇒ Δ, written [θ =⇒ Δ], is
defined by:

[θ =⇒ Δ] = [θ] ∪ [Δ]s (2)

[Δ]s = { (x, θ) | x ∈ dom(Δ), θ ∈ Δ(x) } (3)

2 This is actually similar to the representation of Ong’s variable profiles [19]:
({ (x2, q1), (x2, q2), (x1, q3) } , q).

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 361

We use the meta-variable Δ for a subset of X × STypes, and τ for a ZDD
constraint type. Please notice the difference between [Γ] and [Δ]s. In the former,
types are converted to ZDD ones, while in the latter, types are kept as they are.
For example, a constraint strict type q1 → q =⇒ {f : {q1 → q2}, x : {q1, q2}}
is represented as a ZDD constraint type {q, (1, q1), (f, q1 → q2), (x, q1), (x, q2)}.
Since ZDD strict type is a subset of Q ∪ (N × STypes), and a ZDD constraint
type is a subset of Q∪ (N×STypes)∪ (X ×STypes), a collection of them can
be represented using ZDD, by treating elements of Q,N×STypes,X ×STypes
as atomic elements.

Let τ be a collection of ZDD constraint types, q ∈ Q, Θ be a subset of
N × STypes and Δ be a subset of X × STypes. We write (q, Θ,Δ) ∈ τ when
{q}∪Θ∪Δ ∈ τ . We write (q, Θ) ∈ σ when σ is a ZDD intersection type and {q}∪
Θ ∈ σ. The notation Θ(i) and Δ(x) respectively denote the sets { θ | (i, θ) ∈ Θ }
and { θ | (x, θ) ∈ Δ } (which is based on the standard set representation of a
map).

We define a conversion from ZDD intersection types to intersection types.

Definition 9. Let σ be a ZDD intersection type, and n be a non-negative inte-
ger. The intersection type corresponding to σ with the arity n, written enum(τ, n)
is defined by:

enum(σ, n) =
{∧

Θ(n)→ · · · →
∧

Θ(1)→ q
∣∣∣ (q, Θ) ∈ σ

}
(4)

3.2 Saturation Algorithm Using ZDD Types

We now present the new saturation-based algorithm using ZDD types.

Definition 10. Let G = (Σ,N ,R, S) be a HORS. The function FG over ZDD
type environments is defined by:

F(Γ)(F) = Γ (F) ∪
{
rename(inhabited(τ, Γ))

∣∣∣∣ F xn · · · x1 → t ∈ R,
Γ
ZDD t : τ

}
(5)

Here, rename(τ), inhabited(τ, Γ), and Γ
ZDD t : τ are defined by:

rename(τ) = { {q} ∪ { (i, θ) | (xi, θ) ∈ Δ } | (q, ∅, Δ) ∈ τ }
inhabited(τ, Γ) = {{q} ∪Δ|(q, ∅, Δ) ∈ τ, ∃σ.Δ(x) ⊆ σ ∧ σ ∈ typesof(x, Γ)}

F ∈ dom(N)

Γ
ZDD F : Γ (F)

a ∈ dom(Σ)

Γ
ZDD a :

{
{q} ∪

{
(k, q′)

∣∣∣∣ (j, q′) ∈ U
k = arity(Σ(a))− j + 1

} ∣∣∣∣ q ∈ Q,
(q, a, U) ∈ δ

}

x ∈ dom(X)

Γ
ZDD x :
{
[θ] ∪ {(x, θ)}

∣∣ θ ∈ ⋃
typesof(x, Γ)

}

362 T. Terao and N. Kobayashi

Γ
ZDD t1 : τ1 Γ
ZDD t2 : τ2 n = arity(t1)

Γ
ZDD t1 t2 :

⎧⎨
⎩ {q} ∪Θ′ ∪Δ ∪Δ

′

∣∣∣∣∣∣
(q, Θ,Δ) ∈ τ1

Δ
′ ∈

⊗
θ∈Θ(n) g(τ2, θ)

Θ′ = Θ \ { (n, θ) | θ ∈ Θ(n) }

⎫⎬
⎭

where S1⊗S2 = { s1 ∪ s2 | s1 ∈ S1, s2 ∈ S2 }, Θ(n) = { (j, θ) | (j, θ) ∈ Θ, n = j },
and g(τ, θ) = {Δ | (q, Θ,Δ) ∈ τ, [θ] = {q} ∪Θ }.
typesof(x, Γ) = { enum(σΓ,t, arity(X (x))) | t ∈ Flowap(x) } where σΓ,t is the

(unique) intersection type such that Γ
ZDD t:σΓ,t. (Since t is closed, τ such that

Γ
ZDD t : τ contains no free variables, hence it is actually a ZDD intersection
type.)

Note that the relation Γ
I t : θ =⇒ Δ has now been replaced by Γ
ZDD t : τ .
Since τ represents a set of pairs (θ1, Δ1), . . . , (θn, Δn), Γ
I t : τ means that Γ
I

t : θi =⇒ Δi holds for all such pairs. Thanks to this modification, the algorithm
to compute τ such that Γ
I t : τ is deterministic, and implemented by using
ZDD. The set typesof(x, Γ) used above is based on flow information Flowap .
How to represent Flowap and compute typesof(x, Γ) using it is explained later
in Section 3.3.

The following lemma formally states the correspondence between Γ
I t :
θ =⇒ Δ and Γ
ZDD t : τ mentioned above.

Lemma 1. Let Γ be an intersection type environment over N , t be an applica-
tive term. For any θ and Δ, if Γ
I t : θ =⇒ Δ then there exists τ such that
[Γ]
ZDD t : τ and [θ =⇒ Δ] ∈ τ . Conversely, for any ϕ and τ , if [Γ]
ZDD t : τ
and ϕ ∈ τ , there exist θ and Δ such that Γ
I t : θ =⇒ Δ and ϕ = [θ =⇒ Δ].

Based on the above lemma, we can obtain the following correspondence be-
tween the step functions used for saturation.

Lemma 2. Let G = (Σ,N ,R, S) be a HORS and Γ be an intersection type
environment over N . Then the following equation holds.

FG([Γ]) = [FG(Γ)] (6)

The following theorem is an immediate corollary of Theorem 1 and Lemma 2.

Theorem 2. Let G = (Σ,N ,R, S) be a HORS. qI ∈
⋃

i∈ω(F
i

G(∅))(S) if and
only if G |= A.

Remark 1. The formalization above does not rely on the specific data structure
of ZDD [17]. We could, therefore, use OBDD instead. In fact, our initial imple-
mentation used OBDD rather than ZDD. According to our earlier experiments,
however, ZDD tends to be more efficient. Our rationale for this is that in many
of the benchmarks, while the “width” of each intersection type (i.e., the size
σ) tends to be small, the number of strict types θ that occur in a set of in-
tersection types can be large. Due to this property, suppressing zero’s in ZDD
brings a benefit. This argument is however yet to be confirmed through more
experiments.

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 363

3.3 Approximation of Control-Flow information

Next, we discuss how to compute Flowap and typesof(x, Γ) efficiently. To ob-
tain (a finite representation of) Flowap , we use Heintze and Mcallester’s sub-
transitive flow analysis [5].

Definition 11 (Sub-transitive flow graph). Let G=(Σ,N ,R, S) be a HORS.
A sub-transitive flow graph of G is a quadruple (V,E, ξ, ρ) such that: (i)
(V,E) is a directed acyclic graph, (ii) each leaf v in V is labeled by ξ(v) ∈
TermsΣ∪N∪X , and (iii) ρ : dom(X) → V . The flow map represented by a
sub-transitive flow graph (V,E, ξ, ρ) is the least (with respect to the pointwise
ordering) map h : dom(X)→ TermsΣ,N such that

h(x) = { t ∈ subst(ξ(v)) | v is reachable from ρ(x) } .

Here, subst(t) is defined inductively by:

subst(a) = { a } subst(F) = {F } subst(x) = h(x)
subst(t1 t2) = { t′1 t′2 | t′1 ∈ subst(t1), t

′
2 ∈ subst(t2) }

A sub-transitive flow graph is sound if its flow map h is approximate flow infor-
mation.

Example 5. Recall G0 in Example 1. A sub-transitive flow graph for G0 is de-
picted as below:

g

b f

T b T f

x

c f x

Here, the label for each non-leaf node shows the map f (e.g., x means that ρ(x)
is the node labeled by x in the graph), and the label for each leaf node shows
the map ξ.

We can compute a sub-transitive flow graph whose flow map is equivalent to
the result of 0CFA in time linear in the size of HORS by using Heintze and
Mcallester’s algorithm[5], under the assumption that the size of the largest type
used in HORS is fixed. Therefore, the size of the sub-transitive flow graph is also
linear in the size of HORS. We use it as a finite representation of Flowap below.

Let G = (V,E, ξ, ρ) be a sound sub-transitive flow graph. Let Γ be a ZDD
type environment over N . We present an algorithm to compute typesof(x, Γ).
We define the function HΓ : (dom(X) → P(ITypesZDD)) → (dom(X) →
P(ITypesZDD)) by:

HΓ (Ξ)(x) = Ξ(x) ∪ { σ | v is reachable from ρ(x), Γ ;Ξ
ZDD ξ(v) : σ } (7)

where Γ ;Ξ
ZDD t : σ is given by:

364 T. Terao and N. Kobayashi

f ∈ dom(N) ∪ dom(Σ) Γ
ZDD f : σ

Γ ,Ξ
ZDD f : σ

σ ∈ Ξ(x)

Γ ,Ξ
ZDD x : σ

Γ ,Ξ
ZDD t1 : σ1 Γ,Ξ
ZDD t2 : σ2 n = arity(t1)

Γ,Ξ
ZDD t1 t2 :

⎧⎨
⎩ {q} ∪Θ′

∣∣∣∣∣∣
(q, Θ) ∈ σ1

Θ(n) ⊆ enum(σ2, arity(t2))
Θ′ = Θ \ { (n, θ) | θ ∈ Θ(n) }

⎫⎬
⎭

Lemma 3. Let Ξ0 = { x : ∅ | x ∈ dom(X) }, and Ξ(ω) =
⋃

n∈ω(HΓ)
n(Ξ0), and

x ∈ dom(X). ∀t ∈ Flowap(x).∃σ ∈ Ξ(ω). Γ
ZDD t : σ, and ∀σ ∈ Ξ(ω)(x). ∃t ∈
Flowap(x). Γ
ZDD t : σ.

Because the number of all intersection types are finite, we can compute Ξ(ω)

and use it to compute FG(Γ).

3.4 Fixed-Parameter Linear Time Algorithm

We now discuss how to compute
⋃

i∈ω(F
i

G(∅)) (recall Theorem 2) in time
linear in the size of HORS, under the assumption that (i) the largest or-
der and size of types in HORS and (ii) the property automaton A are fixed.
This fixed-parameter assumption is the same as the assumption made in

the literature [9,10,8,3,21]. The naive fixed computation of
⋃

i∈ω(F
i

G(∅)) and⋃
n∈ω(HΓ)

n(Ξ0) is polynomial time, but not linear: both the number of itera-

tions to compute FG(Γ) and the cost for each iteration are linear in the size of
HORS even if we assume

⋃
n∈ω(HΓ)

n(Ξ0) can be computed in linear time. We
can, however, use the standard technique for optimizing a fixed-point computa-
tion over a finite semi-lattice [22], as follows.

We compute the following information incrementally.

– For each non-terminal F , Γ (F).
– For each sub-term t of the right-hand side of a rule, τt such that Γ
ZDD t : τt

(for the current value of Γ and typesof).
– For each node v of the sub-transitive flow graph (V,E, ξ, ρ), the set Uv of

(ZDD) intersection types that may be taken by the term ξ(v). (Without loss
of generality, we assume here that for each subterm t of the right-hand side
of a rule, there is a node v such that ξ(v) = t.)

The values Γ (F), τt and Uv are updated in an on-demand manner when other
values have been updated.

– Γ (F) is recomputed and updated as necessary, when τt for the body t of F’s
rule or Uv such that ρ(xi) = v (where xi is a formal parameter of F) has
been updated,

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 365

– τx is recomputed and updated as necessary, when Uv such that ρ(x) = v has
been updated.

– τa is updated only initially.
– τF is recomputed and updated as necessary, when Γ (F) has been updated.
– τt1t2 is recomputed and updated as necessary, when τt1 or τt2 has been

updated.
– Uv is recomputed and updated as necessary, when (i) Uv′ such that (v, v′) ∈

E has been updated, (ii) ξ(v) = F and τF has been updated, or (iii) ξ(v) =
t1t2 and Uv′ such that ξ(v′) ∈ { t1, t2 } has been updated.

Since each update monotonically increases the values of Γ (F), τt, and Uv (which
range over finite sets), the termination is guaranteed. Under the fixed-parameter
assumption, the size of the sets ranged over by Γ (F), τt, and Uv is bounded
above by a constant. Thus, each recomputation and update can be performed in
a constant time. The number of recomputations is linearly bounded by the size
of HORS and the size of the subtransitive flow graph, where the latter is linear
in the size of HORS. Thus, the whole algorithm runs in time linear in the size
of HORS under the fixed-parameter assumption.

Example 6. Recall G0 in Example 1 and A0 in Example 2. After saturation, Uv

and Γ are

Uρ(x) = { { q0 } , { q1 } }
Uρ(g) = { { q0 → q1, q1 → q0 } , { q0 → q0, q1 → q1 } }
Γ (T) = {(q0 → q1) ∧ (q1 → q0)→ q0 → q0, (q0 → q1) ∧ (q1 → q0)→ q1 → q1,

(q0 → q0)→ q0 → q0, (q1 → q1)→ q1 → q1}
Γ (F) = { (q1 → q1)→ q1 } Γ (S) = { q1 }

For readability, we wrote types in the non-ZDD notation.

4 Experiments

4.1 Data Sets and Evaluation Environment

We have implemented our ZDD-based algorithm in the tool namedHorSatZDD,
evaluated its performance by existing problem instances, and compared the results
with the two state-of-the-art previous higher-order model checkers: HorSat [3]
and Preface [21].

The problem instances used in the benchmark are classified into three cat-
egories. The first one consists of two families of HORS, Gm,n [8] and tn [21].
They are parametrized by m,n and have been used to evaluate the scalability
of Preface [21]. The second one consists of instances automatically generated by
program verification tools such as the HMTT verification tool [13], MoCHi [12],
PMRS model checker [20], and exact control flow analysis [24]. They have also
been used in the benchmarks for HorSat [3] and Preface [21]. The third one
consists of new instances added to clarify the advantages of the new algorithm.
They are also parametrized by a size parameter.

366 T. Terao and N. Kobayashi

We conducted the experiments on a computer with 2.3GHz Intel Core i7
CPU, 16GB RAM and OSX 10.9.3 operating system. HorSatZDD is written
in Haskell, and compiled with GHC 7.8.2. HorSat was compiled with ocamlopt
version 4.01.0, and Preface was run on Mono JIT compiler version 3.2.4.

4.2 Experimental Results

Figure 1 and Table 1 show the results of our experiments. In each table, columns
D, S, O, and Q represent the expected decision (Y means Yes, N means No),
the size of HORS (the number of occurrences of symbols in the righthand side of
the rewriting rules), the order of HORS, and the number of states of automaton
respectively, and the other columns represent the running time of each model
checker measured in seconds.

For the instances Gm,n HorSatZDD scaled almost linearly with respect to
the grammar size n. HorSatZDD scaled better than the other model checkers
with respect to the grammar order m, although the running time was exponential
in the grammar order due to the explosion of the sub-transitive flow graph. For
the tn instances Preface did not scale well (as reported in [21]), while both
HorSatZDD and HorSat scaled well.

HorSatZDD processed all instances in the category 2 within the time limit.
HorSatZDD ran in ten seconds for most test cases in the category 2, but Hor-

SatZDD is significantly slower than the other model checkers for the instances
xhtmlf-div-2, xhtmlf-m-church, jwig-cal main, and cfa-life2. Except for cfa-life2,
this is attributed to the size of the property automaton, which blows up the size
of each ZDD. This suggests that further optimization of ZDD implementation
is required. As for cfa-life2, the majority of the running time of HorSatZDD

was for the computation of the sub-transitive flow graph. This suggests that a
further optimization may be necessary on the construction of sub-transitive flow
graphs.

Category 3 consists of two families of problem instances: ae3-n and abc-lenn.
The family ae3-n has been manually constructed to clarify the advantage of
using ZDD to represent (a set of) intersection types. It consists of the following
grammar:

S → br (F a1 e1 · · · a1 e1︸ ︷︷ ︸
n repetitions of a1 e1

) (F a2 e2 · · · a2 e2) (F a3 e3 · · · a3 e3)

F f1 x1 · · · fn xn → f1(x1(· · · (fn(xnend)) · · ·))

Here, the types of constants are:

ai : qi → q0,
ei : q0 → qi ∧

∧
{# → qj | j ∈ { 1, 2, 3} \ { i } }

br : (q0 → #→ #q0) ∧ (# → q0 → #→ q0) ∧ (# → #→ q0 → q0), end : q1 ∧ q2

(The point is that the composition of ai and ei has type q0 → q0 for every
i.) HorSat uses the naive representation of intersection types and enumerates

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 367

 0

 20

 40

 60

 80

 100

 120

 0 500 1000 1500 2000 2500 3000 3500

R
un

ni
ng

 T
im

e
(s

ec
)

The Parameter n

HorsatZDD
Horsat

Preface

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 3 4 5 6 7 8 9

R
un

ni
ng

 T
im

e
(s

ec
)

The Parameter m

HorsatZDD
Horsat

Preface

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

R
un

ni
ng

 T
im

e
(s

ec
)

The Parameter n

HorsatZDD
Horsat

Preface

Fig. 1. Category 1: Benchmarks of G4,n (top), Gm.100 (middle), and tn (bottom)

368 T. Terao and N. Kobayashi

Table 1. Benchmarks of categories 2 (top) and 3 (bottom)

inputs D S O Q ZDD HorSat Preface

checknz Y 93 2 1 0.020 0.003 0.318
merge4-2 N 141 2 27 0.998 0.028 0.369
merge4 Y 141 2 27 0.906 0.031 0.519
gapid-2 Y 182 3 9 0.431 0.027 0.545
last Y 193 2 1 0.053 0.014 0.326
checkpairs N 251 2 1 0.055 0.018 0.379
tails Y 259 3 1 0.063 0.021 0.331
map-plusone Y 302 5 2 0.165 0.035 0.457
safe-head Y 354 3 1 0.108 0.030 0.409
mc91-2 Y 358 4 1 0.222 0.060 1.934
map-head-filter N 370 3 1 0.112 0.076 0.410
mkgroundterm Y 379 2 1 0.103 0.042 0.347
safe-tail Y 468 3 1 0.171 0.039 0.445
filter-nonzero N 484 5 1 0.288 0.064 0.655
risers Y 563 2 1 0.154 0.047 0.457
safe-init Y 680 3 1 0.284 0.064 0.481
search-e-church N 837 6 2 6.065 0.297 4.601
map-head-filter-1 Y 880 3 1 0.475 0.133 0.467
filter-nonzero-1 N 890 5 2 0.887 0.159 2.357
fold right Y 1310 5 2 3.647 21.646 0.370
fold fun list Y 1346 7 2 1.421 0.161 0.364
cfa-psdes Y 1819 7 2 2.796 0.128 0.417
specialize cps coerce1-c Y 2731 3 4 1.606 1.176 0.505
cfa-matrix-1 Y 2944 8 2 4.030 0.307 0.484
zip Y 2952 4 2 10.425 2.276 0.916
xhtmlf-div-2 N 3003 2 50 105.414 7.846 2.024
xhtmlf-m-church Y 3027 2 50 56.187 5.808 1.134
filepath Y 5956 2 1 0.693 0.396 0.665
jwig-cal main Y 7627 2 51 73.940 7.852 0.702
cfa-life2 Y 7648 14 2 35.978 1.849 1.15

ae3-6 Y 53 2 4 0.123 0.077 0..380
ae3-8 Y 69 2 4 0.201 4.748 0.320
ae3-10 Y 85 2 4 0.312 DNF 0.309
abc-len6 Y 70 3 1 0.012 0.002 0.372
abc-len8 Y 92 3 1 0.016 0.003 1.056
abc-len10 Y 114 3 1 0.023 0.003 9.597
abc-len12 Y 136 3 1 0.029 0.004 107.766
abc-len14 Y 158 3 1 0.037 0.004 DNF

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 369

all the types of the form: (qi1 → q0) → (q0 → qi1) → · · · (qin−1 → q0) →
(q0 → qin−1) → (qin → q0) → (# → qin) → q0 (among others) for F . Since
the number of those intersection types is exponential in n, HorSat shows an
exponential behavior. HorSatZDD does not suffer from the problem, since
the above set of intersection types can be represented compactly. Preface works
well for a different reason: it keeps binding information for all the parameters of
each non-terminal together, so that it can utilize information that f1, . . . , fn and
x1, . . . , xn are respectively bound to the same value for each application of F .
Thus, it enumerates only types of the form: (qi → q0) → (q0 → qi) → · · · (qi →
q0)→ (q0 → qi)→ q0. While Preface is effective for ae3-n, the use of the precise
flow information causes a problem for the other instance abc-lenn. It consists of
the following rules:

S → F0 G.
Gf1 · · · fn → f1(· · · (fne) · · ·).
Fi f → br (Fi+1(f a)) (Fi+1(f b)) (Fi+1(f c)). (for i = 0, . . . , n− 1)
Fn f → f.

Preface generates the bindings { f1 �→ x1, . . . , fn �→ xn } for all x1, . . . , xn ∈
{ a, b, c}. Thus, Preface suffers from the exponential blow up of the size of the
abstract configuration graph with respect to n. The results in Table 1 confirms
the observation above. Although these examples have been artificially created,
we expect that the same problems can occur in HORS generated mechanically
from program verification problems.

5 Related Work

The complexity of higher-order model checking is known to be k-EXPTIME
complete for order-k HORS, even when the properties are restricted to safety
properties (as in the present paper) [19,11]. Until recently, the main issue has
been how to cope with this hyper-exponential worst-case complexity and con-
struct a practical algorithm that works well for typical inputs. Kobayashi [7,9]
first developed such an algorithm. Since then, a number of other practical algo-
rithms have been developed [8,18,2]. The recent development of HorSat and
Preface significantly improved the scalability of higher-order model checking,
and shifted the focus from how to cope with hyper-exponential complexity to
how to achieve (almost) linear-time complexity to deal with thousands of lines of
HORS. As already mentioned in Section 1, neither HorSat nor Preface has fully
achieved it; both HorSat and Preface are fixed-parameter polynomial time al-
gorithms (with the same fixed-parameter assumption), but HorSat suffers from
cubic bottleneck of 0CFA, and Preface runs in time exponential in the largest
arity of non-terminals (in other words, the order of polynomials is the largest
arity): recall abc-lenn in Section 4. The first practical linear-time algorithm is
actually due to Kobayashi [8], but because of a large constant factor, it is often
slower than other algorithms such as HorSat, and Preface.

370 T. Terao and N. Kobayashi

All the algorithms mentioned above are for trivial automata model checking.
For more general, modal μ-calculus (or parity tree automata) model checking
of HORS (as originally considered in [6] and [19]) some practical algorithms
have also been developed [15,4]. The state-of-the-art for the modal μ-calculus
mode checking for HORS is, however, much behind that for trivial automata
model checking. In theory, the problem still remains fixed-parameter polynomial
time [10], but not linear.

Higher-order model checkers have been used as backends of various auto-
mated verification tools for higher-order programs [9,12,13,20,24,14]. The HORS
obtained in those verification tools are typically several times larger than the
source programs. Being able to handle thousands of lines of HORS is, therefore,
important for enabling those tools to verify large programs.

6 Conclusion

We have proposed a new saturation-based, fixed-parameter linear time algo-
rithm for higher-order model checking and shown its effectiveness through exper-
iments. Although it is built on Broadbent and Kobayashi’s previous algorithm,
we have made two important modifications that use sub-transitive flow analy-
sis and ZDD-based representation of (a set of) intersection types. As for future
work, the implementation should be improved further, as the current implemen-
tation does not exhibit the exact (fixed-parameter) linear time complexity. The
use of more accurate flow information (like the one used in Preface) would im-
prove the efficiency further, and achieving it without losing the fixed-parameter
linear time complexity is also left for future work.

Acknowledgments. We would like to thank Steven Ramsay for providing the
source code of Preface, and anonymous reviewers for useful comments. This work
was supported by JSPS KAKENHI 23220001.

References

1. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science 3(3) (2007)

2. Broadbent, C.H., Carayol, A., Hague, M., Serre, O.: C-SHORe: A collapsible ap-
proach to higher-order verification. In: Proceedings of ICFP 2013, pp. 13–24 (2013)

3. Broadbent, C.H., Kobayashi, N.: Saturation-based model checking of higher-order
recursion schemes. In: Proceedings of CSL 2013. LIPIcs, vol. 23, pp. 129–148 (2013)

4. Fujima, K., Ito, S., Kobayashi, N.: Practical alternating parity tree automata model
checking of higher-order recursion schemes. In: Shan, C.-C. (ed.) APLAS 2013.
LNCS, vol. 8301, pp. 17–32. Springer, Heidelberg (2013)

5. Heintze, N., McAllester, D.A.: Linear-time subtransitive control flow analysis. In:
Proceedings of PLDI 1997, pp. 261–272 (1997)

6. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy.
In: Nielsen, M., Engberg, U. (eds.) Fossacs 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)

A ZDD-Based Efficient Higher-Order Model Checking Algorithm 371

7. Kobayashi, N.: Model-checking higher-order functions. In: Proceedings of PPDP
2009, pp. 25–36. ACM Press (2009)

8. Kobayashi, N.: A practical linear time algorithm for trivial automata model check-
ing of higher-order recursion schemes. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 260–274. Springer, Heidelberg (2011)

9. Kobayashi, N.: Model checking higher-order programs. Journal of the ACM 60(3)
(2013)

10. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In: Proceedings of LICS 2009,
pp. 179–188. IEEE Computer Society Press (2009)

11. Kobayashi, N., Ong, C.-H.L.: Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. Logical Methods in Computer Science 7(4)
(2011)

12. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proceedings of PLDI 2011, pp. 222–233. ACM Press
(2011)

13. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree trans-
ducers and recursion schemes for program verification. In: Proceedings of POPL
2010, pp. 495–508. ACM Press (2010)

14. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination veri-
fication for higher-order functional programs. In: Shao, Z. (ed.) ESOP 2014. LNCS,
vol. 8410, pp. 392–411. Springer, Heidelberg (2014)

15. Lester, M.M., Neatherway, R.P., Ong, C.-H.L., Ramsay, S.J.: Model checking live-
ness properties of higher-order functional programs. In: Proceedings of ML Work-
shop 2011 (2011)

16. Midtgaard, J., Horn, D.V.: Subcubic control flow analysis algorithms. Higher-Order
and Symbolic Computation

17. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems.
In: Proceedings of DAC 1993, pp. 272–277 (1993)

18. Neatherway, R.P., Ramsay, S.J., Ong, C.-H.L.: A traversal-based algorithm for
higher-order model checking. In: ACM SIGPLAN International Conference on
Functional Programming (ICFP 2012), pp. 353–364 (2012)

19. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: Proceedings of LICS 2006, pp. 81–90. IEEE Computer Society Press
(2006)

20. Ong, C.-H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL 2011, pp. 587–598. ACM Press
(2011)

21. Ramsay, S., Neatherway, R., Ong, C.-H.L.: An abstraction refinement approach to
higher-order model checking. In: Proceedings of POPL 2014 (2014)

22. Rehof, J., Mogensen, T.: Tractable constraints in finite semilattices. Science of
Computer Programming 35(2), 191–221 (1999)

23. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie-Mellon University (May 1991)

24. Tobita, Y., Tsukada, T., Kobayashi, N.: Exact flow analysis by higher-order model
checking. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294,
pp. 275–289. Springer, Heidelberg (2012)

Inferring Grammatical Summaries

of String Values

Se-Won Kim, Wooyoung Chin,
Jimin Park, Jeongmin Kim, and Sukyoung Ryu

Department of Computer Science, KAIST, Daejeon, South Korea

Abstract. We present a new kind of static analysis that infers gram-
matical summaries of string values. We are given a context-free grammar
and a program which contains string expressions whose values should be
partial sentences of the grammar. A grammatical summary of an expres-
sion is a vocabulary string of the grammar that derives all the possi-
ble string values of the expression. Our analysis automatically finds out
such grammatical summaries. We design the analysis using abstract in-
terpretation framework making it pluggable into conventional data-flow
analysis frameworks.

In addition to the theoretical foundation of the analysis, we present how
we make the analysis computable and tractable. While inferring grammat-
ical summaries of a string expression often results in an infinite number of
summaries, wemake the inference computable by using aCFL-reachability
algorithm and finite state automata representation. Additionally, wemake
the analysismore tractable by several optimization techniques such as keep-
ing only relevant summaries and using two-level grammars. These tech-
niques achieve huge speedup in our experiments.

1 Introduction

Many programs manipulate string values to produce semi-structured data, doc-
uments, or programs according to their reference grammars, usually context-free
grammars (CFGs). Web applications often use strings to generate HTML doc-
uments or SQL queries specified by their corresponding grammars. Scripting
languages including JavaScript often produce program expressions or fragments
of HTML documents as string values, and evaluate or render them on the fly.
This programming style is widespread especially in web applications on various
platforms such as web browsers, smart TVs, and mobile devices.

Figure 1 shows a typical code fragment of such programs. It generates an
HTML table using string values. The loop condition ‘?’ denotes an unknown
condition. The outer loop constructs a sequence of tr elements and the inner
loop constructs children td elements for each tr element using string values. At
the end of the code, they complete a table element by concatenating the string
value with <table> and </table>. Server-side programs that show tables from
databases or client-side programs that construct game boards may have similar
pattern.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 372–391, 2014.

� Springer International Publishing Switzerland 2014

Inferring Grammatical Summaries of String Values 373

1 x = "";

2 while (?) {

3 x = x . "<tr>";

4 while (?)

5 x = x . "<td>a</td>";

6 x = x . "</tr>";

7 }

8 y = "<table>" . x . "</table>";

Fig. 1. An example code generating an
HTML table

⟨TABLE⟩ ∶∶= <table>⟨TRS⟩</table>
⟨TRS⟩ ∶∶= ε | ⟨TRS⟩⟨TR⟩
⟨TR⟩ ∶∶= <tr>⟨TDS⟩</tr>
⟨TDS⟩ ∶∶= ε | ⟨TDS⟩⟨TD⟩
⟨TD⟩ ∶∶= <td>a</td>

Fig. 2. An example context-free gram-
mar of an HTML table

While developing such code fragments, programmers often conceptually have
grammatical invariant conditions on string values. Figure 2 describes a part of the
CFG specification of HTML documents, which we have simplified for exposition.
Let us present some invariant conditions and their help in reasoning.

– Before evaluating line 3 in Figure 1, the value of x can be derived from
⟨TRS⟩. Observe that ⟨TR⟩ can appear after ⟨TRS⟩ in the second rule of
Figure 2. This allows a programmer to append <tr>, which is a prefix string
of ⟨TR⟩.

– Before evaluating line 5, the value of x can be derived from ⟨TRS⟩<tr>⟨TDS⟩.
So, one can append <td>a</td> which corresponds to ⟨TD⟩. After the con-
catenation, we know from the fourth rule of Figure 2 that the value can be
derived again from ⟨TRS⟩<tr>⟨TDS⟩.

– Finally, the value of x before evaluating line 8 can also be derived from
⟨TRS⟩. Thus, we can prepend <table> and append </table> based on the
first rule of Figure 2, and obtain a string value derivable from ⟨TABLE⟩.

Based on such reasoning, programmers can write codes that generate grammat-
ically correct partial documents.

Let us call such invariant conditions grammatical summaries or summaries in
short. They are grammatical because we denote such invariant conditions with
sequences of terminal and non-terminal symbols of the reference CFG. We call
them summaries because the non-terminals in summaries effectively abridges
corresponding substrings. In the grammatical summary ⟨TRS⟩<tr>⟨TDS⟩ before
line 5, ⟨TRS⟩ and ⟨TDS⟩ correspond to the substrings constructed via the outer
loop and inner loop, respectively.

In this paper, we present a useful unprecedented static analysis that infers
such grammatical summaries. Existing string analyses [11,14,6,10,15] mainly
check whether string expressions of their interest always produce valid com-
plete sentences of the reference grammar. On the other hand, our analysis infers
grammatical summaries of any string expressions that produce valid partial sen-
tences. For example, to the best of our knowledge, no existing string analysis
can automatically find out the summary ⟨TRS⟩<tr>⟨TDS⟩ for x before line 5,
which corresponds to strictly partial sentences. The benefits of the analysis are,

374 S.-W. Kim et al.

(1) inferred summaries can help understand the logics of non-trivial string con-
structions, and (2) the analysis can verify and sum up the behavior of functions
or code blocks that construct correct partial sentences.

The design of our analysis is generic in two aspects. First, the analysis is an
abstract interpretation of string values and string operations. Therefore, other
people can integrate our analysis seamlessly into their data-flow analysis frame-
works. Second, our analysis can deal with any CFGs unlike existing string anal-
yses that can handle only specific families of CFGs or push-down automata.

In the rest of this paper, we show how we design, implement, and engineer a
static analysis for inferring grammatical summaries.

– We rigorously design the analysis within the abstract interpretation frame-
work [3,4,5] (Section 3).

– Since our mathematical design often results in an infinite number of sum-
maries, we present how to make the analysis computable by using finite state
automata representation and CFL-reachability algorithms (Section 4).

– To enhance usability of the analysis and reduce grammatical biases, we allow
the analysis to use extended CFGs, the right-hand sides of whose production
rules are regular expressions (Section 5).

– Then, we develop several optimization techniques to make the analysis pro-
vide tractable performance (Section 6).

Finally, we show experimental results of our analysis (Section 7), discuss related
work (Section 8), and conclude (Section 9).

2 Preliminaries

We present notations for CFGs and finite state automata in this section.

2.1 Context-Free Grammar

Definition 1 (context-free grammar). A CFG is a quadruple G=(N ,T ,P ,S).
N denotes a finite set of non-terminals, T a non-empty finite set of terminals,
P ⊆ N × (N ∪ T)∗ a finite set of production rules, and S ∈ N the initial non-
terminal.

Let V denote the set of vocabulary symbols N ∪ T where N ∩ T = ∅. We use
A,B,C for non-terminals and u, v,w for vocabulary strings. We write a produc-
tion rule (A,u) ∈ P as A→ u ∈ P .

Definition 2 (one-step derivation). For uAw ∈ V∗, if A→ v ∈ P, we have:

uAw ⇒ uvw.

Definition 3 (derivation relation). The derivation relation on vocabulary
strings, which is the reflexive and transitive closure of ⇒, is denoted by ⇒∗. If
u⇒∗ v, we say u derives to v.

Inferring Grammatical Summaries of String Values 375

Definition 4 (language of G). Given a CFG G = (N ,T ,P ,S), the language
of the grammar L(G) is:

L(G) = {w ∈ T ∗ ∣ S ⇒∗ w}.

We generalize the definition for the language of a vocabulary string u ∈ V∗:

L(u) = {w ∈ T ∗ ∣ u⇒∗ w}.

So, we have L(G) = L(S).

2.2 Finite State Automaton

Definition 5 (finite state automaton). A finite state automaton (henceforth,
FSA) is a quintuple A = (Σ,I, δ, σ,F). Σ denotes a finite set of states, I a finite
set of input symbols, δ ⊆ Σ × ({ε} ∪ I) × Σ a transition relation, σ the initial
state, and F ⊆ Σ a set of accepting states.

We write a transition (σ1, i, σ2) ∈ δ as σ1
i
↦ σ2 ∈ δ.

3 Grammatical Summary Inference

For our grammatical summary analysis, we are given a reference CFG G =
(N ,T ,P ,S) and use vocabulary strings of G as abstractions of string values.

3.1 Galois Connection

First, we describe the relation between string values and grammatical summaries.
The target of abstraction is a subset of T ∗ since a string expression can have
multiple string values during program executions. A vocabulary string u ∈ V∗

is a summary of S ⊆ T ∗ if u derives to each v ∈ S. Note the following two
characteristics of grammatical summaries:

– A set S ⊆ T ∗ may have multiple grammatical summaries.
– If S1 ⊆ S2 ⊆ T ∗, the set of summaries of S2 is a subset of that of S1.

Therefore, we choose the abstract domain as (℘(V∗),⊇), and obtain the following
Galois connection:

Theorem 1. (℘(T ∗),⊆) −−−−→←−−−−
α

γ
(℘(V∗),⊇) holds where:

α(S) = {u ∈ V∗ ∣ ∀v ∈ S. u⇒∗ v} = {u ∈ V∗ ∣ S ⊆ L(u)}, and

γ(U) = {v ∈ T ∗ ∣ ∀u ∈ U. u⇒∗ v} = ⋂
u∈U

L(u).

Notice that the order of the abstract domain is opposite to that of the concrete
domain. We denote ⊇, ∩, ∪, V∗ and ∅ in the abstract domain by ⊑, ⊔, ⊓, �
and ⊺, respectively. This notation reduces the confusion with the operations and
elements in the concrete and abstract domains and makes the adjoint functions
monotone.

We introduce the upperset operator “↑” to partially reduce abstract values.

376 S.-W. Kim et al.

Definition 6 (upperset). For U ⊆ V∗, the upperset of U according to the
grammar derivation relation, denoted by U↑, is {v ∈ V∗ ∣ ∃u ∈ U. v ⇒∗ u}.

We use the notation “↑” since it adds all the upwardly reachable elements from
U regarding the derivation relation as a pre-order. This operator is monotone,
idempotent and reductive. Particularly, although U↑ ⊑ U , γ(U↑) = γ(U) holds.
The additional vocabulary strings in U↑ do not increase the precision of the
concretization because their languages are always supersets of those of some
vocabulary strings in U . Also note that the upperset operator is not equivalent
to the lower closure operator, and it only partially reduces an abstract value
towards its lower closure. This operator is crucial for the design and precision of
our analysis. It also has an interesting algorithmic counterpart as you will see in
Section 4.

3.2 Abstract Operations

Abstraction of String Literals. We abstract string literal expressions in programs
using the upperset operator. The set of possible string values of a string literal
expression v ∈ T ∗ is {v}. Thus, we abstract {v} for the string literal:

α({v}) = {u ∈ V∗ ∣ ∀v′ ∈ {v}. u⇒∗ v′}

= {u ∈ V∗ ∣ ∃v′ ∈ {v}. u⇒∗ v′} = {v}↑,

which means the set of all vocabulary strings that can derive v.

Join and Order. The join operation and order checking correspond to the set
intersection operation and inclusion checking, respectively, since the order is
simply the superset relation on sets. The following properties can be used to
avoid some upperset operations.

Fact 1. For U1, U2 ⊆ V∗,

– U1↑ ⊔U2↑ is also an upperset.
– U1↑ ⊑ U2↑ if and only if U1↑ ⊑ U2.

Concatenation. String concatenation is one of the most frequent operations in
programs of our interest. For U1, U2 ∈ ℘(V∗), our abstract concatenation opera-
tion ‘⊙’ is:

U1 ⊙U2 =
⎧⎪⎪
⎨
⎪⎪⎩

(U1 ⋅U2)↑ if U1 ≠ � ∧U2 ≠ �
� otherwise

(1)

where ‘⋅’ denotes the collection of pairwise concatenations of two vocabulary
strings from each set.

Lemma 1. The operation ‘⊙’ is monotone and a sound abstraction of the con-
crete concatenation ‘⋅’ on (℘(T ∗),⊆). The soundness is,

∀U1, U2 ∈ ℘(V
∗), γ(U1) ⋅ γ(U2) ⊆ γ(U1 ⊙U2).

Inferring Grammatical Summaries of String Values 377

3.3 Remarks on Inferring Grammatical Summaries

Our analysis is general in two aspects:

– Our analysis can also verify string expressions whose string values should be
complete sentences using the special summary S. Assume that, for S ⊆ T ∗,
α(S) ⊑ U which means that U is a set of summaries of S. Then, for u ∈ U ,
we have S ⊆ L(u) from S ⊆ γ(U) ⊆ L(u). When S ∈ U , we can guarantee
that all the strings in S are valid sentences of G.

– Our analysis can accept any CFGs regardless of whether they are ambigu-
ous or non-deterministic. It is often delicate to rewrite a grammar to make
it unambiguous, deterministic or LR(k). It is particularly difficult when the
grammar specification is at character level instead of lexical token level. On
the other hand, in our analysis we can specify reference grammars at charac-
ter level without such concerns. Character-level grammars are particularly
useful when we have to deal with strings with partial tokens.

Our analysis does not have precision changes with minor changes in programs:

– Splitting a long string literal into several concatenated string literals and
vice versa do not affect the analysis precision. Because, for any u1, u2 ∈ T ∗,
α({u1}) ⊙ α({u2}) = α({u1} ⋅ {u2}).

– Since our concatenation operation is associative, changing the order of con-
catenations does not affect the analysis precision.

4 Finite Representation and Algorithm

In this section, we describe how we achieve a computable analysis from the math-
ematical design of our summary inference analysis described in Section 3. We
first point out the problem of an infinite number of summaries, and we rem-
edy the problem by using FSAs whose alphabets are V , and a CFL-reachability
closure algorithm for computing uppersets.

4.1 Problem of an Infinite Number of Summaries

The analysis described in Section 3 often leads to an infinite number of sum-
maries when the reference grammar has epsilon production rules. Assume the
reference grammar has a production rule, A → ε. Then, for any non-empty
U ⊆ V∗, U↑ is infinite because for u ∈ U , U↑ also should contain uA, uAA,
uAAA, and so on.

While transforming the grammar with the epsilon elimination algorithm may
be a possible solution to the problem, it may result in undesirable precision loss
for frequent patterns of string constructions. Consider the program in Figure 1
again. Using the grammar in Figure 2 our analysis infers ⟨TRS⟩ as a summary
of x before line 3. This is possible since ⟨TRS⟩ is a summary of the empty string.
However, if we apply epsilon elimination to the grammar, ⟨TRS⟩ cannot derive
the empty string and is no loner a summary of x before line 3. Since such string
constructions are frequent, we should find a way to use the grammar with epsilon
production rules as it is.

378 S.-W. Kim et al.

Algorithm 1. CFL-reachability closure of an FSA using G = (N ,T ,P ,S)
input : A = (Σ,V, δ, σ,F)
output: ClosG(A)
δ′ := δ
repeat

foreach (σ0, σn ∈ Σ,A → u1⋯un ∈ P) do

if ∃σ1, . . . , σn−1. ∀i ∈ {0, . . . , n − 1}. σi
ui+1
↦ σi+1 ∈ δ

′ then

δ′ := δ′ ∪ {σ0
A
↦ σn}

end

end

until δ′ has not changed
return (Σ,V, δ′, σ,F)

4.2 FSA Representation and CFL Reachability

To remedy the problem, we choose to focus on regular sets in the abstract domain
and use FSAs to represent abstract values. FSAs are convenient finite represen-
tation for regular sets which include some infinite sets. The downside of this
decision is that we cannot make use of the entire abstract domain (℘(V∗),⊑).
However, this compromise is essential to any finite representation for the ab-
stract domain since the domain is uncountable. From now on, we allow FSAs or
regular expressions to denote abstract values.

As a side note, more powerful representations do not help our analysis much.
In fact, the abstractions of string literals, the results of join and abstract con-
catenation of regular sets are all regular. The regularity of an abstract value
itself does not mean that it cannot express context-free properties. For example,
an FSA representing {S} asserts that its corresponding set of string values are
sentences of the CFG. Our usage of V for input symbols of FSAs is crucial for
the expressive power and distinguishes our work from other string analyses us-
ing FSAs [22,25,24]. On the other hand, if we use more powerful representations
like push-down automata, the operations including order decision will become
expensive or even undecidable.

We can compute the upperset of a regular set by a CFL-reachability algo-
rithm [16,19,13,20] on the FSA. Algorithm 1 shows how to compute the CFL-
reachability closure of an FSA A using G, which we denote by ClosG(A). Es-
sentially, the algorithm repeatedly finds out paths in the FSA corresponding to
right-hand sides of production rules, and adds shortcut non-terminal edges. More
specifically, for some A → v ∈ P and a path from σ0 to σn labeled with v, we add
an edge from σ0 to σn labeled with A. Note that the length of a path can be 0, in
which case the path label is ε. The following Theorem 2 shows the equivalence of
our CFL-reachability algorithm on FSAs and the upperset operation on regular
sets.

Theorem 2. For FSA A = (Σ,V , δ, σ,F) and U ⊆ V∗,

if L(A) = U then L(ClosG(A)) = U↑.

Inferring Grammatical Summaries of String Values 379

Proof. We prove the following bidirectional inclusion relations:

– Case L(ClosG(A)) ⊆ U↑:
Let Ai be the automaton after adding i shortcut edges to A. We prove
∀i ∈ N. L(Ai) ⊆ U↑ by induction. For i = 0, from A0 = A and the assumption,
we have L(A0) = U ⊆ U↑. For i = j + 1, assume L(Aj) ⊆ U↑. Ai may have

one additional transition σ0
A
↦ σn for some production rule A → u ∈ P and

some path from σ0 to σn labeled by u in Aj . For v ∈ Ai, Ai may use the new
transition to accept it. So, we have v = v1Av2A⋯vn and v′ = v1uv2u⋯vn ∈
L(Aj). From v′ ∈ U↑ and the property of the upperset, we have v ∈ U↑.
Therefore, L(Ai) ⊆ U↑ holds. Finally, since ClosG(A) is An for some n, we
have L(ClosG(A)) ⊆ U↑.

– Case L(ClosG(A)) ⊇ U↑:
Let u ∈ U↑. There exists some v ∈ U such that u ⇒∗ v. From L(A) =
U , we can find a path in A that accepts v. If we draw all the additional
transitions of ClosG(A) on the path, we find a path that represents u. Thus,
u ∈ L(ClosG(A)). Therefore, L(ClosG(A)) ⊇ U↑. ⊓⊔

4.3 Abstract Operations with FSA Representation

Now, we can perform the required operations in Section 3.2 using basic FSA
operations and ClosG .

Abstraction of String Literals For a string literal v, we construct a linear au-
tomaton A that accepts only v and apply ClosG on A.

Join and Order We use the intersection of FSAs for join and the FSA language
inclusion checking for order decision.

Concatenation To compute Equation (1), we first concatenate two operand
FSAs, and apply ClosG on the concatenated FSA.

Widening In addition to the usual operations, we require a widening operator to
guarantee termination. Because the height of the domain (℘(V∗),⊑) restricted
to regular sets is infinite, analyzing a loop may not converge in a finite number
of iterations. Consider the following program with production rules A → a and
B → b ∣ ε:

x = "a";

while (?) x = x . "b";

output x;

At the start of the loop body, the abstract value of x is B∗(a∣A)B∗(b∣B)nB∗

after n ≥ 0 iterations, which makes the analysis diverge.
We present a simple widening operator as an example.

Definition 7. For A1 and A2, we let A1∇A2 ≜ A′1 ⊔ A2 where A′1 is obtained
by eliminating all edges of A1 that are in any cyclic paths.

380 S.-W. Kim et al.

Lemma 2. ∇ is a widening operator for regular sets in (℘(V∗),⊑).

Proof. Since A1 ⊑ A′1, A1 ⊔A2 ⊑ A1∇A2 holds. As A′1 does not have any cyclic
paths, L(A′1) is finite. Therefore, by accumulating values to A′1 using ∇, the
value cannot increase infinitely many times in the abstract domain. ⊓⊔

One can define more advanced widening operators as well.

5 Extended CFG

To make it easy to specify grammars and to reduce grammatical biases, we
extend the analysis to use extended CFGs (ECFGs). An ECFG G is composed
of (N ,T ,P ,S) where P is a function from N to regular expressions over V .
Using ECFGs has the following benefits:

– Regular expressions on the right-hand sides of production rules help specify
reference grammars succinctly. For example, the HTML DTD uses regular
expressions to specify possible children nodes, and scannerless grammars use
regular expressions to describe lexical tokens. If we use an ordinary CFG for
such cases, the grammar becomes verbose and error prone.

– The Kleene closure in ECFGs removes some biases that could have existed
in ordinary CFG specifications. To describe a sequence of non-terminals,
CFGs may have production rules that generate sequences in either a right-
or left-recursive way. This bias makes the analysis fail on programs that
construct sequences in the opposite way. On the contrary, by using the Kleene
closure, we can describe sequences concisely without biases and obtain better
precision for either way of construction.

5.1 CFL-Reachability Algorithm Using ECFGs

We compute the CFL reachability closure of an FSA using an ECFG G =
(N ,T ,P ,S) by EClosG , whose näıve implementation is shown in Algorithm 2.
The algorithm first constructs FSA AA = (ΣA,V , δA, σA,FA) for each A ∈ N
from the regular expression P(A). We call those automata ECFG automata.
The algorithm uses ECFG automata instead of the regular expressions. Apply-
ing EClosG amounts to using ClosG′ where G′ = (N ′,T ,P ′,S) is defined as
follows.

– N ′ = N ∪{[σ1, σ2] ∣ ∃A ∈ N . σ1, σ2 ∈ ΣA}. We call [σ1, σ2] ∈ N ′ ∖N a state
pair and a transition labeled with it a state pair edge.

– P ′ contains the following production rules:

● [σ1, σ1] → ε for A ∈ N and σ1 ∈ ΣA

● [σ1, σ2] → u for A ∈ N and σ1
u
↦ σ2 ∈ δA

● [σ1, σ3] → [σ1, σ2][σ2, σ3] for A ∈ N and σ1, σ2, σ3 ∈ ΣA

● A → [σA, σ1] for A ∈ N and σ1 ∈ FA

Inferring Grammatical Summaries of String Values 381

Algorithm 2. CFL-reachability closure of an FSA using ECFG G =
(N ,T ,P ,S)
input : A = (Σ,V, δ, σ,F)
output: EClosG(A)

δ′ := δ
foreach A ∈ N do

construct AA = (ΣA,V, δA, σA,FA) s.t. L(AA) = L(P(A))
end
foreach (σ′ ∈ Σ, A ∈ N , σ1 ∈ ΣA) do

δ′ := δ′ ∪ {σ′
[σ1,σ1]

↦ σ′}
end
repeat

foreach (A ∈ N , σ1, σ2 ∈ ΣA,X ∈ V ∪ {ε}, σ
′
1, σ

′
2 ∈ Σ) do

if σ1
X
↦ σ2 ∈ δA and σ′1

X
↦ σ′2 ∈ δ

′ then

δ′ := δ′ ∪ {σ′1
[σ1,σ2]

↦ σ′2}
end

end
foreach (A ∈ N , σ1, σ2, σ3, ∈ ΣA, σ

′
1, σ

′
2, σ

′
3 ∈ Σ) do

if σ′1
[σ1,σ2]

↦ σ′2 and σ′2
[σ2,σ3]

↦ σ′3 ∈ δ
′ then

δ′ := δ′ ∪ {σ′1
[σ1,σ3]

↦ σ′3}
end

end
foreach (A ∈ N , σF ∈ FA, σ

′
1, σ

′
2 ∈ Σ) do

if σ′1
[σA,σF]

↦ σ′2 ∈ δ
′ then

δ′ := δ′ ∪ {σ′1
A
↦ σ′2}

end

end

until δ′ has not changed

foreach A ∈ N , σ1, σ2 ∈ ΣA, σ
′
1, σ

′
2 ∈ Σ do

δ′ := δ′ ∖ {σ′1
[σ1,σ2]

↦ σ′2}
end

return (Σ,V, δ′, σ,F)

Although there is nothing theoretically interesting regarding ECFGs andEClosG ,
ECFG automata representation is more succinct than the derived CFG G′ and
EClosG can work more efficiently than ClosG′ .

The complexity of EClosG is not larger than O(n3) where n = ∣Σ∣. In EClosG ,
we have to examine paths composed of up to 3 states and this guarantees O(n3).
In fact, in most cases we can sort the states of A in a topological order, and could

382 S.-W. Kim et al.

have used a sub-cubic algorithm based on Valiant’s technique [18]. However, we
use a worklist-based algorithm which guarantees O(n3) for simplicity.

5.2 Preserving State Pair Edges

In the algorithm EClosG , we keep state pair edges to avoid redundant work.
Since state pair edges are just intermediate edges and originally not essential,
one may eliminate them as in the boxed region of Algorithm 2. However, eagerly
removing them leads to redundant computations. For example, to concatenate
two string literals, we first abstract each string literal adding state pair edges.
If we remove the state pair edges from the resulting abstract values right away,
we should reconstruct the same edges during the abstract concatenation. Thus,
we keep those edges to avoid redundant work.

More interestingly, preserving state pair edges often improves analysis preci-
sion because they enrich the abstract domain. Consider the following example
with a production rule A→ ac ∣ bc:

if (?) x = "a"; else x = "b";

x = x . "c";

Since the final value of x is either ac or bc, we can summarize it as A. Now let
us apply our analysis. Assume we obtained the following ECFG automaton AA.

σ0start σ1 σ2

a,b c

1. If we eliminate the state pair edges, we cannot verify the program. In this
case, the vocabulary symbols that we can utilize are {a,b,c,A}. Then, the
abstract value of x after the conditional is ⊺ because there is no vocabulary
string that can derive both a and b.

2. On the other hand, we can verify the program if we keep state pair edges.
In this case, we can also regard the state pairs such as [σ0, σ1], [σ1, σ2] and
[σ0, σ2] as non-terminals. Then, the abstract value of x after the conditional
contains [σ0, σ1] since it is a common summary of both {a} and {b}. After
we append the abstraction of {c} which contains [σ1, σ2], we can successfully
infer [σ0, σ2] and A as summaries of the final x.

In addition, for better efficiency and precision, we use minimized FSAs for
ECFG automata. Smaller ECFG automata may reduce the computation of the
EClosG algorithm. Also, the less states ECFG automata have, the more likely
we find common summaries during the join operation. For the previous example,
we could have used the following automaton for AA:

σ0start

σ1 σ2

σ3 σ4

a

b

c

c

Inferring Grammatical Summaries of String Values 383

If we use this automaton, we cannot analyze the program even when we keep
the state pair edges. We observed that minimized ECFG automata often provide
better analysis results than larger ones, although they do not guarantee the best
precision.

6 Implementation of Grammatical Summary Inference

In this section, we describe our analysis implementation and several optimization
techniques that make our analysis tractable.

6.1 Integration into SAFE

We have implemented our analysis in the SAFE framework [9,12]. The SAFE
framework is a general analysis framework for JavaScript, which is designed to
be pluggable in the sense that SAFE provides a default type analysis based on
abstract interpretation, and one can replace the analysis at his or her disposal.
The default type analysis uses a variant of the constant string domain from
[8]. In theory, our analysis may subsume the precision of the original domain
if we add appropriate production rules. However, because several components
of the framework such as object property accesses depend on the original string
domain, we have plugged our grammatical summary domain in conjunction with
the original domain without replacing the original one.

Our analysis also infers summaries of abstract numbers in string contexts.
JavaScript code often use numbers in string contexts as shown by width below:

’width="’ + width + ’" height="’ (2)

The number abstract domain is also a constant domain with some special ab-
stract values [8]. When our analysis requires summaries of an abstract num-
ber representing a constant, we compute its summaries on the fly. For abstract
numbers representing non-constants, we pre-compute and use their summaries
obtained by abstracting their possible string representations.

6.2 Optimization Techniques

Deferring Abstraction. We defer abstraction of singleton string values until join
or widening operations. This optimization is effective for the following two cases:

– While JavaScript property accesses often use string literals for property
names, those string literals evaporate after the accesses. Thus, we avoid
inferring summaries of them.

– For a series of concatenations of n string literals, if we defer the abstraction
and apply CFL reachability only for the final result, the number of applying
CFL reachability reduces from 2n − 1 to 1.

After the analysis, if the abstract value of a string expression whose abstraction
is deferred is queried, we should apply CFL reachability to get its summaries.

384 S.-W. Kim et al.

Using Two-level Grammars. To infer summaries even for string values that have
partial lexical tokens, we specify ECFGs at the character level rather than at
the token level. As the expression in (2) shows, JavaScript programs often use
partial string tokens. By specifying ECFGs at the character level, we can infer
summaries for ’width="’ and ’" height="’. However, such a precision im-
provement comes with a performance burden.

To alleviate the performance problem, we first prepare a two-level gram-
mar from a given reference grammar. We first rewrite the grammar so that
the right-hand side of each production rule uses either only terminals or only
non-terminals. This task is almost mechanical: we replace terminal parts of right-
hand sides with new non-terminals and add new production rules deriving the
terminal parts. Let the rewritten grammar be G = (N ,T ,P ,S). The two-level
grammar consists of two sub-grammars G1 and G2. G1 is (N1,T ,P1,−) 1 whereN1

is non-terminals of G whose right-hand sides use only terminals and P1 = P∣N1 .
G2 is (N2,N1,P2,S) where N2 = N ∖ N1 and P2 = P∣N2 . Then, G1 serves as a
lexical token specification of G and G2 is a token-level grammar.

Using the two-level grammar, we use two-staged algorithms for string literal
abstraction and concatenation. The first stage of each algorithm that uses G1 is
as follows.

– Abstraction of string literals: We use G1 to selectively add (possibly partial)
token edges by mimicking a longest match strategy of conventional lexers. A
detailed description of the algorithm is shown in Algorithm 3. The complex-
ity of Algorithm 3 is largely due to token suffixes at the starts of literals,
token prefixes at the ends of literals, and partial tokens that encompass en-

tire literals. Except that, we use the longest match strategy: if edges σk
T1↦ σl

and σk
T2↦ σm are possible where k > 0, T1, T2 ∈ N1, and l < m, we add only

σk
T2↦ σm. Also, to add an edge labeled by T2 ∈ N1 starting at σk (k > 0),

there must be a previously added edge incoming to σk representing (suffix
of) T1 where T1 can be followed by T2, in the sense that there exists A ∈ N2

such that A ⇒∗ uT1T2v for some u, v ∈ V∗. After applying Algorithm 3, we
remove all the terminal edges from the automaton.

– Concatenation: We concatenate two automata representing operands, and
apply CFL reachability using G1 to find tokens that became complete. We
remove state pair edges of G1 that are not at the beginning or end of the
concatenated automaton because we allow partial tokens only at boundaries.

The second stage is CFL reachability using G2 as usual.

Keeping Only Relevant Summaries. During the analysis, we choose to keep only
state pair edges in the abstract values. The impact of removing non-terminal
edges is not critical because of two reasons. First, we have state pairs that are
more specific than usual non-terminals. For example, for a non-terminal A, we
have several state pairs refining A: the language of [σA, σ1] where σ1 ∈ FA is a

1 Since we do not use the initial non-terminal of G1, we leave it unspecified.

Inferring Grammatical Summaries of String Values 385

Algorithm 3. Addition of (possibly partial) token edges using a longest
match strategy.

input : A = (Σ,V, δ, σ0,{σn}) where
Σ = {σ0,⋯, σn} and

δ = {σ0
a1
↦ σ1,⋯, σn−1

an
↦ σn} for a1⋯an ∈ T

∗

output: An automaton accepting (partial) token
strings.

δ′ := δ
W := ∅

P := [

n
�����������������������	����������������������

∅,∅,⋯,∅]

foreach T ∈ N1, s ∈ ΣT do
N := ∅
 := 0
t := s

while < n ∧ ∃t′. t
a�+1
↦ t′ ∈ δT do

 := + 1

t := t′

if t ∈ FT then
N := ∅
if s = σT then

N := N ∪ {σ0
T
↦ σ�}

end
if s has an incoming edge then

N := N ∪ {σ0
[s,t]
↦ σ�}

end

end

end
if = n ∧ t has an outgoing edge then

N := N ∪ {σ0
[s,t]
↦ σ�}

end

foreach σ0
v
↦ σ� ∈ N do

δ′ := δ′ ∪ {σ0
v
↦ σ�}

if < n then
P [] := P [] ∪{T ′ ∈ N1 ∣

∃A ∈ N2,u,v ∈ V
∗. A⇒∗uTT ′v}

W := W ∪ {}

end

end

end

while W ≠ ∅ do
k := min{i ∣ σi ∈W}
W := W ∖ {σk}

 := k
S := {(T,σT) ∣ T ∈ P [k]}
N := ∅
while < n ∧ S ≠ ∅ do

S′ := ∅
foreach (T, t) ∈ S do

if ∃t′. t
a�+1
↦ t′ ∈ δT then

S′ := S′ ∪ {(T, t′)}
end

end

S := S′

 := + 1
if ∃(T, t) ∈ S. t ∈ FT then

N := ∅
foreach (T, t) ∈ S do

if t ∈ FT then

N :=N ∪ {σk
T
↦ σ�}

end

end

end

end
if = n then

foreach (T, t) ∈ S do
if t has an outgoing edge then

N := N ∪ {σk

[σT ,t]
↦ σ�}

end

end

end

δ′ := δ′ ∪N

foreach σk
T
↦ σ� ∈ N where T ∈ N1 do

if < n then
P [] := P [] ∪{T ′ ∈ N1 ∣

∃A ∈ N2, u,v ∈ V
∗. A⇒∗uTT ′v}

W := W ∪ {}

end

end

end

return (Σ,V, δ′,σ0,{σn})

386 S.-W. Kim et al.

subset of that of A, and the union of the languages is L(A). Second, if there is
only A transition from σ1 to σ2 in some ECFG automaton, we can reconstruct
A from [σ1, σ2].

Among the sequences of state pairs, some are verbose or invalid. If an abstract
value contains φ1[σ1, σ2][σ2, σ3]φ2, its closure also contains φ1[σ1, σ3]φ2, where
the latter is more succinct. Some sequence of state pair edges may be invalid
under a given reference grammar. For example, when a reference grammar is an
HTML grammar, if [σ1, σ2] is a state pair from body and [σ3, σ4] is from head,
φ1[σ1, σ2][σ3, σ4]φ2 is invalid because head should not follow body in HTML
documents.

Thus, we define relevant state pair sequences and keep only such sequences:

Definition 8 (Relevant state pair sequence). A state pair sequence φ ≠ ε
is relevant, if for any decomposition of φ into φ1[σ1, σ2][σ3, σ4]φ2, one of the
followings holds for some A ∈ N :

– σ2 ∈ FA, and σ3 has an in-edge labeled by A; or
– σ2 has an out-edge labeled by A, and σ3 = σA.

We construct the filtering automaton that accepts the relevant state pair se-
quences by analyzing the ECFG automata. Then, our analysis intersects ab-
stract values with the filtering automaton to keep only the relevant state pair
sequences. The filtering automaton consists of one initial state, one accepting
state, and two states σA↗, σA↘ per each non-terminal A ∈ N . An edge between
the states should have the label [s1, s2] satisfying the following restrictions:

– If the edge goes to σA↗, then s2 ∈ FA.
– If the edge comes from σA↗, then s1 has an incoming edge labeled by A.
– If the edge goes to σA↘, then s2 has an outgoing edge labeled by A.
– If the edge comes from σA↘, then s1 = σA

– There is no incoming edge to the initial state.
– There is no outgoing edge from the accepting state.

For instance, an edge from σA↗ to σB↘ must be labeled by [s1, s2] where s1 has
an incoming edge labeled by A and s2 has an outgoing edge labeled by B.

7 Evaluation

We evaluate our analysis in two perspectives: 1) how much optimization tech-
niques improve the analysis performance and 2) how precisely our analysis infers
summaries of string expressions in a real-world application. Our experiments ran
on a Linux machine with an Intel R� Core� i7-4770 CPU and 32GB of memory.
We used OpenJDK-1.6.0 31 and 2GB of maximum heap space.

Table 1 summarizes the programs and functions used for the evaluation.
Note that the numbers of operations include the numbers of string literals,
string concatenations and control-flow joins. table2.js and table4.js are
two tiny codes generating HTML tables. iframe.js is a program generat-
ing an iframe element. Finally, displayCaptPieces, displayMovesColumns,

Inferring Grammatical Summaries of String Values 387

Table 1. Sizes of the test programs and functions

Program/function # of lines
of

operations
of literals

Total length
of literals

table2.js 8 8 4 19
table4.js 18 13 6 43
iframe.js 52 67 31 188
displayCaptPieces 16 33 14 84
displayMovesColumns 22 42 17 633
displayMovesParagraph 16 40 15 218
htmlBoard 101 163 64 726

Table 2. Performance improvements with optimization techniques

Program Baseline Two-level Relevant Both Speedup

table2.js 59.90s 0.56s 2.44s 0.56s 108x
table4.js >2h 12.90s 10.67s 0.53s >13500x
iframe.js >2h >2h 24.48s 12.22s >589x
htmlBoard >2h >2h 397.68s 42.58s >169x

displayMovesParagraph, and htmlBoard are 4 functions that generate HTML
fragments in WebChess2, an open-source web-based chess playing application.

Table 2 shows performance improvements of our analysis by the two major
optimization techniques, which are using two-level grammars and keeping only
relevant summaries. Using small sample programs, we evaluated the impacts of
the optimization techniques by measuring analysis time with timeout of 2 hours.
The baseline uses deferring singleton abstraction and other minor optimization
techniques such as recording both incoming and outgoing transitions for each
state in automata. We used a slightly simplified HTML grammar as a reference
grammar; it does not express all tag inclusion and exclusion constraints, and
ignores specific attributes allowed for each HTML element. However, it specifies
the valid sequences of children elements and their repetition constraints, and the
syntax of attributes. With the two optimization techniques, we achieve at least
108 times speedup and get the analysis result in reasonable time.

Keeping only the relevant summaries is crucial for the performance. During
the analysis, we occasionally minimize the FSAs, to make them smaller. However,
in the experiment, we cannot finish some minimization operations without this
technique. Our minimization operation involves determinization of FSAs, which
could result in exponentially big FSAs. It turns out that the relevant summaries
are shorter than irrelevant summaries, and removing irrelevant ones makes the
FSAs smaller before the application of determinization.

Table 3 shows our analysis results for 4 relatively complex JavaScript functions
that generate HTML fragments in WebChess. This web application uses the

2 http://webchess.sourceforge.net

http://webchess.sourceforge.net

388 S.-W. Kim et al.

Table 3. Analysis of JavaScript functions in WebChess

Function Time Notable summaries Additional techniques

displayCaptPieces 5.92s (flow entity)+ None
displayMovesColumns 4.93s (flow entity)+ Unroll the first iteration,

assume moves.length > 0.
displayMovesParagraph 7.52s (flow entity)+ None
htmlBoard 42.58s table element Unroll the last iteration.

innerHTML property to draw and update game boards. Our analysis found a bug
in htmlBoard that contains the following code fragment:

... + ’" width=’ + borderWidth + ’"> <\/td><\/tr>’

Note that a double quote is missing after width=. After fixing the bug, our
analysis can infer summaries like one or more flow entities and the table element
precisely. They show that the functions construct valid fragments of HTML
documents. While we show only notable summaries for the final string values
due to the space limitation, recall that our analysis can provide summaries for
all string expressions in a program.

For some functions, additional analysis techniques such as unrolling some it-
erations, and providing assumptions on non-string values are required to verify
those functions. For example, displayMovesColumns internally builds a table

element which contains moves.length number of tr elements. The HTML spec-
ification states that the content of a table must contain at least one tr element,
and moves.length is guaranteed to be positive in the program. However, since
our number domain only keeps track of whether a value is non-negative or not,
it cannot capture the fact that moves.length is positive. Thus, we apply ad-
ditional techniques such as loop unrolling to overcome the limitation of the
imprecise number domain. However, if we use a more precise number domain
our analysis can verify those functions without such additional techniques.

8 Related Work

String Analyses with References. Several string analyses efficiently check string
values according to reference CFGs [11,14,6,15]. They essentially use the same
technique developed by Christensen et al. [1] to over-approximate possible string
values of a string expression into a CFG. However, they cannot use arbitrary
reference CFGs unlike our analysis, and they are less composable with other
static analyses because they focus on only string values.

Kim and Choe [10] use a special family of push-down automata as refer-
ences and provide abstraction of string values that are substrings of reference
languages. While their analysis is composable with other string analyses, their
abstract values consisting of pairs of stack fragments are more difficult to un-
derstand than our grammatical summaries. Also, the complexity of their string

Inferring Grammatical Summaries of String Values 389

literal abstraction is O(2n) in the worst case while that of our analysis is O(n3)
where n is the length of the string literal.

Minamide [13] presented a PHP analyzer to check dynamically generated web
pages by resolving various string validation and sanitization operations as finite
transducer applications on CFGs. We are developing a general technique to inte-
grate such operations into string analyses designed in the abstract interpretation
framework.

Type Analyses of Dynamically Generated SQL Queries. Cook and Rai [2] repre-
sent queries as statically typed objects instead of strings so that they can check
ill-formed or ill-typed queries at compile time. However, this approach does not
work for scripting languages like PHP, JavaScript and legacy web applications,
and manipulating such objects rather than strings to build queries is not in-
tuitive nor convenient for developers familiar with query languages. Gould et
al. [7] check whether a given program generates SQL queries that belong to a
given regular grammar, which is an under-approximated SQL, and then check
whether the queries are well-typed. Their analysis requires carefully designed
regular languages as references.

String Analyses with FSAs. Researchers have proposed various analyses using
FSAs to model string values [22,25,21,24,23]. Their FSAs do not consider ref-
erence grammars and do not use non-terminal symbols, while our FSAs use
non-terminal symbols to precisely infer grammatical summaries. However, they
support string operations like substring, regular replacement, and regular match-
ing using various operations on FSAs. Thus, their analyses are complementary
to our analysis in the sense that we can use them to analyze such string oper-
ations and abstract the languages of their resulting FSAs to our grammatical
summaries.

Non-terminals as Summaries. While Thiemann’s type system [17] and the deriv-
ability condition of Wassermann and Su [20, Definition 3.2] also use grammatical
summaries of string values, they have two notable differences from ours:

– We provide a much richer space for string abstraction. Our abstraction of
string values is an element in ℘(V∗) while theirs is an element in N . Because
string values in real-world web applications often represent only partial sen-
tences, non-terminals alone cannot summarize them. Recall the summary
“⟨TRS⟩ <tr> ⟨TDS⟩” in Section 1, which is a vocabulary string and not a
non-terminal.

– Our analysis is reusable in any analyses based on forward data-flow analyses.
However, Thiemann provides a type system for a specific functional language,
and Wassermann and Su provide a CFG verification algorithm that is not
directly applicable to conventional data-flow analysis frameworks.

9 Conclusion

We design, implement, and optimize an analysis that infers grammatical sum-
maries of string values according to a given reference grammar. Our domain

390 S.-W. Kim et al.

provides a simple but intuitive interpretation and a rich set of abstract values.
To make the analysis computable, we use FSAs to represent infinite sets of sum-
maries finitely, and CFL reachability on FSAs to infer a possibly infinite number
of summaries. We present several optimization techniques to make the analysis
tractable and show their impacts with the experimental results.

We are planning to apply our analysis to more applications. Since our analysis
can deal with partial sentences, we can analyze PHP or JSP programs that are
not complete or that generate only fragments of HTML documents. By using
our analysis in development environments for such PHP or JSP programs, we
can either report bugs earlier or provide developers with expected grammatical
summaries. Also, while persistence libraries like Hibernate3 internally build and
use database query strings, no existing analysis can verify their well-formedness
as far as we know. We expect that our analysis can verify them by analyzing
query string construction split in many functions.

References

1. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003), http://www.brics.dk/JSA/

2. Cook., W.R., Rai, S.: Safe query objects: Statically typed objects as remotely exe-
cutable queries. In: Proceedings of the 27th International Conference on Software
Engineering (2005)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM Symposium on Principles of Programming Languages (1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM Symposium on Principles of Programming Languages
(1979)

5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and
Computation 2(4), 511–547 (1992)

6. Doh, K.-G., Kim, H., Schmidt, D.A.: Abstract parsing: Static analysis of dynami-
cally generated string output using LR-parsing technology. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 256–272. Springer, Heidelberg (2009)

7. Gould, C., Su, Z., Devanbu, P.T.: Static checking of dynamically generated queries
in database applications. In: Proceedings of the 26th International Conference on
Software Engineering (2004)

8. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

9. PLRG @ KAIST. SAFE: Scalable Analysis Framework for ECMAScript,
http://safe.kaist.ac.kr

10. Kim, S.-W., Choe, K.-M.: String analysis as an abstract interpretation. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 294–308. Springer,
Heidelberg (2011)

3 http://hibernate.org

http://www.brics.dk/JSA/
http://safe.kaist.ac.kr
http://hibernate.org

Inferring Grammatical Summaries of String Values 391

11. Kirkegaard, C., Møller, A.: Static Analysis for Java Servlets and JSP. In: Yi, K.
(ed.) SAS 2006. LNCS, vol. 4134, pp. 336–352. Springer, Heidelberg (2006)

12. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: Formal specification and imple-
mentation of a scalable analysis framework for ECMAScript. In: Proceedings of
the 2012 International Workshop on Foundations of Object-Oriented Languages
(2012)

13. Minamide, Y.: Static approximation of dynamically generated web pages. In: Pro-
ceedings of the 14th International Conference on World Wide Web (2005)

14. Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer, Heidel-
berg (2006)

15. Møller, A., Schwarz, M.: HTML validation of context-free languages. In: Hofmann,
M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 426–440. Springer, Heidelberg
(2011)

16. Reps, T.W., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM Symposium on Principles of
Programming Languages (1995)

17. Thiemann, P.: Grammar-based analysis of string expressions. In: Proceedings of
the 2005 ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation (2005)

18. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput.
Syst. Sci. 10(2), 308–315 (1975)

19. Wassermann, G., Gould, C., Su, Z., Devanbu, P.T.: Static checking of dy-
namically generated queries in database applications. ACM Trans. Softw. Eng.
Methodol. 16(4) (2007)

20. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2007)

21. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

22. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic string verification: An
automata-based approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008)

23. Yu, F., Bultan, T., Hardekopf, B.: String abstractions for string verification. In:
Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 20–37. Springer,
Heidelberg (2011)

24. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: Combining string
analysis and size analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

25. Yu, F., Bultan, T., Ibarra, O.H.: Relational string verification using multi-track
automata. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482,
pp. 290–299. Springer, Heidelberg (2011)

Syntax-Directed Divide-and-Conquer

Data-Flow Analysis

Shigeyuki Sato1 and Akimasa Morihata2

1 The University of Electro-Communications, Japan
sato@ipl.cs.uec.ac.jp

2 Graduate School of Arts and Sciences, University of Tokyo, Japan
morihata@graco.c.u-tokyo.ac.jp

Abstract. Link-time optimization, with which GCC and LLVM are
equipped, generally deals with large-scale procedures because of aggres-
sive procedure inlining. Data-flow analysis (DFA), which is an essential
computation for compiler optimization, is therefore desired to deal with
large-scale procedures. One promising approach to the DFA of large-
scale procedures is divide-and-conquer parallelization. However, DFA on
control-flow graphs is difficult to divide and conquer. If we perform DFA
on abstract syntax trees (ASTs) in a syntax-directed manner, the divide
and conquer of DFA becomes straightforward, owing to the recursive
structure of ASTs, but then nonstructural control flow such as goto/label
becomes a problem. In order to resolve it, we have developed a novel
syntax-directed method of DFA on ASTs that can deal with goto/label
and is ready to divide-and-conquer parallelization. We tested the feasi-
bility of our method experimentally through prototype implementations
and observed that our prototype achieved a significant speedup.

Keywords: syntax-directed, divide and conquer, closed semiring.

1 Introduction

Data-flow analysis (DFA) is a classic and fundamental formalization in program-
ming languages and particularly forms the foundation of compiler optimization.
Many optimizations consist of a pair of analysis and transformation, and DFA
often formulates the analysis part of an optimization and occupies the compu-
tational kernel of its optimization pass.

Nowadays, an input to DFA can be very large. For example, state-of-the-
art optimizing compilers such as GCC and LLVM are equipped with link-time
optimization (LTO), which is to reserve intermediate representations beside ex-
ecutables at compile time and then optimize the whole program at link time by
using all reserved intermediate representations of linked executables. An input
program of LTO is larger than the one of usual separate compilations. Further-
more, LTO promotes aggressive procedure inlining, which can incur an expo-
nential blow up of input programs. In DFA for LTO, it is therefore desired that
large-scale input programs can be dealt with effectively.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 392–407, 2014.
c© Springer International Publishing Switzerland 2014

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 393

One promising approach to dealing with large-scale inputs is parallelization.
Since parallel machines are widespread, well-parallelized DFA will benefit many
users of LTO. A primary concern is the generation and assignment of parallel
tasks. Concretely, load balancing with little overhead is important. Although
load balancing is necessary to reduce parallel time, the load balancing itself
could incur considerable overhead in processing large-scale inputs. For parallel
DFA of large-scale input programs, the divide and conquer directly on input data
structures without preprocessing is very much desired because this will result in
the immediate generation of parallel finer-grained tasks in recursion.

A naive approach to the divide and conquer of DFA is procedure-level decom-
position. In interprocedural as well as intraprocedural analysis, the analysis of
each procedure is computationally almost independent of that of the others and
therefore can be performed in parallel. This procedure-wise parallelization, how-
ever, can incur a poor load balancing in LTO with aggressive inlining. Aggressive
inlining expands the main procedures sharply by substituting and eliminating
many other procedures; consequently, it reduces the number of procedures and
causes a size imbalance among procedures. To obtain better load balancing, the
divide and conquer over a procedure is necessary.

DFA usually deals with a procedure in the form of a control-flow graph (CFG).
Although there were some earlier studies on parallel DFA that developed divide-
and-conquer methods on CFGs, these methods required an auxiliary tree struc-
ture [6] or duplication of CFGs [5] and therefore incur significant overhead.
These drawbacks stem from the nature of CFGs. The loops and sharing of paths
in CFGs make the divide and conquer of DFA difficult because they impose un-
structured dependence on parts of the DFA. To resolve this dependence, some
preprocessing is generally required. Therefore, DFA on CFGs is essentially diffi-
cult to divide and conquer.

In contrast to CFGs, abstract syntax trees (ASTs) are easy to divide and
conquer owing to their recursive structures. If we can perform DFA on ASTs, the
divide and conquer of DFA will be straightforward in a recursion on ASTs (i.e., a
syntax-directed manner) and enable us to perform each DFA of independent AST
subtrees in parallel. Rosen developed high-level data-flow analysis [13], a well-
formed method of DFA on ASTs, but his method cannot deal with goto/label.
Since goto/label causes control flow unrestricted to the structures of ASTs, it
introduces into ASTs unstructured dependence similar to that of CFGs. Taming
goto/label is therefore essential for general DFA.

To resolve this problem, we have developed a novel parallel syntax-directed
method of general DFA that tames goto/label. The proposed method is built
upon Tarjan’s algebraic formalization [17] of DFA. First, our method summa-
rizes the syntax-directed data flow in a bottom-up parallel sweep of a given AST,
while detaching the goto-derived data flow and constructing a compact system
of linear equations that represent it. Next, we obtain the summary of the goto-
derived data flow by solving the system. Lastly, we merge the syntax-directed
data flow with the goto-derived flow. Our method is particularly useful for pro-
grams containing few goto/label statements because the divide and conquer over

394 S. Sato and A. Morihata

a given AST is applied to the most part of DFA. We can assume such an input
thanks to the popularity of structured programming. Furthermore, our method
guarantees asymptotically linear speedup.

The following are our two major contributions:

– We have developed a novel syntax-directed divide-and-conquer parallel
method of DFA based on Tarjan’s formalization [17] (Section 3). The essence
of our method is to detach the goto-derived data flow and calculate it after-
ward. Our method guarantees asymptotically linear speedup.

– We have demonstrated the feasibility of our method experimentally through
prototype implementations on a C compiler (Section 4). Our parallel proto-
type achieved a significant speedup and our sequential prototype achieved
reasonable performance compared to the standard implementation.

2 Formalization of Data-Flow Analysis

DFA is to aggregate data-flow values over a given program [4]. The domain of
data-flow values is a join-semilattice L whose join operator is �. Each program
point has a transfer function over L. The result of DFA is defined as a join-over-
all-paths (JOP) solution, namely, a sum of the data-flow values of all executable
paths from the entry to the exit (or a target point) in a given program.

The proposed method is based upon Tarjan’s formalization over a closed
semiring [17]. This first formalizes an input program as the set of all executable
paths represented by a regular path, which is a regular expression whose alphabet
is the set of all program points Π . Then, DFA is defined as a homomorphism hR

from a closed semiring �R, �, �,�, ε� to another closed semiring �F,�,�, 0, 1�. The
former is for regular paths: R is a set of regular paths, addition is the alternation
�, and multiplication is the concatenation �. The latter is for transfer functions:
F is the set of transfer functions, the addition f1 � f2 	 λx.f1�x� � f2�x�, the
multiplication1 f1 � f2 	 f2
 f1, 0 is the zero element, f � 0 	 0� f 	 f and
f � 0 	 0 � f 	 0, and 1 is the multiplicative identity, f � 1 	 1 � f 	 f .
Note that from the definition of a closed semiring, Kleene star f� is defined as
f� 	

��

i�0 f i, where f0 	 1 and f i 	 f i�1 � f . Giving �F,�,�, 0, 1� and a lift
function τ : Π � F , we can characterize the homomorphism of DFA as

hR�ε� 	 1,

hR�π� 	 τ�π�, if π Π,

hR�r1 � r2� 	 hR�r1� � hR�r2�,

hR�r1 � r2� 	 hR�r1� � hR�r2�,

hR�r�� 	 hR�r� � .

In this paper, we assume that� is not an input of any DFA. Therefore, 0 can be
left undefined and regarded as a special value that behaves as the zero element.

1 Here, we consider forward DFA. For backward DFA, f1 � f2 � f1 � f2.

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 395

Example of DFA To give readers to a clearer understanding of Tarjan’s formal-
ization, here we describe the DFA of reaching definitions. A definition is a pair
consisting of an LHS variable and an RHS expression. In this DFA, the domain
of data-flow values is a set of definitions, i.e., a binary relation from variables
to expressions. The join operation is the set union. The transfer function of an
assignment statement v� e generates a definition v �� e and kills all other def-
initions of v that can reach the assignment. Meanwhile, a simple expression e
without assignment has no effect on data flow. That is, τ is defined as

τ�v� e� 	 λX. �v� �� e X � v � v�� � �v �� e�,

τ�e� 	 λX. X.

To define a closed semiring, a general form of transfer functions is necessary.
Letting V be a set of variables and D be a set of definitions, we can define it as

f�V,D� 	 λX. �v �� e X � v � V � �D.

By using this f , we can define τ and a closed semiring �F,�,�, 0, 1� as

τ�v� e� 	 f��v�, �v �� e��,

τ�e� 	 f��,��,

1 	 f��,��,

f�V1, D1� � f�V2, D2� 	 f�V1 � V2, D1 �D2�,

f�V1, D1� � f�V2, D2� 	 f�V1 � V2, �v �� e D1 � v � V2� �D2�,

f�V,D�� 	 1� f�V,D�.

As seen in the hR above, Tarjan’s approach calculates a summary2, namely
a transfer function for a program fragment, rather than data-flow values. By
applying the summary from an entry to an exit to a given initial data-flow
value, we obtain its JOP solution. This formalization can deal with monotone
DFA. Refer to [17,7] for a detailed discussion.

For optimizations, compilers often use JOP solutions from an entry to every
point, i.e., all-points JOP solutions. Although the homomorphism above does not
calculate the summaries for all-points JOP solutions, it is easy to calculate them.
We can obtain a set of summaries from an entry to all points by accumulating
summaries over a regular path, similarly to calculating a prefix sum. We call this
an all-points summary. By applying each element of an all-points summary to
an initial value, we obtain all-points JOP solutions.

In Tarjan’s formalization, the primary concern on algorithms is how to con-
struct the regular path of an input program. Tarjan [18] developed a sophisti-
cated algorithm for extracting a regular path from a CFG. However, if an input
program is goto-free, namely, in the while language (Fig. 1), we can immediately
obtain its regular path representation. This is trivial but notable. Thus, DFA
for the while language is performed in a syntax-directed manner as follows:

2 A procedure summary, which is the transfer function of the whole of a procedure, is
used extensively for interprocedural analysis [16].

396 S. Sato and A. Morihata

P ::� s (Program)

s ::� pass � v� e � s1 s2 � if �e� �s1	 else �s2	 � while �e� �s	 (Statement)

Fig. 1. Syntax of the while language. v and e are respectively the metavariables over
variables and expressions; pass denotes an empty statement.

h�pass� 	 1,

h�v� e� 	 τ�v� e�,

h�s1 s2� 	 h�s1� � h�s2�,

h�if �e� �s1� else �s2�� 	 τ�e� � �h�s1� � h�s2��,

h�while �e� �s�� 	 τ�e� � �h�s� � τ�e�� � .

Here, h calculates the summary of a given program fragment. Throughout this
paper, we identify a program fragment given to τ with its program point; thus,
τ takes a program fragment and yields a transfer function.

Example We explain the syntax-directed DFA based on Tarjan’s formalization
by using the following example program:

x� a if �x � 0� �x� 0�

else �while �x � 10� �x�x� a��.

By applying h, we calculate the summary of the above program as

τ�x� a� � τ�x � 0� � �τ�x� 0�

� �τ�x � 10� � �τ�x� x� a� � τ�x � 10�����.

By using the closed semiring of reaching definitions, we can reduce it to

f��x�, �x �� 0, x �� x� a��.

Because the initial data-flow value of reaching definitions is�, the JOP solution
at the exit is

�x �� 0, x �� x� a�.

We can also construct all-points summaries in a syntax-directed manner. An
example of such construction is described in Section 3.3.

3 Syntax-Directed Parallel DFA Algorithm

For goto-free programs, the divide and conquer of DFA is immediate from a
syntax-directed computation, and its parallelization is therefore straightforward.
Syntax-directed jumps (i.e., jumps to ancestors on ASTs) such as break/continue
can be dealt with by using Rosen’s method [13] in a syntax-directed manner.

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 397

Non-syntax-directed (i.e., nonstructural) jumps caused by goto/label, however,
require a special attention. In the following, our target language is the while
language with goto/label. Letting l be a metavariable over labels, we introduce
a goto statement goto l and a label statement l:.

The main idea of the proposed method is to discriminate between syntax-
directed (i.e., structural) data flow and goto-derived (i.e., nonstructural) data
flow. Our method consists of two phases: first, it constructs a summary of struc-
tural data flow while detaching nonstructural data flow from an input AST in a
syntax-directed manner, and second, it calculates only nonstructural data flow
from the obtained summary. After that, we obtain JOP solutions.

In terms of parallelization, the first phase is straightforward from a syntax-
directed computation. This is the main benefit of our method. We do not have to
parallelize the second phase. The size of a summary obtained in the first phase
is quadratic to the number of labels. Because of the popularity of structured
programming, we can suppose that labels are few; that is, we assume nonstruc-
tural flow to be an exceptional irregularity in an input. The second phase would
be cheap and not worth parallelizing. In the rest of this section, we describe the
algorithms of both phases and the extension to interprocedural analysis.

3.1 Syntax-Directed Construction of Summaries

It is nontrivial to represent a program that contains goto/label by a single regular
path. For example, consider the following program:

while �x � 101� �l: x�x� 1
2
� if �x � 203� �goto l� else �pass

4
�,

where a suffix to an underlined part denotes its program point. We cannot con-
struct a Kleene closure only from the while statement above unlike the goto-free
case because regular paths containing jumps to l: are unknown. We, however,
can decompose by interpreting l: as another entry and goto l as another exit,
the above program into four goto-free regular paths: 1 � �2 � 1�� � 3 � 4 (from the
entry to the exit), 1 � �2 �1�� �3 (from the entry to goto l), 2 �1 � �2 �1���3 �4 (from
l: to the exit), and 2 � 1 � �2 � 1�� � 3 (from l: to goto l). These are immediately
obtained from the AST. In the case of two labels l1 and l2, we can generally
consider nine regular paths as illustrated in Fig. 2, where all goto-derived jumps
to li are encapsulated in the box labeled by li. This decomposition enables us to
postpone interpreting goto-derived flow. This is the key idea of our method.

On the basis of this idea, we define a structured summary by a set of transfer
functions. Let �l1, . . . , lk� be the set of labels and aij 	 hR�rij�, where rij is the
goto-free regular path from lj : (or the entry, if j 	 0) to goto li (or the exit, if
i 	 0); then, a structured summary is the following system of linear equations:

������
�����

out 	 a00 � �l1 � a01� � � � � � �lk � a0k�,

l1 	 a10 � �l1 � a11� � � � � � �lk � a1k�,

...

lk 	 ak0 � �l1 � ak1� � � � � � �lk � akk�,

������
����	

398 S. Sato and A. Morihata

l1 l2

entry

exit

r00

��

r01

��
r02

��

r10

��

r20

��
r11

��
r22

��r21 		

r12

Fig. 2. Regular paths in a program containing labels l1 and l2. r00 is the regular path
from the entry to the exit, r0i is the regular path from li: to the exit, ri0 is the regular
path from the entry to goto li, and rij is the regular path from lj : to goto li.

where out denotes the data flow that goes out from the exit and li denotes
nonstructural data flow via the label li; specifically, li denotes an outflow in the
LHS and an inflow in the RHS. In the rest of this paper, we omit any equation
whose RHS is 0. We can represent the system above by a coefficient matrix,

out
x

�
	

1
x

�T

AT , where x 	

�
�

l1
...
lk

�
Æ�, A 	

�
�

a00 � � � a0k
...

. . .
...

ak0 � � � akk

�
Æ�.

The matrix multiplication here is defined by using � and � respectively as the
scalar addition and the scalar multiplication. Unless otherwise noted, matrix
operations are generalized over a semiring. For a structured summary, we inten-
tionally confuse the system of linear equations with its coefficient matrix A.

We define each of the addition, multiplication, and Kleene star over structured
summaries as a matrix operation.

The addition is used to merge two independent summaries, such as those of
two branches of a conditional statement. It is easy to see that the conventional
matrix addition suffices for this purpose; consider the edge-wise union on Fig. 2.
In the rest of this paper, we overload � for the matrix addition.

The multiplication is used to connect the summaries of two consecutive state-
ments. This necessitates a little consideration. For example, consider the con-
catenation of two copies of the regular paths in Fig. 2, as illustrated in the left
side of Fig. 3. Although two boxes labeled by li exist there, both encapsulate the
same kind of control flow. We can therefore contract regular paths by merging
both boxes, as illustrated in the right side of Fig. 3. This contraction of regular
paths leads to the following definition of the multiplication �:

�cij�0�i,j�k 	 �aij�0�i,j�k � �bij�0�i,j�k

s.t. cij 	

�����
����

a00 � b00 �i 	 j 	 0�,

�a0j � b00� � b0j �i 	 0� j � 0�,

�a00 � bi0� � ai0 �i � 0� j 	 0�,

�a0j � bi0� � aij � bij �i � 0� j � 0�.

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 399

l1 l2

entry

exit

r00

��

r01

��
r02

��

r10

��

r20

��
r11

��
r22

��r21 		

r12

l1 l2

entry�

exit�

r�

00

��

r�

01

��
r�

02

��

r�

10

��

r�

20

��
r�

11

��
r�

22

��r�

21 		

r�

12

l1 l2

entry

exit�

r00�r�

00

��

r�01

��
r�02

��

r�10

��

r�20

r�11

��
r�22

��r�21 		

r�12

r�i0 � ri0 � r00 � r
�

i0,

r�ij � rij � r0j � r
�

i0 � r
�

ij ,

r�0j � r0j � r
�

00 � r
�

0j ,

where i, j � �1, 2	.

Fig. 3. Concatenation of two copies of the regular paths in Fig. 2, where the left side
is the connected view and the right side is the contracted view

Note that � is associative and its identity is �out 	 1�.
By using the addition � and the multiplication �, we can define the Kleene

star in the standard way. However, owing to the idempotence of �, we can
provide the following equivalent but simpler definition:

�aij�0�i,j�k� 	 �a�ij�0�i,j�k

s.t. a�ij 	

�����
����

a00� �i 	 j 	 0�,

a0j � a00� �i 	 0� j � 0�,

a00� � ai0 �i � 0� j 	 0�,

�a0j � a00� � ai0� � aij �i � 0� j � 0�.

Now we are ready to define hC , which calculates a structured summary from
a given AST.

hC�e� 	 �out 	 h�e��,

hC�s� 	 �out 	 h�s��,

hC�li:� 	 �out 	 1� li�,

hC�goto li� 	 �li 	 1�,

hC�s
�

1 s�2� 	 hC�s
�

1� � hC�s
�

2�,

hC�if �e� �s
�

1� else �s
�

2�� 	 hC�e� � �hC�s
�

1� � hC�s
�

2��,

hC�while �e� �s��� 	 hC�e� � �hC�s
�� � hC�e���,

where s denotes a metavariable over statements containing no goto/label state-
ment and s� denotes one over statements containing any goto/label statement.

400 S. Sato and A. Morihata

Example We here consider, as an example input, the following program:

if �i � n� �l1: x� 1� else �while �i � n� �i� 2� l2: x� i�

if �x 	 n� �i�x� else �goto l1�.

By applying hC , we calculate a structured summary of the above program as

A1 � ���out 	 1� l1� �A2� � �A3 � �out 	 1� l2� �A4��

�A5 � �A6 � �l1 	 1��,

where A1 	 �out 	 τ�i � n��, A2 	 �out 	 τ�x� 1��,

A3 	 �out 	 τ�i � n� � �τ�i� 2� � τ�i � n����,

A4 	 �out 	 τ�x� i��, A5 	 �out 	 τ�x 	 n��,

A6 	 �out 	 τ�i�x��.

By reducing matrix operations, we obtain

�out 	 a�1 � �l1 � a�2� � �l2 � a�3�, l1 	 a�4 � �l1 � a�5�, �

where a�1 	 a1 � �a2 � �a3 � a4�� � a5 � a6,

a�2 	 a2 � a5 � a6, a�3 	 a4 � a5,

a�4 	 a1 � �a2 � �a3 � a4�� � a5, a�5 	 a2 � a5

a1 	 τ�i � n�, a2 	 τ�x� 1�,

a3 	 τ�i � n� � �τ�i� 2� � τ�i � n���,

a4 	 τ�x� i�, a5 	 τ�x 	 n�, a6 	 τ�i�x�.

This result exemplifies the notion of a structured summary: a�1 denotes the data
flow from the entry to the exit, a�2 denotes that from the l1: to the exit, a

�
3 denotes

that from l2: to the exit, a�4 denotes that from the entry to the goto l1, and a�5
denotes that from l1: to the goto l1. None of these take any nonstructural data
flow into account, but the whole system contains the nonstructural data flow of
the program. For example, l1 	 a�4 � �l1 � a�5� denotes that the nonstructural
data flow via l1 is a�4 � a�5�. We can therefore calculate the nonstructural data
flow from this structured summary. Finally, we obtain the value of out .

Parallel Complexity. We can parallelize hC immediately in a divide-and-conquer
manner because hC can fork for each child at any internal node of an input
AST. For the parallel time complexity of hC , the associativity of � is impor-
tant. We can flatten the nesting of statement sequencing, i.e., convert a nesting
��s1 s2� s3� into a sequence �s1 s2 s3�, because it guarantees both results to be
equivalent. Moreover, it enables us to perform parallel reduction for a sequence
of statements. The number of parallel recursive steps of hC therefore is bounded
by the maximum if/while nesting d in an input AST. Let k be the number of
labels, N be the number of the nodes in an input AST, P be the number of pro-
cessors, and b be the maximum length of a sequence of statements. The parallel
time complexity of hC is the following:

O�k2�N�P � d lg min�b, P ���,

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 401

where we assume closed-semiring operations to be constant-time. This lgmin�b,
P � factor is derived from the parallel reduction of a sequence of statements and is
practically negligible. The k2 factor represents the cost of matrix operations. Note
that for an AST containing no label statement, this factor will be k, and for one
containing no goto/label statement, it will be a constant. If N�P � d lgmin�b, P �,
hC guarantees asymptotically linear speedup.

3.2 Calculating Join-Over-All-Paths Solutions

To obtain a JOP solution, we have to solve the nonstructural data flow whose
calculation has been postponed, i.e., to determine the value of x in a structured
summary. As seen in Fig. 2, a structured summary can be regarded as a collapsed
CFG. We can therefore apply existing methods on CFGs to solve that. The
simplest one is Gaussian elimination [15]. Although it is cubic-time, it is sufficient
to solve the nonstructural data flow. Assuming closed-semiring operations to be
constant-time, it costs only O�k3� because of the size of a structured summary
as a CFG. This cost is asymptotically negligible compared to the parallel cost of
hC if N�P � d lgmin�b, P � � k. Therefore, the part to solve nonstructural data
flow is not worth sophisticating and/or parallelizing.

Once the value of x in a structured summary is obtained, we can determine
the value of out in O�k� time. By applying a initial value to out , we obtain the
JOP solution of a given program. It is usually constant-time.

3.3 Construction of All-Points Summaries

We can compute all-points JOP solutions from an all-points summary in embar-
rassingly parallel because each application of its elements to an initial value is
independent. We can construct all-points summaries by using tree accumulation.

The tree accumulation to construct an all-points summary consists of two
phases. The first is the same as hC except for leaving intermediate results at each
node in a given AST. The second is a top-down sweep of the AST decorated with
intermediate results. In this top-down sweep, we perform the parallel prefix-sum
operation with � on every sequence of statements and update summaries that
decorate each node of the AST. The resultant AST decorated with structured
summaries is an all-point summary. Note that � used in the second phase has
only to calculate the uppermost row vector and the leftmost column vector in
a resultant matrix because only the equation of out in every element of an all-
points summary is used for yielding all-points JOP solutions. The second phase
is cheaper than the first one. Therefore, the time complexity of constructing an
all-points summary is the same as that of hC .

Example The above algorithm for constructing all-points summaries is, in fact,
applicable to both h and hC . The difference between them is only on primitive
operations: scalar ones (e.g., �) used for h and matrix ones (e.g., �) used for
hC . For simplicity, we describe here the construction of an all-points summary

402 S. Sato and A. Morihata

regarding h. We consider the following goto-free program:

if �e1� �s1 s2 s3� else �while �e2� �s4 s5� s6�.

We reserve part of the above program as metavariables to concentrate a recursive
step. After the first phase of bottom-up tree accumulation, we obtain

if �f1� �f2 f3 f4� else �f6 f7�,

where f1 	 h�e1�, f2 	 h�s1�, f3 	 h�s2�, f4 	 h�s3�,

f5 	 h�e2�, f6 	 h�while �e2� �s4 s5��, f7 	 h�s6�.

Tree accumulation also brings us the summaries of all next-level statements; e.g.,
we have already had

while �f �1� �f
�

2 f �3�,

where f �1 	 h�e2�, f �2 	 h�s4�, f �3 	 h�s5�.

In the second phase, we calculate a top-down prefix sum at each nesting level.
The following is the result for the outermost if statement:

if �f1� ��f1 � f2� �f1 � f2 � f3� �f1 � f2 � f3 � f4��

else ��f1 � f6� �f1 � f6 � f7��.

We then recurse on next-level statements: s1, s2, s3, while �e2� �s4 s5�, and s6.
Since we have already had all these summaries in the first phase, we are ready
to recurse on them. After recursions on statements at all levels, the resultant
AST becomes an all-points summary.

3.4 Interprocedural Analysis

Tarjan’s formalization deals essentially with intraprocedural DFA. However, it
can be extended to calculate procedure summaries and is therefore useful even
for interprocedural DFA. In fact, our method can deal effectively with context-
insensitive interprocedural DFA.

We now consider a program P to be a set of top-level procedures. Let p be
a metavariable over procedure names. The syntax of a procedure with a body
statement s is p���s�. The procedure call p�� and return are introduced to s.
For simplicity, we assume that none of the procedures take arguments or return
values. Argument passing and value returning may be implemented by using
global variables. For convenience, pc refers to the current procedure at a point.

Since the information of call sites is neglected in context-insensitive DFA, we
can interpret call/return simply as goto/label. We extend hC as follows:

hC�P � 	
�
p�P

hC�p���s��,

hC�p���s�� 	 �� � hC�pcall: s goto pret� � ��,

hC�p��� 	 hC�goto pcall pret:�,

hC�return� 	 hC�goto pret�, where p 	 pc.

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 403

Note that the null system �� denotes no control flow. The same call-site label pret
may be attached to many program points. In such cases, we interpret goto as a
nondeterministic jump to one of the corresponding label statements, where we
require no change in hC . The rest of the DFA process, including the constructions
of all-points summaries, is the same as the intraprocedural case.

In contrast, our method is less effective for context-sensitive interprocedural
DFA because context sensitivity prevents us from factoring out the data flow of
calls as a compact linear system. When using our method, the first choice to ob-
tain context sensitivity is procedure inlining. Intraprocedural DFA with inlining
is generally more precise than context-sensitive DFA. Furthermore, we usually
require code replication similar to inlining for generating context-sensitively opti-
mized code, and in this sense, inlining is essential for utilizing context sensitivity
in compiler optimization. Although the drawback of inlining is the expansion
of procedure sizes, it is tractable in our method by using divide-and-conquer
parallelization. Our method is synergistic with inlining, and aggressive inlining
followed by context-insensitive DFA is therefore both appropriate and sufficient.

4 Experiments

We conducted experiments to demonstrate the feasibility and scalability of our
algorithm. Note that our aim is not to evaluate our analyzer implementation.

4.1 Prototype Implementations

We implemented our method for the DFA of reaching definitions, which is the
most standard and lightweight example of DFA. Because a lightweight compu-
tation to a large-scale input is sensitive to the overhead of load balancing, the
DFA of reaching definitions is appropriate for demonstrating the scalability of
our method. Our implementations built upon COINS3, a C compiler in Java.
We implemented hC as a simple visitor on an AST. We used a dense matrix for
Gaussian elimination to solve nonstructural data flow. We made extensive use of
java.util.HashMap for the implementation of the closed semiring of reaching
definitions. We call our sequential prototype seq and the parallel one par. This
parallelization was very simple; we simply used Java 7 Fork/Join framework for
the visitor of hC . We forked a visitor for each compound statement in a sequence
of statements while summarizing segments of atom statements. At the end of
a sequence of statements, we waited for all forked visitors one by one and then
calculated the summary of the sequence.

As the reference implementation of DFA, we implemented wordwise analysis
[3], which is an efficient iterative method for solving the most common DFA,
a.k.a. the bit-vector framework. We call this implementation bvf. Since this
method uses a wordwise worklist, we implemented a sparse wordwise bit-vector.
We used a LIFO queue as the worklist. We constructed a CFG of basic blocks,

3 http://coins-compiler.sourceforge.jp/

http://coins-compiler.sourceforge.jp/

404 S. Sato and A. Morihata

and then numbered definitions on the AST through the CFG. After that, we
initialized gen/kill sets of each node and performed the iterative method.

Note that bvf by definition calculated all-points JOP solutions, while our
prototypes seq and par calculated a procedure summary. The comparison of
their absolute performance is therefore unfair. Because this difference on results
stems from the difference on style between our method and the iterative method,
a truly fair comparison is difficult. However, since the asymptotic time complex-
ity of constructing an all-points summary is the same as hC (see Section 3.3), in
terms of asymptotic performance, seq and par are comparable to bvf.

4.2 Experimental Setup

We generated a large-scale input program normalized in the while language with
goto/label statements by using a biased random generation. We set the maxi-
mum depth to about 128, the length of block statements to a random number
between 1 and 8. An about half of if statements had empty else branches. Each
goto statement was guarded by a simple if statement to avoid dead code. An
about half of assignments defined new variables. The generated AST had about
1,000,000 statements where the number of goto and label statements were 96 and
20. We used this unrealistically large-scale program for a benchmark to observe
asymptotic behaviors of our method. We call it rand.

To obtain a realistic large program, we used procedure inlining of recursive
programs. As an example recursive program, we selected the Lua 5.2.3 parser4,
which is known to be written in clean C. After normalization, we applied inlining
iteratively to the entry function. We stopped the recursion of inlining at the
seventh level. The resultant entry function consisted of about 12,000 statements,
where 51 pairs of goto/label statements existed. We call it inl.

We used a server equipped with four Opteron 6380 (16 cores, 2.50 GHz)
processors and 128 GB of DDR3-1600 memory running OpenJDK (64-bit Server
VM) version 1.7.0 55. We executed each analyzer 20 times for the same AST in
memory. To minimize the effect of GC and VM issues, we discarded outliers and
considered the median of the remainder as the result.

4.3 Experimental Results

The relative speedup of par given rand, shown in Fig. 4, had a significant scal-
ability up to 15 threads. The relative speedup with 15 threads was 5.82x (while
the speedup compared to bvf was 5.00x). A careful control of task granularity
was not required. We also tested a granularity-controlled prototype but did not
observe any performance gain. Only the divide and conquer of our method was
sufficient to obtain a significant speedup. Our method was ready to parallelize
and demonstrated that the divide and conquer on input data structures is cru-
cial. The speedup curve in Fig. 4 demonstrates the asymptotically linear speedup
of our method and exemplifies Amdahl’s law.

4 http://www.lua.org/ftp/lua-5.2.3.tar.gz

http://www.lua.org/ftp/lua-5.2.3.tar.gz

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 405

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 2 4 6 8 10 12 14 16

R
el

at
iv

e
sp

ee
du

p

Number of threads

par

Fig. 4. Relative speedup of par given rand

Table 1. Breakdown of execution time of seq. “Elim” means Gaussian elimination on
a structured summary.

Phase hC Elim Total

Time (ms)
rand 810 1 811
inl 13 1 14

Table 2. Breakdown of execution time of bvf. “Cons” means CFG construction,
“Ndef” means numbering definitions, “Init” means initializing gen/kill sets, and “Iter”
means the iterative method.

Phase Cons Ndef Init Iter Total

Time (ms)
rand 431 565 971 334 2301
inl 6 3 6 3 18

Tables 1 and 2 respectively show the breakdowns of the execution time of seq
and bvf given rand and inl. For inl, both seq and bvf were sufficiently fast. For
rand, seq was significantly faster than bvf, but the direct comparison of both
is inappropriate as mentioned earlier. What we can justify from these results is
that our method is not algorithmically slower than the iterative method. It is
notable that the Elim phase in our method incurred no overhead as expected.
Therefore, our method is both feasible and useful if label statements in a given
program are few, specifically less than about 50.

5 Related Work

Rosen [13,14] proposed the concept and method of high-level DFA. His method
performs DFA on a high-level CFG that captures syntactic nesting, by cal-
culating bit-vector equations for each level of statements similarly to interval
analysis [2] but in a much finer-grained manner. Although Rosen dealt with
break/continue, he did not with goto/label. The equations constructed in his

406 S. Sato and A. Morihata

method correspond to structured summaries containing only the leftmost col-
umn vector. His method can potentially deal with goto statements (i.e., jump-
out) but not with label statements (i.e., jump-in). Mintz et al. [10] implemented
Rosen’s method integrated with a CFG-based method to deal with goto/label.
Their method processes ASTs containing no jump-in similarly to Rosen’s. For
ASTs containing a jump-in from the outside, it abandons the idea of calculat-
ing equations and instead constructs a CFG. For ASTs containing no jump-in
from the outside but with a jump(s) between its components, by applying a
CFG-based method to the CFG derived from the AST, the CFG is reduced to
equations. The primary difference between our method and theirs is how the
jump-in is handled. In our method, we detach the data flow of every jump-in
completely from an input AST and summarize it into a structured summary.
As a result, our method performs syntax-directed computation more thoroughly
(e.g., even for context-insensitive interprocedural DFA) than theirs. This trait is
quite advantageous in terms of divide-and-conquer parallelization.

In previous studies on parallelizing DFA [6,5], load balancing was the primary
concern. Lee et al. [6] improved the parallelization of interval analysis [2], where
CFGs are recursively decomposed into substructures called intervals. In interval
analysis, exclusive intervals can be processed in parallel, but the size of each
interval, i.e., the granularity of parallel tasks is diverse. Lee et al. divided a
CFG into controlled-size regions instead of intervals for load balancing and used
an auxiliary tree structure to manage the parallelism among regions. Region
decomposition itself is a sequential task. Kramer et al. [5] utilized the parallel
prefix-sum operation with � for each path of a CFG. Their method unwinds
loops to convert a CFG into a directed acyclic graph. This degrades the generality
of DFA. To make matters worse, their method expands the sharing of paths in a
given CFG. This causes the asymptotic cost of DFA to blow up exponentially5.
Our method is a simpler and cheaper way of divide-and-conquer parallelization,
and furthermore guarantees asymptotically linear speedup.

Many studies on accelerating static analysis [19,8,1,11,12,9] parallelized fixed-
point iterations. Multithreading with worklists [19,1,12] worked well for expected
inputs in practical usage, but this imposes concurrency issues such as mutual
exclusion for worklists, termination detection, deadlock/livelock, and the fair-
ness of underlying schedulers. Parallel implementations specialized for GPUs
[8,11] achieved high performance experimentally, but these techniques are very
hardware-specific. Speculative parallelization [9] was feasible, but it complicates
runtime behaviors. None of these approaches guarantee asymptotic speedup.

6 Conclusion

We have presented a novel syntax-directed parallel method of DFA that tames
goto/label, and also experimentally demonstrated its feasibility and scalability.

5 Their worst-case analysis is wrong on the size of a graph that they called a combining
DAG. It can be exponential to the number of nodes in a given CFG, e.g., a sequence
of if-then-else statements, whose regular path is �r1 � r2� � �r3 � r4� � � � .

Syntax-Directed Divide-and-Conquer Data-Flow Analysis 407

There are two directions for future work. One is to implement our method
more seriously by tying it to compiler optimizations and then to evaluate it prac-
tically. We expect that our method will simplify the construction of optimizing
compilers. The other is to apply our method to other domains, e.g., XML pro-
cessing. We expect that our approach to taming goto/label will be useful for
computation over a mostly hierarchical structure.

Acknowledgments. We thank Hideya Iwasaki for his generous support facili-
tating this work, and Munehiro Takimoto for his advice encouraging this work.

References

1. Albarghouthi, A., Kumar, R., Nori, A.V., Rajamani, S.K.: Parallelizing Top-Down
Interprocedural Analyses. In: Proc. PLDI 2012, pp. 217–228 (2012)

2. Allen, F.E., Cocke, J.: A Program Data Flow Analysis Procedure. Commun.
ACM 19(3), 137–147 (1976)

3. Khedker, U.P., Dhamdhere, D.M.: A Generalized Theory of Bit Vector Data Flow
Analysis. ACM Trans. Program. Lang. Syst. 16(5), 1472–1511 (1994)

4. Kildall, G.A.: A Unified Approach to Global Program Optimization. In: Proc.
POPL 1973, pp. 194–206 (1973)

5. Kramer, R., Gupta, R., Soffa, M.L.: The Combining DAG: A Technique for Parallel
Data Flow Analysis. IEEE T. Parall Distr. 5(8), 805–813 (1994)

6. Lee, Y.F., Ryder, B.G., Fiuczynski, M.E.: Region Analysis: A Parallel Elimination
Method for Data Flow Analysis. IEEE Software Eng. 21(11), 913–926 (1995)

7. Marlowe, T.J., Ryder, B.G.: Properties of data flow frameworks. Acta In-
form. 28(2), 121–163 (1990)

8. Méndez-Lojo, M., Burtscher, M., Pingali, K.: A GPU Implementation of Inclusion-
based Points-to Analysis. In: Proc. PPoPP 2012, pp. 107–116 (2012)

9. Méndez-Lojo, M., Mathew, A., Pingali, K.: Parallel Inclusion-based Points-to Anal-
ysis. In: Proc. OOPSLA 2010, pp. 428–443 (2010)

10. Mintz, R.J., Fisher, G.A., Sharir, M.: The design of a global optimizer. In: Proc.
SIGPLAN Symposium on Compiler Construction 1979, pp. 226–234 (1979)

11. Prabhu, T., Ramalingam, S., Might, M., Hall, M.: EigenCFA: Accelerating Flow
Analysis with GPUs. In: Proc. POPL 2011, pp. 511–522 (2011)

12. Rodriguez, J., Lhoták, O.: Actor-Based Parallel Dataflow Analysis. In: Knoop, J.
(ed.) CC 2011. LNCS, vol. 6601, pp. 179–197. Springer, Heidelberg (2011)

13. Rosen, B.K.: High-Level Data Flow Analysis. Commun. ACM 20(10), 712–724
(1977)

14. Rosen, B.K.: Monoids for Rapid Data Flow Analysis. SIAM J. Comput. 9(1), 159–
196 (1980)

15. Ryder, B.G., Paull, M.C.: Elimination Algorithms for Data Flow Analysis. ACM
Comput. Surv. 18(3), 277–316 (1986)

16. Sharir, M., Pnueli, A.: Two Approaches to Inter-Procedural Data-Flow Analysis.
Prentice-Hall (1981)

17. Tarjan, R.E.: A Unified Approach to Path Problems. J. ACM 28(3), 577–593 (1981)
18. Tarjan, R.E.: Fast Algorithms for Solving Path Problems. J. ACM 28(3), 594–614

(1981)
19. Vaivaswatha, N., Govindarajan, R.: Parallel Flow-Sensitive Pointer Analysis by

Graph-Rewriting. In: Proc. PACT 2013, pp. 19–28 (2013)

Address Chain: Profiling Java Objects

without Overhead in Java Heaps

Xiaohua Shi, Junru Xie, and Hengyang Yu

School of Computer Science and Engineering, Beihang University, Beijing, China
xhshi@buaa.edu.cn, xie789852123@163.com, 457713855@qq.com

Abstract. How to efficiently and adequately profile Java objects is one
of the key problems for debugging, monitoring, program analysis, and
many optimizations. Most current approaches have extra overheads in
Java heaps and slow down the runtime performance significantly, or need
to modify particular object layouts with limited extendibility and adap-
tivity. In this paper, we present a novel profiling mechanism, namely
Address Chain, which has no overhead in Java heaps and does not
modify object layouts, class layouts and any other key structures in Java
Virtual Machines. So far, the Address Chain mechanism profiles the ac-
curate life cycle, the allocation site in jitted code, as well as the physical
memory trace of object movements with time stamps, etc., for every Java
object. Furthermore, it provides a profiling framework that can be easily
adapted to profile more or less information for future requirements. It
is a general mechanism suitable for garbage collectors using mark-and-
sweep, copying or generational algorithms. The runtime overheads of our
approach are reasonable. We implemented our mechanism on Apache
Harmony 6.0 DRLVM, which is a J2SE Virtual Machine with a genera-
tional garbage collector. The runtime overheads of the profiler are about
5% on average for SpecJVM2008, less than 8% for SpecJBB2005, and
about 8% for Dacapo, respectively. We use a distributed mode to col-
lect and calculate the object information from the profiled data sent via
network. For most cases we studied, the object status can be calculated
almost simultaneously when Java applications run on another comput-
ing device. Our mechanism has the capability of providing online object
status in a distributed way. We also demonstrate how to use the profiled
data to help optimizations like pretenuring.

Keywords: Profiling, Garbage Collector, Java Virtual Machine.

1 Introduction

Some languages, like Java, have garbage collectors to manage all the objects at
runtime. The garbage collectors effectively reduce the memory-related failures,
and improve the efficiency of the usage of memory heaps. However, sometime
we still need to understand more about what happened to an object at runtime.
For instance, memory leaks caused by useless objects still happen in programs
written using garbage-collected languages. To determine whether an object could

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 408–427, 2014.
c© Springer International Publishing Switzerland 2014

Address Chain 409

introduce memory leak, we need to understand every object in terms of its life
cycle (when the object was created and how long it lives), allocation site, as
well as its last access time, etc. Furthermore, these kinds of information could
help compilers to do some useful optimizations, like pretenuring, which could
improve the performance of generational garbage collectors by allocating long-
term survived objects in mature object areas directly instead of nursery object
areas first[3][10]. Therefore, how to efficiently and adequately profile objects at
runtime is one of the key problems for debugging, monitoring, program analysis
and many optimizations for garbage-collected languages.

When we profile Java objects in heaps, especially for generational or copying
garbage collectors, we can not use the address of an object as its unique identity
directly, because the object could be moved among different areas at runtime.
Some approaches encode the information in object headers or extended the data
structures of object layouts, like [13][4][5]. Some approaches add additional fields
in object headers to record the profiled information, like [15][16]. These solutions
either modify the existing object layouts and core data structures of Java Virtual
Machines, or require more space in Java heaps. For the former approaches, if we
cannot steal enough bits from the object headers, we have to record approximate
values to fit the limited space, or adapt the data structures of object layouts to
the profiled data. For the latter ones, we have to pay more memory space for
every object in the heap. That could introduce significant overheads to garbage
collectors and Java Virtual Machines. Furthermore, many existing approaches
are designed to profile some particular information, e.g. object allocation sites
or time, etc. It is hard to adapt them to profile more or less information to fulfil
further requirements.

In this paper, we introduce a novel mechanism, namely AddressChain, for
efficiently profiling the accurate life cycle, the allocation site, as well as the
physical memory trace of object movements with time stamps, etc., for every
Java object. The points of our mechanism include:

– There is NO overhead in Java heaps. It does not modify object layouts, class
layouts, etc. It does not modify the jitted code, bytecode, or source code of
Java programs as well.

– So far, it profiles the accurate life cycle, the allocation site in jitted code, as
well as the physical memory trace of object movements with time stamps,
etc., for every Java object. It also provides a profiling framework that can be
easily adapted to profile more or less information for further requirements.

– It is a general mechanism suitable for garbage collectors using mark-and-
sweep, copying, or generational algorithms.

– The runtime overheads of our approach are reasonable. We implemented
our mechanism on Apache Harmony 6.0 DRLVM, which is a J2SE Virtual
Machine with a generational garbage collector. The runtime overheads of
the profiler are about 5% on average for SpecJVM2008, less than 8% for
SpecJBB2005, and about 8% for Dacapo[2], respectively. In practice, the
memory requirements of out-of-java-heap profiling buffers are only dozens of
kilobytes per Java thread or garbage collector thread.

410 X. Shi, J. Xie, and H. Yu

– We use a distributed mode to calculate the object information from the pro-
filed data sent via network. For most cases we studied, the object status can
be calculated almost simultaneously when Java applications run on another
computing device. Our mechanism has the capability of providing online
object status in a distributed way.

– We present how to use the profiled data to help optimizations like pretenuring
as well.

The rest of the paper is structured as follows. Section 2 introduces related
works. Section 3 presents the general mechanism of our approach. Section 4
presents our implementations on Harmony DRLVM. Section 5 demonstrates the
runtime performance of our implementations. Section 6 concludes this paper.

2 Related Work

Many profiling tools, like JProbe[11] and JProfiler[12], profile Java objects with
high runtime overhead, which limits their use.

Hertz et al.[8][9] studied how to profile a garbage collection trace, which is a
chronological record of every object allocation, heap pointer update, and object
death (object becoming unreachable) over the execution of a program. They
used the Merlin object lifetime algorithm to compute object lifetimes. The Mer-
lin algorithm timestamps live objects when they lose an incoming reference and
later uses the timestamps to reconstruct the time at which the object became
unreachable. The algorithm has better performance comparing with the brute
force method that could require over a month for each trace. However, as what
the authors declared, even with the improvement Merlin provides to trace gen-
erations, the time required to generate a trace is still 70-300 times slower than
running the program without tracing.

Bond et al.[5][4] encoded object allocation and last-use sites in object headers.
They need some stolen bits in object headers to record the profiled information.
Hence, they only profile approximated values for the limited space of stolen bits,
and their approach depends on specific JVM implementations. Their previous
approach, namely Sleigh, adds 29% execution time overhead, which adaptive pro-
filing reduces to 11%. Their later approach, which only records the approximated
last-use time in stolen bits of object headers, has 5% overhead for SpecJVM98
and SpecJBB2000. They use the approximated last-use time of every living ob-
ject to determine which object should be temporarily removed from heaps. If
they want to output the profiled data, the time and space overheads could be
much higher for the spending of I/O and profiling dead objects.

Shaham et al.[15] presented a heap-profiling tool for exploring the potential
for space savings in Java programs. The heap-profiling tool attached a trailer
to every object to keep track of their profiling information, and then wrote the
trailer to a log file upon reclamation of the object or upon program termination.
An object’s trailer fields include its creation time, last use time, length in bytes,
nested allocation site and nested last-use site, etc. They did not discuss run-
time overheads of their profiler, because they used the profiler and analysed the

Address Chain 411

profiled data in an off-line mode. However, it is easy to imagine, for workloads
like SpecJBB2005, the added trailers could require hundreds of Mega bytes in
Java heaps, even much higher, for hundreds of millions allocated objects during
program execution.

Chilimbiet et al.[6] presented a memory leak detection tool namely SWAT,
which could trace the allocations and frees of a program, to detect memory leaks.
Their tool has low runtime overhead (less than 5%), and low space overhead
(less than 10% in most cases and often less than 5%). Because their approach
is a sample-based adaptive profiling scheme, the low overhead mainly thanks
to the perfectly designed sampling scheme for a specific purpose, i.e. memory
leak detection. Their profiler produces much less object information than our
approach.

Ha et al.[7] presented the design, implementation, and evaluation of a concur-
rent, configurable dynamic analysis framework that efficiently utilizes multi-core
cache architectures. Their approach offloads the profiled data to another node
as well. However, they did not discuss how to profile Java object at a fine gran-
ularity.

Xu et al.[17] introduced a technique, namely copy profiling, that summarizes
runtime activity in terms of chains of data copies. The execution time of building
their context-insensitive copy graphs is about 10–60 times slower than running
programs without profiling. Xu[18] also introduced a tunable profiling technique
that explores the middle ground between high precision and high efficiency to
find the precision-efficiency sweetspot for various liveness-based optimization
techniques. Unlike our approach, they still use a global object ID that may
occupy a large amount of Java heap memory to identify different objects.

Odaira et al.[13] proposed two approaches to track the allocation sites of ev-
ery Java object with only a 1.0% slowdown on average. Their first approach, the
Allocation-Site-as-a-Hash-code (ASH) Tracker, encodes the allocation site ID of
an object into the hash code field of its header by regarding the ID as part of the
hash code. Their second approach, the Allocation-Site-via-a-Class-pointer (ASC)
Tracker, makes the class pointer field in an object header refer to the allocation
site structure of the object, which in turn points to the actual class structure.
However, their approaches need to steal some bits from object headers or modify
the object layout. It means that the approaches depend on specific JVM imple-
mentations with less extendibility and adaptability. Furthermore, like [5][4], they
only record profiled data in live objects, if they want to output the profiled data,
the time and space overheads could be much higher for the spending of I/O and
profiling dead objects. Odaira et al.[14] also proposed a low-overhead object ac-
cess profiler using a memory-protection-based approach and adaptive overhead
reduction techniques. Their work more focuses on some specified purposes like
profiling object access patterns instead of a general profiling approach.

3 Address Chain Mechanism

This section presents the definitions, profiling rules, building methodologies, as
well as the adaptivity and extendibility of the Address Chain mechanism.

412 X. Shi, J. Xie, and H. Yu

3.1 Definitions

An Address Chain is a chain with linked vectors. Every vector represents one
object, as below:
〈AllocS, Td, T0, Addr0, T1, Addr1, ..., TN , AddrN 〉
In which, AllocS stands for the allocation site of an object. T0 stands for its

allocation time. We use the number of times garbage collector has been invoked
as the allocation time. For instance, if an object was allocated between the second
and third garbage collections, T0 will be 2. The initial physical address of the
object will be assigned to Addr0. Td stands for the dead time of the object. It
could be the reclaiming time of the object, or the time the object is explicitly
marked as dead by the garbage collector. Like T0, Td uses the garbage collection
number as its value, too.

A mark-and-sweep garbage collector does not move objects. So, an Address
Chain vector only has one pair of T and Addr under this scenario. For compact-
ing, copying and generational garbage collectors, objects could be moved among
different areas. When an object has been moved, a new pair of T and Addr will
be appended to its vector. For instance, if an object has been moved the third
time during the fifth garbage collection, a T3 with number 5 and an Addr3 with
the new target physical address of the object will be appended to its Address
Chain vector. With the time sequence, the trace of physical memory movements
of an object differentiates itself from others.

3.2 Profiling Rules

The Address Chain does not exist in Java heaps. It is built from the profiled
data. The profiling rules at runtime are as follows:

– Allocating a new object. The profiler will output a record as:
(NEWOBJ,AllocS,Addr0)

In which, NEWOBJ is a constant number indicating that this data group
has 3 elements, including the constant value itself, the allocation site, and
the initial physical address of the object.

– Garbage collection starting. Every time a garbage collection starts, the pro-
filer will output a pair of values as:
(GCTIME,GCn)

In which, GCTIME is a constant number indicating that the next value,
GCn, is the current garbage collection number.

– Moving an object. The profiler will output a pair of values as:
(Addrprev , Addrtarget)

When an object has been moved by the garbage collector, the profiler will
simply output the previous and target addresses of the object.

– Marking an object as dead. If a garbage collector explicitly marks an object
as dead, the profiler will output a pair of values as:
(DEADOBJ,Addrcur)

In which, DEADOBJ is a constant number indicating that the next
address belongs to a dead object. The Addrcur is the current physical address
of the object.

Address Chain 413

– Garbage collection finished. Every time a garbage collection finishes, the
profiler will output a constant number GCFINISH .

– Other scenarios. The profiler does not output any new record.

The profiled data provide enough information for calculating Address Chain
vectors, which contain the allocation time, the allocation site, as well as the
memory trace for every object. The next section will introduce how to build the
Address Chain.

In theory, we could suppose there is a single limitless buffer out of the Java
heap to receive the profiled data for all Java threads and garbage collectors,
like the left part of Fig. 1. In practice, we use reusable out-of-java-heap buffers
with only dozens of kilobytes per Java thread or garbage collector thread to
store profiled records, and will send them out immediately to another machine
or process via network when buffers are full. So, the memory overheads on the
profiling machine are almost negligible. There is no overhead in Java heaps, and
out-of-java-heap buffers will be reclaimed automatically when Java threads or
garbage collector threads terminate. Section 4 will present more details in terms
of implementations.

All the profiled records could be adapted to some specified profiling
requirements, except the initial physical address of an object and the
(Addrprev , Addrtarget) address pairs, because the trace of physical memory move-
ments of an object differentiates itself from others. The next subsection will
explain more.

Alloca�ng a
new object

GC star�ng

Moving an
object

Address Chain

Marking an
object as
dead

GC finished

NEWOBJ

AllocS

Addr0

… …

Addrprev

Addrtarget

DEADOBJ

Addrcur

… …

… …

GCTIME

1

… …

Profiled Data Buffer

GCFINISH

… …

AllocS0 3 0 Addr00 … 2 Addr02

AllocS1 1 0 Addr10

AllocSi 8 3 Addri0 … 7 Addrin

…

 AllocS Td T0 Addr0 TN AddrN

Fig. 1. Profiled data buffer and Address Chain

3.3 Building Address Chain

Address Chain vectors, like the right part of Fig. 1, can be built from the profiled
data by the algorithm in Fig. 2. The profiled data buffer will be traversed top

414 X. Shi, J. Xie, and H. Yu

down only once. When a record started with NEWOBJ is read, a new Address
Chain vector will be created and appended to the end of the chain. Addr0 of
the new vector will be set to the value of the next entry of the profiled data
buffer. T0 will be assigned to the value of GC Time, which equals to the current
garbage collection number. The Td field of the new vector will be set to NULL
to indicate the object is live.

When a record started with DEADOBJ is read, the algorithm will search
the Address Chain vectors in reverse order, to find out the first vector whose
last Addr value equals to the next entry following DEADOBJ in the profiled
data buffer. Because garbage collectors could reuse the memory spaces in heaps,
different objects may have the same addresses in their vectors, including the
last addresses. However, two objects never occupy the same memory space at
the same time. The latest object is the one who owns the last address when the
DEADOBJ record was profiled. Hence, reversely traversing the Address Chain
just finds out the correct object that is dead.

Then, the value of Td of the found vector will be set to the value of GC Time
to indicate the object is dead.

When a record started with GCTIME is read, the value of GC Time will be
set to the garbage collection number saved in the next entry of the profiled data
buffer.

When a record started with GCFINISH is read, the Td fields of some Ad-
dress Chain vectors need to be patched for some kinds of garbage collectors.
For instance, for a copying or generational garbage collector, the dead objects in
some areas will be abandoned and reclaimed automatically, without any explicit
marking or reclaiming operation. The vectors belonging to these dead objects
should be patched. For instance, most generational garbage collectors simply
copy the infant objects to another area with higher generation, without any
more operation on the corpses. We also need to patch all the unmoved objects in
these copying areas as dead. At this moment, the algorithm will go through the
existing Address Chain, find out the live objects whose last T values are smaller
than the current GC Time in the copying areas, and assign their Td fields to
GC Time to indicate the objects are dead and have been reclaimed.

Beside the scenarios above, the only possible type of records in the profiled
data buffer must have a pair of addresses, which consist of the previous and target
addresses of a moved object. For the aforementioned reason, the algorithm will
search the Address Chain in reverse order to find out the vector whose last
address equals to the previous address, and append a new pair of (TN ,AddrN)
with the value of GC Time and the target address to the end of the vector.

The algorithm in Fig. 2 has O(N2) time complexity and O(N) space complex-
ity, in which N is the number of objects. However, with the support of a hash
table that uses the last addresses of Address Chain vectors as keys, the time
complexity could be significantly reduced. Fig. 4 demonstrates the hash table
and its relations with the Address Chain. Fig. 3 presents the revised algorithm
with hash table support. In Fig. 3, when a new vector has been initialized, a
pointer to the vector will be added into the hash table by using its last address

Address Chain 415

currSlot = 0 ; AddressChain = NULL ;
GC_Time = 0 ;
while(!Empty(ProfiledDataBuffer[currSlot])){
currData = ProfiledDataBuffer[currSlot++];
switch(currData){
case NEWOBJ:
AllocS = ProfiledDataBuffer[currSlot++];
T0 = GC_Time ;
Addr0 = ProfiledDataBuffer[currSlot++];
//Append a new vector to Address Chain
AddNewVector(AddressChain,AllocS,T0,Addr0);
break ;

case DEADOBJ:
currAddr = ProfiledDataBuffer[currSlot++];
//Search the AddressChain in reverse order,
//find the first vector whose last AddrN
//equals to currAddr.
pVector=ReverseSearch(AddressChain,currAddr);
pVector->Td = GC_Time ; break ;

case GCTIME:
GC_Time = ProfiledDataBuffer[currSlot++];
break ;

case GCFINISH:
//For copying and generational GC,
//we need to patch all the unmoved
//and live objs in the copying areas
//as dead & reclaimed.
while(pVector =

GetNextLiveVector(AddressChain)){
if(InCopyArea(pVector)&&pVector->Tn<GC_Time)

pVector->Td = GC_Time ;
}
break ;

default:
//A pair of addresses of a moved object
//previous address == currData
targetAddr==ProfiledDataBuffer[currSlot++];
//Search the AddressChain in reverse order,
//find the first vector whose last AddrN
//equals to currData.
pVector=ReverseSearch(AddressChain,currData);
//Append a new pair of (Tn, AddrN) to pVector,
//in which Tn = GC_Time, AddrN = targetAddr
AddNewAddress(pVector, GC_Time, targetAddr);
//break ;

}
}

Fig. 2. The algorithm of building Address
Chain vectors from the profiled data buffer

//... ... means, same as the original
//algorithm in Fig.2.
... ...
case NEWOBJ:
... ...
AddHashTable(pVector) ; break ;

case DEADOBJ:
... ...
pVector=RemoveFromHashTable(currAddr);
pVector->Td = GC_Time ; break ;

case GCTIME:
... ...
case GCFINISH:
... ...
while(pVector=GetNextVectorFromHashTable()) {
if(InCopyArea(pVector)&& pVector->Tn<GC_Time){

pVector->Td = GC_Time ;
RemoveFromHashTable(pVector->AddrN) ;}}

break ;
default:
... ...
pVector = RemoveFromHashTable(currData);
... ...
AddNewAddress(pVector, GC_Time, targetAddr);
AddHashTable(pVector) ; break ;

Fig. 3. Revised algorithm of building Ad-
dress Chain vectors with hash table support

0x0000

AllocS0 - 0 Addr00 … 2 Addr02

AllocS1 - 0 Addr10

AllocSi - 3 Addri0 … 7 Addrin

…

Address Chain

Buckets

0x0004

… …

0x0100

… …

0x1018

… …

Oi O0

Key

Key

Key

O1

Fig. 4. Hash table for live objects

416 X. Shi, J. Xie, and H. Yu

(Addr0 at this moment) as the key. When a record started with DEADOBJ is
read, the revised algorithm will get the dead vector whose last address equals to
the profiled address from the hash table by using the profiled address as the key,
and remove the vector from the hash table. This process has almost constant
time complexity, and is much faster than the original method ReverseSearch()
in Fig. 2.

In a similar way, when a pair of addresses of a moved object is read, the
revised algorithm will get the corresponding vector from the hash table by using
the previous address as the key, and remove the vector from the hash table.
Then, it will append the current GC Time and the target address to the vector,
and add the vector to the hash table again by using the target address as the
updated key, like Fig. 3.

When a record started with GCFINISH is read, the revised algorithm will
patch some live objects as dead, same as the original algorithm. However, it does
not traverse the whole Address Chain this time. All the live objects have been
added into the hash table, and the hash table only saves live objects. The revised
algorithm will traverse the hash table instead of the whole Address Chain to get
the live objects and make decisions.

The revised algorithm significantly reduced the time complexity with some
more memory overheads from the hash table, which has linear space complexity
to the number of live objects.

3.4 Adaptivity and Extendibility

It is easy to adapt the mechanism to profile more or less information for further
requirements. All fields in an Address Chain vector, except the orderly sequence
of Addrs, can be removed or replaced by others to fit the specified profiling re-
quirements. For instance, if we do not want to profile allocation sites of Java
objects, we can simply remove AllocS fields from Address Chain vectors, and
do not output them at runtime. For instance, if we want to profile the class
information for every object, we can simply add one more CLASS field in vec-
tors. When the profiler outputs records headed by NEWOBJ , it could output
the class handle of the object as well. The algorithm will save class handles in
CLASS fields when initializing new vectors, just like allocation sites.

4 Implementations of the Address Chain Mechanism

This section introduces our implementations of the Address Chain mechanism
on Apache Harmony 6.0 DRLVM, which is a J2ME Java Virtual Machine with
a generational garbage collector namely GCV5.

4.1 GCV5 Garbage Collector of Harmony DRLVM

GCV5 is the default stop-the-world garbage collector of Apache Harmony
DRLVM[1]. It partitions the Java heap into three spaces, namely NOS, MOS and

Address Chain 417

LOS. The nursery object space (NOS) is used for small object allocation, and
partitioned into FromSpaces and ToSpaces. The mature object space (MOS)
is used for storing survived objects from NOS. The large object space (LOS)
is used for allocating objects with large sizes, e.g. more than 5K bytes. GCV5
collects objects in two kinds of collections, i.e. the major collections and mi-
nor collections. During minor collections, GCV5 moves survived objects from
FromSpaces of NOS to ToSpaces, or MOS directly. During major collections,
GCV5 collects the NOS and MOS as a whole space by using a move-and-compact
mechanism, as well as the LOS by a parallel LISP2-based sliding compactor.

4.2 Implementations of the Profiler

We will introduce two implementations of the profiler with uncompressed and
compressed modes in this section. For both implementations, most code of the
profiler was instrumented in the garbage collector.

Uncompressed Mode. The implementation of the profiler with uncompressed
mode is exactly based on the corresponding profiling rules in Section 3.2, as
follows:

– Allocating a new object. In theory, there should be a single limitless buffer
out of the Java heap to receive the profiled data for all Java threads , as
illustrated in the left part of Fig. 1. In practice, we use a reusable thread-
local buffer with 64 kilobytes for every Java thread to save the profiled
data, as illustrated in the left part of Fig. 5. Every buffer is headed by the
value of GC Time and an optional record of the current thread ID and a
serial number that is identical for every buffer. The optional record helps the
profiling data receiver to maintain the completeness of the data.

Harmony DRLVM allocates new objects through two different interfaces,
i.e. gc alloc() and gc alloc fast(). They have similar functions, but the later
one only handles small objects. We only instrument the two interfaces instead
of the jitted code to get object allocation sites by unwinding the call stack
to find the nearest Java frame. The allocation sites will be saved in the
thread-local buffer with the initial physical addresses of objects. For saving
memory, we encode different tags in the last two bits of the profiled records,
to indicate their types, like the right part of Fig. 5. Because GCV5 aligns
all the objects by 4 bytes on a 32-bit system, the last two bits are always
zeros under this scenario. If the new object is allocated in NOS, the lowest
two bits of the first word will be set to 01b, otherwise 10b. When the buffer
is full, or a garbage collection happens, the profiled data in the buffer will
be sent to another process or computing device via sockets. Then the buffer
can be reused again, until the Java thread terminates.

– Garbage collection starting. When a garbage collection happens, all the
remained profiled data in Java thread buffers will be sent out. Then, the
GC Time value will be increased by 1. It will not be outputted alone, but

418 X. Shi, J. Xie, and H. Yu

0xFFFF0000

currAddr | 0x03

targetAddr | 0x01*

prevAddr

AllocS

currAddr | 0x01
Alloca�ng a new

object in NOS

Moving an object

Marking an object
as dead

GC finished

GC_Time

Thread SN

… …

Op�onal

Profiling
Records

Thread-local Profiling Buffer

AllocS

currAddr | 0x02
Alloca�ng a new

object in non-NOS

* NOS only

Fig. 5. Thread-local profiling buffer and encoded records

saved in every thread-local buffer as the header. When GCV5 starts multiple
concurrent collectors, the profiler will apply a thread-local buffer like Fig. 5
with 64 kilobytes for every collector.

– Moving an object. Objects can only be moved during collections. During
minor collections, GCV5 will move the infant objects from FromSpaces to
ToSpaces of NOS, or MOS directly if an object has been moved before during
the last collection. The profiler will write the previous address and target
address of the moved object to the thread-local buffer at this moment. During
major collections, GCV5 will collect the NOS and MOS as a whole space
in a move-and-compact mode. Every time an object is moved, its previous
address and target address will be recorded in the collector buffer as well.
So does the LOS. When a buffer is full, the profiled data in the buffer will
be sent out immediately. If the target address of a moved object belongs to
NOS, its lowest two bits will be set to 01b in the profiled record, like Fig. 5.

– Marking an object as dead. During major collections, MOS collectors will
explicitly mark dead objects. The profiler will record their addresses for all
dead objects in thread-local buffers with death marks, like Fig. 5. It uses the
same buffers as object moving. GCV5 scans LOS during major collections
as well. Collectors will go through all objects, including live and dead ones
in LOS. The profiler will record the addresses of dead objects in LOS in a
similar way. During minor collections, GCV5 copies live objects in NOS to
another area with higher generation. The profiler does not output any death
information under this scenario. Dead objects in NOS will be picked out by
the Address Chain building process later.

– Garbage collection finished. The profiler will output the remaining infor-
mation in thread-local buffers of collectors, and the GCFINISH constant
number, like Fig. 5.

– Other scenarios. In theory, the profiler does not output any new record under
these scenarios. In practice, by the end of program execution, the profiler
will output the remaining information in Java thread buffers.

Address Chain 419

Compressed Mode. For saving the bandwidth of networks, the profiler could
use a compressed mode to buffer the records of allocation sites. Comparing with
the amount of millions even hundreds of millions of objects, the amount of al-
location sites is limited, about several thousands in most workloads we studied.
Therefore, we could compress the profiled data of allocation sites by grouping ob-
jects with the same allocation site together. For instance, for every Java thread,
the profiler could create an independent buffer for a frequently allocated site
that has been executed thousands of times between two garbage collections, be-
sides the unified 64-kilobyte buffer for all sites. An independent buffer is also
structured like Fig. 5, but added one more field to record the corresponding al-
location site in the header. For all the objects allocated at the same site after
the corresponding independent buffer created, they will be profiled together only
with their Addr0 values. All the objects in the same independent buffer have the
same AllocS value as the added field in the header.

The independent buffers are also reusable, and will be automatically reclaimed
when a Java thread finishes or a garbage collection happens. We can use smaller
sizes for the independent buffers, e.g. 4 kilobytes per site, for saving memory
space. In practice, the additional out-of-java-heap memory overheads required
by the independent buffers were only dozens of kilobytes per Java thread on
average.

For most workloads we studied, the profiled allocation sites of new objects
dominate the whole data sets before compression. Therefore, the compressed
mode can obviously reduce the profiled data size and the bandwidth of net-
works, about 50% on average for SpecJVM2008 and SpecJBB2005. Section 5
will demonstrate more about the runtime performance of the compressed mode.

It is easy to extend the compressed mode for further profiling requirements.
For instance, if we want to profile the class information for every object, e.g.
its class name or class handle, we could compress the profiled data of objects
belonging to the same class as well, in a similar way.

4.3 Implementations of the Address Chain Building Algorithm

This section will introduce the single-threaded and multi-threaded implementa-
tions of the Address Chain building algorithm.

Single-Threaded Implementation. The single-threaded implementation of
the Address Chain building algorithm basically follows the two algorithms shown
in Fig. 2 and Fig. 3. It receives data from the profiler via sockets on another
computing device. We use a hash table with 32M buckets mapping to the lowest
three bytes of AddrN , for reducing collisions for hundreds of millions of objects
initialized by SpecJVM2008 and SpecJBB2005. If the new address of a record
belongs to NOS, the lowest two bits marked by 01b will be reserved for further
usage.

The two algorithms have provided almost all the details of how to handle
the object initialization, movements and death records. Beside these scenarios,

420 X. Shi, J. Xie, and H. Yu

when a GCFINISH record is read, dead objects in NOS can be picked out by
traversing the hash table to find out vectors whose AddrN fields have been set
to 01b in the lowest two bits and TN fields are less than the current GC Time.
These NOS objects have been automatically abandoned by the garbage collector
without any explicit reclaiming operation during the last collection. The vectors
of dead objects will be removed and freed from both the hash table and the
Address Chain, after collecting the statistical information.

Multi-threaded Implementation. Although the revised Address Chain build-
ing algorithm in Fig. 3 could significantly reduce the computing complexity, the
Address Chain building process could still be time-consuming, especially for
workloads with hundreds of millions of objects and hundreds of garbage collec-
tions. In fact, one of the most time-consuming parts of the building process is the
routine that marks NOS objects as dead and reclaims their memory space. This
part will traverse all the buckets of the hash table, find out all abandoned NOS
objects and deal with their vectors. However, this traversing routine is bucket-
independent. That means, when traversing one bucket, the routine needs not visit
any other bucket at all. We can start multiple threads to traverse different buck-
ets concurrently without data exchange between threads. The multi-threaded
implementation can obviously improve the runtime performance of the Address
Chain building process, e.g. at most 2.5 times faster than the single-threaded
approach on an Intel’s Core i7-2600 Quad-Core machine for some workloads of
SpecJVM2008. Section 5 will demonstrate more about the runtime performance
of the multi-threaded implementation.

5 Performance Evaluation

This section presents the performance evaluation of the profiler, as well as the
Address Chain building algorithm.

Some analysis results of the profiled data for SpecJVM2008, SpecJBB2005
and Dacapo (DaCapo-9.12-bach) are demonstrated. We also demonstrate how
to use the profiled data to help some optimizations like pretenuring.

5.1 Performance of the Profiler

We chose Apache Harmony 6.0 DRLVM with a generational garbage collector
as the host platform. The Java Virtual Machine and the Address Chain building
algorithm ran on different computing devices. An Intel’s Pentium Dual-Core
E5200 machine and an AMD’s FX-8120 Eight-Core machine were chosen as the
host machines of the profiler, and an Intel’s Core i7-2600 Quad-Core machine
was chosen as the profiled data collector and the Address Chain builder. All
these machines were connected via a Gigabit network. The detailed software
and hardware configurations of testing machines are shown in Table 1.

All the workloads of SpecJVM2008 and Dacapo ran with a 512M Java heap
and default settings. SpecJBB2005 ran with 8 warehouses and a 768M Java

Address Chain 421

Table 1. Configurations of testing machines

Profiling PC A Profiling PC B Data Collct. PC

CPU Type Intel Pentium Dual-Core

E5200

AMD FX-8120 8-Core Intel Core i7-2600 Quad-

Core

CPU Freq. 2.5G 3.1G 3.4G

Main Mem. 2GB 12GB 4GB

OS Ubuntu 12.04 LTS Ubuntu 12.04 LTS Ubuntu Server 12.04

heap. The original Apache Harmony 6.0 DRLVM only supports avrora, fop,
h2, jython, luindex, lusearch, pmd, sunflow, and xalan of Dapaco. Because
SpecJVM2008 and Dacapo both have a workload namely sunflow, the workload
that first appears always belongs to SpecJVM2008 in figures and tables below.

The runtime overheads of the profiler are shown in Fig. 6. We tested the
profiler with both uncompressed and compressed modes on the two profiling
machines shown in Table 1, respectively. The average overheads of SpecJVM2008
were 5.40% and 6.78% on the two testing machines with the uncompressed mode,
respectively. The average overheads of SpecJBB2005 were 7.83% and 10.72% on
the two testing machines with the uncompressed mode, respectively. The average
overheads of Dacapo were 8.12% on Machine A. For the compressed mode, the
average overheads were 6.45% and 8.32% for SpecJVM2008, and 10.07% and
10.32% for SpecJBB2005, respectively. For the compressed mode, the average
overheads of Dacapo were 12.31% on Machine A.

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

co
m

pi
le

r
co

m
pr

es
s

cr
yp

to
de

rb
y

m
pe

ga
ud

io
sc

im
ar

k.
la

rg
e*

sc
im

ar
k.

sm
al

l
se

ria
l

su
nfl

ow xm
l

Sp
ec

JV
M

20
08

 A
vg

.
Sp

ec
JB

B2
00

5
av

ro
ra fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
pm

d
su

nfl
ow

xa
la

n
Da

ca
po

 A
vg

.

Run�me Overheads of the Profiler

Machine A. Uncompressed Machine A. Compressed

Machine B. Uncompressed Machine B. Compressed

Fig. 6. Runtime overheads of the profiler. *Note: The original Apache Harmony 6.0
DRLVM does not support scimark.large of SpecJVM2008 on Machine B.

In most cases, the compress mode was a little bit slower than the uncom-
pressed mode, as shown in Fig. 6. This is due to the runtime overheads of
unifying objects with the same allocation site to the same profiling buffer. Al-
though we used a hash table to speed up the unifying process for every Java
thread, it still could slow down the performance about 2− 4% on average. How-
ever, the compressed mode obviously reduced the bandwidth of networks and

422 X. Shi, J. Xie, and H. Yu

Table 2. Bandwidths and profiled data sizes

Benchmark Network BW.

(MB/S) Uncom-

pressed

Network BW.

(MB/S) Com-

pressed

Profiled Bytes

per obj. Uncom-

pressed

Profiled Bytes

per obj. Com-

pressed

compiler 29.45 15.67 8.86 4.73

compress 0.08 0.07 21.71 19.42

crypto 5.57 2.88 8.21 4.28

derby 29.30 14.18 8.03 4.04

mpegaudio 0.06 0.04 9.25 6.07

scimark.large 0.02 0.02 25.51 24.00

scimark.small 0.08 0.05 10.27 7.08

serial 22.77 11.37 8.02 4.10

sunflow 32.12 16.51 8.39 4.28

xml 24.36 12.49 8.06 4.14

SpecJVM2008

Avg.

10.05 5.16 8.30 4.29

SpecJBB2005 22.08 12.13 8.20 4.77

avrora 1.77 1.06 8.33 4.84

fop 9.24 3.49 8.59 5.45

h2 51.88 30.05 8.96 5.60

jython 14.09 7.18 8.38 4.69

luindex 2.70 1.67 10.99 8.92

lusearch 12.80 6.53 8.89 4.62

pmd 12.13 6.23 8.40 4.72

sunflow 31.29 15.45 8.05 4.07

xalan 10.94 6.75 8.64 5.61

Dacapo Avg. 16.31 8.71 8.80 5.39

the size of profiled data, e.g. more than 50% on average for SpecJVM2008 and
SpecJBB2005, and about 40% on average for Dacapo, as shown in Table 2. The
compressed mode is useful for environments with limited bandwidth or storage
capabilities.

Table 2 also shows the network bandwidths and the sizes of profiled data per
object for both uncompressed and compressed modes on profiling machine A.
For the uncompressed mode, the average bandwidths were 10.05 MB/S, 22.08
MB/S and 16.31 MB/S for SpecJVM2008, SpecJBB2005 and Dacapo, respec-
tively. The highest bandwidth was 51.88 MB/S for sunflow of SpecJVM2008,
and the lowest bandwidth was 0.02 MB/S for scimark.large of SpecJVM2008.
For the compressed mode, the average bandwidths have been reduced about
50% to 5.16 MS/S and 12.13 MB/S for SpecJVM2008 and SpecJBB2005, re-
spectively. The highest bandwidth was 30.05 MB/S for h2 of Dacapo, and the
lowest bandwidth was 0.02 MB/S for scimark.large of SpecJVM2008. For a Gi-
gabit network system, all the bandwidths are acceptable for both uncompressed
and compressed modes.

For the uncompressed mode, the average sizes of profiled data per object
were 8.3, 8.2 and 8.8 bytes for SpecJVM2008, SpecJBB2005 and Dacapo, re-
spectively. For the compressed mode, the average sizes were 4.29, 4.77, and 5.39
bytes, respectively. The workload scimark.large of SpecJVM2008 had the lowest
bandwidth, but the largest size of profiled data per object, i.e. 25.41 bytes for un-
compressed mode and 24 bytes for compressed mode. The major reason is, a lot
of MOS and LOS objects of scimark.large were heavily moved during garbage
collections. That caused the profiler to produce many (Addrprev , Addrtarget)
pairs that could not be compressed.

Address Chain 423

5.2 Performance of the Address Chain Building Algorithm

Fig. 7 presents the runtime performance of the single-threaded andmulti-threaded
implementations of the Address Chain building algorithm shown in Fig. 3, by us-
ing the profiling machine A and the data collecting machine shown in Table 1. We
compared the calculating time of the building algorithm with the execution time
of the corresponding workload. In this figure, 100% means the building algorithm
was exactly as fast as the workload, and 80% means the algorithm was 20% faster
than the workload.

We can find that the single-threaded implementation of the algorithm was
on average about 16%, 77% and 3% slower than the Java Virtual Machine
for SpecJVM2008, SpecJBB2005 and Dacapo, respectively. However, the multi-
threaded implementation was on average about 4% faster than the Java Virtual
Machine for SpecJVM2008, 56% slower for SpecJBB2005, and 6% faster for Da-
capo, respectively. The multi-threaded implementation was on average about
33%, 12% and 9% faster than the single-threaded version for SpecJVM2008,
SpecJBB2005 and Dacapo on the Intel’s Quad-Core machine by using 32 threads
to mark dead NOS objects concurrently, respectively. That means, our mecha-
nism has the capability of providing online object status in a distributed way
for most workloads we studied.

0%
50%

100%
150%
200%
250%
300%
350%

co
m

pi
le

r
co

m
pr

es
s

cr
yp

to
de

rb
y

m
pe

ga
ud

io
sc

im
ar

k.
la

rg
e

sc
im

ar
k.

sm
al

l
se

ri
al

su
nfl

ow xm
l

Sp
ec

JV
M

20
08

 …
Sp

ec
JB

B2
00

5
av

ro
ra fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
pm

d
su

nfl
ow

xa
la

n
D

ac
ap

o
A

vg
.

Run�me Performance of Address Chain Building
Algorithms vs. JVM

Single-Thread

Mul�-Thread

Fig. 7. Runtime performance of Address
Chain building algorithm comparing with
the Java Virtual Machine

0
100
200
300
400
500
600
700
800
900

co
m

pi
le

r
co

m
pr

es
s

cr
yp

to
de

rb
y

m
pe

ga
ud

io
sc

im
ar

k.
la

rg
e

sc
im

ar
k.

sm
al

l
se

ri
al

su
nfl

ow xm
l

Sp
ec

JV
M

20
08

 …
Sp

ec
JB

B2
00

5
av

ro
ra fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
pm

d
su

nfl
ow

xa
la

n
D

ac
ap

o
A

vg
.

M
By

te

Memory Overheads of the Address Chain
Building Algorithm

Average

Max.

Fig. 8. Memory overheads of the Address
Chain building algorithm on the data col-
lecting machine

The memory overheads of the algorithm on the data collecting machine are
shown in Fig. 8. The average memory sizes required by the algorithm were about
252M, 494M and 222M bytes for SpecJVM2008, SpecJBB2005 and Dacapo, re-
spectively. The maximum memory sizes were about 572M bytes for the workload
compiler of SpecJVM2008, 608M bytes for SpecJBB2005, and 798M for h2 of
Dacapo, respectively.

Fig. 9 presents the processed object numbers per second by the multi-threaded
algorithm on the data collecting machine. The multi-threaded implementation
could process on average more than 1.8, 1.7 and 2.6 million objects per second for
their entire life cycles, for SpecJVM2008, SpecJBb2005 and Dacapo, respectively.

424 X. Shi, J. Xie, and H. Yu

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

co
m

pi
le

r
co

m
pr

es
s

cr
yp

to
de

rb
y

m
pe

ga
ud

io
sc

im
ar

k.
la

rg
e

sc
im

ar
k.

sm
al

l
se

ria
l

su
nfl

ow xm
l

Sp
ec

JV
M

20
08

 A
vg

.
Sp

ec
JB

B2
00

5
av

ro
ra fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
pm

d
su

nfl
ow

xa
la

n
Da

ca
po

 A
vg

.

Processed Object Numbers per Second

Fig. 9. Objects processed per second by the multi-threaded implementation of the
Address Chain building algorithm

5.3 Profiled Data Analysis

Table 3 shows the total object numbers, objects died during major collec-
tions, objects died during minor collections, the average life cycles of objects
counted in garbage collection times, as well as the total garbage collection times
for SpecJVM2008, SpecJBB2005 and Dacapo. The dead objects in MOS and
LOS were only marked and reclaimed by GCV5 during major collections. The
NOS objects were reclaimed during both minor and major collections. On av-
erage, more than 76%, 97% and 69% objects died during minor collections for
SpecJVM2008, SpecJBB2005 and Dacapo, respectively. The total object num-
ber minus the sum of objects died in major and minor collections equals to the
number of objects survived at the end of Java program execution.

Table 3. Object life cycles of SpecJVM2008, SpecJBB2005 and Dacapo

Workload Obj # Died in Major

GC.

Died in Minor

GC.

Avg. Life

Cycl.

GC #

compiler 2,687,615,414 9,994,180 2,672,421,727 0.40 347

compress 1,439,278 547,380 533,690 3.05 19

crypto 820,878,761 17,741,796 802,508,705 0.30 421

derby 2,394,376,389 20,040,660 2,372,915,933 0.46 421

mpegaudio 2,810,041 126,477 2,071,807 2.54 31

sci. large 1,531,628 313,733 790,400 5.79 34

sci. small 15,312,110 861,661 14,021,032 2.48 142

serial 1,221,030,456 2,477,287 1,217,080,285 0.08 325

sunflow 1,497,652,655 126,477 1,494,757,222 0.62 177

xml 2,555,748,192 2,509,129,381 40,626,795 0.36 380

JBB2005 214,208,072 7,709,328 701,398,471 0.30 94

avrora 2,977,153 0 177,507 0.04 1

fop 3,134,693 45,970 195,524 0.10 2

h2 135,991,578 10,459,133 115,703,110 0.93 25

jython 46,718,046 38,242,009 2,625,698 0.10 8

luindex 670,397 117,599 175,635 0.40 2

lusearch 11,963,090 390,868 10,126,243 0.24 14

pmd 9,397,088 171,845 7,500,996 0.07 3

sunflow 62,180,768 135,496 56,486,622 0.02 8

xalan 9,781,989 4,350,505 2,286,462 0.07 4

Address Chain 425

Table 4. Top allocation sites of SpecJVM2008, SpecJBB2005 and Dacapo

Workload Total Alloc. Sites Top Sites

compiler 7841 79

compress 5900 101

crypto 6256 4

derby 8362 29

mpegaudio 8989 37

sci. large 5907 103

sci. small 5992 10

serial 6153 12

sunflow 6499 5

xml 10570 30

JBB2005 4951 6

avrora 3535 13

fop 9708 50

h2 3688 36

jython 11329 174

luindex 3237 43

lusearch 3078 51

pmd 4316 84

sunflow 3598 6

xalan 4083 30

Table 4 shows how many allocation sites allocating more than 80% of the total
objects. For instance, the workload compiler of SpecJVM2008 allocated 80.22%
objects at the top 79 allocation sites of the total 7841 sites. With more details of
the top allocations sites, these kinds of information could help programmers and
compilers to understand the hottest sites regarding memory allocation better.

5.4 Example of Application

Although we demonstrate more about our profiling mechanism itself in this
paper, the current profiled data could help some optimizations like pretenuring
as well. Table 5 demonstrates some allocation sites that allocated long-term
survived objects (died in MOS) much more than short-term survived ones (died
in NOS) in SpecJVM2008 and SpecJBB2005. For instance, the allocation site
0xCA14CF of SpecJBB2005 method create random a string() allocated more
than 1.7 million objects, 100% of which died in MOS spaces. If the Java Virtual
Machine pretenures these objects in MOS spaces directly, instead of allocating
them in NOS first, the performance of the garbage collector could be better.

Table 5. Allocation sites for pretenuring candidates in SpecJVM2008 and
SpecJBB2005

Workload Method Alloc. Site % of Obj. Died

in MOS

Total Obj.

JBB2005 create random a string() 0xCA14CF 100% 1,785,160

sci. small newCharBuffer() 0xAEC501 83.59% 15,784

newDecoder() 0xAEBDC7 83.58% 15,778

sci. large RES GET KEY16() 0x7CD8614 88.45% 5,653

mpegaudio RES GET KEY16() 0x7952614 97.27% 4,801

compress java.lang.Long. toString() 0x722485E 99.67% 5,491

java.lang.String. getBytes() 0x844FA73 96.95% 10,049

426 X. Shi, J. Xie, and H. Yu

Of cause, the current profiler could not be used to perform optimizations directly,
however, it is possible to enhance the profiler for further requirements.

6 Conclusion

The AddressChain mechanism profiles Java objects without overhead in Java
heaps. It also provides a profiling framework that can be easily adapted to profile
more or less information for further requirements. The runtime performance of
the profiler is reasonable. The object status could be calculated almost simulta-
neously for most workloads we studied in a distributed way. The mechanism is
useful for debugging, monitoring, program analysis and many optimizations for
garbage-collected languages.

Acknowledgments. This material is based upon works supported by National
Natural Science Foundation of China No.61073010 and No.61272166.

References

1. Apache DRLVM GCV5, http://harmony.aparche.org/subcomponents/drlvm/
gc-v5.html

2. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovic, D., Van Drunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In: OOPSLA 2006: Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications, Portland, USA, October 22-26 (2006)

3. Blackburn, S.M., Hertz, M., McKinley, K.S., Moss, J.E.B., Yang, T.: Profile-Based
Pretenuring. ACM Transactions on Programming Languages and Systems 29(1)
(2007)

4. Bond, M.D., McKinley, K.S.: Leak Pruning. In: Proceedings of ASPLOS 2009,
Washington, DC, USA (2009)

5. Bond, M.D., McKinley, K.S.: Bell: Bit-Encoding Online Memory Leak Detection.
In: Proceedings of ASPLOS 2006, San Jose, California, USA (2006)

6. Chilimbi, T.M., Hauswirth, M.: Low-Overhead Memory Leak Detection Using
Adaptive Statistical Profiling. In: Proceedings of ASPLOS 2004, Boston, MA, USA
(2004)

7. Ha, J., Arnold, M., Blackburn, S.M.: A Concurrent Dynamic Analysis Framework
for Multicore Hardware. In: Proceedings of OOPSLA 2009, Orlando, Florida, USA
(2009)

8. Hertz, M., Blackburn, S.M., Moss, J.E.B., McKinley, K.S., Stefanovic, D.: Error-
free garbage collection traces: How to cheat and not get caught. In: Proceedings of
the International Conference on Measurement and Modeling of Computer Systems,
Marina Del Rey, CA, USA (2002)

9. Hertz, M., Blackburn, S.M., Moss, J.E.B., McKinley, K.S., Stefanovic, D.: Gen-
erating object lifetime traces with Merlin. ACM Transactions on Programming
Languages and Systems (TOPLAS) 28(3), 476–516 (2006)

http://harmony.aparche.org/subcomponents/drlvm/gc-v5.html
http://harmony.aparche.org/subcomponents/drlvm/gc-v5.html

Address Chain 427

10. Jump, M., Blackburn, S.M., McKinley, K.S.: Dynamic object sampling for pre-
tenuring. In: Proceedings of the 4th International Symposium on Memory Man-
agement, pp. 152–162 (2004)

11. JProbe, http://www.quest.com/jprobe
12. JProfiler, http://www.ej-technologies.com
13. Odaira, R., Ogata, K., Kawachiya, K., Onodera, T., Nakatani, T.: Efficient Run-

time Tracking of Allocation Sites in Java. In: Proceedings of VEE 2010, Pittsburgh,
Pennsylvania, USA (2010)

14. Odaira, R., Nakatani, T.: Continuous object access profiling and optimizations to
overcome the memory wall and bloat. In: Proceedings of ASPLOS XVII, London,
England, UK (2012)

15. Shaham, R., Kolodner, E.K., Sagiv, M.: Heap profiling for space-efficient Java. In:
Proceedings of PLDI 2001, pp. 104–113 (2001)

16. Sun, Q.Y., Shi, X.H., Xie, J.R.: Profiling Object Life Ranges for Detecting Memory
Leaks in Java Virtual Machine. In: Proceedings of PDCAT 2012, Beijing, China
(2012)

17. Xu, G., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the Flow:
Profiling Copies To Find Runtime Bloat. In: Proceedings of PLDI 2009, Dublin,
Ireland (2009)

18. Xu, G.: Resurrector: A Tunable Object Lifetime Profiling Technique for Optimizing
Real-World Programs. In: Proceedings of OOPSLA 2013, Indianapolis, Indiana,
USA (2013)

http://www.quest.com/jprobe
http://www.ej-technologies.com

Call-by-Value in a Basic Logic for Interaction

Ulrich Schöpp

Ludwig-Maximilians-Universität München, Germany

Abstract. In game semantics and related approaches to programming language
semantics, programs are modelled by interaction dialogues. Such models have
recently been used by a number of authors for the design of compilation meth-
ods, in particular for applications where resource control is important. The work
in this area has focused on call-by-name languages. In this paper we study the
compilation of call-by-value into a first-order low-level language by means of an
interpretation in a semantic interactive model. We refine the methods developed
for call-by-name languages to allow an efficient treatment of call-by-value. We
introduce an intermediate language that is based on the structure of an interac-
tive computation model and that can be seen as a fragment of Linear Logic. The
main result is that Plotkin’s call-by-value CPS-translation and its soundness proof
can be refined to target this intermediate language. This refined CPS-translation
amounts to a direct compilation of the source language into a first-order language.

1 Introduction

The compilation of programming languages to machine code is usually considered as
a series of translation steps between intermediate languages of varying expressiveness.
While managing the details of low level intermediate languages is sometimes consid-
ered an implementation problem, there are many good reasons for studying the logical
principles underlying the low level details of compilation, e.g. for the formal verifica-
tion of compilers and optimisers, the design of intermediate languages, or the analysis
of machine code behaviour and resource usage.

The study of the logical structure of low-level computation has been fruitful in recent
work on the compilation of programming languages with strong resource constraints. A
number of authors, e.g. [10,11,7,9], have used semantic models related to game se-
mantics to design compilation methods with various resource usage guarantees. Game
semantics explains higher-order computation by interaction dialogues and can be used
to organise low-level programs into semantic models. The idea is to think of low-level
programs as implementations of game semantic strategies, so that interaction dialogues
appear as traces of low-level programs. Following this idea, one can construct models
that have interesting structure, enough to interpret higher-order languages, but also suit-
able for fine-grained control of resources. For example, the structure has been shown to
allow good control of stack space usage in work on using of higher-order languages for
hardware synthesis [10] and for programming in logarithmic space [7].

It is reasonable to ask if such semantically-motivated compilation methods are not
useful for analysing and organising compilation even if one does not want to impose
resource restrictions. Control of stack space usage, for example, is important in compi-
lation and having logical and semantic principles to account for it should be useful.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 428–448, 2014.
c© Springer International Publishing Switzerland 2014

Call-by-Value in a Basic Logic for Interaction 429

One way of assessing this question is to capture the structure of semantically-
motivated compilation methods in terms of higher intermediate languages and to study
their utility for general compilation. In our case, this entails to study the structure of
interactive models built from a low-level language, to define intermediate languages for
working with this structure and to assess questions such as: Can existing languages be
compiled by translation to such an intermediate language? Would we obtain efficient
compilation methods and how would they relate to existing methods? Most importantly,
would we gain anything from moving to such a more structured intermediate language?
Can we identify logical principles for the intermediate language that allows us to reason
about low-level programs, such as for proving compiler correctness or resource bounds?

For the compilation of call-by-name languages, such as PCF, there is growing ev-
idence that these questions have a positive answer. The above-mentioned work on
resource-aware compilation considers call-by-name languages that can be seen as frag-
ments of PCF with various resource constraints. By relaxing constraints on resources, it
is possible to extend this work to cover all of PCF. It turns out that one obtains efficient
compilation methods that are related to standard techniques in the compilation of pro-
gramming languages, such as CPS-translation and defunctionalization [23]. The transla-
tion from PCF to the interactive model can be seen as a thunkifying translation [13] into
an intermediate language, such as the one described in [24], and correctness follows
immediately from equations in the intermediate language.

In this paper we consider the case of call-by-value source languages, which has re-
ceived much less attention so far. We present a basic intermediate language close to
Tensorial Logic [17] that captures just the structure needed to handle the translation of
a call-by-value source language. What we obtain is a translation from source language
to low-level language that fully specifies all details of the translation, including clo-
sure representation. It is compositional, allows for separate compilation and specifies
abstractly the interfaces of compiled modules. We show that standard techniques for
equational reasoning in the polymorphic λ-calculus can be transported to the interme-
diate language, which allows for a simple proof of correctness for the translation from
call-by-value source language to low-level language.

The translation is a refined call-by-value CPS-translation. Existing work has shown
that interactive models naturally support call-by-name languages, so it seems reason-
able to try to reduce the case for call-by-value languages to that for call-by-name lan-
guages. Indeed, a standard CPS-translation from call-by-value to call-by-name leads to
programs that implement call-by-value programs in a natural way. However, the transla-
tion fails to satisfy the well-known requirement that call-by-value translations should be
safe for space [26], which means that the value of a variable should be discarded after
the last use in its scope. It appears that the structure identified so far for call-by-name
languages does not give us enough low-level control to satisfy such requirements.

Let us outline the issue concretely, using as an example the language INTML [7],
which is a call-by-name language developed for compilation with LOGSPACE guaran-
tees. In INTML stack memory management information is made explicit in the type
system. Function types have the form A ·X � Y , where A is a type of values that the
function needs to preserve on the stack when it makes a call to its argument. When the
function makes a call to its argument, a value of type A is put on the stack and is kept

430 U. Schöpp

there until the call returns, whereupon the value of type A is removed from the stack for
further use. Thus, values are removed from the stack only when a call returns.

That values are removed from the stack only upon function return is problematic
for programming in continuation passing style. Continuations are functions that are
invoked, but that typically never return. If one considers CPS-translated call-by-value
programs, then this means that no value will ever be discarded in the course of compu-
tation. Indeed, if we translate the term let x=5 in let y=x+1 in let z=y+4 in z+3 to
INTML using Plotkin’s CPS-translation (see Section 4.1), then the resulting term can be
given type (nat× nat× nat) · (unit · [nat] � [0]) � [0]. The type already shows that
the continuation will be called with three natural numbers on the stack, even though
only a single number, namely 13, should be needed. Indeed, the stack will contain the
triple 〈6, 10, 13〉 of all the intermediate values for x, y and z. The question is therefore
how we can give a translation that deallocates values that are not needed anymore.

In this paper we show how to refine the CPS-translation to target an intermediate lan-
guage derived from an interactive model in a way that addresses this issue of managing
values and their deallocation. It turns out that this issue is orthogonal to duplication in
the source language. In order to focus on value management, we shall therefore first
focus on the linear case. To allow duplication it will be enough to allow duplication in
the intermediated language, see Section 5.

In Section 3 we first define a basic linear intermediate language. This intermediate lan-
guage allows us to formulate the call-by-value translation for a linear source language as
a refinement of Plotkin’s call-by-value CPS-translation [19] in Section 4. In contrast to
standard approaches of compiling with continuations, such as [4], where CPS-translation
targets a higher-order intermediate language that still requires closure conversion, the re-
fined CPS-translation fully specifies a translation from source language to the first-order
low-level language. The translation appears to be related to defunctionalizing compila-
tion methods [5,6], see also [23]. We believe that it is also related to the call-by-value
games of [14,3], in particular [16] seems relevant. Notice, however, that these games do
not make explicit which values must be stored for how long. The translation in this paper
makes this and other low-level details, such as closure conversion, explicit. In Section 4
we show it nevertheless allows the soundness of the translation to be proved by an argu-
ment close to Plotkin’s original soundness proof. In Section 5 we then explain how to lift
the linearity restriction in order to translate a simply-typed source language.

2 Low-Level Programs

We start by fixing the low-level language, which is essentially a goto language. It is
typed and works with values of the following first-order types.

Value Types A,B ::= α
∣∣ nat

∣∣ unit
∣∣ A×B

∣∣ 0
∣∣ A+ B

Values v, w ::= x
∣∣ n

∣∣ 〈〉 ∣∣ 〈v, w〉 ∣∣ inl(v)
∣∣ inr(v)

Low-level programs are built from blocks of the form f (x : A) { b }, where f is the block
label, x is its formal parameter and b is the body, formed according to the grammar below.
Therein, v ranges over values, g over labels and op over primitive operation constants.

b ::= let x=op(v) in b
∣∣ let 〈x, y〉=v in b

∣∣ case v of inl(x)⇒b1; inr(y)⇒b2
∣∣ g(v)

Call-by-Value in a Basic Logic for Interaction 431

The set of constants that takes arguments of type A and returns values of type B is
defined by a set Prim(A,B). In this paper, we assume Prim(nat, unit) = {print},
Prim(nat × nat, int) = {add, times, div}, Prim(nat × nat, unit + unit) = {eq, lt}
and that all other Prim-sets are empty.

A program p is given by a set of block definitions together with two distinguished
labels entryp and exitp. The program must be such that there are no two block defini-
tions with the same label and that there is no definition of the exit label. We write short
(x �→ v) for the program with a single block entry(x : A) { exit(v) } and use informal
pattern matching notation, such as writing (〈x, y〉 �→ v) for (z �→ let 〈x, y〉=z in v).
We write ΩA for the nonterminating program entry(x : A) { entry(x) }.

Programs are assumed to be typed in the canonical way. We write p : A → B if p is
a program whose entry and exit labels accept values of type A and B respectively.

Operational Semantics. The operational semantics of a program p is given by a relation
b1

o−→p b2, which expresses that body term b1 reduces to body term b2 while outputting
the sequence of closed values o using the print-operation. We write ε for the empty
sequence and o1o2 for concatenation of o1 and o2.

This relation is defined to be the smallest relation such that b1
o1−→p b2

o2−→p b3
implies b1

o1o2−−−→p b3, such that f(v)
ε−→p b[v/x] if p contains a block definition

f (x : A) { b }, and such that the following hold.

let 〈x, y〉=〈v, w〉 in b
ε−→p b[v/x, w/y] case inl(v) of inl(y)⇒b; . . .

ε−→p b[v/y]

let x=print(v) in b
v−→p b[unit/x] case inr(v) of . . . ; inr(y)⇒b

ε−→p b[v/y]

let x=add(〈m,n〉) in b
ε−→p b[m+ n/x] (similar cases for mul, div, eq and lt)

Notation. We consider two programs p, q : A → B equal, written p = q, if they have
the same observable effects and return the same values: Whenever entryp(v)

o−→p b then

entryq(v)
o−→q b′ for some b′, whenever entryp(v)

o−→p exitp(w) then entryq(v)
o−→q

exitq(w), and the same two conditions with the roles of p and q exchanged.
We use standard graphical notation [25] for working with low-level programs. A

program p : A1 + · · · + An → B1 + · · · + Bm is depicted like on the left below.
Shown next to it are the identity program idA : A → A and the swapping program
swapA,B : B + A → A + B. Programs can be composed by vertical and horizontal
composition and by taking loops. For two programs q1 : A → B and q2 : C → D, their
vertical composition is the sum q1+q2 : A+C → B+D, which is the program obtained
by renaming all labels in q1 and q2 so that no label appears in both programs and by
adding new definitions entry(x : A +C) { case x of inl(x1)⇒entryq1(x1); inr(x2)⇒
entryq2(x2) }, exitq1 (x : B) { exit(inl(x)) } and exitq2 (x : D) { exit(inr(x)) }, where
entry and exit are the fresh entry and exit labels of q1+q2. The horizontal composition
of r1 : A → B and r2 : B → C stands for the sequential composition r2 ◦ r1 : A → C
and is defined similarly. Loops are defined by jumping from the exit to entry label.

An

A1

Bm

p
q1

A B
B A q2B1

A A r1 r2 s

432 U. Schöpp

The values of any closed type A can be encoded into natural numbers, that is one
can define programs encodeA : A → nat and decodeA : nat → A such that decodeA ◦
encodeA = idA holds. To simplify the examples, we assume that the encoding and
decoding functions for nat are the identity. Given a value-type-with-hole C[·], i.e. a
value type with zero or more occurrences of ·, we write C[A] for the type obtained
by replacing each · with A. The encoding and decoding programs can be lifted to
C[encodeA] : C[A]→ C[nat] and C[decodeA] : C[nat]→ C[A] by induction on C.

3 A Basic Linear Intermediate Language

In this section we introduce a basic linear higher-order intermediate language LIN that
can be used to organise low-level programs and to reason about them. It can be seen
as a syntactic description of the mathematical structure obtained by applying the Int
construction [15] to a term model of the low-level language, see [7]. The intermediate
language recombines the ideas developed in [21,7,22] in a way that is suitable to handle
also the translation of call-by-value. It was inspired by Melliès’ Tensorial Logic [18,17].
We can give here only a concise definition of bare LIN; a richer intermediate language,
defined not solely for the study of call-by-value, is described in detail in [24].

The types and terms of LIN are defined by the following grammars, in which A
ranges over value types and α ranges over value type variables.

Interface Types X,Y ::= A⊥ ∣∣ X � Y
∣∣ ∀α.X

These types may be thought of as the interfaces of interactive entities that are imple-
mented in the low-level language. The type A⊥ is the interface of low-level programs
that accept inputs of type A and that never return anything. The type X � Y is the in-
terface of low-level programs that when linked to a program implementing interface X
become an implementation of interface Y . Finally, value type polymorphism ∀α.X
makes it easier to write programs and to reason about them.

The terms of LIN are defined as follows, where p ranges over low-level programs.

s, t ::= x
∣∣ p∗t

∣∣ 〈s, t〉 ∣∣ let 〈x, y〉=s in t
∣∣ λx:X. t

∣∣ s t
∣∣ Λα. t

∣∣ t A

The typing rules for LIN are given in Fig. 1. We explain the meaning of terms by
defining a translation to low-level programs. Each type X represents an interface that
consists of two value types X− and X+:

(A⊥)− = A (X � Y)− = X+ + Y − (∀α.X)− = X−[nat/α]

(A⊥)+ = 0 (X � Y)+ = X− + Y + (∀α.X)+ = X+[nat/α]

The idea is that an implementation of interface X is a program of type X− → X+. For
contexts we let (−)− = (−)+ = 0 and (Γ, x : X)− = Γ− + X− and (Γ, x : X)+ =
Γ+ + X+. A program of type Γ− → Γ+ thus consists of an implementation of the
interface of each variable in Γ .

A typing sequent Γ
 t : X is translated as a low-level program �Γ
 t : X� of type
Γ+ + X− → Γ− + X+, where we write (−) for the operation of substituting nat for
all free type variables. The intention is that if one connects an implementation e of the
interface of Γ as follows, then one obtains a program implementing interface X .

Call-by-Value in a Basic Logic for Interaction 433

AX
x : X � x : X

Γ � t : Y
WEAK

Γ, x : X � t : Y

Γ, y : Y, x : X, Δ � t : Z
EXCH

Γ, x : X, y : Y, Δ � t : Z

0
� � : 0⊥

p : A→ B Γ � t : B⊥
ACT

Γ � p∗t : A⊥

Γ � s : A⊥ Δ � t : B⊥
〈〉I

Γ,Δ � 〈s, t〉 : (A+B)⊥
Γ � s : (A+B)⊥ Δ,x : A⊥, y : B⊥ � t : X

〈〉E
Γ,Δ � let 〈x, y〉=s in t : X

Γ, x : X � t : Y�I
Γ � λx:X. t : X � Y

Γ � s : X � Y Δ � t : X�E
Γ,Δ � s t : Y

Γ � t : X∀I α not in Γ
Γ � Λα. t : ∀α.X

Γ � t : ∀α.X∀E
Γ � t A : X[A/α]

Fig. 1. Linear Intermediate Language

X− X+

Γ+ Γ−
�Γ
 t : X�

e

The translation is defined by induction on the derivation and is given in graphical
notation below. Strictly speaking, we define an interpretation of derivations rather than
sequents. We write only �Γ
 t : X�, as different derivations of the same sequent will
be equal in the sense defined in the next section. We also write just �t� when context
and type are clear from the context. For readability, we omit the operation (−) on types
– it is assumed to be applied to all types in the figure below.

p

ax

Y − Y +

X+

Γ+

X−

Γ−

�i

�t�

Y − Y +

Δ+

Γ+ Γ−

�e

�s� Δ−
�t�

0

Γ+ Γ−

act

�t�

BA

�t�

�s�
A
B

Δ+

Γ+ Γ−
Δ−

0

〈〉i

Γ+ Γ−
Δ−

〈〉e

�s�
�t�

X−

Δ+

A
B

X+

X− X+

X+ X−

0
0

0X−

X+

The basic rules AX, WEAK, EXCH, �I and �E amount to a standard interpretation
of the linear λ-calculus in the monodial closed structure that one obtains from apply-
ing the categorical Int construction to the low-level language, see [7]. It is the same
structure that one finds in the Geometry of Interaction [1] and in Game Semantics [2].
The rules for functions formalise the view that the type X � Y is implemented by
programs that, when linked with a program implementing interface X , implement inter-
face Y . Rule �E implements the linking of a function program to its argument program.

434 U. Schöpp

Rule �I amounts to a reinterpretation of the interface of �t�, so that an application will
link the argument program to variable x.

Polymorphism is implemented by using nat in place of any type variable α. Since
the values of any type can be encoded into nat, we can recover any type instance by
using the encoding and decoding programs defined above. Rule ∀I is the identity, just
like �I, as the type variable α has already been substituted by nat. Rule ∀E realises the
encoding and decoding of values of type A into ones of type nat. Let F [·] = X−[·/α]
and G[·] = X+[·/α]. We then have programs F [encodeA] : F [A] → F [nat] and
G[decodeA] : G[nat]→ G[A]. Note F [nat] = X− and X+ = G[nat]. To obtain �t A�,
we pre- and post-compose �t� with these programs.

It remains to define the structural rules and 0. Weakening is defined such that any
input on the weakened port results in a diverging computation, and exchange permutes
the input and output wires. The conclusion in rule 0 is interpreted as id0 : 0→ 0.

3.1 Equational Theory

We intend LIN to be used as language for constructing low-level programs and for rea-
soning about them. For equational reasoning, the notion of equality for LIN should be
defined to reflect a reasonable notion of equality of low-level programs. In this section
we define a notion of equality for LIN that allows us to reason about program correct-
ness: closed terms of base type are equal if and only if they translate to equal programs.

To define equality, one possible option would be to consider two terms equal when
they translate to equal low-level programs. This definition would validate the β-equality
(λx:X. t) s = t[s/x] if s is closed, but it would not validate other reasonable instances
of it. For example, if t does not contain x, then s is dead code and the β-equality would
correspond to reasonable dead code elimination. However, if s has free variables, then
it may be possible to distinguish the low-level programs interpreting (λx:X. t) s and
t[s/x] by interacting with the dead code that would otherwise never be used.

This motivates the definition of a coarser equality relation for LIN. We define it so
that we can use the parametricity of polymorphism for equality reasoning. We therefore
use a relational definition of term equality for LIN, where terms are equal if they map
related arguments to related results, just like in standard models of polymorphism [27].

A value type relation is given by a triple (A,A′, R) of two closed value types A
and A′ and a binary relation R between the closed values of type A and those of type A′.
We write R ⊆ A×A′ for the triple (A,A′, R).

A value type environment ρ is a mapping from type variables to value type relations.
If σ and σ′ are both mappings from type variables to closed value types, then we write
ρ ⊆ σ × σ′ if ρ(α) is a relation Rα ⊆ σ(α) × σ′(α). For such σ we write Xσ for the
type obtained from X by substituting any variable α with σ(α).

For each value type A and each ρ ⊆ σ × σ′, define a relation �A�ρ ⊆ Aσ ×Aσ′ by:

�α�ρ = ρ(α)

�A + B�ρ = {(inl(v), inl(v′)) | v �A�ρ v′} ∪ {(inr(w), inr(w′)) | w �B�ρ w′}
�A×B�ρ = {(〈v, w〉, 〈v′, w′〉) | v �A�ρ v′, w �B�ρ w′}

�A�ρ = {(v, v) | v value of type A} if A is a base type (0, unit, nat).

Call-by-Value in a Basic Logic for Interaction 435

For any interface type X and any type environment ρ ⊆ σ × σ′ we define a relation
�X�ρ between low-level programs of type (Xσ)− → (Xσ)+ and (Xσ′)− → (Xσ′)+:

p �A⊥�ρ p′ iff ∀v, v′. v �A�ρ v′ ⇒ ∀o. ((∃b. entryp(v)
o−→p b)⇔

(∃b′. entryp′(v′)
o−→p′ b′)

p �X � Y �ρ p′ iff ∀q, q′. q �X�ρ q′ ⇒ app(p, q) �Y �ρ app(p′, q′)

p �∀α.X�ρ p′ iff ∀R ⊆ A×A′. inst(∀α.X)σ(p,A) �X�ρ[R/α] inst(∀α.X)σ′(p′, A′)

In these cases, we use the following notation. For programs p : A + B → C + D and
q : C → A, we write app(p, q) for the following program of type B → D.

B Dp
q

A
Capp(p, q) =

If p is a program of type X− → X+ then we write inst∀α.X(p,A) for the program
obtained by pre- and post-composing with F [encodeA] and G[decodeA], where F [·] =
X−[·/α] and G[·] = X+[·/α]. We write inst∀�α.X(p, σ) for iterated application of inst.

Definition 1 (Equality). Suppose Γ
 s : X and Γ
 t : X are derivable. Suppose �α is
a list of the free type variables in these sequents and suppose Γ is x1 : X1, . . . , xn : Xn.
Then we write Γ |= s = t : X if: For any value type environment ρ ⊆ σ × τ and all �p
and �q with pi �Xi�ρ qi for i = 1, . . . , n, app(inst(∀�α.Γ�X)σ(�Γ
 s : X�, σ), �p) and
app(inst(∀�α.Γ�X)τ (�Γ
 t : X�, τ), �q) are �X�ρ-related.

This definition requires some justification, in particular that it does not depend on the
choice of derivation of Γ
 s : X or Γ
 t : X . It is possible to define equality for
derivations and show coherence, i.e. that two derivations of the same derivation have
equal interpretations, see [24] for more details. For the results in this paper, it would be
just as well to work with derivations and without coherence, so we do not spell this out.

The parametricity lemma takes the form:

Lemma 1 (Parametricity). If Γ
 t : X then Γ |= t = t : X .

Lemma 2 (Identity Extension). For any σ, we have |= s = t : Xσ if and only if
�s� �X�Δσ

�t�, where Δσ(α) = {(v, v) | v is closed value of type σ(α)}.

Equality is symmetric and transitive and a congruence with respect to the term con-
structors. We state further properties of equality in the following lemmas. In them, as
in rest of this paper, we write just s = t to mean that Γ |= s = t : X holds for any Γ
and X that make both terms well-typed.

Lemma 3. The following β-equalities are valid.

(λx:X. s) t = s[t/x] (Λα.t) A = t[A/α] (let 〈x, y〉=〈s, t〉 in r) = r[s/x, t/y]

Lemma 4. The equations id∗t = t and p∗(q∗t) = (q ◦ p)∗t are valid. Moreover, if
p = q then p∗t = q∗t.

436 U. Schöpp

We note that LIN allows duplication of values of type A⊥. If Γ, x1 : A⊥, x2 : A⊥
 t : Y
then Γ, x : A⊥
 let 〈x1, x2〉=∇∗

Ax in t : Y , where ∇A : A + A → A is the canonical
low-level program of its type, i.e. the one mapping both inl(v) and inr(v) to v. If one
substitutes a closed term s for x, then one has (let 〈x1, x2〉=∇∗

As in t) = t[s/x1, s/x2],
as the following lemma shows.

Lemma 5. The equations (x �→ inl(x))∗〈s, t〉 = s and (x �→ inr(x))∗〈s, t〉 = t are
valid. Moreover, if t is closed then we have ∇∗

At = 〈t, t〉.

Relational parametricity is useful, as it justifies dinaturality properties, e.g. that

s : ∀α. α⊥ � α⊥ satisfies (x �→ v)∗(s A t) = s B ((x �→ v)∗t) for any
 t : A⊥ and
any value v of appropriate type. It would be possible to write this paper without poly-
morphism in LIN, but at the expense of having to establish such equations explicitly as
invariants in all constructions. In Lemma 9 we use the following instance of dinaturality.
Its proof is much like the proof that parametricity implies dinaturality in [20].

Lemma 6. Suppose
 s : ∀α. (∀β.X � ∀γ. Y � α⊥) � α⊥, where α is not free
in X or Y . Then (y �→ v)∗(s A t) = s B (Λβ. λx:X.Λγ. λy:Y. (y �→ v)∗(t x)) holds
for any value v and any closed t of correct type.

4 Linear Call-by-Value

The rest of the paper is devoted to showing how a call-by-value λ-calculus can be
translated to intermediate languages based on LIN. To handle the full call-by-value λ-
calculus, we shall need to extend LIN with a form of duplication in Section 5. In this
section we first show that a linear fragment of the call-by-value λ-calculus can be trans-
lated to LIN. We do so by refining Plotkin’s call-by-value CPS-translation to target LIN

instead of the λ-calculus. While the linear source language is very simple, it is instruc-
tive to consider the translation for it first, as this already requires us to develop the main
infrastructure needed for the translation.

By composing the refined CPS-translation to LIN with the translation from LIN to the
low-level language, we obtain a fully specified translation from higher-order source lan-
guage to first-order low-level language. The point is that LIN is low-level enough to give
us fine-grained control over low-level programs, for example to make the closure repre-
sentation and memory management issues explicit, but at the same time it is high-level
enough to carry out essentially the standard correctness proof of the CPS-translation.

As the source language we consider a λ-calculus with a base type of natural numbers
and a diverging term Ω that allows one to observe the evaluation order.

Source Types X,Y ::= N
∣∣ X → Y

Source Values V,W ::= x
∣∣ λx:X.M

∣∣ n (natural number constant)

Source Terms M,N ::= V
∣∣ M N

∣∣ add(V,W)
∣∣ if0(V,M,N)

∣∣ Ω

The source terms are typed as follows:

Call-by-Value in a Basic Logic for Interaction 437

Γ, x : X � x : X

Γ, x : X �M : Y

Γ � λx:X.M : X → Y
Γ �M : X → Y Γ � N : X

Γ �M N : Y

Γ � n : N

Γ � Vi : N

Γ � add(V1, V2) : N

Γ � V : N Γ � Ni : N

Γ � if0(V,N1, N2) : N Γ � Ω : N

In this section we moreover impose the linearity restriction that in a source term any
variable may be used at most once. (Duplication of variables of type N could also be
allowed in this section, but we do without for simplicity.)

The terms for addition and if-then-else are restricted to values for technical conve-
nience; one can write an addition function as λx:N. λy:N. add(x, y), for example. The
if-then-else is restricted to the base type N; we discuss this in Section 5.

We use a standard call-by-value reduction semantics: (λx:X.M) V −→ M [V/x],
add(m,n) −→ m+ n, if0(0,M,N) −→ M , if0(n + 1,M,N) −→ N , Ω −→ Ω,
M1 N −→ M2 N if M1 −→ M2, and V N1 −→ V N2 if N1 −→ N2.

4.1 CPS-Translation

The aim is now to move Plotkin’s call-by-value CPS-translation to LIN as the target
language. We first recall Plotkin’s CPS-translation [19] and its typing [12], that is, a
variant that always puts the continuation first [8] and that covers our source language.

To any source type X , we assign a continuation type K(X) defined by:

K(X) = A(X)→ ⊥ A(N) = N A(X → Y) = K(Y)→ K(X)

A source term of type x1 : X1, . . . , xn : Xn
 M : X is translated to a term of type
x1 : A(X1), . . . , xn : A(Xn)
 cps(M) : T (X) where T (X) = K(X)→ ⊥:

cps(x) = λk. k x cps(λx.M) = λk. k (λk1. λx. cps(M) k1)

cps(n) = λk. k n cps(M N) = λk. cps(M) (λf. cps(N) (λx. f k x))

cps(Ω) = λk.Ω⊥ cps(add(V,W)) = λk. cps(V) (λx. cps(W) (λy. k (x + y)))

cps(if0(V,M,N)) = λk. cps(V) (λx. if0(x, cps(M) k, cps(N) k))

4.2 Refining the CPS-Translation

While the CPS-translation above is completely linear, it is not obvious how to adapt it to
target LIN. The problem is that in LIN we must make explicit which values to keep for
later use. Consider for example the addition term x : N, y : N
 x + y : N used in the
above translation. We cannot just represent N in LIN by an interface from which we can
get a single number at a time: in order to compute the sum we must have both summands
at the same time. We address this issue by making the environment of variables explicit.

We decompose A(X) into two parts: First there is a code type Cϕ(X), which is a
value type. This is the type of codes that represent the values of type X . The code for
a natural number would be just the number itself, while the code for a function might
be the tuple of the values of the free variables in the body of the function, or similar.

438 U. Schöpp

Second, there is an access type Aϕ(X), which is a LIN-type. The terms of type Aϕ(X)
will represent low-level programs that can interpret codes of type Cϕ(X). They allow
us to use such codes without knowledge of the encoding details.

The parameter ϕ in Cϕ(X) and Aϕ(X) is a value type variable that allows for infor-
mation hiding. The code for a natural number should always be the number itself, but
for a function, any possible encoding should be acceptable. We do not need to inspect
the codes for functions; it suffices that they are accepted by access types. The type vari-
able ϕ represents a type of abstract codes that we do not know anything about other
than that it is accepted by the terms of access type.

For the given source language, the type of continuations is thus refined to:

Kα(X) = ∀ϕ.Aϕ(X) � (Cϕ(X)× α)
⊥

Cϕ(N) = nat Cϕ(X → Y) = ϕ

Aϕ(N) = 0⊥ Aϕ(X → Y) = ∀β.Kβ(Y) � Kϕ×β(X)

The type Kα(X) of continuations refines K(X). A continuation accepts inputs that
may be encoded using any encoding type ϕ. For this to work, the continuation must
know how to use such an encoded value, which is what the argument of type Aϕ(X)
provides. Then, any value of type Cϕ(X)×α, i.e. the code of an actual value (we ignore
α for now and come back to it below), can be thrown into the continuation.

The access types are defined as explained above. For natural numbers we do not
need an access type, as the code type does not use ϕ. Indeed, we have Kα(N) =

∀ϕ. 0⊥ � (nat× α)
⊥ and this type is isomorphic to (nat× α)

⊥. A continuation of
type N therefore just expects to be passed a natural number (again, ignore α for now).

Finally, we define a type Tγ(X) by

Tγ(X) = ∀α.Kα(X) � (γ × α)
⊥

.

The CPS-translation will be such that terms of source type X are translated to LIN-terms
of type TG(X), where G = unit× Cϕ1(X1)× · · · × Cϕn(Xn) is a type containing the
codes for the values of the free variables of the term.

Example 1. Let us explain concretely how to understand the type

Tunit(N→ N) ∼= ∀α.
(
∀ϕ.Aϕ(N→ N) � (Cϕ(N→ N)× α)⊥

)
� (unit× α)⊥

∼= ∀α.
(
∀ϕ. (∀β. (nat× β)⊥� (nat× (ϕ× β))⊥)�(ϕ× α)⊥

)
� α⊥ .

Closed terms of this type are translated to programs with the following interface (up to
removal of ports of type 0).

unit× α ϕ× α

nat× (ϕ× β) nat× β

A function f : N → N is implemented by such a program in the following way. To
start the evaluation of the function itself, we pass any value 〈〈〉, s〉 : unit× α to the first
input port. The low-level program then returns a pair 〈c, s〉 : ϕ× α, where the first com-
ponent c is a code for the value of f and the second component is our initial value s (this

Call-by-Value in a Basic Logic for Interaction 439

If Γ declares the variables �z and these all appear free in M , then define cps(Γ �M) by:

cps(x : X � x) = Λα. λk. (〈〈〈〉, x〉, s〉 �→ 〈x, s〉)∗(k ϕx x)

cps(� n) = Λα. λk. (〈〈〉, s〉 �→ 〈n, s〉)∗(k unit)

cps(Γ � λx:X.M) = Λα. λk. k C(Γ) (Λβ. λk1. Λϕx. λx. (〈a, 〈�z, t〉〉 �→ 〈〈�z, a〉, t〉)∗
(cps(Γ, x : X � M) β k1))

cps(Γ � M N) = Λα. λk. (〈�z, s〉 �→ 〈�z, 〈�z, s〉〉)∗cps(Γ � M) (C(Γ) × α) t

where t = (Λϕ. λf. (〈ϕ, 〈�z, s〉〉 �→ 〈�z, 〈ϕ, s〉〉)∗
cps(Γ � N) (ϕ × α) (Λβ. λx. f α k β x))

cps(x : N, y : N � add(x, y)) = Λα. λk. (〈〈〈〈〉,m〉, n〉, s〉 �→ 〈m + n, s〉)∗(k unit)

cps(x : N, y : N � add(y, x)) = Λα. λk. (〈〈〈〈〉, n〉,m〉, s〉 �→ 〈m + n, s〉)∗(k unit)

cps(x : N � add(x, n)) = Λα. λk. (〈〈〈〉,m〉, s〉 �→ 〈m + n, s〉)∗(k unit)

cps(x : N � add(m,x)) = Λα. λk. (〈〈〈〉, n〉, s〉 �→ 〈m + n, s〉)∗(k unit)

cps(� add(m,n)) = Λα. λk. (〈〈〉, s〉 �→ 〈m + n, s〉)∗(k unit)

cps(Γ � if0(x,M,N)) = Λα. λk. let 〈k1, k2〉 = ∇∗
nat(k unit) in

(〈�z, s〉 �→ if x = 0 then inl(〈�z, s〉) else inr(〈�z, s〉))∗
〈cps(Γ �M)α(Λϕ.λx.k1),cps(Γ �N)α(Λϕ.λx.k2)〉

cps(Γ � if0(0,M,N)) = cps(Γ � M)

cps(Γ � if0(n + 1,M,N)) = cps(Γ � N)

cps(� ΩN) = Λα. λk. Ω∗
unit(k unit)

If Γ declares more than the free variables of M , let Δ be the subcontext declaring just the free
variables of M , let �z and �y be the list of variables defined in Γ and Δ respectively and define
cps(Γ �M) = Λα. λk. (〈�z, s〉 �→ 〈�y, s〉)∗(cps(Δ �M) α k).

Fig. 2. Call-by-Value CPS translation into LIN

follows from parametricity). We do not know how c encodes f , but we may use this code
to apply the function to concrete arguments. We may pass 〈n, 〈c, t〉〉 : nat× (ϕ × β) to
the second input port. What we get is the desired value 〈f(n), t〉 : nat× β.

The values s and t are both returned unchanged. They are useful, as our simple low-
level language cannot store values for later use. Instead of storing values, the values
may be encoded in s and t and then decoded when these values are returned.

Having defined the types of the CPS-translation, we now come to the terms. In Fig. 2
we define the term cps(Γ
 M), where M is a source term and Γ is a finite list of
source variable declarations x1 : X1, . . . , xn : Xn under which M is well-typed. In the
figure we use the following notation. We choose a fresh type variable ϕx for each source
variable x, write C(Γ) for the value type unit×Cϕx1

(X1)×· · ·×Cϕxn
(Xn), associated

to the left, andA(Γ) for the LIN-context x1 : Aϕx1
(X1), . . . , xn : Aϕxn

(Xn). For a list
of pairwise distinct variables �z, we also write �z for tuples of variables, i.e. ε denotes 〈〉
and �z, x denotes 〈�z, x〉. In Fig. 2 we have omitted type annotations in LIN-terms for
better readability, as these will be uniquely determined by the types. The types of the
terms in that figure are specified by the following proposition, which one should keep
in mind when reading the figure. This proposition is proved by induction on M .

440 U. Schöpp

Proposition 1. If Γ
 M : X in the source language with linearity restriction, then
A(Γ)
 cps(Γ
 M) : TC(Γ)(X) in LIN.

Let us now explain informally the CPS-translation of abstraction and application.
Notice first that, by parametricity, values of type α and β cannot be inspected, but only
be passed along. This is used in the translation to preserve certain values for later use.

For abstraction, consider a fully applied term of the form cps(Γ
 λx:X.M) α K . It
has type (C(Γ)× α)

⊥ and it expects to be sent (the codes of) the values of its free vari-
ables and some arbitrary value s of type α. By definition, it sends this data unchanged to
(K C(Γ) (. . .)), which also has type (C(Γ)× α)

⊥. But K expects as its first argument
the type that encodes the function value and here we use C(Γ). This means that the
tuple of the values of the free variables is now considered as the code of the function.
The second argument to K is the access term that explains how this tuple can be used
to apply the function to arguments. If we fully apply this second argument, then we
obtain a term of type (Cϕx(X)× (C(Γ)× β))

⊥. If we pass a value 〈a, 〈ϕ, t〉〉 to this
term, then this value is transformed to 〈〈a, ϕ〉, t〉 : C(Γ, x : X)× β and then passed to
the CPS-translation of the function body M , as expected.

For application, consider cps(Γ
 M N) α K , which has type (C(Γ)× α)
⊥. If

we pass to this term the pair 〈�z, s〉, where �z are the values of the free variables, then
first 〈�z, 〈�z, s〉〉 is passed to the CPS-translation of M . When its evaluation is finished,
it sends the value 〈c, 〈�z, s〉〉 to the continuation, where c is the code of the function
value and the second component 〈�z, s〉 is returned unchanged. The CPS-translation of
the application is defined such that then 〈�z, 〈c, s〉〉 is passed to the argument N . This
causes the argument to be evaluated; it passes 〈a, 〈c, s〉〉 to the continuation, where a
is the value of the function argument and the pair 〈c, s〉 is again returned unchanged.
But the continuation is defined so that it just invokes the access term provided by the
function M with the code c for the function and a for the argument. It thus invokes the
program to perform the requested function application.

Example 2. We illustrate the CPS-translation and how it relates to low-level programs
by translating the simple example term
 (λx:N. add(x, 5)) 3 : N. In this example we
let γ := unit. In the following, α, β and ϕ are type variables and we have α = β =
ϕ = nat.

First we have

cps(� 3) = Λα. λk. (〈〈〉, s〉 �→ 〈3, s〉)∗(k unit �) : Tγ(N)
cps(x : N � add(x, 5)) = Λα. λk. (〈〈〈〉,m〉, s〉 �→ 〈m+ 5, s〉)∗(k unit �) : Tγ(N) .

These terms translate to the following programs.

γ × α nat× α〈〈〉, s〉 �→ 〈3, s〉�cps(
 3)� =

(γ × nat)× α nat× α〈〈〈〉, x〉, s〉 �→ 〈x + 5, s〉�cps(x : N
 add(x, 5))� =

(The encoding and decoding programs arising from the type application with unit are
the identity and have been removed.) Each of these programs takes a pair as an input.
The first component in this pair is the tuple of the code values for free variables of the

Call-by-Value in a Basic Logic for Interaction 441

term. The second component may be any value, which must be returned unchanged (by
parametricity). A caller may use this second component to ‘store’ values across the call.

The translation of the abstraction cps(
 λx:X. add(x, 5)) : Tγ(N→ N) is the term

Λα. λk. k γ (Λβ. λk1. Λϕx. λx. (〈a, 〈〈〉, t〉〉 �→ 〈〈〈〉, a〉, t〉)∗
(cps(x : N
 add(x, 5)) β k1))

It translates to the following program, whose interface is as in Example 1.

γ × α
encodeγ × id

ϕ× α

nat× (ϕ× β)

id × (decodeγ × id) 〈x, 〈y, z〉〉 �→ 〈〈y, x〉, z〉 �cps(x : N
 add(x, 5))�

nat× (γ × β) (γ × nat)× β nat× β

An input to the topmost input port corresponds to a request to compute the value of the
function. It takes an argument of type γ × α, whose first component is the tuple of the
free values of the term (in this case none). The return value ϕ × α must be the pair of
the code for the function together and the value of type α that was given as input. As
the code for the function, the translation uses the (encoding of) tuple of the codes of the
values of its free variables.

The second input port allows function application. It takes as input the function argu-
ment (of type nat) and the code for the function (of type ϕ). Its third argument is again
an arbitrary value that must be returned unchanged. To compute the function applica-
tion, the program first constructs the tuple of (the codes of) the values of free variables
of the body of the λ-term. It can do so, since the code for a function is just the tuple of
(the codes of) its free variables, and the function argument value is also supplied. The
program then just invokes the program for the body of the λ-term.

Notice the similarity to the implementation of functions using defunctionalization,
such as [6]. Functions are represented by first order values and there is static program
code for application of any function.

Finally, the CPS-translation of the application cps(
 (λx:X. add(x, 5)) 3) is given by
the term Λδ. λk. (〈〈〉, s〉 �→ 〈〈〉, 〈〈〉, s〉〉)∗cps(
 λx:X. add(x, 5)) (γ × δ) t, where t ab-
breviates (Λϕ. λf. (〈x, 〈〈〉, s〉〉 �→ 〈〈〉, 〈x, s〉〉)∗cps(
 3) (ϕ× δ) (Λβ. λx. f δ k β x)).
This term translates to the following low-level program, in which each e abbreviates
(id × encodeA), i.e. (〈x, y〉 �→ 〈x, encodeA(y)〉) for an appropriate type A. Likewise,
each d abbreviates (id × decodeA) for an appropriate A.

γ × α ϕ× α

nat× (ϕ× δ)

nat× δ

γ × (γ × δ)γ × δ

ϕ× (γ × δ)

γ × (ϕ× δ)

〈x, 〈y, z〉〉 �→ 〈y, 〈x, z〉〉

e d

e d

〈x, y〉 �→ 〈x, 〈x, y〉〉
�cps(
 λx : X. add(x, 5))�

�cps(
 3)�

In this program, the value of type γ is duplicated, as it is needed twice, once for the
evaluation of the function and once for its argument. The copy is encoded in the callee-
save value and the function value is computed. When this it is returned, the value of

442 U. Schöpp

type γ is restored, as it is needed in general to compute the function argument. While
computing the function argument, the code of the function is encoded and put in the
callee-save value. When the argument value is returned, the function code is decoded
and both argument and function code are passed to the program for application.

This outlines how one can understand the translation on the level of low-level pro-
grams. On input 〈〈〉, s〉, the above program outputs 〈8, s〉, as expected.

One may also understand the program directly in LIN using the equations from Sec-
tion 3.1. By using only the β-equations from Lemma 3, we get

cps(� (λx:X. add(x, 5)) 3) α k = (〈〈〉, s〉 �→ 〈〈〉, 〈〈〉, s〉〉)∗cps(� λx:X. add(x, 5)) (γ × α)t

= · · · = (〈〈〉, s〉 �→ 〈〈〉, 〈〈〉, s〉〉)∗(〈ϕ, 〈〈〉, s1〉〉 �→ 〈〈〉, 〈ϕ, s1〉〉)∗(〈〈〉, s2〉 �→ 〈3, s2〉)∗

(〈a, 〈〈〉, t〉〉 �→ 〈〈〈〉, a〉, t〉)∗(〈〈〈〉,m〉, s3〉 �→ 〈m+ 5, s3〉)∗(k unit �)

Using Lemma 4, this term can be simplified to (〈〈〉, s〉 �→ 〈8, s〉)∗(k unit '), which also
shows that the term behaves as expected.

4.3 Soundness

In this section we show that correctness of the refined CPS-translation can be shown
much in the same way as for the original CPS-translation. We show:

Theorem 1. If
 M : N and M −→∗ n, where n is a value, then cps(
 M) unit K =
(〈�z, s〉 �→ 〈n, s〉)∗(K unit ') for any closed continuation K : Kunit(N).

Corollary 1. If
 M : N then �cps(
 M) unit� is, up to isomorphism, a program of
type unit→ nat with the property that it maps 〈〉 to n if M −→∗ n holds.

Proof. We have �cps(
 M) unit� : (0 + 0) + unit× unit → (0 + nat× unit) + 0 by
definition and the type is isomorphic to unit→ nat.

If we choose K to be Λϕ. λa. (x:nat �→ let =print(x) in Ω), then Theorem 1 tells
us that �cps(
 M) unit K� is a program of type unit × unit → 0 that on input
〈〈〉, 〈〉〉 prints n if and only if M reduces to n. By definition of the translation from
LIN to low-level programs, this means that �cps(
 M) unit� must map inr(〈〈〉, 〈〉〉) to
inl(inr(〈n, 〈〉〉)), from which the result follows. !

We now come to the proof of Theorem 1, which follows that of Plotkin [19]. This
is an important point of this paper; it shows that with little adaptation, existing proof
methods can be applied to a translation going directly into first-order code.

For any source value V with Γ
 V : X , we define a value type P(Γ
 V), a
low-level value η(V) of type CP(Γ�V)(X) and a LIN-term Ψ(Γ
 V) by

η(x) = x P(Γ � x) = ϕx Ψ(Γ � x) = x

η(n) = n P(Γ � n) = unit Ψ(Γ � n) = �

η(λx:X. t) = �y P(Γ �λx:X.M) = C(Δ)

Ψ(Γ � λx:X. t) = Λβ. λk1. Λϕx. λx. cps(Δ, x : X � t) β k1,

where in the last two lines Δ is the context obtained from Γ by deleting all declarations
of variables that are not free in λx:X.M and �y is the tuple of variables declared in Δ.
The notation Ψ comes from [19].

Call-by-Value in a Basic Logic for Interaction 443

We shall often write just P(M) and Ψ(M), when a typing context Γ for M is clear
from the context. The point of these definitions is the following lemma.

Lemma 7. cps(Γ
 V) = Λα. λk. (〈�z, s〉 �→ 〈η(V), s〉)∗(k P(V) Ψ(Γ
 V)) for any
value V .

Lemma 8. Let M be a source term that is well-typed in context Γ . Let Δ be a re-
ordering of the context Γ . Let �z and �y be the lists of variables declared in Γ and Δ
respectively. Then cps(Γ
 M) = Λα. λk. (〈�z, s〉 �→ 〈�y, s〉)∗(cps(Δ
 M) α k).

Lemma 9. For any value V , any α and any closed K of the appropriate type, we have

cps(Γ
 M [V/x]) α K =

(〈�z, s〉 �→ 〈〈�z, η(V)〉, s〉)∗(cps(Γ, x : X
 M)[Ψ(V)/x,P(V)/ϕx] α K) .

Proof. The proof goes by induction on M . The most difficult case is that when M is a
λ-abstraction λy:Y.N . We show the sub-case where x �= y and where y is free in N .

(〈�z, s〉 �→ 〈〈�z, η(V)〉, s〉)∗(cps(Γ, x : X � λy.N)[Ψ(V)/x,P(V)/ϕx] α K)

= (〈�z, s〉 �→ 〈〈�z, η(V)〉, s〉)∗
(K ϕ�z,x (Λβ. λk1. Λϕy . λy. cps(Γ, x : X, y : Y � N)[Ψ(V)/x,P(V)/ϕx] β k1))

= (Lemma 9)(〈�z, s〉 �→ 〈〈�z, η(V)〉, s〉)∗
(K ϕ�z,x (Λβ. λk1. Λϕy . λy. (〈〈〈�z, x〉, y〉, s〉 �→ 〈〈〈�z, y〉, x〉, s〉)∗

(cps(Γ, y : Y, x : X � N)[Ψ(V)/x,P(V)/ϕx] β k1)))

= (Lemma 6)K ϕ�z (Λβ. λk1. Λϕy . λy. (〈〈�z, a〉, s〉 �→ 〈〈〈�z, η(V)〉, a〉, s〉)∗
(〈〈〈�z, x〉, y〉, s〉 �→ 〈〈〈�z, y〉, x〉, s〉)∗
(cps(Γ, y : Y, x : X � N)[Ψ(V)/x,P(V)/ϕx] β k1))

= K ϕ�z (Λβ. λk1. Λϕy . λy. (〈〈�z, a〉, s〉 �→ 〈〈〈�z, a〉, η(V)〉, s〉)∗
(cps(Γ, y : Y, x : X � N)[Ψ(V)/x,P(V)/ϕx] β k1))

= (IH)K ϕ�z (Λβ. λk1. Λϕy. λy. cps(Γ, y : Y � |N [V/x]|) k1)
= cps(Γ � λy:Y.N [V/x]) α K !

To prove correctness of the CPS-translation, Plotkin defines a term M :K , which is
the term that one gets from cps(M)K by reduction of administrative redexes. We adapt
this definition to the current situation and define M :ΓA K as follows.

N :Γα K = (〈�z, s〉 �→ 〈η(N), s〉)∗(K P(N) Ψ(N)) (N is closed value)

M N :Γα K = (〈�z, s〉 �→ 〈�z, 〈�z, s〉〉)∗

(M :Γα (Λϕ. λf. (〈ϕ, 〈�z, s〉〉 �→ 〈�z, 〈ϕ, s〉〉)∗
cps(Γ � N) (ϕ× α) (Λβ. λx. (f α K β x)))

(M is not a value)

M N :Γα K = (〈�z, s〉 �→ 〈�z, 〈η(M), s〉〉)∗

(N :ΓP(M)×α (Λβ. λx. (Ψ(M) α K β x)))

(M is a value, N is not a value)

M N :Γα K = (〈�z, s〉 �→ 〈η(N), 〈η(M), s〉〉)∗
(Ψ(M) α K P(N) Ψ(N))

(M and N are values)

if0(0,M,N) :Γα K = M :Γα K if0(n+ 1,M,N) :Γα K = N :Γα K

add(m,n) :Γα K = (m+ n) :Γα K

444 U. Schöpp

We show the following lemma by case distinction on M .

Lemma 10. Let Γ
 M : X in the source language. Then, for all α and all closed K
such that cps(Γ
 M) α K is well-typed, we have cps(Γ
 M) α K = M :Γα K .

Lemma 11. If M −→ N then M :Γα K = N :Γα K for any α and closed K of the
appropriate type.

Proof. We show the representative case where M is (λx.M1) M2, M2 is a value and x
is free in M1. Let Δ be the subcontext of Γ defining just the free variables of (λx.M1).

((λx:X.M1) M2) :
Γ
α K

= (〈�z, s〉 �→ 〈〈η(λx.M1), η(M2)〉, s〉)∗(Ψ(λx:X.M1) α K P(M2) Ψ(M2))

= (〈�z, s〉 �→ 〈〈η(λx.M1), η(M2)〉, s〉)∗
((Λβ. λk′. Λϕx. λx. cps(Δ,x : X �M1) β k′) α K P(M2) Ψ(M2))

= (〈�z, s〉 �→ 〈〈η(λx.M1), η(M2)〉, s〉)∗(cps(Δ,x : X �M1) α K)[Ψ(M2)/x,P(M2)/ϕx]

= (〈�z, s〉 �→ 〈〈�z, η(M2)〉, s〉)∗((〈〈�z, x〉, s′〉 �→ 〈〈η(λx.M1), x〉, s′〉)∗

(cps(Δ,x : X �M1) α K))[Ψ(M2)/x,P(M2)/ϕx]

= cps(Γ �M1[M2/x]) α K = M1[M2/x] :
Γ
α K !

Theorem 1 is now a direct consequence of Lemmas 10 and 11. Each reduction step
in the source language can be followed by an equality in LIN and, for a value n, the
definition of n :α K is just as required.

The soundness argument shows that we can trace reduction steps in the source lan-
guage with equalities in LIN. We are not aware of such results for direct translations
from source to a first-order target language, e.g. for defunctionalization compilation.

4.4 On Resource Usage

Let us come back to the issue of memory space usage that has motivated this work. Con-
sider a source program of the form let x1=M1 in let x2=M2 in . . . let xk=Mk in N ,
where (let x=M in N) abbreviates (λx:X.N) M . The refined call-by-value CPS-
translation is defined such that the values of the terms M1, . . . ,Mk are computed in
this order in the low-level language. Moreover, by construction, at the time when the
computation of Mi starts, only values of variables are being stored that are free in N
or some Mj with j ≥ i. In particular, the value of each xi is only kept as long as it is
needed. This means that the proposed CPS-translation solves the issue discussed with
an INTML-example in the Introduction.

Take the concrete example M = let x=5 in let y=x+1 in let z=y+4 in z+3 from
the introduction. The program �M� maps 〈〈〉, s〉 to 〈13, s〉. The following table traces
the computation through this program. In the two steps where values are discarded, the
case at the bottom of Figure 2 applies. For example, the definition of the CPS-translation
cps(x : N, y : N
 let z=y + 4 in z + 3) is just

(〈〈〈〈〉, y〉, z〉, s〉 �→ 〈〈〈〉, z〉, s〉)∗cps(y : N
 let z=y + 4 in z + 3),

which explains that the value 5 is discarded from line three to four.

Call-by-Value in a Basic Logic for Interaction 445

Value at entry Subprogram
〈〈〉, s〉 �cps(
 let x=5 in let y=x + 1 in let z=y + 4 in z + 3)�

〈〈〈〉, 5〉, s〉 �cps(x : N
 let y=x + 1 in let z=y + 4 in z + 3)�
〈〈〈〈〉, 5〉, 6〉, s〉 �cps(x : N, y : N
 let z=y + 4 in z + 3)�

〈〈〈〉, 6〉, s〉 �cps(y : N
 let z=y + 4 in z + 3)�
〈〈〈〈〉, 6〉, 10〉, s〉 �cps(y : N, z : N
 z + 3)�

〈〈〈〉, 10〉, s〉 �cps(z : N
 z + 3)�

5 Call-by-Value

In this section we observe that the linearity restriction on the source language can be
lifted if the intermediate language allows contraction. We describe a simple way of
extending LIN with contraction by adding exponentials !X . We believe that for appli-
cations in compilation it would be better to use the more fine-grained subexponentials
A ·X of INTML [7], see [24, §6] for a discussion. For lack of space and for simplicity,
we consider just exponentials here.

A simple way of expressing this is by defining an intermediate language EXP, which
extends LIN with a type !X and the following typing rules.

Γ, x : X
 t : Y

Γ, x : !X
 t : Y

Γ, x : !X, y : !X
 t : Y

Γ, x : !X
 t[x/y] : Y
Γ
 s : !X � Y !Δ
 t : X

Γ, !Δ
 s t : Y

The translation of LIN to the low-level language can be extended to EXP by choosing
(!X)− = nat×X− and (!X)+ = nat×X+ and by interpreting the exponential rules
in a standard way [1].

The definition of equality is extended from LIN to EXP by letting �!X�ρ be the small-
est relation such that q �X�ρ q′ implies (id nat× q) �!X�ρ (id nat× q′). The results from
Section 3.1 remain true.

This extension of LIN to EXP suffices to translate the full source language. Define
Cϕ(X), Aϕ(X), Kα(X) and Tϕ(X) just as in Section 4, but with !(−) � (−) instead
of (−) � (−). The CPS-translation of terms to EXP is defined exactly as in Fig. 2.

Proposition 2. If Γ
 M : X in the source language without the linearity restriction,
then !A(Γ)
 cps(Γ
 M) : TC(Γ)(X) in EXP.

Theorem 2. If
 M : N in the source language without the linearity restriction and
M −→∗ n, where n is a value, then cps(
 M) unit K = (〈�z, s〉 �→ 〈n, s〉)∗(K unit ')
for any closed continuation K : Kunit(N).

We end this section by noting that with contraction in the source language we can
define a term if0(V,M,N) for M and N of any source type X . The definition goes
by induction on X . At function type X1 → X2 one defines λx:X1. if0(V,M x,N x),
where the body is obtained from the induction hypothesis.

This definition may look undesirable for compilation, as the case distinction is per-
formed every time the function is invoked. But consider what happens to terms of
the form if0(V, (λx:N.M), (λx:N. N)) in defunctionalizing compilers, such as [6].

446 U. Schöpp

The two abstractions would be represented by two constructors, C1(. . .) and C2(. . .),
say. The function value of the whole term could be either C1(. . .) or C2(. . .). When this
function is applied, a case distinction over the two possible constructors is performed
in order to execute the correct function, so a similar case distinction is performed here.
It seems that is a certain amount of case distinction is unavoidable in order to find the
right code to execute. The precise properties of the above definition of case distinction
on higher types remain to be investigated, however.

6 Conclusion

We have given a new interpretation of call-by-value in an intermediate language that
represents the structure of an interactive computation model constructed from a first-
order low-level language. The interpretation makes low-level details explicit that are
interesting for compilation, such as which values are stored at any point in the execution
of the resulting low-level programs. The interpretation is motivated by game semantic
models [3,14] which however abstract away some important (for us) low-level details.

We have shown that well-known logical tools, such as parametric polymorphism,
are useful managing the low level details of the interpretation. We have formulated
these principles in terms of a simple intermediate language LIN. Its use has simplified
the handling of encoding details, for example in the encoding of function values. The
utility of studying intermediate languages like LIN is also demonstrated by the fact that
the soundness proof of the refined CPS-translation presented here can be carried out by
a refinement of the standard proof. While it would certainly be possible to define the
translation to the low-level language in a single step, it is not immediate how to track
reduction on source terms on the level of compiled low-level programs. We hope that
other logical tools will find use in the context of low level languages.

We should remark that for call-by-name a thunkifying translation [13] into EXP is
possible. In essence, this is the translation of INTML [7]. Indeed, INTML integrates a
call-by-name CPS-translation, see [23], that can be factored through EXP.

For further work, we are optimistic that it will be possible to extend the approach
to more expressive source languages, e.g. with recursion. We should also like to clarify
the relation to defunctionalizing compilation methods for call-by-value languages, such
as the very successful [6].

In another direction, it should also be interesting to apply the results to the resource
usage analysis of call-by-value languages. For instance, one may consider the design
of a call-by-value functional language for LOGSPACE computation, using an approach
similar to that of INTML [7] for call-by-name. To remain within LOGSPACE one would
need to restrict nat in the low-level language. We believe that this can be done if one
replaces ∀α.X in LIN by bounded quantification ∀α � A.X using the ideas from [21].
One may also consider such bounded quantification to reduce the amount of encoding
operations into nat arising from the low-level implementation of universal quantifica-
tion. The situation should be similar that of exponentials and subexponentials [24, §6].

Acknowledgments. I am grateful for support by the Fondation Sciences Mathématiques
de Paris as part of the PROOFS program.

Call-by-Value in a Basic Logic for Interaction 447

References

1. Abramsky, S., Haghverdi, E., Scott, P.: Geometry of interaction and linear combinatory alge-
bras. Mathematical Structures in Computer Science 12(5), 625–665 (2002)

2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2),
409–470 (2000)

3. Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M., Thomas, W. (eds.) CSL
1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

4. Appel, A.W.: Compiling with Continuations. Cambridge University Press (2006)
5. Banerjee, A., Heintze, N., Riecke, J.G.: Design and correctness of program transformations

based on control-flow analysis. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS,
vol. 2215, pp. 420–447. Springer, Heidelberg (2001)

6. Cejtin, H., Jagannathan, S., Weeks, S.: Flow-directed closure conversion for typed languages.
In: Smolka, G. (ed.) ESOP/ETAPS 2000. LNCS, vol. 1782, pp. 56–71. Springer, Heidelberg
(2000)

7. Dal Lago, U., Schöpp, U.: Functional programming in sublinear space. In: Gordon, A.D.
(ed.) ESOP 2010. LNCS, vol. 6012, pp. 205–225. Springer, Heidelberg (2010)

8. Fischer, M.J.: Lambda calculus schemata. SIGACT News (14), 104–109 (1972)
9. Fredriksson, O., Ghica, D.R.: Abstract machines for game semantics, revisited. In: LICS, pp.

560–569. IEEE (2013)
10. Ghica, D.R.: Geometry of synthesis: A structured approach to VLSI design. In: Hofmann,

M., Felleisen, M. (eds.) POPL, pp. 363–375. ACM (2007)
11. Ghica, D.R., Smith, A., Singh, S.: Geometry of synthesis IV: Compiling affine recursion into

static hardware. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) ICFP, pp. 221–233 (2011)
12. Harper, R., Lillibridge, M.: Polymorphic type assignment and cps conversion. Lisp and Sym-

bolic Computation 6(3-4), 361–380 (1993)
13. Hatcliff, J., Danvy, O.: Thunks and the lambda-calculus. J. Funct. Program. 7(3), 303–319

(1997)
14. Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. Theor. Com-

put. Sci. 221(1-2), 393–456 (1999)
15. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cambridge Philos.

Soc. 119(3), 447–468 (1996)
16. Laird, J.: Game semantics and linear cps interpretation. Theor. Comput. Sci. 333(1-2), 199–

224 (2005)
17. Melliès, P.A.: Game semantics in string diagrams. In: LICS, pp. 481–490. IEEE (2012)
18. Melliès, P.A., Tabareau, N.: Resource modalities in game semantics. In: LICS, pp. 389–398

(2007)
19. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.

Sci. 1(2), 125–159 (1975)
20. Plotkin, G.D., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M., Groote, J.F.

(eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg (1993)
21. Schöpp, U.: Stratified bounded affine logic for logarithmic space. In: LICS, pp. 411–420

(2007)
22. Schöpp, U.: Computation-by-interaction with effects. In: Yang, H. (ed.) APLAS 2011. LNCS,

vol. 7078, pp. 305–321. Springer, Heidelberg (2011)

448 U. Schöpp

23. Schöpp, U.: On interaction, continuations and defunctionalization. In: Hasegawa, M. (ed.)
TLCA 2013. LNCS, vol. 7941, pp. 205–220. Springer, Heidelberg (2013)

24. Schöpp, U.: Organising low-level programs using higher types. In: PPDP 2014 (to appear,
2014)

25. Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for
Physics. Lecture Notes in Physics, vol. 813, pp. 289–355. Springer (2011)

26. Shao, Z., Appel, A.W.: Efficient and safe-for-space closure conversion. ACM Trans. Program.
Lang. Syst. 22(1), 129–161 (2000)

27. Wadler, P.: Theorems for free! In: FPCA, pp. 347–359 (1989)

A Precise and Abstract Memory Model

for C Using Symbolic Values�

Frédéric Besson1, Sandrine Blazy2, and Pierre Wilke2

1 Inria, Rennes, France
2 Irisa - Université Rennes 1, Rennes, France

Abstract. Real life C programs are often written using C dialects which,
for the ISO C standard, have undefined behaviours. In particular, ac-
cording to the ISO C standard, reading an uninitialised variable has an
undefined behaviour and low-level pointer operations are implementa-
tion defined. We propose a formal semantics which gives a well-defined
meaning to those behaviours for the C dialect of the CompCert compiler.
Our semantics builds upon a novel memory model leveraging a notion of
symbolic values. Symbolic values are used by the semantics to delay the
evaluation of operations and are normalised lazily to genuine values when
needed. We show that the most precise normalisation is computable and
that a slightly relaxed normalisation can be efficiently implemented using
an SMT solver. The semantics is executable and our experiments show
that the enhancements of our semantics are mandatory to give a mean-
ing to low-levels idioms such as those found in the allocation functions
of a C standard library.

1 Introduction

Semantics of programming languages give a formal basis for reasoning about
the behaviours of programs. In particular, the correctness guarantee of C com-
pilers [14] and verification frameworks [4] is stated with respect to the program
semantics. However, the C programming language is specified in such a way that
certain operations are either undefined, unspecified or implementation-defined.
Typically, reading uninitialised memory is an undefined behaviour; the order
of evaluation of function arguments is unspecified; the size of the int type is
implementation-defined. A C program is strictly conforming if it does not trig-
ger any undefined, unspecified or implementation-defined behaviour.

This leads to an unsettling question: what is the guarantee provided by a
compiler when the program is not strictly conforming, i.e. when its semantics is
undefined? The short answer is none. The C standard [10] explains that anything
can happen with undefined behaviours: the compiler may fail to compile, but it
could – and usually does – produce an executable code. The behaviour of the
executable depends on compiler flags, especially optimisation levels. The exe-
cutable code may behave as expected by the programmer, but it can also ignore

� This work was supported by Agence Nationale de la Recherche, grant number ANR-
12-INSE-002 BinSec.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 449–468, 2014.
c© Springer International Publishing Switzerland 2014

450 F. Besson, S. Blazy, and P. Wilke

the statements that lead to undefined behaviours, or even crash at runtime. For
instance, for the sake of optimisation, the compiler may choose to remove pieces
of code that result in an undefined behaviour [19]. In summary, the advantage of
undefined behaviours is that they can be exploited by C compilers to optimise
the generated code; the downside is that C programs with undefined behaviours
may have unexpected results.

In practice, undefined behaviours have been responsible for serious flaws in
major open source software [19] – optimisations triggered by undefined be-
haviours have introduced vulnerabilities in the target code. Moreover, some low-
level idioms cannot be expressed without resorting to unspecified behaviours of
the C semantics. A compelling example is the memory allocation primitives of
the C standard library which are written using the C syntax but do not have a
strictly conforming semantics. One reason for this is that the low-level bit ma-
nipulation of pointers that is necessary for efficient and robust implementation
of memory allocation is implementation defined.

To alleviate the problem, a common approach consists in setting compiler flags
to disable optimisations known to exploit undefined behaviours [19, Section 3.1].
In a sense, flag tweaking is a fragile way to get the desired program seman-
tics. Wang, Zeldovich et al. [20] propose a more principled compiler approach
where they identify and report code whose optimisation depends on undefined
behaviours. In this work, we advocate for a semantics-based approach and pro-
pose an executable extension of a C semantics ruling out unspecified behaviours
originating from low-level pointer arithmetic and undefined behaviours due to
access to uninitialised data.

The C standard describes only an informal semantics, but several realistic
C formal semantics have been defined [17,3,7,12]. They describe precisely the
defined behaviours of C programs, as well as some undefined behaviours. Yet,
none of them accommodates for all low-level pointer manipulations; uninitialised
data are only dealt with in a very limited fashion by the semantics of Ellison
and Roşu [7, 6.2.2].

One formal semantics is the C semantics used by the CompCert formally
verified C compiler [14]. CompCert is equipped with a machine-checked cor-
rectness proof establishing that the generated assembly code behaves exactly
as prescribed by the semantics of the C source, eliminating all possibilities of
compiler-introduced bugs and generating unprecedented confidence in this com-
piler. Yet, as for any compiler, the guarantee offered by CompCert only holds for
programs with a defined behaviour. In general, the CompCert compiler provides
a stronger guarantee than an ISO C compiler because its source language Com-
pCert C is more defined than the ISO C99 language. Our goal is to extend the
semantics expressiveness of CompCert C further by ruling out more undefined
or unspecified behaviours.

The contributions of this work can be phrased as follows:

– We present the first formal semantics for CompCert C able to give a meaning
to low-level idioms (bit-level pointer arithmetic and access to uninitialised
data) without resorting to a concrete representation of the memory.

A Precise and Abstract Memory Model for C Using Symbolic Values 451

– The semantics operates over a novel memory model where symbolic values
represent delayed computations and are normalised lazily to concrete values.

– We demonstrate that the most precise normalisation is decidable and explain
how to devise an efficient implementation using an SMT solver.

– The semantics is executable and the software development is available at
http://www.irisa.fr/celtique/ext/csem/.

– We show in our experiments that our extensions are mandatory to give a
defined meaning to low-level idioms found in existing C code.

The remainder of this paper is organised as follows. Section 2 introduces rele-
vant examples of programs having undefined or unspecified behaviours. Section 3
defines our extension of CompCert’s semantics with symbolic values. Section 4
specifies our normalisation of symbolic values. Section 5 deals with the imple-
mentation of the normalisation using SMT solvers over the theory of bitvectors.
Section 6 describes the experimental evaluation of our implementation. Related
work is discussed in section 7, followed by concluding remarks.

2 Motivating Examples

An example of unspecified behaviour is the order of evaluation of the arguments
of a function call. The relative size of numeric types is defined but the precise
number of bits is implementation defined. An undefined behaviour is for instance
the access of an array outside its bounds. Unsafe programming languages like C
have by nature undefined behaviours and there is no way to give a meaningful
semantics to an out-of-bound array access.1 Yet, certain undefined behaviours
of C were introduced on purpose to ease either the portability of the language
across platforms or the development of efficient compilers. As illustrated below,
our novel memory model gives a formal semantics to low-level idioms such as
access to uninitialised memory or low-level pointer arithmetic.

2.1 Access to Uninitialised Variables

The C standard states that any read access to uninitialised memory triggers
undefined behaviours [10, section 6.7.8, §10]: “If an object that has automatic
storage duration is not initialised explicitly, its value is indeterminate.” Here,
“indeterminate” means that the behaviour is undefined. To illustrate a benefit
of our semantics, consider the code snippet of Fig. 1, representative of an existing
C pattern (see Section 6.3).

The program declares a status variable and sets its least significant bit using
the set function. It then tests whether the least significant bit is set using the
isset function. According to the C standard, this program has undefined be-
haviour because the set function reads the value of the status variable before
it is ever written.

1 Typed languages detect illegal accesses and typically throw an exception.

http://www.irisa.fr/celtique/ext/csem/

452 F. Besson, S. Blazy, and P. Wilke

However, we argue that this program should have a well-defined semantics
and should always return the value 1. The argument is that whatever the initial
value of the variable status, the least significant bit of status is known to be 1
after the call set(status,0). Moreover, the value of the other bits is irrelevant
for the return value of the call isset(status,0) which returns 1 if and only if
the least significant bit of the variable status is 1. More formally, the program
should return the value of the expression (status|(1�0))&(1�0) != 0 which
evaluates to 1 whatever the value of status. Our semantics constructs symbolic
values and normalises them to a genuine value when the evaluation yields a
unique possible value.

2.2 Low-Level Pointer Arithmetic

In ISO C, the bit width and the alignment of pointers are implementation de-
fined. We consider here that pointers are encoded with 4 bytes and that the
malloc function returns pointers that are 16-byte aligned (i.e. the 4 least sig-
nificant bits are zeros). The C standard also states that arithmetic operations
on pointers are limited to certain comparisons, the addition (or subtraction) of
an integer offset to a pointer and the subtraction of two pointers pointing to
the same object. In order to perform arbitrary operations over a pointer, it is
possible to cast it to an unsigned integer of type uintptr_t for which the ISO C
standard provides the following specification [10, Section 7.18.1.4].

[The type uintptr_t] designates an unsigned integer type with the prop-
erty that any valid pointer to void can be converted to this type, then
converted back to pointer to void, and the result will compare equal to
the original pointer.

Note that this specification is very weak and does not ensure anything if a
pointer, cast to uintptr_t, is modified before being cast back. Here, uintptr_t
is implemented by a 4 bytes unsigned integer, and a cast between pointers and
uintptr_t preserves the binary representation of both pointers and integers (i.e.
it is essentially a no-op).

With these assumptions in mind, consider the expected behaviour of the code
snippet of Fig. 2. The pointer p is a 16-byte aligned pointer to a heap-allocated
integer obtained by malloc. Therefore, it has 4 trailing spare bits. The pointer q
is obtained from the pointer p by filling the 4 trailing bits (hence the bitwise and
with 0xF) with a hash of the pointer p. Note that this pattern is used in practice
as a hardening technique to enforce pointer integrity [13]. Then, the evaluation

int set(int p, int flag) { return p | (1 � flag); }
int isset(int p, int flag) { return (p & (1 � flag)) != 0; }
int main() { int status = set(status,0); return isset(status,0); }

Fig. 1. Undefined behaviour: reading the uninitialised variable status

A Precise and Abstract Memory Model for C Using Symbolic Values 453

char hash(void∗ ptr);
int main(){

int ∗ p = (int ∗) malloc(sizeof(int));
∗p = 0;
int ∗ q = (int ∗) ((uintptr_t) p | (hash(p) & 0xF));
int ∗ r = (int ∗) (((uintptr_t) q >> 4) << 4);
return ∗r; }

Fig. 2. Unspecified behaviour: low-level pointer arithmetic

of r clears out the 4 trailing bits of q using logical shifts. We argue that r is equal
to p and that the program has a well-defined semantics and returns ∗p (that is
0). Our semantics computes the expected behaviour of this program without
resorting to a concrete representation of pointers as machine integers.

2.3 Summary of Differences with the ISO C Standard

The ISO C standard leaves certain behaviours implementation defined. Among
these, our semantics is parametrised by the size of the pointers and the alignment
constraint of malloc. Our semantics also stipulates that pointer and uintptr_t
types have the same size and that casts between these types preserve the binary
representation of the objects. The ISO C standard states that reading unini-
tialised memory is undefined behaviour. Our semantics is more flexible and sim-
ulates the read of an arbitrary value. Operationally, our semantics propagates a
symbolic undefined value through the execution. These extensions are sufficient
to give a well-defined (and intuitive) semantics to the previous examples.

3 A C Semantics with Symbolic Values

Our semantics is able to model low-level idioms, in particular bit-level manipula-
tion of pointers, while retaining abstraction properties of the current block-based
memory model of CompCert. Our approach consists in computing symbolic val-
ues lazily delaying evaluation until values are really needed. A symbolic value
sv evaluates to a value v if for every possible concrete memory M , sv evaluates
to the same value v.

CompCert defines the semantics of a dozen of intermediate languages ranging
from CompCert C to assembly. All the languages share the same memory model.
The compiler transforms programs from one language to another and proves the
correctness of the transformations with respect to that memory model. The
two highest-level languages are CompCert C (source language) and Clight, a
simpler version of CompCert C with side-effect free expressions. For the sake
of presentation, we introduce our new memory model on the Clight semantics.
However, our implementation leverages the existing CompCert C interpreter
enhanced with our new memory model.

In this section, we first describe our memory model with symbolic values.
Then, we show how to enhance the Clight semantics [3] with symbolic values.

454 F. Besson, S. Blazy, and P. Wilke

Memory locations: l ::= (b, i) (block, integer offset)

Values: v ::= int(i) | float(f)
| ptr(l) | undef

Memory chunks: κ ::= Mint8signed 8-bit integers
| Mint8unsigned

| Mint16signed 16-bit integers
| Mint16unsigned

| Mint32 32-bit integers or pointers
| Mfloat32 32-bit floats

Operations over memory states:
alloc(M, lo, hi) = (M ′, b) Allocate a fresh block with bounds [lo, hi[.
free(M, b) = M ′ Free (invalidate) the block b

load(κ,M, b, i) = 'v(
Read consecutive bytes (as determined by κ) at
block b, offset i of memory state M . If successful,
return the contents of these bytes as value v.

store(κ,M, b, i, v) = 'M ′(
Store the value v as one or several consecutive
bytes (as determined by κ) at offset i of block b.
If successful, return an updated memory state M ′.

bound(M, b) Return the bounds [lo, hi[of block b.

Fig. 3. CompCert’s memory model

3.1 The CompCert Memory Model

The semantics of operations involving pointers relies on a memory model defining
how values are represented. The most concrete memory model is an array of
bytes, where pointers and integers are indistinguishable. It can give a precise
semantics, but reasoning on programs at such a low level is cumbersome (e.g.
reasoning on forbidden memory accesses to detect buffer overflows). CompCert
is using a more abstract block-based model [15] where memory is divided into
disjoint blocks, each block corresponding to an allocated variable. A memory is
a collection of blocks, each block being an array of concrete bytes. Intuitively, a
block represents a C variable or an invocation of malloc.

Values stored in memory are defined in Fig. 3. They are the disjoint union
of 32-bit integers (written as int(i)), 32-bit floating-point numbers (written as
float(f)), locations (written as ptr(b,i)), and the special value undef repre-
senting the content of uninitialised memory. Locations ptr(b,i) are composed of
a block identifier b (i.e. an abstract address) and an integer byte offset i within
this block. Pointer arithmetic modifies the offset part of a location, keeping its
block identifier part unchanged. Memory chunks appear in memory operations
load and store, to describe concisely the size, type and signedness of the value
being stored. These functions return option types: we write ∅ for failure and 3x4
for a successful return of a value x.

A Precise and Abstract Memory Model for C Using Symbolic Values 455

The memory is modelled as a map associating to each location an 8-bit elemen-
tary memory value of type memval. A memval value is a byte-sized quantity that
describes the current content of a memory cell. It can be either Undef to model
uninitialised memory; Byte(b) to model a concrete byte b; or Pointer(b, i, n) to
represent the n-th byte (n ∈ {1, 2, 3, 4}) of the location ptr(b, i).

3.2 A New Memory Model with Symbolic Values

Our memory model is built on top of CompCert’s, where we replace the values
with symbolic values, defined as follows.

sv ::= v
| opτ1 sv unary arithmetic operation
| sv τop2

τ sv binary arithmetic operation
| svτ ? svτ : svτ conditional expression
| (τ)svτ type cast (to a C type τ)

Symbolic values are annotated by C types that are needed to disambiguate over-
loaded C operators. Symbolic values are side-effect free and therefore their evalu-
ation is independent of the memory content. To account for alignment properties
we associate with each block of the memory a mask that the concrete address
of the block needs to satisfy. Formally, the concrete address a of a block with
mask msk must be such that a&msk = a. The allocation primitive is modified
accordingly, and we add a function that returns the mask of a given block. The
primitives load and store now operate over symbolic values instead of values.

alloc(M, lo, hi ,msk) = (M ′, b)
mask(M, b) = msk
load(κ,M, b, i) = 3sv4
store(κ,M, b, i, sv) = 3M ′4

We also adapt the memval type to accommodate for symbolic values. To that
purpose, we replace the Pointer constructor by a generalised Symbolic(sv , n)
constructor which represents the n-th byte of a symbolic value sv .

To perform these memory primitives, we define a key operation extr(sv,i),
which extracts the ith byte of a symbolic value. The reverse operation is the
concatenation of a symbolic value sv1 with a symbolic value sv2 representing 8
bits. Assuming that the symbolic value represents a 32-bit value, these operations
can be defined as

extr(sv,i) = (sv)(8∗i)) & 0xFF
concat(sv1,sv2) = sv1 �8 + sv2

3.3 Parametrised Semantics of Clight Values

Expressions cannot be kept symbolic forever. Our semantics is equipped with
a partial normalisation function normalise(M, τ, sv) which converts a symbolic

456 F. Besson, S. Blazy, and P. Wilke

Expressions in l-value position:

G,E � a,M ⇒ sv normalise(M ,type(a), sv) = 'ptr(�)(
G,E � *a,M ⇐ �

(1)

Expressions in r-value position:

G,E � a1,M ⇒ sv1 type(a1) = τ

G, E � op1 a1,M ⇒ opτ
1 sv1

(2)

G,E � a1,M ⇒ sv1 G,E � a2 ,M1 ⇒ sv2 type(a1) = τ1 type(a2) = τ2

G,E � a1 op2 a2,M ⇒ sv1
τ1op2

τ2 sv2
(3)

G,E � a1,M ⇒ sv1 type(a1) = τ1
G,E � a2,M ⇒ sv2 type(a2) = τ2 G,E � a3 ,M ⇒ sv3 type(a3) = τ3

G,E � a1 ? a2 : a3,M ⇒ svτ1
1 ? svτ2

2 : svτ3
3

(4)

G,E � a,M ⇒ sv1 type(a) = τ1

G,E � (τ)a,M ⇒ (τ)svτ1
1

(5)

Fig. 4. Semantics of Clight with symbolic values (excerpt)

value sv to a concrete value of type τ , depending on masks and bounds of blocks
of memory M . The modified Clight semantics of expressions is given in Fig. 4.
It is defined by judgements, parametrised by a global environment G, a local
environment E and an initial memory state M . The evaluation of an expression
in l-value (resp. r-value) position results in a location (resp. symbolic value). In
the judgements, a, a1, a2, a3 range over syntactic expressions and sv, sv1, sv2,
sv3 range over symbolic values.

G,E
 a,M ⇐
 (evaluation of an expression in l-value position)
G,E
 a,M ⇒ sv (evaluation of an expression in r-value position)

Compared to the existing Clight semantics [3], expressions are not completely
evaluated but mapped to symbolic values. Moreover, the rules explicitly intro-
duce calls to a normalisation function (see Section 4). These calls are inserted
when a genuine value is required, i.e. when reading from or writing to memory,
when evaluating the condition of a loop or if-then-else statement, or when
exiting the program.

For instance, to evaluate ∗a, rule (1) recursively evaluates the expression a to
get the symbolic value sv . To get a genuine location l, rule (1) explicitly nor-
malises sv to get l. Now, l can be used to perform a store memory operation.
Rule (2) specifies the evaluation of unary expression op1 a1: it recursively eval-
uates the expression a1 to get the symbolic value sv1 . Instead of evaluating the
operator op1, the semantics delays the evaluation and constructs the symbolic
value opτ1 sv1 where τ is the type of the expression a1. Similarly, the evalua-
tion of binary expressions (rule (3)), conditional expressions (rule (4)) and cast
expressions (rule (5)) recursively evaluate their arguments and construct a sym-
bolic value. Note that for the original Clight semantics, two rules are needed

A Precise and Abstract Memory Model for C Using Symbolic Values 457

to give a semantics to conditional expressions [3, Fig.6, rules (12) and (13)] de-
pending on whether the condition holds or not. With symbolic values, we delay
the evaluation and therefore have a single rule.

4 A Sound and Complete Normalisation

Our semantics with symbolic values aims at giving a defined meaning to low-level
idioms that are out-of-reach of the current Clight. To do so, we need to instantiate
the semantics with an aggressive normalisation function. The existing Clight
semantics can be obtained by a suitable normalisation function. This semantics
is trustworthy because it has been carefully designed, thoroughly reviewed and
intensively tested. However, for more aggressive normalisation (which is what
we aim at), this validation methodology does not scale and therefore provides a
limited trustworthiness.

In this section, we give a formal specification of the normalise function. We
define the notions of soundness and completeness of a normalisation function
with respect to a concrete memory model. We will later show (Section 5) how
to get efficient executable implementations from this specification.

4.1 Soundness of the Normalisation of Symbolic Values

Our semantics is parametrised by the normalisation function normalise. In this
part, we describe the soundness conditions that this normalisation should fulfil.
Symbolic values denote low-level values of types either Tint or Tfloat. The
mapping between high-level C types and low-level types is performed by the
function ctyp defined as follows: ctyp(τ) = Tfloat if τ = Tfloat, and
ctyp(τ) = Tint otherwise. Notice that all the pointer types are mapped to the
type Tint. Indeed, at low-level, addresses are not distinguishable from genuine
integers. To map locations (b, i) to integers, the low-level evaluation is equipped
with a mapping A from block identifiers to concrete addresses, which assigns an
address to each memory block and therefore fixes a memory layout. In general,
the low-level evaluation of a symbolic value is not a single value but a set because
the value undef represents an arbitrary low-level value. Definition 1 formalises
the low-level evaluation of symbolic values.

Definition 1 (Low-level evaluation). Let A be an allocation function map-
ping block identifiers to concrete addresses. The low-level evaluation �·�τA of a
symbolic value e of type τ is inductively defined by the following rules.

int(n) ∈ �int(n)�TintA float(f) ∈ �float(f)�TfloatA

ctyp(τ) = Tint

int(A(b) + i) ∈ �ptr(b, i)�τA

ctyp(τ) = Tfloat

float(n) ∈ �undef�τA

ctyp(τ) = Tint

int(n) ∈ �undef�τA

458 F. Besson, S. Blazy, and P. Wilke

v1 ∈ �sv1 �τ1A eval unop(op1 , v1 , ctyp(τ1)) = 3v4 type(v) = ctyp(τ)

v ∈ �opτ11 sv1 �τA

v1 ∈ �sv1 �τ1A v2 ∈ �sv2 �τ2A type(v) = ctyp(τ)
eval binop(op2, v1, ctyp(τ1), v2, ctyp(τ2)) = 3v4

v ∈ �sv1 τ1op2
τ2 sv2 �τA

v1 ∈ �sv1 �τ1A v2 ∈ �sv2 �τA is true(v1 , ctyp(τ1))

v2 ∈ �svτ1
1 ? svτ

2 : svτ
3 �τA

v1 ∈ �sv1 �τ1A v3 ∈ �sv3 �τA is false(v1 , ctyp(τ1))

v3 ∈ �svτ1
1 ? svτ

2 : svτ
3 �τA

v1 ∈ �sv1 �τ1A cast(v1 , ctyp(τ)) = 3v4
v ∈ �(τ)svτ1

1 �τA

By construction, the denotation of a symbolic value of type τ is a set of
values of type ctyp(τ). Symbolic values that are not well-typed have an empty
low-level evaluation. As a side-remark, notice that the types of symbolic values
cannot be uniquely inferred (undef can have an arbitrary type), and are therefore
explicitly given. Moreover, the low-level evaluation of a symbolic value is reusing
the existing high-level operators eval unop and eval binop with the difference
that types are low-level types.

The normalisation of a symbolic value s should return a defined value v (v �=
undef) such that s evaluates to v for all possible concrete valid memory layouts.
Definition 2 specifies valid memory layouts.

Definition 2 (Valid memory layout). An allocation A from blocks to con-
crete addresses is a valid memory layout for memory M (written A
 M) iff:

1. addresses from distinct blocks do not overlap,
2. the address of a block satisfies its mask, i.e. ∀b, A(b) & mask(M, b) = A(b)
3. addresses are not equal to zero.

With the previous definitions we are ready to state what it means for a normal-
isation to be sound.

Definition 3 (Sound normalisation). A normalisation function is sound iff
for any symbolic value sv, it returns a value v (normalise(M, τ, sv) = 3v4) such
that v is not undef ; v has type τ and v has the same evaluation as sv for any
valid allocation layout i.e. ∀A
 M.�sv�τA = �v�τA.

Note that because v differs from undef, �v�τA is necessarily a singleton. Yet,
certain symbolic values containing undef can nonetheless be normalised, for
instance, normalise(M,Tint,undef & 0x0)= 304.

4.2 Reconstructing the Original Clight Semantics

The more precise the normalisation, the more defined the semantics. There is a
hierarchy of normalisations of different precision. We therefore aim at identifying

A Precise and Abstract Memory Model for C Using Symbolic Values 459

a normalisation which is not only precise but also tractable. The least precise
normalisation, which always returns ∅, is sound but useless: it fails to provide a
semantics to any expression. The original Clight semantics can be modelled by
a normalisation function which recursively evaluates symbolic values.

type(v) = τ

normalise(M, τ, v) = 3v4

normalise(M, τ1, e1) = 3v14 eval unop(op1, v1, τ1) = 3v4 type(v) = τ

normalise(M, τ, opτ11 e1) = 3v4

normalise(M, τ1, e1) = 3v14 normalise(M, τ2, e2) = 3v24
eval binop(op2, v1, τ1, v2, τ2) = 3v4 type(v) = τ

normalise(M, τ, e1
τ1op2

τ2 e2) = 3v4

As explained in the introduction, this normalisation is unable to give a se-
mantics to low-level pointer operations (e.g. ptr(b,i) & 0x0) or expressions with
undefined sub-terms (e.g. undef & 0x0). The original Clight semantics could be
enriched to cope with these simple expressions. However, dealing with arbitrarily
complex expressions using ad hoc simplifications would not be manageable.

4.3 Completeness of the Normalisation of Symbolic Values

Whenever possible, the most precise normalisation should always return some
value. Yet there are rare cases where distinct values are sound normalisations.
This is illustrated by Example 1.

Example 1. Consider the normalisation of the symbolic value ptr(b, 0)+231−1
for a pointer type τ in a memory M made of an unaligned block b with bounds
[0, 231 − 1[and a 2-byte aligned block b′ with bounds [0, 231[. Because the max-
imum capacity of the memory is 232 − 1 bytes (0 is not a valid address), the
memory is full. Moreover, the alignment constraint of b′ prevents it from being
allocated at address 1. It follows that the only valid memory layout of M is
A = [b �→ 1; b′ �→ 231].

As we have �ptr(b, 0) + 231 − 1�τA = �ptr(b, 231 − 1)�τA = �ptr(b′, 0)�τA =
{int(231)}, both ptr(b, 231 − 1) and ptr(b′, 0) are sound normalisations.

In this example, the normalisation ptr(b′, 0) is more valuable because it repre-
sents a valid address (i.e. within the bounds of the allocated block). Definition 4
formalises what it means for a normalisation to be complete by stipulating an
ordering ≺M on values such that ptr(b′, 0) ≺M ptr(b, 231 − 1).

Definition 4 (Complete normalisation). A normalisation function norm is
complete if for all sound normalisations norm′, we have:

norm(M, τ, e) �M norm′(M, τ, e)

where �M is the reflexive closure of the ordering ≺M inductively defined below
and < is an arbitrary total order over locations.

460 F. Besson, S. Blazy, and P. Wilke

3v4 ≺M ∅ (6) i ∈ bound(M, b) i′ /∈ bound(M, b′)

3ptr(b, i)4 ≺M 3ptr(b′, i′)4 (7)

i ∈ bound(M, b) i′ ∈ bound(M, b′) (b, i) < (b′, i′)

3ptr(b, i)4 ≺M 3ptr(b′, i′)4 (8)

i /∈ bound(M, b) i′ /∈ bound(M, b′) (b, i) < (b′, i′)

3ptr(b, i)4 ≺M 3ptr(b′, i′)4 (9)

Rule (6) ensures that a complete normalisation is maximally defined and as
much as possible does not return ∅. Rules (7), (8) and (9) ensure that a complete
normalisation should, as much as possible, return a valid address.

There are memories M for which there is no valid memory layout A. The
simple case is when the size of the allocated memory exceeds 232−1 bytes. In
general, reasoning about the size of the allocated memory is not enough because
the memory can be fragmented due to alignment constraints. In such cases,
Definition 4 is not sufficient to ensure that there is a unique sound and complete
normalisation function. The reason is that when there is no valid memory layout,
any value v is a correct normalisation. Moreover, as the order ≺M is not total,
Definition 4 does not rule out these spurious cases. The good news is that all
sound and complete normalisations compute the same result as soon as there
exists a valid memory layout. Our normalisation algorithm (see Section 5) checks
the existence of a valid memory layout and fails to normalise when there is none.

5 Evaluating Symbolic Values Using an SMT Solver

We have adapted the CompCert C semantics and its executable interpreter to
work with symbolic values. As already demonstrated for the Clight semantics,
the addition of symbolic values is not very intrusive and reuses most of the
semantics infrastructure of the existing interpreter.

The difficulty lies in the implementation of the normalisation function. Given
a memoryM , there are finitely many valid memory layouts A. It is thus decidable
to compute a sound and complete normalisation and the naive algorithm consists
in enumerating over the valid memory layouts and checking that the symbolic
values always evaluate to the same values. Yet, this is not tractable. As shown
below, the normalisation can be recast as a decision problem over the logic
of bitvectors. However, implementing (and proving) in Coq an efficient decision
procedure for this logic would require a substantial engineering effort. Therefore,
our current implementation leverages an external Satisfiability Modulo Theory
(SMT) solver, Z3 [6].

5.1 An Executable Semantics of Symbolic Values

We have adapted the CompCert C interpreter to work with symbolic values.
The modification requires to change the type of values to the type of symbolic
values and to replace the existing memory model by our implementation accom-
modating for symbolic values. As it is illustrated for Clight, the evaluation of

A Precise and Abstract Memory Model for C Using Symbolic Values 461

C operators now builds symbolic values and calls to the normalise function are
placed at certain points, as discussed below.

Our memory model stores (resp. reads) symbolic values to (resp. from) mem-
ory but the address needs to be a location (b,i). Therefore, we apply the nor-
malisation function before calling the store and load primitives of the memory
model. The normalisation is also called to compute the target of conditional
jumps (e.g. for, while or if statements). A last normalisation is applied before
ending the program because the program status needs to be a genuine integer. If
the normalisation succeeds and returns some value, then the execution continues
normally. Otherwise, the semantics gets stuck and the interpreter returns that it
encountered an undefined behaviour. We detail in Section 6 some representative
programs of our benchmarks.

5.2 Normalisation as a Satisfiability Problem

The normalisation function is axiomatised and implemented by an external
(trusted) call to the SMT solver Z3 [6]. As stated earlier, the problem of com-
puting the most precise normalisation is decidable. Yet, a naive approach does
not provide a tractable algorithm. A better solution consists in encoding the
normalisation problem as an SMT problem over the logic of bitvectors and un-
interpreted function symbols. A bitvector of size n is the logic counterpart of a
machine integer with n bits. This logic is therefore a perfect match for reasoning
about machine integers.

First, we axiomatise the memory and define a logical function size mapping
each block to its size and a logical function mask mapping each block to the mask
to be verified by the concrete address. Next, we axiomatise the valid memory
layout relation by directly translating Definition 2 in first-order logic.

Example 2. Consider a memory M restricted to two blocks b1 and b2, with b1
of bounds [0, 4[aligned on word boundaries (i.e. the 4 trailing bits are zeros)
and b2 of bounds [0, 8[with no alignment constraint. The axiomatisation of M
is given by the following formulae.

Block sizes: size(b) =

⎧⎨
⎩

4 if b = b1
8 if b = b2
0 otherwise

Block masks: mask (b) =

⎧⎨
⎩

0xFFFC if b = b1
0xFFFF if b = b2
0xFFFF otherwise

No overlap: ∀b, b′, o, o′.
∧⎧⎨
⎩

b �= b′

o < size(b)
o′ < size(b′)

⇒ A(b) + o �= A(b′) + o′

Addresses are not 0: ∀b, o.o < size(b)⇒ A(b) + o �= 0
Alignment : ∀b, A(b)&mask(b) = A(b)

We process the symbolic value e to be normalised into a logical symbolic value e∗

and replace occurrences of undef by distinct fresh logical variables thus modelling
that undef may take any value.

462 F. Besson, S. Blazy, and P. Wilke

Normalising into an integer. To normalise into an integer, we generate the SMT
query: e∗ = i, where i is a fresh logical variable. Suppose the formula is satisfiable
for a value v for logical variable i. This means that there exists a valid memory
layout such that e is evaluated as the value v. However, this value v is only
a sound normalisation if it is the evaluation for every possible valid memory
layout. To ensure this, we generate the second SMT query: e∗ = i∧ i �= v. If this
is unsatisfiable, then we will return v as the normalisation of e.

Normalising into a pointer. Getting the normalisation of a pointer value is more
complicated by the fact that there are several ways of decomposing an integer
into a location made of a base and an offset. Yet, as we are only interested in
valid addresses (i.e. with an offset inside the bounds of the block), there is only
a single choice. Therefore, we generate the following SMT query:

e∗ = A(b) + o ∧ o < size(b).

Given a model (b′, o′) for location (b, o), we have to ensure that the evaluation
of the expression is independent from the memory layout. Since blocks do not
overlap, there is only one block such that the pointer is valid, so we just need to
check that b′ is the only possible block that makes a valid pointer, i.e. that the
following formula is unsatisfiable:

e∗ = A(b) + o ∧ o < size(b) ∧ b �= b′

Example 3. Consider again the memory M of Example 2 and the symbolic value
e = ptr(b1, 1)− ptr(b2, 2)+ ptr(b2, 4)+ undef&0x0. We process e into a logical
expression e∗ by replacing undef by the fresh variable x1:

e∗ = A(b1) + 1−A(b2)− 2 + A(b2) + 4 + x1&0x0

Notice that the two occurrences of A(b2) cancel out each other, and that we have
∀x, x&0x0 = 0. As a result, we can simplify this expression e∗ into A(b1) + 3.

Normalising into an integer. We need to solve the following SMT query, with
i the unkown: A(b1) + 3 = i. We then get a first solution (e.g. v = 19, with
A(b1) = 16). However, this is not the only possibility because we get a second
solution with A(b1) = 32 for example, which yields v = 35. This expression has
therefore no normalisation as an integer.

Normalising into a pointer. Now, the SMT query we need to solve is:

A(b1) + 3 = A(b) + o ∧ o < size(b)

A solution is b′ = b1 and o′ = 3, and we can see that this is the only solu-
tion to this equation. Therefore the expression e is normalised into the location
ptr(b1, 3).

A Precise and Abstract Memory Model for C Using Symbolic Values 463

5.3 Relaxation and Optimisation of the SMT Encoding

The previous encoding of the memory depends on the number of allocated blocks.
Thus, as the memory gets bigger, the normalisation would get slower. In practice,
we observe that the size of the memory has a dramatic (negative) impact on SMT
solvers. To tackle the problem, we propose a relaxation of the SMT query that
is independent of the number of allocated blocks and only depends on the size
of the symbolic value to be normalised.

A key observation is that a symbolic value can only be normalised if the
corresponding SMT query has a unique solution. As a result, it is always sound
to relax the SMT query and generate a weaker one (i.e. with potentially more
solutions) provided the initial formula is satisfiable. Indeed, if there are more
solutions, the normalisation will fail – this is always sound.

In our relaxation, we do not fully axiomatise the memory but only specify
the bounds and masks of the memory blocks B that appear syntactically in the
symbolic value to be normalised. When normalising a symbolic pointer, we also
state explicitly in the SMT query that the normalisation, if it exists, should be
a location (b, i) such that b ∈ B.

This relaxation will only miss a normalisation if the memory is almost full
and blocks b ∈ B cannot be allocated at certain addresses because of bound or
alignment constraints of other blocks b′ /∈ B. This is illustrated by Example 4.

Example 4. Consider a memory with 3 unaligned blocks b1, b2 and b3 of size 1
and a last block b4 of size 232− 4 that is 4-byte-aligned, i.e. the last two bits are
zeros. Because of alignment and size constraints, the block b4 can only be allo-
cated at address 4 while other blocks can be allocated at the remaining addresses
(i.e. 1, 2 and 3). As a result, the symbolic value ptr(b1,0)+ptr(b2,0)+ptr(b3,0)
evaluates to 6 which corresponds to the valid location (b4, 2).

The normalisation of Example 4 requires a full axiomatisation of the memory and
cannot be obtained using our relaxation. In practice, we have never encountered
such a pathological case.

6 Experimental Evaluation

As stated earlier, we have adapted the CompCert C interpreter so that we could
test our semantics on real programs. This required only minor changes to get it
to work with symbolic values. However, we put slightly more effort in designing
stubs in the interpreter to model system calls such as mmap that are used e.g.
in the source code of the malloc implementation we used. This system call is
mapped to the alloc primitive of our memory model. Other system calls such
as open, read or write are resolved using the OCaml equivalent functions.

We have tested our C semantics with symbolic values on the CompCert bench-
marks. Their size ranges between a few hundreds and a few thousands lines of
code. We checked the absence of regression: when the CompCert interpreter re-
turns a defined value, our interpreter enhanced with symbolic values returns the
exactly same value.

464 F. Besson, S. Blazy, and P. Wilke

We have also run our interpreter over Doug Lea’s memory allocator [13] and
on parts of the NaCl cryptographic library [2], which are challenging programs
because they perform low-level pointer arithmetic; their size is about a few thou-
sands lines of code. For this experiment, we model the system call mmap by a
call to the alloc primitive of our memory model with a mask specifying the
alignment of a page. Our interpreter succeeds in giving a semantics to memory
management functions, such as malloc, memalign or free, built on top of mmap.
As there is no other formal C semantics able to deal with low-level pointer arith-
metic, we checked that the result of our interpreter was matching the output of
gcc. Programs reading uninitialised variables have undefined semantics and gcc
could exploit this to perform arbitrary computations. Yet, the output of gcc and
our interpreter agree on examples similar to Fig. 1. In the following, we detail
some interesting patterns found in the benchmarks.

6.1 Pointer Arithmetic Using Alignment and Bitwise Operations

The malloc function sometimes needs to check a pointer’s distance to an align-
ment boundary. This is equivalent to getting the last bits of the pointer. For
instance, this is done with the C expression p & 15, which gets the 4 last bits of
pointer p. For our experiments, pointers are allocated by mmap and are therefore
known to be aligned on more than 16 bytes boundaries. For a pointer p=ptr(b,3),
our SMT encoding models that the last 4 bits of b are zeros and the code eval-
uates to 3&15 (i.e. 3). In general, with the previous alignment constraints, we
have that the symbolic value ptr(b,o) & 15 returns the offset o of the pointer.

A similar example is the function memalign(al,nb), where al must be a power
of two (i.e. al = 2n). The function dynamically allocates a nb-byte region, and
ensures that the address returned has the n last bits to zero. When called with
al = 32, the function computes checks such as p&31 == 0 to check that the 5
last bits are zeros. The left-hand side of the comparison is evaluated in the same
manner as the example above, and the comparison is computed trivially.

6.2 Comparison Between Pointers and -1

Several system calls, such as mmap or sbrk, are expected to return pointers but
return -1 on error. When a function calls mmap for example, there is typically a
check that the system call succeeded (i.e. the returned value is not -1).

void ∗p = mmap(...); if (p == −1) { ... }

Our normalisation gives a semantics to this programming pattern using the
following reasoning. We know that pointers returned by mmap are aligned on a
page boundary (212 in our implementation, i.e. the 11 last bits of the pointer
are zeros). When the allocation succeeds, the pointer can therefore never be -1
(in binary 0xFFFFFFFF) thus allowing to evaluate this comparison.

A Precise and Abstract Memory Model for C Using Symbolic Values 465

6.3 Operations on Undefined Values

The example shown is Fig. 1 is a simplified version of a C expression that ap-
pears in real-life programs. For example, the memalign function described above
features this kind of operations on undefined values.

The memory managed by the dynamic allocation functions is organised in
memory chunks, which consist of two 32-bit words of meta-data and the mem-
ory chunk itself. The second word of meta-data stores the size of the chunk
and two bits of other information. Initialising the meta-data is done with the C
code ∗p = (∗p & 0b1)|size|0b10 (the 0b prefix applies to constants in binary
format). When the memory pointed by p is undefined, this ends up with the sym-
bolic value (undef & 0b1)|size|0b10. It does not evaluate as a value, because
the last bit is still undefined.

However, our semantics enables us to keep a symbolic value holding information
about all the other bits instead of getting stuck. For instance, the symbolic value
((undef & 0b1)|size|0b10) & 0b10 has the well-defined normalisation 0b10 and
retrieves the second last bit of the meta-data. This reasoning is made possible by
the fact that size is a multiple of 4 (i.e. the last two trailing bits of size are zeros).

6.4 Copying Bytes between Memory Areas with memmove

Our semantics requires the target of jump instructions to be unique. This is a
consequence of the fact that a symbolic value representing a conditional should
normalise to some fixed boolean value. In other words, a program whose control-
flow depends on the memory layout has an undefined behaviour. This depen-
dance on the memory layout (e.g. on the memory allocator) is a portability bug
that is detected by our semantics.

Indeed, in our experiments, we have encountered this situation for the memmove
function (see Fig. 5) which implements a memory copy even when the origin and
destination memory regions do overlap. To cope with this situation, the memmove
function performs the pointer comparison dest <= src. If the pointers dest and
src point to distinct memory blocks, this comparison depends on the memory
layout and is therefore undefined for our memory model.

void ∗ memmove(void ∗ s1, const void ∗ s2, size_t n) {
char ∗ dest = (char ∗) s1;
const char ∗ src = (const char ∗) s2;
if (dest <= src)

while (n−−) { ∗dest++ = ∗src++; }
else {

src += n; dest += n;
while (n−−) { ∗−−dest = ∗−−src; }

}
return s1;

}

Fig. 5. memmove with an undefined semantics

466 F. Besson, S. Blazy, and P. Wilke

We have solved the issue by replacing the original condition dest <= src with
the more involved condition src <= dest & dest < src + n. This condition ex-
plicitly tests whether the memory regions overlap using the integer n which is
the number of bytes to be copied. Notice that we use on purpose the bitwise
& operator (and not the lazy boolean && operator). A && would force the eval-
uation of src <= dest which cannot be normalised. The new condition with a
& constructs a symbolic value which is independent from the memory layout
and has therfore always a defined normalisation. In particular, if the pointers
are from distinct blocks, the condition is always false because locations from
distinct blocks cannot overlap.

7 Related Work

Wang et al. have shown that undefined behaviours of the ISO C standard have a
negative impact on the security of software [19]. To tackle the problem Wang et
al. propose a compiler-based approach to identify pieces of code whose optimised
generated code exploit undefined behaviours [20]. We adopt a semantics-based
approach that aims at giving a meaning to programs that do not have a defined
behaviour according to the ISO C standard.

Memory models have been proposed to ease the reasoning about low-level
code. The VCC system [4] generates verification conditions using an abstract
typed memory model [5] where the memory is a mapping from typed pointers
(p ∈ T × B|u64|) to structured C values. This memory model is not formally
verified. Using the Isabelle/HOL proof assistant, the Autocorres tool [8,9] con-
structs provably correct abstractions of C programs. Following Tuch et al. [18],
a concrete memory is abstracted by an abstract memory m ∈ ′a ptr → ′a option
where ′a represents the type of the pointer. The memory models of VCC [5] and
Autocorres [9] ensure separation properties of pointers for high-level code and are
complete with respet to the concrete memory model. For the CompCert mem-
ory model [15], separation properties of pointers are for free because pointers are
modelled as abstract locations l ∈ block ×offset . For our symbolic extension, the
completeness (and correctness) of the normalisation is defined with respect to a
concrete memory model and therefore allows to reason about low-level idioms.

Several formal semantics of C are defined over a block based memory model
where pointers are modelled by a location l ∈ block ×offset [7,12,14]. The differ-
ent models differ upon their precise interpretation of the ISO C standard. The
CompCert C semantics [3] provides the specification for the correctness of the
CompCert compiler [14]. CompCert is used to compile safety critical embedded
systems [1] and the semantics departs from the ISO C standard to capture ex-
isting practices. Our semantics extends the existing CompCert semantics and
benefits from its infrastructure.

Krebbers also extends the CompCert semantics but aims at being as close as
possible to the C standard and proposes a formalisation of sequence points in
non-deterministic programs [12] and of strict aliasing restrictions in union types
of C11 [11]. These aspects are orthogonal to the focus of our semantics which

A Precise and Abstract Memory Model for C Using Symbolic Values 467

gives a meaning to implementation defined low-level pointer arithmetic. Ellison
and Roşu [7] propose an executable C semantics using the K framework [16].
Unlike our semantics with symbolic values, they do not model low-level pointer
arithmetic and only have a partial symbolic support for uninitialised values [7,
Section 6.2.2].

8 Conclusion

We propose an executable semantics for C programs that augments the block
based memory model of CompCert with the ability to reason about low-level
pointer arithmetic and uninitialised values. The key insight is the use of symbolic
values that represent delayed computations: symbolic values are only normalised
when a concrete value is really needed. The normalisation is executable and
efficient in practice thanks to the use of SMT solvers.

As future work, we shall investigate how to adapt the correctness proof of the
CompCert compiler to our new memory model. A difficulty is that our model
makes explicit that the memory is finite as the normalisation exploits the fact
that pointers are indistinguishable from C integers. Moreover, our memory model
is general enough and should be helpful to add in CompCert new target archi-
tectures where integer and float values are not so clearly separated in memory
or in registers (e.g. SIMD architecture).

As another line of research, we intend to study how to ground security anal-
yses upon our enhanced memory model. A feature of our memory model is that
the normalisation, seen as an SMT query, implicitly enumerates all the possible
concrete memory configurations. We shall investigate how to augment the ax-
iomatisation of the memory to assess the consequences of a memory violation
(e.g. use-after-free), and perform detailed vulnerability analyses.

References

1. Bedin França, R., Blazy, S., Favre-Felix, D., Leroy, X., Pantel, M., Souyris, J.:
Formally verified optimizing compilation in ACG-based flight control software. In:
ERTS2 2012: Embedded Real Time Software and Systems (2012)

2. Bernstein, D.J., Lange, T., Schwabe, P.: The Security Impact of a New Cryp-
tographic Library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS,
vol. 7533, pp. 159–176. Springer, Heidelberg (2012)

3. Blazy, S., Leroy, X.: Mechanized Semantics for the Clight Subset of the C Language.
J. Autom. Reasoning 43(3), 263–288 (2009)

4. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical System for Verifying Concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

5. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A Precise Yet Efficient Memory
Model for C. ENTCS 254, 85–103 (2009)

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

468 F. Besson, S. Blazy, and P. Wilke

7. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
POPL, pp. 533–544. ACM (2012)

8. Greenaway, D., Andronick, J., Klein, G.: Bridging the Gap: Automatic Verified
Abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
99–115. Springer, Heidelberg (2012)

9. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff:
Formal verification of C code without the pain. In: PLDI. ACM (2014)

10. ISO. ISO C Standard 1999. Technical report (1999)
11. Krebbers, R.: Aliasing restrictions of C11 formalized in Coq. In: Gonthier, G.,

Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 50–65. Springer, Heidelberg
(2013)

12. Krebbers, R.: An operational and axiomatic semantics for non-determinism and
sequence points in C. In: POPL, pp. 101–112. ACM (2014)

13. Lee, D.: A memory allocator, http://gee.cs.oswego.edu/dl/html/malloc.html
14. Leroy, X.: Formal verification of a realistic compiler. Comm. ACM 52(7), 107–115

(2009)
15. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model. In:

Program Logics for Certified Compilers. Cambridge University Press (2014)
16. Lucanu, D., Şerbănuţă, T.F., Roşu, G.: K Framework Distilled. In: Durán, F. (ed.)

WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)
17. Norrish, M.: C formalised in HOL. PhD thesis, University of Cambridge (1998)
18. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: POPL,

pp. 97–108. ACM (2007)
19. Wang, X., Chen, H., Cheung, A., Jia, Z., Zeldovich, N., Kaashoek, M.F.: Undefined

behavior: What happened to my code? In: APSYS 2012, pp. 1–7 (2012)
20. Wang, X., Zeldovich, N., Kaashoek, M.F., Solar-Lezama, A.: Towards

Optimization-safe Systems: Analyzing the Impact of Undefined Behavior. In: SOSP
2013, pp. 260–275. ACM (2013)

http://gee.cs.oswego.edu/dl/html/malloc.html

Hereditary History-Preserving Bisimilarity:

Logics and Automata�

Paolo Baldan and Silvia Crafa

Dipartimento di Matematica, Università di Padova, Italy
baldan,crafa@math.unipd.it

Abstract. We study hereditary history-preserving (hhp-) bisimilarity,
a canonical behavioural equivalence in the true concurrent spectrum, by
means of logics and automata. We first show that hhp-bisimilarity on
prime event structures can be characterised in terms of a simple logic
whose formulae just observe events in computations and check their exe-
cutability. The logic suggests a characterisation of hhp-bisimilarity based
on history-dependent automata, a formalism for modelling systems with
dynamic allocation and deallocation of resources, where the history of
resources is traced over time. Prime event structures can be naturally
mapped into history-dependent automata in a way that hhp-bisimilarity
exactly corresponds to the canonical behavioural equivalence for history-
dependent automata.

1 Introduction

Behavioural equivalences play a key role in the formal analysis of system speci-
fications. They can be used to equate specifications that, although syntactically
different, denote the same system behaviour, or to formally state that a system
enjoys a desired property. A number of behavioural equivalences have been de-
fined which take into account different concurrency features of computations. In
particular, true concurrent equivalences (see, e.g., [1]) are a natural choice when
one is interested in analysing properties concerning the dependencies between
computational steps (e.g. causality). They can be convenient also because they
provide some relief to the so-called state-space explosion problem in the analysis
of concurrent systems (see, e.g., [2]).

Hereditary history preserving (hhp-)bisimilarity [3], the finest equivalence in
the true concurrent spectrum in [1], has been shown to arise as a canonical be-
havioural equivalence when considering partially ordered computations [4]. True
concurrent models, such as Winskel’s event structures [5], often describe the be-
haviour of systems in terms of events in computations and dependency relations
between such events, like causal dependency or concurrency. Hhp-bisimilarity
then precisely captures the interplay between branching, causality and concur-
rency. Roughly, hhp-bisimilarity requires that events of one system are simu-
lated by events of the other system with the same causal history and the same

� Work partially supported by the MIUR PRIN project CINA.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 469–488, 2014.
c© Springer International Publishing Switzerland 2014

470 P. Baldan and S. Crafa

concurrency. The last constraint is often captured by means of a sort of back-
tracking condition: for any two related computations, the computations obtained
by reversing a pair of related events must be related too. As a consequence,
hhp-bisimilarity, together with other variants of forward-reverse equivalences,
are considered appropriate behavioural equivalences for systems with reversible
computations [6,7,8].

Recently, the logical characterisation of hhp-bisimilarity has received a re-
newed interest and corresponding event-based logics have been introduced, where
formulae include variables which can be bound to events. The logic L in [9] ex-
plicitly refers to relations between events, namely causality and concurrency.
More precisely, L includes two main operators. The formula (x, y < a z)ϕ is sat-
isfied in a state when an a-labelled future event exists, which causally depends
on the event bound to x, and is independent from the event bound to y; such
an event is bound to variable z and then ϕ is required to hold. In general, x
and y can be replaced by tuples of variables. The formula 〈z〉ϕ says that the
event bound to z is enabled in the current state, and after its execution ϕ holds.
Instead, the logic EIL (Event Identifier Logic) in [10] relies on a backward step
modality: the formula 〈〈x〉ϕ holds when the event bound to x can be undone
and then ϕ holds. This is similar to the past tense or future perfect modality
studied in [4,11,3,12].

In this paper we provide a logical characterisation of hhp-bisimilarity in terms
of a simple logic L0, a core fragment of L, which only predicates over existence
and executability of events, without explicitly referring to their dependencies.
Formally, the operator (x, y < a z)ϕ is replaced by (a z)ϕ. Syntactically, L0 is
also a subset of EIL, but it is different in spirit (as quantification is performed
only on future events and it does not include a backward modality). In particular,
although all such logics characterise hhp-bisimilarity, the modalities of EIL and
L are not interdefinable.

The fact that the logic L0 allows one to observe and track events in
computations suggests a connection with history-dependent automata (HD-
automata) [13], a computational formalism for modelling systems with dynamic
allocation and deallocation of resources, tracing the history of such resources over
time. Indeed, by considering events in computations as resources manipulated
by automata, we identify a class of HD-automata, called HDE-automata, where
prime event structures (pess) can be naturally mapped, in a way that the canon-
ical behavioural equivalence for HD-automata coincides with hhp-bisimilarity
over pess. More precisely, transitions of HDE-automata correspond to planning
an activity or event (which could be not immediately executable due to unsatis-
fied dependencies with other activities), executing a previously planned activity
and dismissing a planned activity (without executing it). We provide an en-
coding of any prime event structure E into an HDE-automaton H(E) such that
two prime event structures are hhp-bisimilar if and only if the corresponding
HDE-automata are bisimilar. The proof relies on a logical characterisation of
bisimilarity on HDE-automata in terms of a logic Lhd, a slight variant of the
logic L0, which adds an operator for deallocation, i.e., for forgetting an event

Hereditary History-Preserving Bisimilarity: Logics and Automata 471

planned and not yet executed. Mappings of logic L0 into Lhd and back are
provided, in a way that a pes E satisfies a formula in L0 if and only if H(E)
satisfies the corresponding formula in Lhd and vice versa. Although developed
for a specific class of HD-automata, in our opinion the logical characterisation
of HD-bisimilarity has an interest which goes beyond the specific application in
this paper and deserves to be further investigated.

Moreover, our characterisation of hhp-bisimilarity in terms of HD-automata,
besides shedding light on the nature of this behavioural equivalence, can be
helpful in studying the decidability boundary for hhp-bisimilarity, which is un-
decidable for many basic models of concurrency, even in the finite state case (e.g.,
it is known that hhp-bisimilarity is undecidable for safe finite Petri nets [14]).
Indeed, the characterisation in terms of HD-automata naturally suggests effec-
tive approximations of hhp-bisimilarity, which can be obtained by establishing
bounds k on the distance in the future of planned events. The detailed study of
such approximations is postponed to the extended version of the paper. We focus
here on an insightful investigation about the logical and the automata-theoretic
characterisations of hhp-bisimilarity.

The rest of the paper is structured as follows. In Section 2 we review the
definition of hhp-bisimilarity over prime event structures. In Section 3 we define
the logic L0 and show that hhp-bisimilarity is the logical equivalence induced
by L0 on (image finite) pess. In Section 4 we study HDE-automata: the class of
HD-automata operating over resources which can be seen as activities or events
in a computation. In Section 5 we provide a bisimilarity-preserving encoding of
prime event structures into HDE-automata. In Section 6 we comment on some
related work and outline future research.

2 Event Structures and hhp-Bisimilarity

Prime event structures [5] are a widely known model of concurrency. They de-
scribe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper E is a fixed countable set of events,
Λ a set of labels ranged over by a, b, c . . . and λ : E→ Λ a labelling function.

Definition 1 (prime event structure). A (Λ-labelled) prime event structure
(pes) is a tuple E = 〈E,≤,#〉, where E ⊆ E is the set of events and ≤, # are
binary relations on E, called causality and conflict respectively, such that:

1. ≤ is a partial order and 5e6 = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and hereditary with respect to ≤, i.e., for all

e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

In the following, we will assume that the components of an event structure E
are named as in the definition above, possibly with subscripts.

Definition 2 (consistency, concurrency). Let E be a pes. We say that e, e′ ∈
E are consistent, written e� e′, if ¬(e#e′). A subset X ⊆ E is called consistent
if e� e′ for all e, e′ ∈ X. We say that e and e′ are concurrent, written e || e′, if
e� e′ and ¬(e ≤ e′), ¬(e′ ≤ e).

472 P. Baldan and S. Crafa

Causality and concurrency will be sometimes used on set of events. Given
X ⊆ E and e ∈ E, by X < e we mean that for all e′ ∈ X , e′ < e. Similarly
X || e, resp. X � e, means that for all e′ ∈ X , e′ || e, resp. e′ � e.

The concept of (concurrent) computation for event structures is captured by
the notion of configuration.

Definition 3 (configuration). Let E be a pes. A (finite) configuration in E is
a (finite) consistent subset of events C ⊆ E closed w.r.t. causality (i.e., 5e6 ⊆ C
for all e ∈ C). The set of finite configurations of E is denoted by C(E).

Observe that the empty set of events ∅ is always a configurations, which can
be interpreted as the initial state of the computation. Hereafter, unless explicitly
stated otherwise, all configurations will be assumed to be finite.

Definition 4 (residual). Let E be a pes. For a configuration C ∈ C(E), the
residual of E after C, is defined as E [C] = {e | e ∈ E \ C ∧ C � e}.
Concurrent behavioural equivalences can then be defined on the transition sys-
tem where configurations are states.

Definition 5 (transition system). Let E be a pes and let C ∈ C(E). Given

e ∈ E [C], if C ∪ {e} ∈ C(E) then we write C
e−→ C ∪ {e}.

A pes E is called image finite if for every C ∈ C(E) and a ∈ Λ, the set of

events {e ∈ E | C e−→ C′ ∧ λ(e) = a} is finite. All the pess considered in this
paper will be assumed to be image finite, a standard requirement for getting a
logical characterisation of a behavioural equivalence based on a finitary logic.

Several equivalences have been defined in order to capture the concurrency fea-
tures of a system to different extents (see, e.g., [1]). Hereditary history-preserving
(hhp-)bisimilarity arises as a canonical equivalence for pess [4] which fully takes
into account the interplay between causality, concurrency and nondeterminism
of events.

We need to fix some further notation. A consistent subset X ⊆ E of events
will be often seen as a pomset (partially ordered multiset) (X,≤X , λX), where
≤X and λX are the restrictions of ≤ and λ to X . Given X,Y ⊆ E we will write
X ∼ Y if X and Y are isomorphic as pomsets and write f : X

∼→ Y for a pomset
isomorphism.

Definition 6 (posetal product). Given two pess E1, E2, the posetal product
of their configurations, denoted C(E1)×̄C(E2), is defined as

{(C1, f, C2) | C1 ∈ C(E1), C2 ∈ C(E2), f : C1
∼→ C2}

A subset R⊆C(E1)×̄C(E2) is called a posetal relation. We say that R is
downward closed whenever for any (C1, f, C2), (C

′
1, f

′, C′
2) ∈ C(E1)×̄C(E2), if

(C1, f, C2) ⊆ (C′
1, f

′, C′
2) pointwise and (C′

1, f
′, C′

2) ∈ R then (C1, f, C2) ∈ R.

Given a function f : X1 → X2 we will use the notation f [x1 �→ x2] : X1 ∪
{x1} → X2 ∪ {x2} for the function defined by f [x1 �→ x2](x1) = x2 and f [x1 �→
x2](z) = f(z) for z ∈ X1 \ {x1}. Note that this can represent an update of f ,
when x1 ∈ X1, or an extension of its domain, otherwise.

Hereditary History-Preserving Bisimilarity: Logics and Automata 473

Definition 7 ((hereditary) history-preserving bisimulation). A history-
preserving (hp-)bisimulation is a posetal relation R ⊆ C(E1)×̄C(E2) such that if

(C1, f, C2) ∈ R and C
e1−→ C′

1 then C2
e2−→ C′

2, with (C′
1, f [e1 �→ e2], C

′
2) ∈ R, and

vice versa. We say that E1, E2 are history preserving (hp-)bisimilar and write
E1 ∼hp E2 if there exists a hp-bisimulation R such that (∅, ∅, ∅) ∈ R.

A hereditary history-preserving (hhp-)bisimulation is a downward closed hp-
bisimulation. When E1, E2 are hereditary history-preserving (hhp-)bisimilar we
write E1 ∼hhp E2.

3 A Logic for hhp-Bisimilarity

In this section we introduce the syntax and the semantics of a logic L0, used to
characterise hhp-bisimilarity. The formulae of L0 predicate over existence and
executability of events in computations. As already mentioned, L0 is a small
core of the logic L in [9], where the operators do not explicitly refer to the
dependencies between events. Still L0 is sufficiently powerful to capture such
dependencies and its logical equivalence is the same as that of the full logic in
that they both correspond to hhp-bisimilarity.

Definition 8 (syntax). Let Var be a countable set of variables ranged over by
x, y, z.... The logic L0 over the set of labels Λ is defined by the following syntax:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (a z)ϕ | 〈z〉ϕ
Disjunction ϕ ∨ ψ is defined, as usual, by duality as the formula ¬(¬ϕ ∧ ¬ψ).
Similarly, we write F for ¬T.

The operator (a z) acts as a binder for the variable z. Accordingly, the free
variables of a formula ϕ are defined as follows:

fv((a z)ϕ) = fv (ϕ) \ {z} fv (〈z〉ϕ) = fv (ϕ) ∪ {z}
fv(T) = ∅ fv (¬ϕ) = fv(ϕ) fv (ϕ1 ∧ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)

Formulae are considered up to α-conversion of bound variables. The logic L0

is interpreted over pess. In particular, the satisfaction of a formula is defined
with respect to pairs (C, η), where C ∈ C(E) is a configuration representing the
state of the computation, and η : Var → E is a function, called environment,
that maps the free variables of ϕ to events.

Since, intuitively, a formula ϕ describes possible future computations, the
environment should map variables to events consistent with C and pairwise
consistent. The first condition ensures that the formula actually refers to events
that belong to the future (residual) of the current state. The second condition
prevents the direct observation of conflicts, in accordance with the observational
power of hhp-bisimilarity (Some examples are provided below, after defining the
semantics.) Formally, this is captured by the notion of legal pair.

Definition 9 (legal pair). Given a pes E, let EnvE denote the set of envi-
ronments, i.e., of functions η : Var → E. Given a formula ϕ in L0, a pair
(C, η) ∈ C(E)×EnvE is legal for ϕ if C ∪ η(fv (ϕ)) is a consistent set of events.
We write lpE(ϕ) for the set of legal pairs for ϕ.

474 P. Baldan and S. Crafa

b d

a c a b

b a

a b
E1 E2 E3

Fig. 1. The pes E1 for a.b+ c.d, E2 for a | b and E3 for a.b+ b.a

We omit the subscripts and write Env and lp(ϕ) when the pes E is clear from
the context.

Definition 10 (semantics). Let E be a pes. The denotation of a formula ϕ,
written {|ϕ|}E ∈ 2C(E)×Env is defined inductively as follows:

{|T|}E = C(E)× EnvE

{|ϕ1 ∧ ϕ2|}E = {|ϕ1|}E ∩ {|ϕ2|}E ∩ lp(ϕ ∧ ψ)

{|¬ϕ|}E = lp(ϕ) \ {|ϕ|}E

{|(a z)ϕ|}E = {(C, η) | ∃e ∈ E [C].e� η(fv (ϕ) \ {z})
λ(e) = a ∧ (C, η[z �→ e]) ∈ {|ϕ|}E}

{|〈z〉 ϕ|}E = {(C, η) | C
η(z)−−→ C′ ∧ (C′, η) ∈ {|ϕ|}E }

When (C, η) ∈ {|ϕ|}E we say that the pes E satisfies the formula ϕ in the con-
figuration C and environment η : Var → E, and write E , C |=η ϕ. For closed
formulae ϕ, we write E |= ϕ, when E , ∅ |=η ϕ for some η.

In words, the formula (a z)ϕ holds in (C, η) when in the future of the con-
figuration C there is an a-labelled event e consistent with the events already
observed (which are bound to free variables in ϕ) and binding such event e to
the variable z, the formula ϕ holds. The formula 〈z〉ϕ states that the event
bound to z is currently enabled, hence it can be executed producing a new con-
figuration which satisfies the formula ϕ. An environment η is a total function,
but it can be shown that the semantics of a formula ϕ depends only on the value
of the environment on the free variables fv (ϕ). In particular, for closed formulae
the environment is irrelevant. Moreover, it can be easily seen that α-equivalent
formulae have the same semantics.

As an example, consider the pes E1 in Fig. 1 corresponding to the CCS process
a.b + c.d, where dotted lines represent immediate conflict and the causal order
proceeds upwards along the straight lines. The empty configuration satisfies the
formula ϕ = (bx)T, i.e., E1 |= ϕ since in the future of the empty configuration
there is a b-labelled event. However E1 �|= (bx)〈x〉T since such event is not
immediately executable.

Observe also that E1 |= (bx)T∧(d y)T, since there are two possible (incompat-
ible) future computations starting from the empty configuration that contain,
respectively, a b-labelled and a d-labelled event. For a similar reason, we have

Hereditary History-Preserving Bisimilarity: Logics and Automata 475

b

a

b b

a a
E4 E5

Fig. 2. The pes E4 for a.b, E5 for a.b+ a.b.

also E1 |= (ax)〈x〉T ∧ (c y)〈y〉T. Finally observe that E1 |= (ax)(c y)T since in
this case, after binding the variable x to the a-labelled event, we can bind y to
the c-labelled event because x is not free in the remaining subformula T.

As a further example, consider the pess E2 and E3 in Fig. 1, corresponding
to the CCS processes a | b and a.b+ b.a, respectively. They are distinguished by
the formula (ax)(b y)(〈x〉 〈y〉T∧〈y〉 〈x〉T) that states that there are two events,
labelled a and b, that can be executed in any order. The formula is satisfied by
the first but not by the second pes. In a similar way, the processes a | a and a.a
are distinguished by the formula (ax)(a y)(〈x〉 〈y〉T ∧ 〈y〉 〈x〉T).

On the other hand, the pess E4 and E5 in Fig. 2, corresponding to the processes
a.b and a.b+ a.b, are hhp-equivalent; accordingly, they both satisfy the formula
ϕ1 = (ax)(a y)T and falsify ϕ2 = (ax)(a y)〈x〉 〈y〉T. In particular, for E4 to
satisfy ϕ1 both x and y must be bound to the unique a-labelled event. These
pess can be also used for clarifying the need of restricting to legal pairs in
the semantics. Consider the formula ϕ = (ax)(b y)〈x〉 ¬〈y〉T. While, clearly,
E4 �|= ϕ, one could believe that E5 |= ϕ since after binding the variable x to the
right a-labelled event, we could think of binding y to the left b-labelled event,
thus satisfying the remaining subformula 〈x〉 ¬〈y〉T. However, this is not correct:
since x occurs free in the subformula 〈x〉 ¬〈y〉T, the event bound to y must be
consistent to that bound to x in order to lead to a legal pair, hence the only
possibility is to choose the b-labelled event caused by that bound to x.

Roughly speaking, the logic L0 observes conflicting futures, as long as conflict-
ing events are kept separate and not combined in a computation. This corresponds
to the observational power of hhp-bisimilarity, which captures the interplay be-
tween branching and causality/concurrencywithout explicitly observing conflicts.
We observe that the fragment L0 is less expressive than the full logic L. For in-
stance, it can be shown that the formula (ax)(x < a y)T in L, which states the
existence of two causally dependent a-labelled events at arbitrary causal distance,
is not encodable by a finite formula of L0. Still, L0 is sufficiently expressive to cap-
ture the same logical equivalence of L, i.e., hhp-bisimilarity.

In the following we will denote lists of variables like x1, ..., xn by x.

Theorem 1 (hhp-bisimilarity, logically). Let E1, E2 be two pess. Then
E1 ∼hhp E2 iff E1 and E2 satisfy the same closed formulae in L0.

Proof (Sketch). The only if part follows from [9, Theorem 1], since the logic L0

is a fragment of L. For the converse implication, fix a surjective environment
η1 : Var → E1. Then given an event e ∈ E1, we let xe denote a chosen variable

476 P. Baldan and S. Crafa

such that η1(xe) = e. For a configuration C1 = {e1, . . . , en} we denote by XC1

the set of variables {xe1 , . . . , xen}.
Then one can prove that the posetal relation R ⊆ C(E1)×̄C(E2) defined by:

R = { (C1, f, C2) | ∀ϕ ∈ L0. fv (ϕ) ⊆ XC1

(E1, ∅ |=η1 ϕ iff E2, ∅ |=f◦η1 ϕ) }
(1)

is a hhp-bisimulation. Above, given an isomorphism of pomsets f : C1 → C2,
we denote by f ◦ η1 an environment such that f ◦ η1(x) = f(η1(x)) for x ∈ XC1

and f ◦ η1(x) has any value, otherwise (the semantics of ϕ only depends on
the value of the environment on fv (ϕ) and fv(ϕ) ⊆ XC1 by construction). Note
that R relates two configurations C1 and C2 when the same formulae ϕ are
satisfied by the empty configuration (rather than by the configurations C1 and
C2 themselves). The formulae ϕ considered in (1) refer to events in C1 and in
C2 by means of their free variables. This is according to the intuition that hhp-
bisimilarity does not only compare the future of two configurations but also their
alternative evolutions, that is evolutions from the past. !

Similarly to what has been done in [9] for the full logic L, one can identify
fragments of L0 that characterise various other behavioural equivalences in the
true concurrent spectrum [1]. First of all notice that the standard Hennessy-
Milner logic can be recovered as the following fragment of L0, where whenever
we state the existence of an event we are forced to execute it:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (ax)〈x〉ϕ

In such a fragment variables are irrelevant: the formula (ax)〈x〉ϕ states the
existence of an a-labelled event, which is immediately executable from the cur-
rent configuration and whose execution produces a new configuration in which ϕ
holds. The event is bound to variable x which, however, is no longer referred to
in the formula. Hence (ax)〈x〉 is completely analogous to the diamond modal-
ity of standard Hennessy Milner logic and the induced logical equivalence is
(interleaving) bisimilarity [15].

Along the lines of [9, Theorem 4], one can prove that history-preserving bisim-
ilarity (Definition 7) corresponds to the logical equivalence induced by the fol-
lowing fragment of L0:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | 〈|x,y < a z|〉ϕ

where x, y are lists of variables and 〈|x,y < a z|〉ϕ denotes the formula

(a z)(〈x〉 〈z〉 〈y〉T ∧ 〈x〉 〈y〉T ∧
∧

x′⊂x

¬〈x′〉 〈z〉T ∧ ϕ). (2)

Above, given a list of variables x = x1 . . . xn the abbreviation 〈x〉 is used as
a shortcut for 〈x1〉 . . . 〈xn〉 . Intuitively, the formula (2) states the existence of
an a-labelled event, which is bound to z, that causally depends on the events
bound to x and that is concurrent with the events bound to y. In fact, z can be

Hereditary History-Preserving Bisimilarity: Logics and Automata 477

executed only after x, while y can be executed after or before z. The event is
required to be immediately executable, and once executed, formula ϕ holds. For
the above to work, the events bound to x and y must form a ≤-closed set, i.e.,
5η(w)6 ⊆ η(x ∪ y) for any w ∈ x ∪ y. More formally, it is not difficult to prove
that {|〈|x,y < a z|〉ϕ|}E is

{〈C, η〉 | ∃e ∈ E [C]. e� η(fv (ϕ) \ {z}) ∧
C

e−→ C ∪ {e} ∧ λ(e) = a ∧
η(x) < e ∧ η(y) || e ∧ η(x ∪ y) ≤-closed ∧
〈C ∪ {e}, η[z �→ e]〉 ∈ {|ϕ|}E}

Incidentally, this derived operator illustrates how L0 formulae can be used to
express causal (in)dependence between events.

The fact that this fragment has a reduced expressivity, corresponding exactly
to hd-bisimilarity can be intuitively explained as follows. As noticed above, a
formula in the fragment can “observe” an event only by executing it. Hence the
observation of an event automatically discards all future conflictual events. As a
consequence it is not possible to observe alternative conflicting futures involving
common events, namely the fragment cannot fully describe the interplay between
causality/concurrency and branching as required for hhp-bisimilarity. Still, it
allows one to capture the dependencies of the observed events with previously
executed events, a capability which corresponds to the observational power of
hp-bisimilarity.

Analogously, fragments of L0 inducing pomset and step bisimilarity can be
identified.

4 History-Dependent Automata over Events

The logic L0 for hhp-bisimilarity, singled out in the previous section, allows one
to trace events in computations and check their executability. This hints at a
connection with HD-automata, a generalised model of automata that has been
indeed introduced to describe systems with dynamic allocation and deallocation
of resources, tracing the history of such resources over time [13]. In this section
we lay the basis of such a connection by identifying a class of HD-automata
where pess can be naturally mapped and providing a logical characterisation of
bisimilarity for this class of automata in terms of a mild extension of L0.

4.1 HDE-Automata and HD-Bisimilarity

HD-automata extend ordinary automata in order to manipulate resources gener-
ically identified as names. The allocation of a resource is modelled by the gen-
eration of a fresh name and the usage of a resource in a transition is modelled
by observing the corresponding name in the transition label. Concretely, with
respect to an ordinary automaton, states of an HD-automaton are enriched with
a set of local names corresponding to the resources that are active at that states.

478 P. Baldan and S. Crafa

Transitions, in turn, modify these sets and explicitly trace the correspondence
between the local names of the source and the target states.

We introduce a class of HD-automata, referred to as HDE-automata, where
pess will be naturally encodable. In HDE-automata the names can be thought
of as activities or events in a computation. HDE transitions are of three kinds:
plan(e) , exec(e) , drop(e) which can be interpreted, respectively, as planning an
activity or event e (which might be not immediately executable due to unsatisfied
dependencies with other activities), executing a previously planned activity and
dismissing a planned activity (without executing it).

Formally, as before, we fix a countable set E whose elements are thought of
as activities, labelled by λ : E → Λ. Given two subsets A1, A2 ⊆ E, a labelled
bijection, denoted δ : A1

∼→ A2, is a bijection such that for any e1 ∈ A1, it holds
that λ(e1) = λ(δ(e1)). Let R(E) be the set of renamings, i.e., label preserving
partial injective functions ρ : E → E. Given ρ ∈ R(E), we write dom(ρ) and
cod(ρ) for the domain and codomain of ρ, respectively. The set of labels for the
automata transitions is L(E) = {plan(e) , exec(e) , drop(e) | e ∈ E}.

Definition 11 (HDE-automata). A HDE-automaton H is a tuple
〈Q,n, q0,→〉 where Q is a set of states, n : Q → 2E associates with each
state a set of activities and → ⊆ Q × L(E) ×R(E)×Q is a transition relation,

written q
�−→ρ q′ for (q,
, ρ, q′) ∈ →, such that dom(ρ) ⊆ n(q′) and cod(ρ) ⊆ n(q)

(hence ρ is a partial injection n(q′)→ n(q)) and

– if q
plan(e)−−−−−→ρ q′ then cod(ρ)=n(q), dom(ρ)=n(q′) \ {e};

– if q
exec(e)−−−−−→ρ q′ or q

drop(e)−−−−−→ρ q′ then cod(ρ)=n(q) \ {e} and dom(ρ)=n(q′).

For a plan(e) transition the mapping ρ is a bijection between n(q) and
n(q′)\{e}. Intuitively, e is the newly planned activity, while n(q′)\{e} represents,
via the renaming ρ, activities already planned in q. In an exec(e) transition the
activity e is executed, while in a drop(e) transition the activity e is dropped
without being executed. In both cases the other activities planned in the source
state are kept, and the correspondence between source and target is established
by ρ which is a bijection between n(q)\{e} and n(q′).

Note that when dealing with event structures, states of a computation are
given by configurations, namely sets of events which have been already exe-
cuted. Logic L0 observes events in the future of a configuration, but these are
not part of the state and are implicitly garbage collected when they are no longer
referred by the formula. Instead, the states of a HDE-automaton have a richer
structure as they explicitly include a set of activities planned but not yet exe-
cuted (which intuitively correspond to events observed and not yet executed). As
a consequence, also dismissing a planned activity is an explicit operation which
requires a drop(·) transition.

We write q →ρ q′ when q
�−→ρ q′ for some label
 ∈ L(E), and we denote by→∗

ρ

the reflexive and transitive closure of the transition relation, with ρ resulting as
the composition of the involved renamings, i.e., q →∗

id q and if q →∗
ρ q′ →ρ′ q′′

then q →∗
ρ′◦ρ q′′.

Hereditary History-Preserving Bisimilarity: Logics and Automata 479

n(q1)

∼δ
��

n(q′1)
ρ1��

∼δ′
��

n(q2) n(q′2)ρ2
��

Fig. 3. HD-bisimulation

The theory of HD-automata [13] provides a notion of behavioural equivalence,
which we specialise in the following to the case of HDE-automata. First, accord-
ing to the general theory, it is not restrictive to assume that all HDE-automata
are irredundant, i.e. that all names occurring in a state are eventually used. Ac-
tually, we work with a slightly strengthened notion of irredundancy, i.e., we will
assume that for any e ∈ n(q) there exists a state reachable from q where e can
be executed. Formally, we assume that for any q ∈ Q and any e ∈ n(q) there

exists some q′ ∈ Q such that q →∗
ρ q′ and q′

exec(e′)−−−−−→ρ′ q′′ with ρ(e′) = e.

Definition 12 (HD-bisimilarity). Let H1 and H2 be two HDE-automata. A
HD-bisimulation is a relation

R = {(q1, δ, q2) | q1 ∈ Q1 ∧ q2 ∈ Q2 ∧ δ : n1(q1)
∼→ n2(q2)}

such that, whenever (q1, δ, q2) ∈ R,

1. if q1
plan(e1)−−−−−→ρ1 q′1, then there exists a transition q2

plan(e2)−−−−−→ρ2 q′2 such that
(q′1, δ

′, q′2) ∈ R;

2. if q1
exec(e1)−−−−−→ρ1 q′1, resp. q1

drop(e1)−−−−−→ρ2 q′1, then there exists a transition

q2
exec(e2)−−−−−→ρ1 q′2, resp. q2

drop(e2)−−−−−→ρ2 q′2, such that δ(e1)=e2 and (q′1, δ
′, q′2)∈R;

where both for 1) and 2) it holds ρ2 ◦ δ′ = δ ◦ ρ1 (see Fig. 3). Dually, transitions
of H2 are simulated in H1.

We say that H1 and H2 are HD-bisimilar, written H1 ∼hd H2, when there
exists a HD-bisimulation R such that (q01, δ, q02) ∈ R for some δ.

Observe that, by commutativity of the diagram in Fig. 3, in case (1) we get
that δ′ = ρ−1

2 ◦ δ ◦ ρ1 ∪ {(e1, e2)} and in case (2) δ = ρ2 ◦ δ′ ◦ ρ−1
1 ∪ {(e1, e2)}.

Hence, since the δ-component in R is a labelled bijection, whenever we match
two transitions, the involved activities are required to have the same label.

The behavioural equivalence is referred to as HD-bisimilarity rather than
HDE-bisimilarity since it is just the general notion [13] instantiated to our spe-
cific subclass of HD-automata.

4.2 Logical Characterisation of HD-Bisimilarity

We next show that HD-bisimilarity admits a natural logical characterisation in
terms of a mild extension of the logic L0 introduced in Section 3.

480 P. Baldan and S. Crafa

Definition 13 (Lhd syntax). Let Var be a countable set of variables ranged
over by x, y, z.... The logic Lhd over the set of labels Λ is defined as:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (a z)ϕ | 〈z〉ϕ | ↓z ϕ

The logic Lhd, besides the operators of L0 for planning and executing ac-
tivities, includes an additional operator ↓ z that represents the dismissal of a
planned activity. More precisely, the formula ↓z ϕ holds if η(z) ∈ n(q), i.e., η(z)
is a planned activity in the current state (namely, an active name), and after
dismissing such activity (i.e., forgetting the corresponding name) ϕ holds.

The free variables of a formula in Lhd are defined as in Section 3, with the
additional clause fv (↓z ϕ) = fv (ϕ)∪{z}. Concerning the semantics, Lhd formulae
are now interpreted over HDE-automata. More precisely, let Env be the set of
environments, i.e., functions η : Var → E. Given a HDE-automaton H and a
formula ϕ in Lhd, the denotation of ϕ will be a set of pairs (q, η) ∈ Q × Env .
Note that the semantics of Lhd does not involve a notion of legal pair, which was
essential in Section 3 to correctly deal with the conflict relation distinctive of
pess. In fact, as observed before, the states of HDE-automata explicitly include
a set of planned activities which intuitively corresponds to events observed and
not yet executed in pess. The activities planned in a state are pairwise consistent
by construction: for a state q of a HDE-automaton, the fact that a new activity
e is in conflict with some activities which have been already planned in q is
represented by the absence of a plan(e) transition from state q, i.e., by the
impossibility of planning activity e in state q.

Below given a renaming ρ ∈ R(E) and an environment η : Var → E we write
η; ρ−1 for the environment defined by η; ρ−1(x) = ρ−1(η(x)) when η(x) ∈ cod(ρ)
and η; ρ−1(x) = η(x), otherwise.

Definition 14 (semantics). Let H be a HDE-automaton. The denotation of
a formula ϕ, written {|ϕ|}H ∈ 2Q×Env , is inductively defined as follow:

{|T|}H = Q× Env

{|ϕ1 ∧ ϕ2|}H = {|ϕ1|}H ∩ {|ϕ2|}H

{|¬ϕ|}H = (Q × Env) \ {|ϕ|}H

{|(a z)ϕ|}H = {(q, η) | ∃q plan(e)−−−−−→ρ q′ ∧ λ(e) = a ∧
(q′, η; ρ−1[z �→ e]) ∈ {|ϕ|}H }

{|〈z〉 ϕ|}H = {(q, η) | q
exec(η(z))−−−−−−−→ρ q′ ∧ (q′, η; ρ−1)∈{|ϕ|}H}

{|↓z ϕ|}H = {(q, η) | q
drop(η(z))−−−−−−−→ρ q′ ∧ (q′, η; ρ−1)∈{|ϕ|}H}

When (q, η) ∈ {|ϕ|}H we say that the automaton H satisfies the formula ϕ in the
state q and environment η : Var → E, and write H, q |=η ϕ. For closed formulae
ϕ, we write H |= ϕ, when H, q0 |=η ϕ for some η.

Hereditary History-Preserving Bisimilarity: Logics and Automata 481

The logical equivalence induced by Lhd over HDE-automata can be shown
to be HD-bisimilarity. Actually, as it commonly happens when dealing with a
finitary logic (with finite conjunctions), the result holds under suitable hypothe-
ses which restrict the branching cardinality of HDE-automata. The standard
requirement is image-finiteness, which, however, for HDE-automata would be
too restrictive as plan(·) steps allow one to plan activities which are executable
unboundedly far in the future. Instead, we assume the following weaker notion
of boundedness for HDE-automata.

Definition 15 (bounded HDE-automata). A HDE-automaton H is called
bounded if for any q ∈ Q, k ∈ N and A ⊆fin Λ the set below is finite:

q(k,A) = {e ∈ E | q plan(e)−−−−−→ρ q′
�1−→ρ1 q1 . . .

�k−→ρk
qk

exec(e′)−−−−−→ qk+1

∧ ρk ◦ . . . ◦ ρ1(e
′) = e ∧ λ(e) ∈ A ∧

for i ∈ {1, . . . , k}, if
i = plan(ei) then λ(ei) ∈ A}.

In words, q(k,A) is the set of activities labelled over A which can be planned
in the current state and executed in k steps, using only already planned activities
or new activities labelled in A. This set is required to be finite when A is finite.
We will show later that the automaton corresponding to a pes is bounded if
and only if the original pes is image finite. Under the boundedness hypothesis,
we can prove that the logical equivalence induced by Lhd on HDE-automata is
HD-bisimilarity.

Proposition 1 (HD-bisimilarity, logically). Let H1, H2 be bounded HDE-
automata. Then H1 ∼hd H2 iff H1, H2 satisfy the same closed formulae in Lhd.

The boundedness hypothesis is essential to ensure the existence of a finite
formula distinguishing any two non bisimilar HDE-automata. Roughly, the point
is that a plan(e1) transition of an automaton could be simulated, in principle, by
infinitely many plan(e2) transitions of the other. However, by the irredundancy
assumption on the class of HDE-automata, we know that e1 is executable in some
reachable state. Let k be the number of transitions of a run leading to a state
where e1 is executable and let A be the set of labels of events planned in such
run. Then it is not difficult to see that the event e2 of the simulating transition
plan(e2) must be itself executable within k steps, involving only already planned
events or events labelled in the set A. By the boundedness hypothesis there are
only finitely many such events, a fact which plays a basic role in the proof of
Proposition 1.

5 Hhp-Bisimilarity via HD-Automata

In order to obtain a characterisation of hhp-bisimilarity in terms of HD-automata
we proceed as follows: first we provide an encoding of pess into the class of HDE-
automata. Then we encode the logic L0 into Lhd and back, in a way that a pes

satisfies a formula in L0 if and only if the corresponding automaton satisfies the

482 P. Baldan and S. Crafa

({a}, ∅)
plan(b) �� ({a}, {b})

exec(b) ��

drop(b)

��
({a, b}, ∅)

(∅, {a})

exec(a)

��

plan(b) ��drop(a)

��

(∅, {a, b})

exec(a)

��

drop(b)��

drop(a)��(∅, ∅)

plan(a)

�����������������
plan(b) ��

plan(c)

��

��

drop(c)

(∅, {b})

plan(a)

��

drop(b)��

(∅, {c})
exec(c) �� ({c}, ∅)

Fig. 4. HDE automaton corresponding to the CCS process a.b+ c.

formula in Lhd. Finally we rely on the logical characterisations of HD-bisimilarity
and of hhp-bisimilarity to show that two pess are hhp-bisimilar if and only if
their corresponding HDE-automata are HD-bisimilar.

5.1 From Event Structures to HDE-Automata

We next provide an encoding of pess into HDE-automata which is later shown
to preserve and reflect behavioural equivalence. Throughout this section, the
correspondence between activities in the source, label and target of a transition
are given by (partial) identities and hence kept implicit.

Definition 16 (from PES to HDE-automata). Let E be a pes. The HDE-
automaton H(E)=(Q, q0, n,→) is defined as

– Q={〈C,X〉 | C ∈ C(E) ∧ X ⊆fin E [C] ∧ X×X ⊆ � }
– q0 = (∅, ∅)
– n(〈C,X〉) = X
– the transition relation is given as follows where it is assumed that e �∈ X

• 〈C,X〉 plan(e)−−−−−→ 〈C,X ∪ {e}〉 when e ∈ E [C] and e�X;

• 〈C,X ∪ {e}〉 exec(e)−−−−−→ 〈C ∪ {e}, X〉 when C ∪ {e} ∈ C(E) ;
• 〈C,X ∪ {e}〉 drop(e)−−−−−→ 〈C,X〉.

In words, a pes E corresponds to an automaton H(E) whose states are pairs
〈C,X〉 where C ∈ C(E) represents the current state of the computation, and X is
a set of events belonging to a possible future computation extending C, planned
but not yet executed. Note that, in order to represent a set of events which can
occur in a computation starting from C, the events in X must be both pairwise

Hereditary History-Preserving Bisimilarity: Logics and Automata 483

consistent and consistent with C. Instead, we do not require X to be causally
closed, that is we do not require C ∪X ∈ C(E).

According to this intuition, given a state 〈C,X〉, the transition plan(e) allows
one to plan a new event e whenever e is compatible both with C and its future
X . On the other hand, any event planned and not yet executed, i.e., any event
e ∈ X can be dismissed by means of a drop(e) transition. Finally, an event
e can be executed if it belongs to the planned future X and it is enabled by
the configuration C. As an example, the automaton corresponding to the (pes
associated with the) CCS process a.b+c is given in Fig. 4. Observe that the HDE-
automaton obtained from a pes is irredundant. Roughly, plan(·) and drop(·)
transitions allow one to construct alternative futures of the current configuration.
The concurrent structure of such futures can then be analysed by means of
exec(·) moves.

Note that, as mentioned above, the ρ-component of transitions is omitted and

it is implicitly assumed to be a partial identity. More precisely when 〈C,X〉 �−→
〈C′, X ′〉, the renaming is ρ = idX∩X′ . For instance, when 〈C,X〉 plan(e)−−−−−→ 〈C,X∪
{e}〉, the renaming ρ : X ∪ {e} → X is defined by ρ(e′) = e′ for e′ ∈ X and ρ(e)
undefined.

The image finiteness property for pess exactly corresponds, through the en-
coding, to the boundedness property for HDE-automata as introduced in Defi-
nition 15.

Proposition 2 (image finiteness). Let E a pes. Then E is image finite iff
H(E) is bounded.

5.2 From L0 to Lhd and Back: Hhp-Bisimilarity via hd-Bisimilarity

In order to prove that behavioural equivalence is preserved and reflected by the
encoding of pess into HDE-automata we rely on the logical characterisation of
such equivalences, which is given in terms of very similar logics. Specifically, here
we prove that a tight link exists between satisfaction of L0 formulae by pess and
satisfaction of Lhd formulae by the corresponding HDE-automata, in a way that
the two logical equivalences can then be shown to coincide. Below, we write |=L0

and |=Lhd in order to clarify to which notion of satisfaction we are referring to.
First of all, notice that although L0 is syntactically a subset of Lhd, for a pes

E and a formula ϕ in L0, it is not the case that if E |=L0 ϕ then H(E) |=Lhd

ϕ. As an example, consider the pes E1 in Fig. 1 associated with the process
a.b+ c.d and the formula ϕ = (ax)((c y)〈y〉T ∧ (b z)〈x〉 〈z〉T). Then E1 |=L0 ϕ,
because ∅ |=L0

η[x→a] (c y)〈y〉T and ∅ |=L0

η[x→a] (b z)〈x〉 〈z〉T. In fact, for the first

subformula, note that y can be bound to the c-labelled event even though it is
in conflict with a, since x is no longer free in the subformula.

Instead, H(E1) �|=Lhd ϕ since satisfaction reduces to (∅, {a})|=Lhd

η[x→a](c y)〈y〉T
and (∅, {a})|=Lhd

η[x→a](b z)〈x〉 〈z〉T. The first is false since the automaton cannot

perform a plan(c) step as long as the conflicting event a belongs to the planned
future. However, H(E1) |=Lhd (ax)(↓x (c y)〈y〉T ∧ (b z)〈x〉 〈z〉T) since, in this

484 P. Baldan and S. Crafa

case, after planning a, the left branch forgets it in a way that b can be planned
and executed.

More generally, a L0 formula ϕ can be encoded into a Lhd formula that
uses the ↓ operator to explicitly drop planned events that intuitively no longer
pertain to the future that the formula describes, i.e., events planned but no longer
referred to by free variables in the remaining part of the formula. Formally, given
ϕ ∈ L0, we define an encoding of ϕ into Lhd which is parametric on a set of
variables X such that fv (ϕ) ⊆ X , representing the events planned in the past.
Given a set of variables Z = {z1, . . . , zn} we write ↓Z for ↓x1 . . . ↓xn .

Definition 17 (from L0 to Lhd). The encoding function [[·]] : L0 × 2Var→Lhd

is inductively defined as follows:

[[T]]X = T

[[¬ϕ]]X = ¬[[ϕ]]X
[[ϕ1 ∧ ϕ2]]X = [[ϕ1]]X ∧ [[ϕ2]]X

[[〈x〉ϕ]]X = 〈x〉 [[ϕ]]X
[[(a x)ϕ]]X = ↓Z (ax)[[ϕ]]fv (ϕ)∪{x}

where, in the last clause, Z = X\(fv (ϕ)\{x}).

In words, before binding a new event to x, the Lhd encoding drops any (pre-
viously planned) event that is not bound to the free variables of the subformula.

As an example, consider the formula ϕ = (ax)((c y)〈y〉T ∧ (b z)〈x〉 〈z〉T) in
L0 discussed at the beginning of the section, satisfied by E1 but not by H(E1).
The formula [[ϕ]]∅ is exactly the Lhd formula previously constructed by hand in
order to be satisfied by the automaton, i.e., (ax)(↓x (c y)〈y〉T ∧ (b z)〈x〉 〈z〉T).
As a further example, consider the L0 formulae ϕ1 = (ax)(b y)(c z)〈z〉T and
ϕ2 = (ax)(b y)(〈y〉T ∧ (c z)〈z〉T), which are both true for the pes consisting
of three pairwise conflicting events. Then we have that [[ϕ1]]∅ = (ax) ↓x (b y) ↓
y (c z)〈z〉T and [[ϕ2]]∅ = (ax) ↓x (b y)(〈y〉T∧ ↓y (c z)〈z〉T).

We next prove a technical lemma. It roughly asserts that, given a formula
ϕ ∈ L0, the satisfaction of its encoding in Lhd by a state of the HD-automaton
does not depend on planned events bound to variables which are not free in the
formula, as long as the encoding takes care of dropping such events.

Lemma 1. Let E be a pes. Let ϕ ∈ Lhd be a formula, η : Var → E an environ-
ment and X1, X2 ⊆ Var sets of variables such that fv(ϕ) ⊆ Xi and C ∪ η(Xi) is
compatible for i ∈ {1, 2}. Then in the HDE-automata H(E) it holds

〈C, η(X1) \ C〉 |=η [[ϕ]]X1 iff 〈C, η(X2) \ C〉 |=η [[ϕ]]X2 .

Then we can prove the following.

Lemma 2 (from L0 to Lhd). Let E be a pes. For any closed formula ϕ∈L0 it
holds E|=L0ϕ iff H(E)|=Lhd [[ϕ]]∅.

Hereditary History-Preserving Bisimilarity: Logics and Automata 485

Conversely, we show how formulae of Lhd can be encoded in L0. This is
somehow more difficult since the notion of satisfaction in L0 relies on simpler
states, those of pess, consisting only of a configuration (executed events), while
states of HDE-automata, where Lhd satisfaction is defined, include explicitly
also those events which have been planned and not executed. In order to fill this
gap the idea is to “keep” events planned but not yet executed as free variables
in the formulae of L0.

Definition 18 (from Lhd to L0). Given a set of variables X={x1, . . . , xn} ⊆
Var, let st(X) denote the formula in L0

st(X) = (
∨n

i=1〈xi〉T) ∨ T

The encoding function ‖·‖ : Lhd × 2Var → L0 is inductively defined as follows:

‖T‖X = T

‖¬ϕ‖X = ¬‖ϕ‖X

‖ϕ1 ∧ ϕ2‖X = ‖ϕ1‖X ∧ ‖ϕ2‖X

‖(ax)ϕ‖X = (ax)(‖ϕ‖X∪{x} ∧ st(X))

‖↓x ϕ‖X =

{
‖ϕ‖X\{x} if x ∈ X

F otherwise

‖〈x〉 ϕ‖X =

{
〈x〉 ‖ϕ‖X\{x} if x ∈ X

F otherwise

Observe that the encoding of a formula of Lhd into L0 is parametric w.r.t. a
set of variables which represent those events which have been planned but not
yet dropped or executed. In order to understand this, note that in the formula
st(X) the disjunction with T does not make it trivially equivalent to true. In fact
fv(st(X)) = X , and thus st(X) is satisfied only by pairs (C, η) which are legal,
i.e., such that η(X) ⊆ C[E] and pairwise consistent. The role of st(X) is exactly
to keep alive the events associated with variable in X and impose that they are
consistent. It can be proved inductively that, more generally, fv(‖ϕ‖X) ⊆ X .

Lemma 3 (from Lhd to L0). Let E be a pes, let H(E) be the corresponding
automaton. For any closed formula ϕ ∈ Lhd, H(E) |=Lhd ϕ iff E |=L0 ‖ϕ‖∅.

Combining the results above we can immediately deduce that hhp-bisimilarity
between pess is faithfully captured by bisimilarity of the corresponding HDE-
automata.

Theorem 2 (hhp-bisimilarity vs. hd-bisimilarity). Let E1 and E2 be pess.
Then E1 ∼hhp E2 iff H(E1) ∼hd H(E2).

486 P. Baldan and S. Crafa

6 Conclusions: Related and Future Work

We studied hhp-bisimilarity, a canonical behavioural equivalence in the true con-
current spectrum, by means of logics and automata. We provided a characteri-
sation in terms of an event-based logic L0 that predicates over the existence and
executability of events. This in turn suggests a connection with HD-automata.
More precisely, we defined a class of HD-automata whose transitions allow one
to plan the execution of an activity, execute a planned activity and to dismiss
a planned activity. We then showed that pess can be mapped into such class of
automata in a way that the canonical behavioural equivalence for HD-automata
coincides with hhp-bisimilarity over the corresponding pess.

Both characterisations show that, in order to capture hhp-bisimilarity, the ob-
server must be able to compare states by checking unboundedly large concurrent
computations in the future of such states. Intuitively, this can be seen as a source
of ineffectiveness of hhp-bisimilarity which indeed is known to be undecidable
for many basic models of concurrency, even in the finite state case (e.g., it is
known that hhp-bisimilarity is undecidable for safe finite Petri nets [14]).

The results in the paper can be helpful in the study of decidable approxi-
mations of hhp-bisimilarity, possibly opening the road to the development of
verification techniques. This represents an interesting line of future research. In-
deed, some preliminary investigations show that fixing a bound on the distance
of the future that an observer is allowed to check, one gets effective approxima-
tions of hhp-bisimilarity. More precisely, when fixing such a bound, regular pess
(which typically arise as semantics of finite state systems [16]) can be trans-
formed into finite HD-automata for which bisimilarity checking is decidable. On
these bases, algorithms for checking such approximations of ∼hhp-bisimilarity
can be obtained by simply providing an explicit construction of the finite HD-
automata for specific formalisms. E.g., for finite (n-)safe Petri nets this could
be done along the lines of the work in [17,18] for history preserving bisimilarity.
The construction could also take inspiration from that in [19], used for proving
decidability of approximations of hhp-bisimilarity on finite safe Petri nets.

The fact that HDE-automata deal with infinite sets of events, but with the
possibility of testing only equality and labels, suggests a connection with register
automata and, more generally, with the recent line of work on nominal automata
(see, e.g., [20] and references therein), which would be interesting to deepen.

In order to capture hhp-bisimilarity in the setting of HD-automata, we pro-
vided a characterisation of HD-bisimilarity in terms of a logic Lhd that enriches
L0 with an operator for explicitly dropping activities planned but not yet exe-
cuted. Interestingly, even if it is defined over HDE-automata, we think that the
logic Lhd will be useful to establish a precise connection with the logic EIL in [10],
which includes a reverse step-modality which is related to the drop transitions
and the ↓ · modality in Lhd. We believe a further investigation of the relation
between L0 and EIL (and the other logics for concurrency in the literature) can
bring some interesting insights, at least at conceptual level. This, despite the
fact that it is clear that some modalities of L0 and EIL are not interdefinable.
For instance, the formula (x : a)ϕ in EIL which binds x to an a-labelled event in

Hereditary History-Preserving Bisimilarity: Logics and Automata 487

the current configuration is not encodable in L0. Conversely, the formula (ax)ϕ
where x is bound to an a-labelled event in the future of the current configuration
is not encodable in EIL. A connection to be further investigated seems to exist
also with the work on higher-dimensional automata and ST-configuration struc-
tures in [21], where a logic, again with backward step modalities, is proposed for
hhp-bisimilarity.

We also believe that the logical characterisation of HD-bisimilarity has an
interest which goes beyond the specific class of HD-automata considered in this
paper and deserves to be studied further.

Acknowledgments. We are grateful to Alberto Meneghello for several insight-
ful discussions on this work at its early stages of development. We are also
indebted with the anonymous reviewers for providing detailed comments and
insightful suggestions which helped us to improve our work.

References

1. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4/5), 229–327 (2001)

2. Esparza, J., Heljanko, K.: Unfoldings - A Partial order Approach to Model Check-
ing. EACTS Monographs. Springer (2008)

3. Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Polish Academy of
Sciences (1991)

4. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and
Computation 127(2), 164–185 (1996)

5. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

6. Phillips, I., Ulidowski, I.: A hierarchy of reverse bisimulations on stable configu-
ration structures. Mathematical Structures in Computer Science 22(2), 333–372
(2012)

7. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and
Algebraic Programming 73(1-2), 70–96 (2007)

8. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: Proc. of LICS 2013, pp. 388–397. IEEE Computer Society (2013)

9. Baldan, P., Crafa, S.: A logic for true concurrency. Journal of the ACM 61(4),
24:1–24:36 (2014)

10. Phillips, I., Ulidowski, I.: Event identifier logic. Mathematical Structures in Com-
puter Science 24(2), 1–51 (2014)

11. Nielsen, M., Clausen, C.: Games and logics for a noninterleaving bisimulation.
Nordic Journal of Computing 2(2), 221–249 (1995)

12. Hennessy, M., Stirling, C.: The power of the future perfect in program logics.
Information and Control 67(1-3), 23–52 (1985)

13. Montanari, U., Pistore, M.: History-Dependent automata: An introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005)

14. Jurdzinski, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Information and Computation 184(2), 343–368 (2003)

488 P. Baldan and S. Crafa

15. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

16. Thiagarajan, P.S.: Regular event structures and finite petri nets: A conjecture.
In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 244–256. Springer, Heidelberg (2002)

17. Vogler, W.: Deciding history preserving bisimilarity. In: Leach Albert, J., Monien,
B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 495–505.
Springer, Heidelberg (1991)

18. Montanari, U., Pistore, M.: Minimal transition systems for history-preserving
bisimulation. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 413–425. Springer, Heidelberg (1997)

19. Fröschle, S., Hildebrandt, T.: On plain and hereditary history-preserving bisimu-
lation. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS,
vol. 1672, pp. 354–365. Springer, Heidelberg (1999)

20. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proc. of
LICS 2011, pp. 355–364. IEEE Computer Society (2011)

21. Prisacariu, C.: The glory of the past and geometrical concurrency. CoRR
abs/1206.3136 (2012)

Author Index

Abel, Andreas 140
Amighi, Afshin 255
Aubert, Clément 39

Bagnol, Marc 39
Baldan, Paolo 469
Besson, Frédéric 449
Blazy, Sandrine 449
Blom, Stefan 255

Cervesato, Iliano 19
Chawdhary, Aziem 296
Chen, Ting-Wei 159
Chin, Wooyoung 372
Cifuentes, Cristina 196
Crafa, Silvia 469

Dockins, Robert 176

Enea, Constantin 314

Flores-Montoya, Antonio 275
Fukasawa, Yutaka 78

Hähnle, Reiner 275
Huisman, Marieke 255

Igarashi, Atsushi 58

Kikuchi, Kentaro 120
Kim, Jeongmin 372
Kim, Se-Won 372
King, Andy 296
Kobayashi, Naoki 354
Kop, Cynthia 334
Kozen, Dexter 1
Krishnan, Padmanabhan 196

Lam, Edmund Soon Lee 19
Lengál, Ondřej 314

Menon, Pottayil Harisanker 99
Morihata, Akimasa 78, 392
Mu, Shin-Cheng 159

Nishida, Naoki 334

Ohori, Atsushi 78

Palmer, Zachary 99
Park, Jimin 372
Pistone, Paolo 39

Robbins, Ed 296
Rozenshteyn, Alexander 99
Ryu, Sukyoung 372

Sakurai, Takafumi 120
Sato, Shigeyuki 392
Schöpp, Ulrich 428
Schrammel, Peter 236
Seghir, Mohamed Nassim 236
Seiller, Thomas 39
Shi, Xiaohua 408
Sighireanu, Mihaela 314
Smith, Scott 99
Song, Fu 216
Sonobe, Tatsuya 58
Suenaga, Kohei 58

Terao, Taku 354
Tolmach, Andrew 176
Touili, Tayssir 216

Ueno, Katsuhiro 78

Valdiviezo, Manuel 196
Vezzosi, Andrea 140
Vojnar, Tomáš 314

Wilke, Pierre 449

Xie, Junru 408

Yu, Hengyang 408

	Preface
	Organization
	What Is the Essenceof Bidirectional Programming?
	Incremental Adoption of Static-Typing
	NetKAT — A Formal Systemfor the Verification of Networks
	Table of Contents
	Invited Presentation
	NetKAT — A Formal Systemfor the Verification of Networks
	1 Introduction
	1.1 Software-Defined Networking
	1.2 NetKAT

	2 NetKATBasics
	2.1 Kleene Algebra (KA)
	2.2 Kleene Algebra with Tests (KAT)
	2.3 NetKAT
	2.4 Semantics

	3 Examples
	3.1 Encoding Network Topology
	3.2 Switch Policies
	3.3 Reachability
	3.4 All-Pairs Reachability
	3.5 Waypointing
	3.6 Forwarding Loops
	3.7 Other Applications

	4 Soundness and Completeness
	5 NetKAT Coalgebra and a Decision Procedure
	5.1 NetKAT Coalgebra
	5.2 The Brzozowski Derivative
	5.3 Matrix Representation
	5.4 Kleene’s Theorem for NetKAT

	6 Implementation
	6.1 Optimizations

	7 Related Work
	8 Conclusion
	References

	Regular Papers
	Optimized Compilation of Multiset Rewriting with Comprehensions
	1 Introduction
	2 A Motivating Example
	3 Syntax and Notations
	4 Operational Semantics of CHRcp
	4.1 Semantics of Matching and Rule Body Execution
	4.2 Operational Semantics

	5 Compiling CHRcp Rules
	5.1 Introducing CHRcp Join Ordering
	5.2 Bootstrapping for Active Comprehension Head Constraints
	5.3 Uniqueness Enforcement

	6 Building Join Orderings
	7 Executing Join Orderings
	8 Correctness of CHRcp Abstract Matching Machine
	9 Prototype and Preliminary Empirical Results
	10 RelatedWork
	11 Conclusion and Future Works
	References

	Logic Programming and Logarithmic Space
	1 Introduction
	1.1 Geometry of Interaction and Logic Programming
	1.2 Unification and Complexity

	2 The Unification Semiring
	2.1 Flows and Wirings
	2.2 The Balanced Semiring
	2.3 The Computation Graph
	2.4 Tensor Product and Other Semirings

	3 Words and Observations
	3.1 Representation of Words
	3.2 Observations

	4 Logarithmic Space
	4.1 Completeness: Observations as Pointer Machines
	4.2 Soundness of Observations

	5 Conclusion
	References

	Automatic Memory Management Basedon Program Transformation Using Ownership
	1 Introduction
	2 Suenaga–Kobayashi Type System
	2.1 Language
	2.2 Type System

	3 Program Transformation
	3.1 Casts
	3.2 Constraints
	3.3 Algorithm
	3.4 Soundness and Completeness
	3.5 Extension

	4 Related Work
	5 Conclusion
	References

	The Essence of Ruby
	1 Introduction
	2 Overview of Ruby and Our Strategies
	3 The Essential Core of Ruby
	3.1 The Core Object Calculus
	3.2 The Core Control Calculus
	3.3 The Core Ruby Calculus

	4 Extension to the Core Calculi
	5 The Ruby Calculus
	6 Elaborating Ruby to the Ruby Calculus
	7 Conformity Evaluation
	8 Related Works
	9 Conclusions
	References

	Types for Flexible Objects
	1 Introduction
	1.1 Key Features of TinyBang

	2 Overview
	2.1 Language Features for Flexible Objects
	2.2 Self-awareness and Resealable Objects
	2.3 Flexible Object Operations

	3 Formalization
	3.1 A-Translation
	3.2 Operational Semantics
	3.3 Type System

	4 Related Work
	5 Conclusions
	References

	A Translation of Intersection andUnion Types for the λμ-Calculus
	1 Introduction
	2 Intersection and Union Types for the λμ-Calculus
	2.1 The λμ-Calculus
	2.2 An Intersection and Union Type System for theλμ-Calculus
	2.3 The Type System of van Bakel, Barbanera and de’Liguoro
	2.4 A Translation of Intersection and Union Types

	3 Intersection and Union Types for the λμ-Calculus
	3.1 The λμ-Calculus
	3.2 An Intersection and Union Type System for the λμ-Calculus
	3.3 Translating λμ∩∪ into λμ∩∪
	3.4 Characterisation of Strongly Normalising Terms

	4 Conclusion
	References

	A Formalized Proof of Strong Normalization for Guarded Recursive Types
	1 Introduction
	2 Guarded Recursive Types and Their Semantics
	3 Formalized Syntax
	3.1 Types Represented Coinductively
	3.2 Well-Typed Terms
	3.3 Type Equality
	3.4 Examples

	4 Reduction
	5 Strong Normalization
	6 Soundness
	7 Conclusions
	References

	Functional Pearl: Nearest Shelters in Manhattan
	1 Specification
	2 Looking Toward the Northeast
	3 A Divide-and-Conquer Approach
	3.1 Finding the Nearest Shelter in a List Homomorphism
	3.2 Sweeping
	3.3 Complexity Analysis

	4 A Thinning Approach
	4.1 Minimum, Thinning, and Filtering
	4.2 Thinning the Set of Shelters
	4.3 A Splay Tree Representation
	4.4 Complexity Analysis

	5 Conclusion
	References
	A Proof of Lemma 1

	A Flexible Language for Policies
	1 Introduction
	2 Suppl by Example
	3 Suppl in Detail
	3.1 Event Handlers
	3.2 Predicates, Types, and Modes

	4 Conflict Detection
	5 Implementation
	6 Related Work
	7 Conclusion
	References

	A Method for Scalable and Precise Bug FindingUsing Program Analysis and Model Checking
	1 Introduction
	2 Related Work
	3 Illustrative Example
	4 Model-Based Analysis
	4.1 Specialised Abstraction
	4.2 Example Revisited
	4.3 Function Summaries and Interprocedural Support

	5 Implementation
	6 Experimental Results
	6.1 Evaluation of Precision and Recall Against Benchmarks
	6.2 Evaluation Using OpenJDK
	6.3 Threats to Validity

	7 Conclusion and Future Work
	References

	Model-Checking for Android Malware Detection
	1 Introduction
	2 Android Applications
	3 Program Model
	3.1 Pushdown Systems
	3.2 Modeling Android Applications as PDSs

	4 Android (Malicious) Behaviors Specifications
	4.1 The SCTPL Logic
	4.2 The SLTPL Logic
	4.3 SLTPL and SCTPL for Android Applications
	4.4 Expressing Android (Malicious) Behaviors in SCTPL and SLTPL

	5 Model-Checking Android Applications
	5.1 Annotating the Program with encode Predicates
	5.2 SCTPL and SLTPL Model-Checking for Android Applications

	6 Experiments
	6.1 Information-Leak Android Applications
	6.2 Checking the OtherMalicious Behaviors

	7 Related Work
	References

	Necessary and Sufficient Preconditionsvia Eager Abstraction
	1 Introduction
	2 Example
	3 Preliminaries
	4 EagerAbstraction
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References
	A Inference Rules

	Resource Protection Using Atomics
	1 Introduction
	2 Synchronisation in Java
	3 Ownership Exchange via Atomics
	3.1 Basic Rules
	3.2 Synchronisation Protocol
	3.3 Specifications of Atomics
	3.4 Thread-Modular Contracts

	4 Contracts of AtomicInteger
	4.1 Specification Language
	4.2 Predicates and Parameters
	4.3 Specification
	4.4 Verification

	5 Related Work
	6 Conclusion
	References

	Resource Analysis of Complex Programswith Cost Equations
	1 Introduction
	2 Cost Equations
	3 Control-Flow Refinement of Cost Equations
	3.1 Chain Refinement of an SCC
	3.2 Forward and Backward Invariants
	3.3 Terminating Non-termination
	3.4 Propagating Refinements

	4 Upper Bound Computation
	4.1 Cost Structures
	4.2 Example of Upper Bound Computation
	4.3 Cost Structure of an Equation Application
	4.4 Cost Structure of a Phase
	4.5 Cost Structure of a Chain

	5 Solving Cost Structures
	6 Related Work and Experiments
	References

	Simple and Efficient Algorithms for Octagons
	1 Introduction
	2 Primer on the Octagon Domain
	2.1 The Domain and Its Representation
	2.2 Closure Algorithms on DBMs
	2.3 Integer Closure
	2.4 Incremental Closure

	3 Improved Incremental Strong Closure Algorithms
	4 Simpler Proofs of Strong and Integer Closure
	4.1 Integer Closure

	5 Experiments
	6 Discussion
	7 Related Work
	8 Conclusions
	References

	Compositional Entailment Checking for a Fragment of Separation Logic
	1 Introduction
	2 Separation Logic Fragment
	3 Compositional Entailment Checking
	3.1 Overview of the Reduction Procedure
	3.2 Normalization
	3.3 Selection of Spatial Atoms
	3.4 Soundness and Completeness
	3.5 Checking Entailments between a Formula and an Atom

	4 Representing SL Graphs as Trees
	5 Tree Automata Recognizing Tree Encodings of SL Graphs
	6 Completeness and Complexity
	7 Extensions
	8 Implementation and Experimental Results
	9 Related Work
	10 Conclusion
	References

	Automatic Constrained Rewriting Inductiontowards Verifying Procedural Programs
	1 Introduction
	2 Preliminaries
	2.1 Rewriting Constrained Terms

	3 Transforming Imperative Programs into LCTRSs
	4 Rewriting Induction for LCTRSs
	4.1 Restrictions
	4.2 Rewriting Induction
	4.3 Some Illustrative Examples

	5 Lemma Generalization by Dropping Initializations
	6 Implementation
	7 Related Work
	8 Conclusions
	References

	A ZDD-Based Efficient Higher-Order ModelChecking Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Higher-Order Recursion Schemes and Co-trivial ATA Model Checking
	2.2 Broadbent and Kobayashi’s Algorithm

	3 A ZDD-Based Algorithm
	3.1 ZDD Types
	3.2 Saturation Algorithm Using ZDD Types
	3.3 Approximation of Control-Flow information
	3.4 Fixed-Parameter Linear Time Algorithm

	4 Experiments
	4.1 Data Sets and Evaluation Environment
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Inferring Grammatical Summariesof String Values
	1 Introduction
	2 Preliminaries
	2.1 Context-Free Grammar
	2.2 Finite State Automaton

	3 Grammatical Summary Inference
	3.1 Galois Connection
	3.2 Abstract Operations
	3.3 Remarks on Inferring Grammatical Summaries

	4 Finite Representation and Algorithm
	4.1 Problem of an Infinite Number of Summaries
	4.2 FSA Representation and CFL Reachability
	4.3 Abstract Operations with FSA Representation

	5 Extended CFG
	5.1 CFL-Reachability Algorithm Using ECFGs
	5.2 Preserving State Pair Edges

	6 Implementation of Grammatical Summary Inference
	6.1 Integration into SAFE
	6.2 Optimization Techniques

	7 Evaluation
	8 Related Work
	9 Conclusion
	References

	Syntax-Directed Divide-and-ConquerData-Flow Analysis
	1 Introduction
	2 Formalization of Data-Flow Analysis
	3 Syntax-Directed Parallel DFA Algorithm
	3.1 Syntax-Directed Construction of Summaries
	3.2 Calculating Join-Over-All-Paths Solutions
	3.3 Construction of All-Points Summaries
	3.4 Interprocedural Analysis

	4 Experiments
	4.1 Prototype Implementations
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Address Chain: Profiling Java Objectswithout Overhead in Java Heaps
	1 Introduction
	2 Related Work
	3 Address Chain Mechanism
	3.1 Definitions
	3.2 Profiling Rules
	3.3 Building Address Chain
	3.4 Adaptivity and Extendibility

	4 Implementations of the Address Chain Mechanism
	4.1 GCV5 Garbage Collector of Harmony DRLVM
	4.2 Implementations of the Profiler
	4.3 Implementations of the Address Chain Building Algorithm

	5 Performance Evaluation
	5.1 Performance of the Profiler
	5.2 Performance of the Address Chain Building Algorithm
	5.3 Profiled Data Analysis
	5.4 Example of Application

	6 Conclusion
	References

	Call-by-Value in a Basic Logic for Interaction
	1 Introduction
	2 Low-Level Programs
	3 A Basic Linear Intermediate Language
	3.1 Equational Theory

	4 Linear Call-by-Value
	4.1 CPS-Translation
	4.2 Refining the CPS-Translation
	4.3 Soundness
	4.4 On Resource Usage

	5 Call-by-Value
	6 Conclusion
	References

	A Precise and Abstract Memory Modelfor C Using Symbolic Values
	1 Introduction
	2 Motivating Examples
	2.1 Access to Uninitialised Variables
	2.2 Low-Level Pointer Arithmetic
	2.3 Summary of Differences with the ISO C Standard

	3 A C Semantics with Symbolic Values
	3.1 The CompCert Memory Model
	3.2 A New Memory Model with Symbolic Values
	3.3 Parametrised Semantics of Clight Values

	4 A Sound and Complete Normalisation
	4.1 Soundness of the Normalisation of Symbolic Values
	4.2 Reconstructing the Original Clight Semantics
	4.3 Completeness of the Normalisation of Symbolic Values

	5 Evaluating Symbolic Values Using an SMT Solver
	5.1 An Executable Semantics of Symbolic Values
	5.2 Normalisation as a Satisfiability Problem
	5.3 Relaxation and Optimisation of the SMT Encoding

	6 Experimental Evaluation
	6.1 Pointer Arithmetic Using Alignment and Bitwise Operations
	6.2 Comparison Between Pointers and -1
	6.3 Operations on Undefined Values
	6.4 Copying Bytes between Memory Areas with memmove

	7 Related Work
	8 Conclusion
	References

	Hereditary History-Preserving Bisimilarity:Logics and Automata
	1 Introduction
	2 Event Structures and hhp-Bisimilarity
	3 A Logic for hhp-Bisimilarity
	4 History-Dependent Automata over Events
	4.1 HDE-Automata and HD-Bisimilarity
	4.2 Logical Characterisation of HD-Bisimilarity

	5 Hhp-Bisimilarity via HD-Automata
	5.1 From Event Structures to HDE-Automata
	5.2 From L0 to Lhd and Back: Hhp-Bisimilarity via hd-Bisimilarity

	6 Conclusions: Related and Future Work
	References

	Author Index

