
Chapter 5
Estimation of ROC Curve with Multiple
Types of Missing Gold Standard

Danping Liu and Xiao-Hua Zhou

Abstract In evaluating the diagnostic accuracy of a test, the gold standard might
be missing because of high cost or harmfulness to the patient. The estimation of the
diagnostic accuracy could be biased if the missingness is not handled appropriately. In
this chapter, we propose a likelihood-based approach to jointly estimate the selection
model and disease model when the missing data mechanism is a mixture of ignorable
and nonignorable missingness. The receiver operating characteristic (ROC) curve
and its area are estimated empirically using imputation and reweighting techniques.
The proposed method extends the results of Liu and Zhou (2010, Biometrics, 66,
1119–1128), as the latter assumes a single source of nonignorable missingness. We
perform simulation studies to compare the performance of the proposed method and
the existing approaches in the literature. This methodology is motivated from and
applied to a study in Alzheimer’s disease (AD), where two reasons of missingness
are modeled separately.

5.1 Introduction

A medical diagnostic test is often evaluated by its sensitivity, specificity or the receiver
operating characteristic (ROC) curve. Many methods to estimate the ROC curve
require the true disease status to be verified without error, which is called “ gold
standard.” However, the gold standard could be subject to missingness, because
of high cost or harmfulness to the patient. Deleting the subjects with missing gold
standard results in biased estimates of the ROC curve, known as “verification bias.”
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Under ignorable missingness, or missing at random (MAR) assumption, existing
methods to adjust for the verification bias include but are not limited to Begg and
Greenes (1983), Begg (1987), Zhou (1996), Zhou (1998), Rodenberg and Zhou
(2000), Alonzo and Pepe (2005), and Liu and Zhou (2011). The verification of
gold standard may also be associated with some unobserved covariates related to the
missing disease status. Hence, the MAR assumption may not hold. The nonignorable
(NI)verification bias was first discussed by Baker (1995), and later developed by Zhou
(1998), Kosinski and Barnhart (2003), Zhou and Castelluccio (2003), Zhou and
Castelluccio (2004). Rotnitzky et al. (2006) proposed a “doubly robust” estimator
for the area under ROC curve (AUC), but they specified a NI parameter (the log odds
ratio of verification for diseased vs. healthy subject). Liu and Zhou (2010) considered
a likelihood-based approach to estimate the NI parameter. Then the empirical AUC
estimators were constructed using imputation or reweighting techniques.

Modeling missingness mechanism by a selection model is a key step in many
existing methods for ROC analysis. As the NI missingness assumption is not testable
from the data without specifying a parametric model, a good understanding of the
reason of missing data facilitates the selection model setup. All the above literature
assume a single model of missingness, which is either ignorable or NI. However,
missing data in practice may come from multiple sources. Different variables may
account for each source of missingness, which may be either ignorable or NI. The
mixture of ignorable and NI missingness was first discussed by Harel and Schafer
(2009). They separately modeled the ignorable and NI missingness mechanism, and
proposed a general framework of partially MAR and latently MAR models.

In this chapter, we assume the missing gold standard come from multiple sources,
part of which are ignorable and part of which are not. When there are only two types
of missingness, our setting of the selection models resembles the partially MAR
model in Harel and Schafer (2009). But we also allow for more than two sources of
missingness. We propose a two-step procedure to adjust for the verification bias: the
first step estimates the verification probability and disease probability by maximizing
the likelihood; the second step constructs empirical estimators for the AUC. This
extends the results of Liu and Zhou (2010), in which the NI missingness was described
by a single selection model. A more plausible missingness model would result in
a more accurate estimator for the selection probability, and consequently a more
accurate AUC estimator.

The methodology is motivated by the same Alzheimer’s disease (AD) data set as
in Liu and Zhou (2010). Since the gold standard of AD requires brain autopsy, it is
automatically missing for the alive patients. Another reason of missingness may be
that the the patients or their family opt not to have brain autopsy. Due to the fact that
living people may have better health status and hence are less likely to have AD, the
former type of missingness is probably NI, while the latter type can be assumed as
ignorable. The data set includes the information of whether a patient is dead or not,
so it could be used to improve the previous selection model in Liu and Zhou (2010).

The chapter is organized as follows. Section 5.2 discusses the framework of
the selection models for the missingness mechanism, as well as the maximum
likelihood estimator. We construct several empirical estimators for AUC in Sect. 5.3.
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The simulation results are reported in Sect. 5.4, followed by analysis of the AD data
set in Sect. 5.5. Finally, the concluding remarks are made in Sect. 5.6.

5.2 Multiple Types of Missingness

We assume that the disease verification process could go through C steps: at each
step, a portion of the sample are selected to go through the next step, while the
others are removed from gold standard verification. This process is illustrated in
Fig. 5.2. As a comparison, the NI selection model in Liu and Zhou (2010) assumes
that all the selection steps take place simultaneously, which is illustrated in Fig. 5.1.
Therefore, the selection model in Liu and Zhou (2010) actually models the “ overall”
selection probability. In practical applications, different sources of missingness may
indeed occur sequentially. For example, a survey may have NI unit nonresponse and
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ignorable item nonresponse (Harel and Schafer 2009), where the unit nonresponse
apparently happens earlier. When there is no evident temporal order for the sources
of missingness, the sequential assumption still provides a convenient way to model
the missingness, by factoring out each of the sources.

Denote Ti , Di , and Xi to be the test result, disease status and the covariates for the
ith patient. Denote Vci to be the selection indicator at the cth step (c = 1, 2, · · · ,C),
with 1 indicating selection and 0 indicating removal. Denote Wci to be the variables
that are associated with the cth type of missingness, which may include covariates
Xi , test result Ti , and their interactions. For notation simplicity, suppose there are
only two types of missingness in Di (C = 2). This could be easily extended to
more than two types. The selection model is specified by the following conditional
probabilities:

π1i ≡ Pr (V1i = 1|Di , Ti ,Xi) = expit(WT
1i β1 + α1Di), (5.1)

π2i ≡ Pr (V2i = 1|Di , Ti ,Xi ,V1i = 1) = expit(WT
2i β2 + α2Di). (5.2)

Note that Pr (V2i = 1|V1i = 0) = 0, which implies that, subjects removed in the
first step cannot re-enter the verification sample. Then a total of three groups of
verification status are defined by V1i and V2i : (1) verified sample (V1i = V2i = 1);
(2) missing at step one (V1i = V2i = 0); (3) missing at step two (V1i = 1, V2i = 0).
The NI parameters α1 and α2 could be 0, indicating the missingness at the first
or the second step is ignorable. We can easily write out the “ overall” verification
probability:

πi ≡ Pr (V1i = V2i = 1|Di , Ti ,Xi)

= π1iπ2i

= expit(WT
1i β1 + α1Di)expit(WT

2i β2 + α2Di).

In addition, we also need to specify a disease model:

ρi ≡ Pr (Di = 1| Ti ,Xi) = expit(ZT
i γ ), (5.3)

where Zi is the design matrix of variables associated with the disease status.
Define

π1i(d) ≡ Pr (V1i = 1|Di = d , Ti ,Xi)

π2i(d) ≡ Pr (V2i = 1|Di = d , Ti ,Xi ,V1i = 1).

For a subject with disease verification, we observe V1i = V2i = 1, Di , Ti and Xi ,
and the contribution to the likelihood is

li = ρ
Di

i (1 − ρi)
1−Diπ1iπ2i .

For a subject missing at step one, we observe V1i = V2i = 0, Ti and Xi , and its
contribution to the likelihood is

li = ρi(1 − π1i(1))(1 − π2i(1)) + (1 − ρi)(1 − π1i(0))(1 − π2i(0)).
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For a subject missing at step two, we observe V1i = 1, V2i = 0, Ti and Xi . The
likelihood contribution is

li = ρiπ1i(1)(1 − π2i(1)) + (1 − ρi)π1i(0)(1 − π2i(0)).

Hence, the log likelihood is L = ∑
i log li . Note that if αc = 0, πci(1) = πci(0) =

πci , and the parameterβc is separated with other parameters in the likelihood function.
The estimated verification and disease probabilities, denoted by π̂i = π̂1i π̂2i and ρ̂i ,
are then obtained by substituting the estimated parameters.

5.3 ROC Curve and Its Area

With the gold standard observed, the true and false positive rates at threshold s can
be estimated as

T PR(s) =
∑

i I (Ti > s)Di∑
i Di

FPR(s) =
∑

i I (Ti > s) (1 − Di)∑
i (1 − Di)

The AUC is the probability of correctly ordering a case and a control’s test result,
which is estimated by the Wilcoxon statistic:

ν̂ =
⎧⎨
⎩
∑
i �=j

IijDi(1 − Dj )

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

Di(1 − Dj )

⎫⎬
⎭ .

Similar to Alonzo and Pepe (2005), Liu and Zhou (2010), we replace the unobserved
Di with some estimated version.

The full imputation (FI) estimator replaces every Di with the estimated disease
probability ρ̂i regardless of its missingness. Hence, the TPR(s), FPR(s), and AUC
are given as follows:

TPR(s) =
∑

i I (Ti > s)ρ̂i∑
i ρ̂i

, FPR(s) =
∑

i I (Ti > s)(1 − ρ̂i)∑
i (1 − ρ̂i)

,

ν̂FI =
⎧⎨
⎩
∑
i �=j

Iij ρ̂i(1 − ρ̂j )

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

ρ̂i(1 − ρ̂j )

⎫⎬
⎭ .

Denote ρ
(1)
i ≡ Pr (Di = 1|V1i = 0,V2i = 0, Ti ,Xi) and ρ

(2)
i ≡ Pr ( Di = 1|V1i

= 1,V2i = 0, Ti ,Xi) to be the disease probability given the verification indicator.
Note that by Bayes rule,

ρ
(1)
i = ρi(1 − π1i(1))(1 − π2i(1))

ρi(1 − π1i(1))(1 − π2i(1)) + (1 − ρi)(1 − π1i(0))(1 − π2i(0))
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ρ
(2)
i = ρiπ1i(1)(1 − π2i(1))

ρiπ1i(1)(1 − π2i(1)) + (1 − ρi)π1i(0)(1 − π2i(0))
.

Both probabilities could be estimated by replacing ρi , π1i(d), π2i(d) with their max-
imum likelihood estimators. The second approach, mean score imputation (MSI)
only replaces the missing Di’s with ρ̂

(1)
i or ρ̂

(2)
i , depending on the source of miss-

ingness for subject i. Let DMSI ,i = I (V1i = V2i = 1)Di + I (V1i = V2i = 0)ρ(1)
i +

I (V1i = 1,V2i = 0)ρ(2)
i , and D̂MSI ,i be the estimated version with ρ

(·)
i replaced by

ρ̂
(·)
i . The estimated TPR(s), FPR(s), and AUC are

TPR(s) =
∑

i I (Ti > s)D̂MSI ,i∑
i D̂MSI,i

, FPR(s) =
∑

i I (Ti > s)(1 − D̂MSI ,i)∑
i (1 − D̂MSI,i)

,

ν̂MSI =
⎧⎨
⎩
∑
i �=j

Iij D̂MSI ,i(1 − D̂MSI ,j )

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

D̂MSI ,i(1 − D̂MSI ,j )

⎫⎬
⎭ .

The third method is inverse probability weighting (IPW). We only make use of the
verified subset (V1iV2i = 1), but weight each subject with inverse of the selection
probability. The corresponding TPR, FPR, and AUC estimators are

TPR(s) =
∑

i I (Ti > s) ViDi

/
π̂i∑

i ViDi

/
π̂i

, FPR(s) =
∑

i I (Ti > s) Vi (1 − Di)
/
π̂i∑

i Vi (1 − Di)
/
π̂i

,

ν̂IPW =
⎧⎨
⎩
∑
i �=j

Iij
I (V1iV2i = 1)Di(1 − Dj )

π̂i π̂j

⎫⎬
⎭

/⎧⎨
⎩
∑
i �=j

I (V1iV2i = 1)Di(1 − Dj )

π̂i π̂j

⎫⎬
⎭ .

The forms of the AUC estimators are analogous to those in Liu and Zhou (2010).
The difference is in the likelihood function of the model parameters. Hence, the
asymptotic variance of the AUC estimators can be proved using similar arguments
as in the Theorem 3 of Liu and Zhou (2010). We briefly state the results here. Denote
θ to be the parameters in the selection and disease models. The estimating function
for the complate data is U ∗

ij (ν, θ ) ≡ Di(1 − Dj )(Iij − ν). The estimating functions
for FI, MSI, and IPW estimators are

UFI
ij (ν, θ ) ≡ ρi(1 − ρj )(Iij − ν), (5.4)

UMSI
ij (ν, θ ) ≡ DMSI ,i(1 − DMSI ,i)(Iij − ν), (5.5)

U IPW
ij (ν, θ ) ≡ I (Mi = Mj = 0)Di(1 − Dj )

πiπj

. (5.6)

We denote these estimating functions by Uij (ν, θ ) for the notation simplicity. Let

Qi(ν, θ ) ≡ Ej

[
Uij (ν, θ ) + Uji(ν, θ )

]+
[
E

∂

∂θ
Uij (ν, θ )

]
I (θ )−1 l̇i(θ ),

where Ej is the expectation with respect to (Vj ,Dj , Tj ,Xj ), l̇i(θ ) is the ith subject’s
contribution to the score function, and I (θ ) ≡ −E ∂

∂θ
l̇i(θ ) is the information matrix
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for θ . Let

Q̂i ≡ n−1

⎡
⎣

n∑
j=1

Uij (ν̂, θ̂ ) + Uji(ν̂, θ̂ )

⎤
⎦− n−1

⎡
⎣

n∑
i=1

n∑
j=1,j �=i

∂

∂θ
Uij (ν̂, θ̂ )

⎤
⎦

×
[

n∑
i=1

∂

∂θ
l̇i(θ̂ )

]−1

l̇i(θ̂ ),

We have
√
n(ν̂ − ν)

d→ N (0,Ω), where Ω = var(Qi (ν,θ ))
[Pr (Di=0) Pr (Di=1)]2 . The variance of the

AUC estimator contains two sources of variabilities, one from using the U-statistic as
an estimator of AUC, the other from estimating the disease and verification models.
We note that the variance estimator is different from that of Liu and Zhou (2010),
since the likelihood function and the estimated θ̂ are both different.

5.4 Simulation

In this section, we compare the finite sample performance of the proposed estimators
with (1) the doubly robust (DR) estimator in Rotnitzky et al. (2006), and (2) the FI,
MSI, and IPW estimators in Liu and Zhou (2010) under NI missingness assumption,
denoted by NI method. Both DR and NI methods assume the one-step verification
process.

We generate two covariates X1 and X2 from standard normal distribution and
binary distribution, respectively, and the test result from uniform distribution U (−
1, 1). The disease status is generated from a Bernoulli(ρ) distribution with

ρ ≡ Pr (D = 1| T ,X1,X2) = expit(X1 + 0.5X2 + 2T ).

Two types of missingness (C = 2) are simulated under the following cases A and B.
Case A: The first step verification V1 is NI and the second step verification V2 is

ignorable:

Pr (V1i = 1|Di , Ti ,Xi) = expit(1 + 0.8X1 + 0.7X2 + T + 1.2D),

Pr (V2i = 1|Di , Ti ,Xi ,V1i = 1) = expit(2 + 0.5X1 + 0.2X2 + 0.8T ).

Case B: Both steps of verification, V1 and V2, are ignorable:

Pr (V1i = 1|Di , Ti ,Xi) = expit(1.6 + 0.8X1 + 0.7X2 + T ),

Pr (V2i = 1|Di , Ti ,Xi ,V1i = 1) = expit(2 + 0.5X1 + 0.2X2 + 0.8T ).

The sample size was taken to be 5000. In both cases, we modeled the first step
verification with a NI selection model, and the second step with an ignorable model.
The simulation was repeated for 500 times. The results are shown in Table 5.1. We
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Table 5.1 Comparison of the proposed method with the NI and DR methods for estimating AUC

Bias SD SE RMSE Coverage (%)

Case A Proposed FI −0.16 8.72 8.78 8.80 94.6

MSI −0.36 8.51 8.49 8.92 93.4

IPW −0.23 9.20 9.16 9.35 95.0

NI FI −0.45 9.10 9.02 9.69 93.6

MSI −0.60 8.66 8.55 9.73 91.6

IPW −0.82 9.77 9.64 11.50 90.0

DR α = 1.2 0.20 7.79 7.71 7.91 94.6

α = 0 −1.05 8.60 8.58 11.60 85.6

α = −0.3 −1.72 8.93 8.91 15.63 71.4

Case B Proposed FI −0.19 8.84 8.91 8.93 94.0

MSI −0.06 8.14 8.21 8.15 95.2

IPW −0.27 9.22 9.32 9.42 94.8

NI FI −0.24 9.13 9.18 9.29 95.0

MSI −0.11 8.34 8.34 8.37 95.0

IPW −0.47 9.63 9.59 10.26 92.6

DR α = 1.2 0.48 7.62 7.52 8.55 90.6

α = 0 0.01 8.08 8.01 8.08 95.4

α = −0.3 −0.42 8.29 8.21 8.85 94.4

SD standard deviation, SE standard error, RMSE root mean square error, FI full imputation, MSI
mean score imputation, IPW inverse probability weighting, NI nonignorable, DR doubly robust,
AUC area under ROC curve

report the bias (in percentage of the true AUC), 1000 times the empirical standard
deviation (SD) of the estimates, 1000 times the average standard error (SE) estimates,
the root mean square error (RMSE) and the 95% confidence interval (CI) coverage.

For both cases A and B, the bias for the proposed method is generally the smallest.
The NI method treats the two types of missingness as a whole, and uses one single
selection model to describe the verification process. In case A, the bias for NI method
is still relatively small compared to the variance. In case B, as the verification process
is truly ignorable, the disease model could still be estimated consistently regardless
of the misspecified verification model. Therefore, the performance of FI and MSI
estimators is good, while the IPW estimator is a bit biased. Although the NI method
is not biased seriously, it is less efficient than the proposed method, especially for the
IPW estimator. This is because a better understanding of the missingness mechanism
adds information to estimating the selection probability. The bias for DR method is
small only with approximately correct NI parameter specification (α = 1.2 for case
A and α = 0 for case B), and substantial if the specified parameter is far from the
truth. In case B, it is likely that the DR estimator is not very sensitive to α, which
explains the good coverage rates even with incorrect α. Although the DR estimator
has the smallest variance, it is hard in practice to specify the correct NI parameter.
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The SE of all three proposed methods are close to the SD, indicating that the variance
estimators capture the true variability. As for the comparison of FI, MSI, and IPW
estimators, imputation based estimators (FI and MSI) are more efficient than the
IPW estimators, and hence are recommended in practice.

5.5 NACC Data Example

The National Alzheimer’s Coordinating Center (NACC) was established in 1999
to facilitate the collaborative research among the 34 past and present Alzheimer’s
Disease Centers (ADCs) in the USA. We extracted the NACC Minimum Data Set
containing over 70,000 patients who made visit to ADCs between January 1984 and
November 2005. The mini-mental state examination (MMSE) is a brief 30-point
questionnaire test used to screen for cognitive impairment. Our interested scientific
question is how well the MMSE score classifies patients with and without AD.

The data set analyzed by Liu and Zhou (2010) consists of 53,063 patients in total,
only 11 % of which received gold standard verification. The verification process has
two natural steps: in step one, all the alive patients automatically missed the disease
status; in step two, a subsample of the dead patients were chosen to undergo the brain
autopsy and to verify their AD status. Hence, we denote V1i = 1 if a subject was
dead, and denote V2i = 1 if a dead subject finally received the disease verification.
Assume that the first step of missingness is NI and the second step is ignorable. We
use the verification model (5.1) and (5.2) and the disease model (5.3), where T is the
MMSE test, D is the true AD status, and X are the patient covariates. The covariates
that might be associated with the verification or the disease include age at the MMSE
test, gender, race, marital status, clinical diagnosis of AD, other disease conditions
(i.e., stroke, Parkinson’s disease, depression). The proposed method treats the case
nonfatality as a source of missingness and models its probability separated from
other missingness. As a comparison, the NI method pools two types of missingness
together and directly models Pr( V1iV2i = 1|Di , Ti ,Xi).

In Tables 5.2 and 5.3, we compare the NI method and the proposed method in
estimating the verification and disease models. For the two-step verification model,
the covariate’s effect on the first-stage missingness are quite different from that on the
second-stage missingness. For example, stroke may increase the chances of death, but
does not significantly affect the verification probability for a dead patient; patients
with lower MMSE score are more likely to be dead, but among those who died,
higher MMSE score is associated with greater probability of verification. Therefore,
if we pool the two sources of missingness together and use the one-step NI model
instead, the estimated covariate’s effect is probably an “ average” effect of the two
stages. The disease models generally agree with each other for NI and the proposed
methods. The comparison of NI estimates and our proposed estimates are shown in
Table 5.4. The proposed method gives higher AUC estimates than the NI method.
The FI, MSI, and IPW estimators are 0.760 (95 % CI: 0.747, 0.773), 0.759 (95 % CI:
0.745, 0.773), and 0.738 (0.721, 0.755), respectively. Furthermore, Fig. 5.3 shows
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Table 5.2 The parameter estimation (log odds ratios) for the verification model using the proposed
and NI methods

Proposed NI

Step 1 Step 2

Intercept −2.945 (0.055) −1.465 (0.079) −4.527 (0.089)

Age (per 10 years increasing) 0.247 (0.013) −0.174 (0.019) 0.086 (0.017)

Gender (M vs. F) 0.617 (0.029) 0.214 (0.037) 0.587 (0.037)

Race (white vs. others) 0.802 (0.038) 1.350 (0.071) 1.696 (0.070)

Marital status (married vs. others) −0.094 (0.027) −0.191 (0.039) −0.195 (0.035)

Stroke (yes vs. no) 0.390 (0.034) 0.033 (0.047) 0.305 (0.043)

Parkinson’s disease (yes vs. no) 0.703 (0.051) 0.264 (0.064) 0.641 (0.058)

Depression (yes vs. no) −0.438 (0.034) 0.119 (0.050) −0.202 (0.044)

Clinical AD (yes vs. no) 0.195 (0.058) −0.211 (0.039) 0.079 (0.083)

T : MMSE (per 15 points decreasing) 0.839 (0.032) −0.444 (0.035) 0.203 (0.040)

D: the gold standard (AD vs non-AD) 1.016 (0.127) — 0.718 (0.178)

NI nonignorable, AD Alzheimer’s disease, MMSE mini-mental state examination

Table 5.3 The parameter estimation (log odds ratios) for the disease model using the proposed and
NI methods

Proposed NI

Intercept −1.370 (0.195) −1.101 (0.252)

Age (per 10 years increasing) 0.192 (0.033) 0.134 (0.034)

Gender (M vs. F) −0.415 (0.074) −0.468 (0.075)

Race (white vs.others) 0.055 (0.159) −0.025 (0.175)

Marital status (married vs. others) 0.124 (0.078) 0.129 (0.080)

Stroke (yes vs. no) −0.042 (0.094) −0.100 (0.095)

Parkinson’s disease (yes vs. no) 0.265 (0.115) 0.234 (0.122)

Depression (yes vs. no) 0.063 (0.098) 0.110 (0.099)

Clinical AD (yes vs. no) 1.891 (0.069) 1.881 (0.070)

T : MMSE (per 15 points decreasing) 1.063 (0.075) 0.784 (0.071)

NI nonignorable, AD Alzheimer’s disease, MMSE mini-mental state examination

the estimated ROC curve using FI approach under the proposed and the NI method.
Under the two-stage verification assumption, the ROC curve is slightly higher than
that assuming one-stage verification.

In this example, the proposed selection model does not change the 95 % CI width
substantially, but it does change the point estimates of the AUC. Even though the FI
and MSI estimators do not directly use the selection probability, these imputation-
based estimators could still be affected. This is because the selection and disease
probabilities are not distinct in the likelihood function, and we have to specify both
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Table 5.4 The AUC
estimates using NI method
and our proposed method

AUC 95 % CI

NI FI 0.735 (0.722, 0.748)

MSI 0.736 (0.724, 0.747)

IPW 0.716 (0.698, 0.734)

Proposed FI 0.760 (0.747, 0.773)

MSI 0.759 (0.745, 0.773)

IPW 0.738 (0.721, 0.755)

FI full imputation, MSI mean score imputation,
IPW inverse probability weighting, NI nonignor-
able, AUC area under ROC curve

models correctly to get the unbiased estimators. The NACC example implies that an
unrealistic selection model could obviously lead to biased results. In this data set,
about 89 % of the patients missed the AD status, so it does not suffice to use a single
selection model to account for all the missing data.
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Fig. 5.3 Full imputation (FI) estimation of the receiver operating characteristic (ROC) curve under
the proposed two-stage verification model and the one-stage nonignorable (NI) model
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5.6 Discussion

In this chapter, we discussed multiple types of missing gold standard in estimating
the ROC curve area to extend the results of Liu and Zhou (2010). We assume that
different types of ignorable or NI missingness occur sequentially, which are reflected
by separate selection models. The overall missingness mechanism might be a mixture
of ignorable and NI missingness. The selection and disease probabilities are obtained
by maximizing the likelihood. Then the empirical estimators are constructed using
imputation or reweighting techniques. The simulation study shows the proposed
estimator works well in terms of consistency and CI coverage.

Theoretically, the proposed estimator is generally not robust to model mis-
specifications, because the likelihood function involves the joint distribution of the
disease and verification indicator, and their parameter estimation cannot be sepa-
rated. That being said, our experience is that mild model misspecification does not
create too much bias in the AUC estimators, which is seen in the simulation studies
of our previous work (Liu and Zhou 2010). For example, if the true model has a
probit link while we specify the logit link, we would expect little bias in the AUC es-
timators as logit function approximates probit function quite closely. We also found
that MSI estimator has slightly better performance than FI and IPW estimators under
mild model misspecification. With more severe misspecification, all estimators could
have large bias.

As the NI missingness is not nonparametrically testable from the data, we recom-
mended to build up plausible models based on scientific knowledge. In the stages of
study design and data collection, careful thoughts about potential missing data are
necessary. Then additional information on the reason of missingness can be collected.
However, it is quite difficult to gather all the relevant information on the missingness,
especially if the missing proportion is high. The missingness may come from quite
different sources that could not be explained by a single ignorable or NI selection
model. Thus, the heterogeneity of the missingness should be taken into consider-
ation. Stratifying the missingness into several major sources is helpful to remove
the heterogeneity, and hence leads to better estimation of the interested parameters.
Therefore, the key message of this chapter is that, in practice, if the missingness is
known to come from difference sources, it is better to model them separately. When
designing new studies, investigators should try their best to collect the information on
the reasons of missing data, which could greatly facilitate the model specification. A
referee mentioned that machine learning techniques, such as tree-based methods or
neural network algorithms are potentially useful to improve the disease and verifica-
tion models, which is a very interesting extension on the proposed method. However,
the difficulty is that, under NI missingness, the disease and verification models need
to be estimated jointly, and the model training should be done for both models too,
which may be computationally challenging. We leave it as future exploration.

The verification indicator can be also viewed as having more than two categories,
indicating different reasons of missingness. Hence, an alternative approach could
be directly modeling the verification by a multinomial logistic regression. But the
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parameters are hard to interpret, and could not explicitly distinguish ignorable versus
NI missingness. Our proposed selection models are easy to interpret and implement.
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