
Chapter 3
Bayesian Functional Mixed Models for Survival
Responses with Application to Prostate Cancer

Veerabhadran Baladandayuthapan, Xiaohui Wang, Bani K. Mallick
and Kim-Anh Do

Abstract In this chapter, we propose a flexible approach to model functional
measurements for survival outcomes. Often the class of models for functional ob-
servations are assumed to be linear, which may be too restrictive in some cases.
We propose an alternative model, in which the simple linear mixed model has been
modified by a more flexible semiparametric spline-based functional mixed model,
wherein the usage of splines simplifies parameterizations and the joint modeling
framework allows synergistic benefit between the regression of functional predictors
and the modeling of survival data. We explicitly model the number and location of
change points such that our formulation allows for an unknown set of basis functions
characterizing the population-averaged and patient-specific trajectories. In addition,
we propose a novel auxiliary variable scheme for a fully Bayesian estimation of
our model, which not only allows dimension reduction of the parameter space but
also allows efficient sampling from the conditional distributions. We illustrate our
approach with a recent prostate cancer clinical trial study.

3.1 Introduction

Metastatic prostate cancer is the second most common cancer-related cause of death
in North American men (Greenlee et al. 2000). Hormonal treatments such as andro-
gen ablation (AA) have been preferred treatments for metastatic prostate cancer for
more than 50 years. Such therapies work by altering the natural history of the dis-
ease by specifically disrupting the growth-promoting effects mediated by androgen
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receptor signaling. Regardless of the mode of administration of AA, most patients
with clinically detectable metastatic disease will eventually progress to androgen-
independent prostate cancer (AIPC) with a median of 12–18 months (Eisenberger
et al. 1986). After progression to AIPC, only symptoms are treatable and patients
survive with a median of less than a year (Tannock et al. 1996). Despite major
efforts, most studies with various cytotoxic drugs have provided little hint of the
disease-altering activity for AIPC. However, in a recent phase II study at the Uni-
versity of Texas M.D. Anderson Cancer Center, a regimen based on chemotherapy
demonstrated a survival advantage over historical results (Ellerhorst et al. 1997).
This regimen of ketoconazole and doxorubicin alternating with vinblastine and es-
tramustine, termed KA/VE, produced obvious palliation in the majority of treated
patients.

Based on these results, a phase III trial (Millikan et al. 2008) was conducted at
M.D. Anderson Cancer Center to compare conventional hormonal therapy (AA) to
chemohormonal (CH) therapy combined with three 8-week cycles of KA/VE (AA +
CH) in patients with metastatic androgen-driven prostate cancer. The hypothesis of
interest was that early intervention of KA/VE to standard, sustained AA would delay
the emergence of AIPC and ultimately prolong survival. The primary end point of
interest was the time to progression to AIPC.

In addition to the time to progression, the longitudinal measurements of prostate-
specific antigen (PSA) level from each patient over time were recorded. PSA, a
glycoprotein produced by the prostate gland, is considered a useful biomarker for
prostate cancer since significant positive correlation has been observed between the
levels of PSA and the volume of the prostate (Catalona et al. 1991). Monitoring PSA
levels has not only been established as a good diagnostic tool but is also considered
an important indicator of response to treatment, with low levels indicating good
prognosis. PSA measures are easy to collect via a routine laboratory assay of the
blood samples. Thus, given the two sets of measurements: PSA profiles and time
to progression (to AIPC), and since the measurements are inherently correlated, our
main goal of this chapter is to investigate methods for the joint analysis of both end
points.

In practice (and as in our case), the latent functional process is often unobservable
due to measurement error and is not available at all times, especially when failure
occurs. It is well known that conventional partial likelihood approaches for the Cox
model cannot avoid biased inference by using imputation of the latent functional
process, such as last value carried forward method (Prentice 1982), smoothing tech-
niques (Raboud et al. 1993), and any other generic two-stage approaches (Bycott and
Taylor 1998; Tsiatis et al. 1995). This invoked the consideration of using functional
and event processes simultaneously via joint modeling, a subject that has recently
attracted substantial interest (see Ibrahim et al. 2001; Tsiatis and Davidian 2004 for
an overview).

Suppose the data are comprised of a vector of observations {Ti , Li , Y(ti), ti ≥ 0}
for the ith subject, where Ti is an event time (possibly censored), Li is a vector
of baseline covariates, and {Y(ti), ti� ≥ 0, i = 1, · · ·, n, � = 1, · · ·,pi} is the
functional marker trajectory for all times ti� ≥ 0, wherepi is the number of functional
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Fig. 3.1 Prostate-specific antigen (PSA) profiles for patients in arm androgen ablation (AA; upper
panel) and arm chemohormonal (CH; lower panel)

measurements for subject i. One simple strategy is to introduce subject-specific
random effects and then subsequently couple this model with a model on the survival
process such as a proportional hazards model (Wulfsohn andTsiatis 1997; DeGruttola
and Tu 1994; Hogan and Laird 1997). A similar Bayesian method was explored
by Faucett and Thomas (1996). Wang and Taylor (2001) introduced an integrated
Orstein–Uhlenbeck (IOU) process into the functional modeling. Brown and Ibrahim
(2003) started with a model similar to the ones in Wulfsohn and Tsiatis (1997) and
Faucett and Thomas (1996) for their Bayesian semiparametric joint model; however,
they used a quadratic form for the functional part and introduced a nonparametric
specification for the distribution of the random effects, θ i’s. Recent works include
Zhang et al. (2009) proposing a semiparametric model based on Pólya trees and Guo
and Carlin (2004) comparing separate and joint modeling of functional and event
time data.

In most of these approaches, the form of the functional process or the trajectory
function is assumed to be a simple parametric form. Although conceptually simple
and easily implementable, this is a rather rigid assumption and may not hold in some
cases such as the one we describe here. Figure 3.1 shows the overlapping PSA levels
for the two treatment arms (AA and CH) posttreatment. The horizontal axes present
the time (in logarithm of months) and the vertical axes present the log(PSA+1)
measurements.
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There are three key aspects of the PSA trajectories which need to be considered for
any downstream analysis. First, there seems to be a definite overall pattern in the PSA
trajectories for both treatment arms. The PSA levels decrease from time units 0 to
1, then stabilize and finally increase again (around 2.5) after the effect of treatment
wears off. The patients have been normalized such that all patients receive their
treatment at time 0. Thus, the profiles exhibit a nonlinear characteristic with definite
change points at both the subject-specific and population levels—hence the need for
flexible models for the functional process. Second, a further complication occurs
since the number of PSA measurements for each patient are taken at different times,
which causes them to be sparse and irregular. Third, there seems to be considerable
heterogeneity among the patients in both treatment groups.

Due to these characteristics, the above mentioned parametric models might not
be suitable for modeling such data. Specific to joint modeling of PSA and survival
outcomes, Pauler and Finkelstein (2002) used a joint Bayesian model that consisted
of piecewise linear functional model and Cox proportional hazard model. Their
piecewise linear regression model adopted single unknown change point for each
patient and implied independence assumption over functional measurements from
the same patient. Ye et al. (2008) gave likelihood-based two-stage regression cali-
bration methods to study the dependence of the risk of prostate cancer recurrence
on the PSA level as well as time-independent covariates. Ye et al. (2008) provided
a Bayesian-based joint modeling approach with added mixture structure to predict
individual disease progression that results in either cure by treatment or susceptible
to recurrence. The Ye et al. method models the PSA level with a nonlinear expo-
nential decay and exponential growth model. We propose an alternative model in
which the simple linear (or polynomial) model has been modified by a more flexible
nonparametric model that cannot only capture nonlinear complex processes but also
adopt unknown number of change points at both patient and population levels. We
compare two different treatments, explore the effects of PSA level as well as several
covariates on the survival outcome, and identify the PSA trajectory change points as
patient disease progresses.

There has been an increasing interest in functional data analysis (FDA), analysis
of data that are in the form of a (smooth) sample of curves or functions (Ramsay
and Silverman 2005; Ngo and Wand 2004; Yao 2007; and Brown et al. 2005),
in which the functions form the basic unit of data. Most functional data analyses
focus on data which are frequently and regularly sampled across individuals and
are not applicable here due to “sparseness and irregularity” of our data. We focus
on methods for sparse functional data where not only the number and timing vary
across subjects but also some subjects may be sampled at very few time points.
Our mixed model uses a flexible spline basis; the usage of this basis simplifies
the parameterizations and the joint modeling framework, thus allowing synergistic
benefits between the regression of functional and survival data. Further, we explicitly
model the number and location of change points such that our formulation allows
for an unknown set of basis functions characterizing the population-averaged and
patient-specific trajectories. We set up the spline-based model without the assumption
of independence over functional measurements from the same patient. Meanwhile,
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the novelty of the proposed Bayesian model lies in its ability to draw information
from the functional data as well as from the associated event time data by unifying
the spline-based functional regression and survival models. In addition, we propose a
novel auxiliary variable scheme for a fully Bayesian estimation of our model, which
not only allows for dimension reduction of the parameter space but also allows
for efficient sampling from the conditional distributions and greatly reduces the
computational burden.

The rest of the chapter is organized as follows. Section 3.2 discusses our Bayesian
joint hierarchical model, where we set up the functional regression model and the Cox
proportional hazards model in an unified framework. Section 3.3 concerns elicitation
of prior distributions for the proposed model. Section 3.4 compares our model with
other joint models with parametric regression segments based on various model
selection criteria. The novel proposed model is illustrated by a motivating example,
prostate cancer data set, in Sect. 3.5. The chapter is concluded with a discussion in
Sect. 3.6. All technical details are collected into the Appendix.

3.2 Probability Model

In this section, we propose a joint survival and functional model in which the func-
tional curves are modeled nonparametrically via splines. In addition, we explicitly
model the change points present in the profiles via a functional variable selection ap-
proach, which results in a more flexible and robust model. For ease of exposition, we
assume a univariate functional outcome, although our method is easily generalizable
to multiple functional outcomes, as we show in Sect. 3.6.

3.2.1 Regression Model for the Functional Covariates

Suppose our data construct for n subjects consists of the following: {Ti, Ci, Li, Yi(t)},
where for the ith subject we observe a time-independent baseline covariates vector
Li of dimension m and time-dependent covariates Yi(t) measured at time points t.
In addition, each individual has a lifetime Ti and a (right) censored time Ci. Thus,
one observes Ti = min(Ti, Ci) and the failure indicator δi , defined as

δi =
⎧⎨
⎩

1 if Ti ≤ Ci,

0 if Ti > Ci.

We further assume that the censoring mechanism is independent of all other sur-
vival and covariates information. For the functional covariate predictor Yi(t), we
posit the following functional regression model:

Yi(t) = μ(t) + bi(t) + εi(t) 0 ≤ t ≤ T , 1 ≤ i ≤ n,
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where μ(•) is the overall mean profile and bi(•) is the ith subject’s deviation from the
mean profile, measured intermittently between times [0, T ] for an individual i with
measurement error εi(•). We also assume that the error process εi(•) is independent of
true functional process and follows a Gaussian process with mean zero and constant
variance σ 2

ε . Other forms of correlations such as an autocorrelation process can be
used for the errors, but to keep the exposition simple we do not consider that case
here.

Our focus is on modeling μ(•) and bi(•) in a flexible manner. We achieve this via
a basis function projection:

μ(t) = X(t)β, bi(t) = X(t)β i ,

where X(t) is any generic basis function and the associated regression coefficients are
denoted by β for the overall mean and β i for subject i. In practice, we only observe
the latent functional process on a finite number of time points ti = (ti1, . . ., tipi

) for
the ith subject with pi as the number of measurements, which varies from subject to
subject. The discretized version of the model for the observed PSA measurements
Yij for subject i and time tij is of the form:

Yij = Yi(tj ) = X(tij )β + X(tij )β i + εij , (3.1)

where X(tij ) is the basis function evaluated at tij , i = 1, . . ., n, j = 1, . . .,pi . There
are various basis functions that one could potentially use for modeling the func-
tional predictors, such as smoothing splines, B-splines, and wavelets, among others,
depending on the application. For our model exposition, we use a truncated power
series basis function (Ruppert et al. 2003) given its nice connections to mixed models
(Ngo and Wand 2004).

Let dimension K = 1 + p + K∗, where p is the degree of the spline and K∗ is
the number of interior knots. We rewrite (3.1) in matrix notation as

Yi = Xiβ + Xiβ i + εi , (3.2)

where Yi = (Yi1, . . .,Yipi
)′, Xi is the pi × K basis matrix for the ith subject, β =

(β1, . . ., βK )′ and β i = (β i1, . . ., β iK )′ are the K-dimensional regression coefficient
vectors. The j th row of Xi can be written as

Xij = [1 tij t2
ij · · · t

p

ij (tij − t1)p+ · · · (tij − tK∗ )p+],

where {t1, · · ·, tK∗ } are the interior knots. We assume that the subject level regres-
sion coefficients follow a Gaussian distribution, β i ∼ MVN(0, �), which are the
random effects corresponding to the systematic deviation from the population mean
β with a variance–covariance matrix �. This distribution implicity makes two key
assumptions. First, it induces the same basis function and hence the same amount of
smoothing for both the subject-specific and population level functions. This might
seem a little restrictive in some sense, since the individual curves could be assumed
to be more spatially heterogeneous than the population level curve. But for sparse
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functional data (as in our case), the assumption of the same degree of smoothness
at both the population and subject level is a reasonable one given the low number of
observations per individual. Second, conditional on the choice of basis function and
treating the basis matrix as fixed, the model in (3.2) is essentially a semiparameteric
random effects model, with the prior on β i admitting the within-subject covariance
V (Yi) = X′

i�Xi + σ 2
ε Ipi

. Hence, the within-subject independence assumption is
relaxed to allow within-subject correlation for the observed curve Yi .

Having posited the above model on the functional (PSA) profiles, conditional
on the basis matrix X, we can proceed with estimation using a variety of Bayesian
or frequentist techniques. However, two related issues remain. First, the number
and position of the knots or breakpoints need to be chosen, and second, conditional
on the number of knots, the dimension of �, if left unstructured, is of dimension
K ×K; thus, we need to estimate K(K + 1)/2 unique parameters. From a practical
and methodological point of view, it is useful to reduce dimensionality. This is
essentially a model selection problem. Various approaches to solving this problem
include using model selection procedures such as conditional predictive ordinate
(CPO) or deviance information criteria (DIC), as proposed by Brown et al. (2005),
or a fully Bayesian framework using free-knot spline methodology (Denison et al.
1998; Holmes and Mallick 2003). For our application, it is of interest to model the
exact location and number of change points in the PSA profiles since drastic changes
in PSA might directly impact on the survival of the patient. This is also evident in
Fig. 3.1, where one notices a sharp drop in PSA levels initially and then an increase
in PSA levels in the later stages of the disease.

We handle the problem of choosing the number of change points in a Bayesian
framework via latent indicators (Smith and Kohn 1996; Thompson and Rosen 2008).
Essentially, we start with a large pool of potential breakpoints and an associated latent
indicator vector, which we denote as γ . The elements of the latent indicator vector
equal 1 if the corresponding change point is included in the model and 0 otherwise—
this implies keeping or deleting one basis function in (3.2). Thus, conditional on
γ = (γ1, . . ., γK∗ ), where K∗ is the number of the set of potential change points, our
model in (3.2) can be written as

Yi = Xi,γ βγ + Xi,γ β i,γ + εi , εi ∼ MVN(0, σ 2
ε Ipi

), (3.3)

where each Xi,γ is the basis matrix corresponding to change points for the ith individ-
ual, and βγ and β i,γ are the corresponding regressed coefficients of size 1+p+K∗

i,γ ,
where p is the degree of the spline and K∗

i,γ is the number of ones in the vector γ

and within the span of the ith individual curve. Conditional on the latent indicator
parameter γ (and basis function), model (3.3) is still essentially a Bayesian linear
model for which an attractive conjugate prior distribution for parameters exists for
efficient Gibbs sampling. Since this model is only a component of our joint functional
survival model, we defer our discussion of appropriate priors to Sect. 3.3, after we
present our joint modeling framework. Note that we have not included any covariate
affecting the functional process in our model above; this is easy to handle in our
framework by adding a term corresponding to the covariate in the regression model
(3.3).
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3.2.2 Joint Survival Model

Having specified our functional submodel above, we now proceed to model the
relationship between the functional measures Y and event time T . We do so by con-
structing the likelihood in a prospective manner, P (T , Y) = P (T |Y)P (Y), rather
than a retrospective manner using reverse factorization by conditioning on the sur-
vival process. The probability model for P (Y) is as specified in (3.3). In this section,
we describe how we characterize the distribution P (T |Y).

We model the failure time via a proportional hazards model. Following Cox
(1972, 1975), and under the conditions discussed by Kalbfleisch and Prentice (2002),
we use the original Cox model formulation, in which the hazard depends on the
(true) functional process Yi(t) through its current value (and/or other time-dependent
covariates) and time-independent covariates Li . The framework for characterizing
associations among the functional and survival processes, as well as other covariates,
is then given by

h(t) = lim
dt→0

P {t < Ti < t + dt |Ti ≥ t , YH
i (t), Li}

= h0(t) exp{θ1Yi(t) + θ2Li},
where the coefficients (θ1, θ2) reflect the association of interest and YH

i (t) = {Yi(u) :
0 < u < t} is the history of the functional process Yi up to time t . Note here that
this implementation is complicated by two facts. First, the functional covariate is
subject to measurement error and is observed only intermittently for each subject at
ti = (ti1, . . ., tipi

). Second, and more important, plugging in the entire (smoothed)
functional profile leads us to a high-dimensional integral in the likelihood:

f (Ti , δi |Yi) = {h0(Ti) exp [θ1Yi(Ti) + θ2Li]}δi ×

exp

{
−
∫ Ti

0
h0(t) exp [θ1Yi(t) + θ2Li]dt

}
.

The high-dimensional integral in the likelihood does not have an analytical solution
for the functional profile specified via a spline representation. Brown et al. (2005) use
a trapezoidal rule to approximate the above integral. We present an exact Bayesian
analysis via the use of auxiliary variables. To this effect, define a latent auxiliary
variable wi as

wi = β ′
γ (i)θ1γ + L′

iθ2 + ei , ei ∼ N (0, τ 2), (3.4)

where βγ (i) = βγ + β i,γ represents the ith PSA trajectory, θ1γ , θ2 are the regres-
sion coefficient vectors corresponding to the time-dependent and time-independent
covariate information, and ei is an error term. The auxiliary variables summarize the
time-dependent covariate effects via a simple projection. The functional submodel is
then coupled with the survival model via these latent auxiliary variables by imputing
the wi into the proportional hazards model via the hazard function as:

h(t | Yi , Li) = h0(t) exp (wi), (3.5)
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where Yi is the ith individual time-dependent covariates vector, Li is the time-
independent covariates, and h0(t) is the baseline hazard function at time point t , free
of the covariates.

The introduction of latent auxiliary variables not only eases the high-dimensional
integration in the likelihood but also serves three purposes. The first concerns di-
mension reduction, wherein the information from the potentially high-dimensional
regression coefficient β is passed along to the survival model via a simple projection
into a lower dimensional subspace. Second, in adopting this Gaussian residual effect,
many of the conditional distributions for the model parameters are now of a standard
form, which greatly aids in the computations. To be specific, conditional on wi’s,
model (3.3) is independent of the event time model (3.5) and can be written as a
standard Bayesian linear regression on the basis space defined by X, as we show
in Sect. 3. The use of the residual component ei is consistent with the belief that
there may be unexplained sources of variation in the data, perhaps due to the lack of
a linear relationship. Finally, the latent auxiliary variable formulation allows us to
easily generalize our model to handle multiple functional covariates (Sect. 3.6).

We assume that the baseline hazard is a piecewise function as:

h0(t) = λj (sj−1 ≤ t < sj ), j = 1, . . ., J. (3.6)

In theory, increasing J approximates semiparametric methods. Other nonparametric
priors (such as the gamma process and the beta process) can be easily incorporated
within our framework. Based on (3.5) and (3.6), we write the cumulative hazard
function for the ith individual as

∫ Ti

0
h0(t)exp(wi)dt =

J∑
j=1

I (Ti > sj−1)
∫ min(sj ,Ti )

sj−1

exp(wi)λjdt ,

where the indicator function I (Ti > sj−1) yields 1 if the survival time is within or
later than the j th interval and 0 otherwise.

3.3 Prior Distributions

The parameters and random variables to estimate in our model are

M = {β, σ 2
ε , μγ , �γ , γ , θγ , τ 2, λ}.

We shall discuss each of the priors and distributions for the regression and survival
models, respectively.

3.3.1 Priors for The Regression Model

We assign a Gaussian prior distribution, MVN(0, �i,γ ), to the subject level regres-
sion coefficients β i,γ . Based on the fact that the ith curve may not span the complete
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set of selected change points, we use �i,γ to denote the subject-specific realizations
of parameter �γ that respectively represent the population curve covariance corre-
sponding to the latent variable γ . In the implementation of our methodology for our
particular example, the number of basis functions K is relatively small. At least in
principle, we can then allow the covariance matrices �γ to be general. However,
from both a practical and methodological point of view, it is crucial to lower the
dimensionality of �γ . There are a variety of approaches available to this end. For
example, Shi et al. (1996) achieve parsimony using a principal component decom-
position of the covariance matrix of random effects. In a different context, Daniels
and Pourahmadi (2002) provide a Bayesian method based on Cholesky decomposi-
tion. Since in our application we work with truncated power series basis functions,
dimension reduction has a natural form that exploits the mixed model representation
of such basis functions (Ruppert et al. 2003; Baladandayuthapani et al. 2008). The
essential idea is to take the coefficients at the knots to be independent while allowing
the polynomial part to have an unstructured covariance matrix. Thus, if p is the
degree of the regression splines and K∗

γ is the number of selected knots, then we take
�γ = diag(�, σ 2IK∗

γ
), where � is an unstructured p×p matrix. Further, we specify

a Gaussian prior distribution on the population level profile or the fixed effects, βγ ,
as βγ ∼ MVN(0, cIKγ

), where we set c to be 100, and Kγ = 1+p+K∗
γ . We adopt an

Inverse–Wishart prior distribution for � and an inverse-gamma prior distribution for
σ 2. For the regression model (3.3), we assume an inverse-gamma prior distribution
for the constant variance σ 2

ε .
The selected change points are identified by the vector γ . We use a Bernoulli

prior for each element of this indicator vector, γk ∼ Bernoulli(πk), and let πk = π

for all k. The hyperprior for the probability of being a change point is specified as
a beta prior, π ∼ Beta(aπ , bπ ). Kohn et al. (2001) pointed out a flexible approach
specifying beta prior hyperparameters according to a certain expectation or prior
knowledge.

3.3.2 Priors for The Survival Model

We use conjugate prior distributions for the parameter pair θγ and τ 2, defined as
θγ ∼ MVN(0, τ 2Vγ ) and τ 2 ∼ IG(aτ , bτ ), where Vγ = diag(h). The hyperprior
for the vector h = {h�} is specified elementwise as inverse-gamma distribution,
h� ∼ IG(c�, d�). For the survival model, the prior distribution for a piecewise baseline
hazard functions, λ = {λj } is λj ∼ IG(aj , bj ), where aj and bj can be specified for
each interval.

We proceed with the estimation of the above model setup via Markov chain Monte
Carlo (MCMC) methods. The full conditional distributions are presented for the re-
gression and survival models in the Appendix. We use the Gibbs sampler (Gelfand
and Smith 1990) to obtain samples from the posterior distribution. Two parame-
ters, wi and γk , do not have close forms in their conditionals. Therefore, we use
Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 1970) to sample
those two parameters.
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3.4 Model Selection Criteria

For model selection and comparison, we use two comparison statistics: the DIC and
the CPO (Gelfand et al. 1992). The DIC is the sum of the deviance estimated using
posterior estimates of the parameters and twice the effective number of parameters
(Spiegelhalter et al. 2002). A better fit will have a smaller DIC. The DIC for our joint
models can be expressed as

DIC = 2
1

Q

Q∑
q=1

n∑
i=1

logf (Ti , δi , Yi | �(q)) −
n∑

i=1

logf (Ti , δi , Yi | �̄),

where �(q) denotes the parameter samples at the qth iteration of the MCMC method
and �̄ represents the means of the posterior samples. Chen et al. (2000) showed that
a Monte Carlo approximation of the integral in the CPO calculation can be used. For
our joint models, we have

̂CPOi =
⎛
⎝ 1

Q

Q∑
q=1

1

f (Ti , δi , Yi | �(q))

⎞
⎠

−1

.

Models with greater
∑n

i=1 log( ̂CPOi)’s indicate a better fit.

Computing DIC and
∑n

i=1 log( ̂CPOi) is straightforward based on the samples
from the MCMC method and the joint likelihood function:

f (Ti , δi , Yi) = f (Ti , δi | Yi)f (Yi)

∝ [
h0(Ti) exp (wi)

]δi exp

{
−
∫ Ti

0
h0(u) exp (wi)du

}
|2πσ 2

ε I|− 1
2

× exp

{
− 1

2σ 2
ε

(Yi − Xi,γ βγ − Xi,γ β i,γ )′(Yi − Xi,γ βγ − Xi,γ β i,γ )

}
.

3.5 Application to Prostate Cancer Data

We now consider a data set from a phase III trial of prostate cancer patients conducted
at M.D. Anderson Cancer Center (Millikan et al. 2008). The clinical trial studied 286
patients with metastatic or locally advanced prostate cancer who were randomized
and treated with either AA alone (arm AA) or chemo/hormonal therapy plus AA
(arm CH) between August 1996 and March 2003. A complete medical history was
obtained from each patient. All patients also underwent a physical examination. For
each patient, we have a record of the time (in days) between the trial starting day
and progression to AIPC or end of study, an indicator of censoring, which treatment
the patient received, day of each visit measured from registration, and PSA level
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measured on that day. The functional laboratory results of PSA, the leading diagnostic
marker for prostate cancer, is considered a predictor variable in our application. The
failure time variable, the time to progression of AIPC, is a right-censored variable.
Four time-independent covariates are also considered in the analysis. Their age at
diagnosis, prior local treatment, stratification via bone volume, and pretreatment
PSA doubling time (PSADT). For prior local treatment, patients either did or did
not receive definitive treatment. Patients were also stratified as follows: high-volume
bone or visceral disease, low-volume bone disease (one or two spots on bone scan),
local/nodal disease with prior definitive local therapy, or local/nodal disease without
prior definitive therapy. For simplicity, the three low-volume groups of patients were
combined into one category yielding two categories: high-volume disease or low-
volume disease. Since we have (intermittent) PSA measurements from the patients
before therapy, we include pretreatment PSADT as a time-independent covariate in
our survival model. It is a categorical variable stratified, as 0 if data are not available
to determine a doubling time, as 1 if doubling time is less than 3 months, and as 2 if
doubling time is greater than 3 months.

The number of PSA observations for each patient varied from 1 to 65. We use
the data set after a screening procedure removes those patients with fewer than four
observations. We transform the PSA levels into a log scale after adding 1. This trans-
formation is usually done so that residuals satisfy the assumption of homoscedasticity
and also to reduce the influence of outliers. We also transform the time axis, via a
one-to-one function, onto a log scale after dividing by 30 (the change from day to
month) and adding 1. Figure 3.1 depicts the overlapping PSA levels for 134 patients
in arm AA (upper panel) and 132 patients in arm CH (lower panel). The sparsity
of the profiles is suggested by the percentage of patients who have measurements
at or spanning the particular time point. More than 50 % of patients do not have
measurements before day 18 (equal to 0.47 in the unit of log(month+1)) and after
day 1210 (equal to 3.72 in the unit of log(month+1)).

We use a quadratic truncated power series basis function (Ruppert et al. 2003) to
model the subject and population PSA profiles. To construct the candidate pools of
change points we use 11 equally spaced knots for each arm, since it suffices for this
application. For the baseline hazard step function in the proportional hazards model,
we include ten-step intervals starting from day 0 to the last day. For the proposed
unified Bayesian model, we wish to impose proper but weak prior information. For
inverse-gamma priors, we let the shape hyperparameter to be larger than 1, allowing
existence of the expectation of the inverse-gamma distribution. For Inverse–Wishart
priors, we choose to use the degrees of freedom that are the smallest integers such that
the expectation of the distribution exists. The scale matrix is specified as the identity
matrix. We employ the following hyperparameter settings: (aσ , bσ ), (cσ , dσ ), (aτ , bτ ),
(c�, d�), and (aj , bj ) are specified as (2, 2), and (A, b) is specified as identity matrices
and 4. The hyperparameter c is specified as 100 to produce a non-informative prior
for βγ . We found that the results are insensitive to moderate modifications of these
priors. For the hyperparameter pair (aπ , bπ ), we use the method by Kohn et al.
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Fig. 3.2 The posterior probabilities of change points for arm chemohormonal (CH; top panel) and
arm androgen ablation (AA; bottom panel). The vertical axes are the posterior probabilities and the
horizontal axes are the location of the change points

(2001) to calculate the priors aπ = 1.077 and bπ = 4.846, with E(K∗
γ ) = 2 and

std(K∗
γ ) = 2 so that the number of selected knots, K∗

γ , is likely to range from 0
to 8. We run the MCMC chain for 60,000 iterations with 20,000 burn-in iterations.
To verify the stability of the algorithm, we run several different chains with various
starting knot vectors; the results show that the change point identification is quite
stable. Figure 3.2 shows the posterior probabilities of 11 equally spaced change
points for the treatment arms CH and AA.

Our results suggest that arm CH has two change points located at 0.86 (day 41)
and 1.71 (day 136), while arm AA has one change point that is located at 2.14 (day
225) with posterior probabilities very close to 1. Thus, our model seems to correctly
identify the change points of PSA trends for both arms, as suggested by Fig. 3.1.
The PSA levels usually decrease sharply due to the effect of the therapy, since the
therapy directly affects the prostate gland; but over time their effect wears off and
the PSA levels remain constant before increasing and causes prostate cancer.
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Fig. 3.3 Based on our proposed unified Bayesian model, the estimated trends of prostrate-specific
antigen (PSA) levels for arm chemohormonal (CH; red line) and arm androgen ablation (AA; green
line) with their 95 % credible intervals

Since it has been established that the volume of the prostate has a significant
positive correlation with the level of PSA found by a blood test, we want to esti-
mate the true trends of PSA levels over time for both arms. Figure 3.3 gives the
estimated population-level PSA trajectory for both the arms along with the 95 %
credible interval obtained using our proposed joint model, showing an L-shaped
pattern.

The population profiles intersect for the most part except between time units 1–2.
The difference in change points can explain the slight separation of the trends in the
two arms, as depicted by Fig. 3.3. Because an increasing PSA level usually indicates
prostate malfunction, we see the patients in arm AA deteriorating a bit at the end of
the time period as compared to arm CH. We also see evidence that the drop in PSA
levels is higher for arm CH than for arm AA. However, near the end of the study
(with log(month+1) ≥ 4.5), the PSA difference between the two arms needs careful
interpretation. This is because less than 10 % of patients have PSA observations at
or spanning this period and some of those patients have extremely high PSA levels
that may impose a larger influence on the estimation. Figure 3.4 shows the estimated
individual PSA trajectories with 95 % posterior credible intervals for four randomly
selected patients treated with CH.
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Fig. 3.4 Estimated individual prostrate-specific antigen (PSA) trajectories with 95 % posterior
credible intervals for four patients treated in arm chemohormonal (CH). Circles are actual PSA
measurements, dashed lines indicate the overall mean trend for arm CH

The figure reveals how we can borrow strength across subjects through our
Bayesian model to estimate the PSA trajectories when there is little or no infor-
mation. It is not surprising that the parts of the trajectories with little or no data have
wider pointwise intervals.

For prostate cancer data, the effectiveness of treatment on time to AIPC is of
interest. We apply our model to each of the two arms and compare the estimated
time-to-event survival curves. The upper panel of Fig. 3.5 shows two superimposed
survival curves based on our model and the Kaplan–Meier method with 95 % credible
intervals for the two arms.

The lower panel depicts two superimposed cumulative hazard curves for the two
arms based on our model, with 95 % credible intervals. The close approximation of
estimated survival curves to the Kaplan–Meier curves indicates a fair fit of the model
to the observed data. There is no apparent improvement for those in arm CH, but
there is some evidence that arm CH may perform marginally better than arm AA
because the estimated survival curve for arm AA is a little lower than the one for arm
CH. On the other hand, the estimated time-to-AIPC expectancy is 1249 days for arm
AA and 1527 days for arm CH. The 95 % credible bands are (881, 1768) and (1157,
2011) for arms AA and CH, respectively. The overlapping of the two credible bands
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Fig. 3.5 Upper panel: Survival curves for arms androgen ablation (AA; green lines) and chemo-
hormonal (CH; red lines), Kaplan–Meier curve (thick dotted line), our estimated survival curves
(solid lines), and their 95 % credible intervals (thin dashed lines). Lower panel: Cumulative hazard
curves for two arms and their 95 % credible intervals

means that there is no significant difference in time-to-AIPC expectancy between
the two arms. The hazard curves exhibit a similar pattern.

In our model setup, the auxiliary variable w serves as a bridge parameter between
the functional regression model and the survival model and captures the relationship
between the functional predictor and the survival time. Figure 3.6 shows the box
plots of the estimated w’s and the observed PSA levels with high or low w’s. The top
two plots are for arm AA.

The top left plot overlaps ten observed PSA levels (dotted lines) that are for patients
with the highest estimated w’s, and ten other levels (solid lines) that are for patients
with the lowest estimated w’s. The mean observed survival time for the patients with
the highest and lowest w’s are 1.95 and 4.46, respectively. The separation of PSA
levels for two groups of patients shows that long-survived patients have PSA levels
that drop to very low levels and remain low after treatment, while short-survived
patients have PSA levels that drop slightly yet bounce back quickly. Therefore, we
conclude that the mostly nonzero w’s reveal the validity of our joint model for these
data based on the fact that the functional PSA levels have a (negative) effect on the
progress to AIPC. The effect of informative scalar w is further illustrated by the top
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Fig. 3.6 Left: observed prostrate-specific antigen (PSA) trajectories for 20 patients. Ten patients
with the highest estimated w’s are plotted in dotted lines, and ten patients with the lowest estimated
w’s are plotted in solid lines. Right: box plots for posterior means of scalar w. For both arms, “_S”
means patient’s time to progression of androgen-independent prostate cancer (AIPC) is short than
or equal to 32 months, and “_L” means patient’s time to progression of AIPC is longer than 32
months

Table 3.1 The estimation of coefficients for time-independent covariates. The values in parentheses
are the estimated standard deviations

Age at Rx Definitive Stratification PSADT

Arm AA −0.020(0.038) −0.628(2.151) 0.595(1.984) −0.569(1.308)

Arm CH −0.056(0.033) −1.397(1.733) 0.455(1.740) −0.636(1.015)

PSADT prostrate-specific antigen doubling time, AA androgen ablation, CH chemohormonal

right plot in Fig. 3.6, where two box plots are stratified by long-term and short-term
survivors according to the threshold of 32 months. We see that the w’s are negatively
associated with survival time. The bottom two plots in Fig. 3.6 are for arm CH, and
the findings on w are the same as those for arm AA.

Table 3.1 gives the estimates of coefficients, which are the last four elements
of vector θ , corresponding to the four time-independent covariates. The estimation
shows that, for both arms, elder age at diagnosis, definitive treatment, low volume of
stratification, and pretreatment PSADT longer than 3 months lead to lower hazards.
However, there is only one significant covariate for arm CH: age at diagnosis.
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Table 3.2 The model
comparison measurements for
both arms

Model DIC
∑n

i=1 log( ̂CPOi )

Change point model 2362.7 −2652.7

Arm AA Quadratic model 2402.4 −2706.0

Linear model 2616.3 −3033.6

Change point model 2129.5 −2405.5

Arm CH Quadratic model 2326.3 −2490.3

Linear model 2859.9 −2951.0

AA androgen ablation, CH chemohormonal,
DIC deviance information criteria

For comparison, we also consider two other models without the change points.
The model setups are similar to that in Sect. 3.2, except that any term with the
indicator vector γ is dropped. One model uses the linear basis:

XLinear
i (t) =

⎡
⎢⎢⎢⎣

1 ti1
...

...

1 tipi

⎤
⎥⎥⎥⎦ ,

and the other uses the quadratic basis

XQuad
i (t) =

⎡
⎢⎢⎢⎣

1 ti1 t2
i1

...
...

...

1 tipi
t2
ipi

⎤
⎥⎥⎥⎦ .

The model comparison measures DIC and
∑n

i=1 log( ̂CPOi) are reported in Table 3.2
for both arms.

The change point model is a joint model using the change points selected by our
proposed model (as shown in Fig. 3.2), two change points included for arm CH,
and one change point included for arm AA. For both arms, the joint change point
model is the best fit to the data with the largest CPO and smallest DIC. This result
is consistent with the outcome in Fig. 3.2, where our flexible change point selection
model identifies those significant change points.

3.6 Discussion

Motivated by the analysis of the data from a prostate cancer phase III clinical trial
data, we present a joint modeling approach for functional and survival data using a
nonparametric regression model and a proportional hazards model. Further, we allow
random change points in the functional observations, both in terms of locations and
number, to capture the important curvatures of the trajectory. This unified framework
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combines the information from both functional predictors and time to progression
to generate reliable results for regression and survival analysis. Moreover, a novel
auxiliary variable scheme for a fully Bayesian estimation of our model is proposed.
This novel scheme reduces the dimension of the parameter space, and greatly eases
the computations in Bayesian estimation. Our results indicate that this scheme aids
in the understanding or interpretation of the linkage between the functional predictor
and time to progression.

Our model can also benefit from several refinements and extensions. We propose
to model the survival end point via Cox’s proportional hazards model, mainly due
to its ease of implementation and interpretability. Other survival models, such as
accelerated failure time models and cure rate models, can easily be accommodated
in our framework. In some situations one may want to consider the effect of time-
independent covariates, such as age at diagnosis, on the progress of the disease. In
the joint model, allowing interaction between θ1 and θ2 could address such concerns.
Further, one may observe multiple functional predictors and may want to assess their
impacts on survival. Suppose that for the ith individual we observe the κth functional
covariate Yiκ , the basis matrix can be denoted by Xi,γ κ

, and the fixed and random
regressed coefficients can be denoted by βγ κ

and β i,γ κ
. Then one can express the

regression model as

Yiκ = Xi,γ κ
βγ κ

+ Xi,γ κ
β i,γ κ

+ εiκ , εiκ ∼ MVN(0, σ 2
κ Ipiκ

).

The information from multiple functional predictors can be easily absorbed into the
survival segment via our novel proposed linear model for the auxiliary scalar wi ,

wi =
K∑

κ=1

Bi,γ κ
θγ κ

+ ei , ei ∼ N (0, τ 2),

where B′
i,γ κ

= [(βγ κ
+ β i,γ κ

)′, L′
i]. The rest of the model setup, including prior and

posterior distributions, are analogous to the univariate case. Therefore, we conclude
that the auxiliary scalar scheme is not only enabling feasible computing in the joint
modeling framework but also exhibiting the potential for generalization to a more
complex model.
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3.7 Appendix

3.7.1 The Model Summary with Specified Prior Distributions

To summarize the hierarchical model setup, we define

Random function Yi ∼ MVN(Xi,γ β i,γ , σ 2
ε Ipi

),

σ 2
ε ∼ IG(aσ , bσ ),

β i,γ ∼ MVN(βγ i
, �i,γ ),

βγ i
= Jiβγ ,

�i,γ = Ji�γ J′
i where �γ = diag(�, σ 2IK∗

γ
),

βγ ∼ MVN(0, cIKγ
),

� ∼ IW (A, b),

σ 2 ∼ IG(cσ , dσ ),

γk ∼ Bernoulli(πk), where πk = π for all k,

π ∼ Beta(aπ , bπ ),

Linear predictor wi ∼ N(B′
i,γ θγ , τ 2), where B′

i,γ = [β ′
i,γ , L′

i],

θγ , τ 2|γ , Vγ ∼ NIG(0, Vγ , aτ , bτ ), where Vγ = diag(h),

h� ∼ IG(c�, d�),

Hazard function h(t | Yi) = h0(t) exp (wi),

h0(t) = λj (sj−1 ≤ t < sj ),

λj ∼ IG(aj , bj ),

for i = 1, . . ., n, j = 1, . . . , J , k = 1, . . .,K , and � = 1, . . ., (Kγ + m).
The fourth and fifth lines in the above model need special attention. Based on the

fact that the ith curve may not span the complete set of selected change points, βγ i

and �i,γ are the subject-specific realizations of parameters βγ and �γ , where they
respectively represent the population curve and its covariance corresponding to the
latent variable γ . The relationship can be expressed via a rectangular indicator matrix
Ji as βγ i

= Jiβγ and �i,γ = Ji�γ J′
i with �γ = diag(�, σ 2IK∗

γ
). For example,

suppose there are five change points for the population curve, and the ith individual
only spans the first two change points (i.e., does not have measurements beyond the
third change point). Because the basis has the quadratic polynomial segment and the
change points segment, the dimensions of βγ and �γ will be 8 and 8 by 8. However,
for the ith individual, the dimensions of βγ i

and �i,γ are 5 and 5 by 5. Therefore,
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βγ i
is linked to βγ via a 5 by 8 rectangular index matrix:

Ji =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

The same Ji is used to link �γ and �i,γ . These expressions with Ji enable the
derivation of the posterior distributions below.

3.7.2 Posterior Distributions

The conditional distribution for the ith regressed covariates vector β i,γ is updated
using regression likelihood

β i,γ | Xi,γ , Yi , σ
2
ε , �γ , wi , τ

2, θγ , γ ∼ MVN(β∗
i,γ , τ 2�∗

i,γ ),

where �∗
i,γ = (τ 2(�−1

i,γ + X′
i,γ Xi,γ /σ

2
ε ) + θ1i,γ θ ′

1i,γ )−1 and β∗
i,γ = �∗

i,γ ×
(τ 2(X′

i,γ Yi/σ
2
ε + �−1

i,γ μi,γ ) + (wi − L′
iθ2)θ1i,γ ). The notation θ1i,γ is the part of the

coefficients corresponding to time-dependent covariates β i,γ , while θ2 is the part of
the coefficients corresponding to time-independent covariates Li in later posteriors.
The model variance σ 2

ε is updated by

σ 2
ε |β i,γ , Yi , Xi,γ ∼ IG(a∗

σ , b∗
σ ),

where a∗
σ = aσ + (

∑n
i=1 pi)/2 and b∗

σ = bσ + [
∑n

i=1 (Yi − Xi,γ β i,γ )′(Yi −
Xi,γ β i,γ )]/2. The indicator vector γ can be updated elementwise using the
Metropolis–Hastings algorithm with marginal posterior γk | γ −k , Yi , Xi,γ , σ 2

ε ,
�, σ 2, θγ , Vγ proportional to

π (γk)π (θγ )π (Vγ )

[ |	−1
γ |

|cIγ |
∏n

i=1

|τ 2M−1
i,γ |

|�i,γ |

]1/2

exp

{
1

2τ 2

∑n

i=1
α′

i,γ M−1
i,γ αi,γ

}

× exp

{
1

2

(∑n

i=1
α′

i,γ M−1
i,γ �−1

i,γ Ji

)
	−1

γ

(∑n

i=1
Ji�

−1
i,γ M−1

i,γ αi,γ

)}
,

where αi,γ = τ 2X′
i,γ Yi/σ

2
ε + (wi − L′

iθ2)θ1i,γ , Mi,γ = τ 2(X′
i,γ Xi,γ /σ

2
ε + �−1

i,γ ) +
θ1i,γ θ ′

1i,γ and 	γ = (
∑n

i=1 J′
i�

−1
i,γ Ji) − τ 2(

∑n
i=1 J′

i�
−1
i,γ M−1

i,γ �−1
i,γ Ji) + (1/c)IKγ

. It
is worth to point out that the generation of a candidate γ is done by changing one
element at a time in fixed sequencing order within each iteration. The conditional
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distribution for the informative scalar wi follows the combination of information
from both the regression and proportional hazards models. The likelihood of the PH
model leads to its nonstandard form

wi | Ti , δi ,h0(t), Bi,γ , θγ , τ 2 ∝ exp

{
− (w2

i − 2wiB′
i,γ θ i,γ )

2τ 2

}

× [h0(Ti) exp (wi)]
δi exp

{
−
∫ Ti

0
exp (wi)h0(t)du

}
,

which can be updated by a Metropolis step.
The following layer includes the regression coefficient as population mean βγ ,

which can be updated as

βγ | β i,γ , �i,γ ∼ MVN(β∗
γ , cM),

where M = (c
∑n

i=1 J′
i�

−1
i,γ Ji + IKγ

)−1 and β∗
γ = cM(

∑n
i=1 J′

i�
−1
i,γ β i,γ ). The un-

structured covariance matrix of the polynomial part for quadratic spline coefficients,
�, is updated as

�|βγ , β i,γ ∼ IW (A∗, b∗),

where A∗ = [A−1+∑n
i=1 (αi1α

′
i1)]−1, αi = β i,γ −βγ i

= [α′
i1, α′

i2]′, and b∗ = b+n.
Here, the dimensions of αi1 and αi2 are 3×1 and K∗

γ i
×1. Linking to the covariance

of the change points part for the quadratic spline coefficients, σ 2, is updated as

σ 2 | β ′
i,γ s, βγ ∼ IG(c∗

σ , d∗
σ ),

where c∗
σ = cσ + (

∑n
i=1 K

∗
γ i

)/2 and d∗
σ = dσ + (

∑n
i=1 α′

i2αi2)/2. The probability
of being change point π can be updated as

π | γ ∼ Beta(a∗
π , b∗

π ),

where a∗
π = aπ + Kγ and b∗

π = bπ + K + Kγ . The common coefficient vector θ in
the linear predictor model is updated as

θγ | w, B, τ 2, Vγ ∼ MVN(θ∗, τ 2V∗),

where V∗ = (V−1
γ +∑n

i=1 J′
iBi,γ B′

i,γ Ji)−1 and θ∗ = V∗(
∑n

i=1 wiJ′
iBi,γ ). Here the

definition of Ji is similar to its definition in (7.2) with a dimension adjustment to
match Bi,γ . The conjugate inverse gamma prior for variance τ 2 leads to its conditional
distribution:

τ 2 | θγ , Vγ , w, B ∼ IG(a∗
τ , b∗

τ ),

where a∗
τ = aτ + (n + Kγ + m)/2 and b∗

τ = bτ + [θ ′
γ V−1

γ θγ + ∑n
i=1 (wi −

B′
i,γ θ i,γ )2]/2.
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The next layer includes scale parameters hk , which is updated by

h� | θγ , τ 2 ∼ IG(c∗
� , d∗

� ),

where c∗
� = c� + 1/2 and d∗

� = d� + θ2
� /2τ 2.

The parameters of baseline hazard step function h0(t), λj ’s, can be updated using
the proportional hazards model:

λj | T, w ∼ IG(a∗
j , b∗

j ),

where a∗
j = aj +∑n

i=1 δiI (sj−1 ≤ Ti < sj ) and b∗
j = bj +∑n

i=1

[
I (Ti > sj−1) ×∫ min(Ti ,sj )

sj−1
exp(wi)du

]
.
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