
Chapter 25
A Framework of Statistical Methods for
Identification of Subgroups with Differential
Treatment Effects in Randomized Trials

Lei Shen, Ying Ding and Chakib Battioui

Abstract The problem of identifying subgroups of patients with differential treat-
ment effects in randomized trials plays an important role in the effort to tailor
therapies to patients who are most likely to get benefit from them. It has attracted
active research effort in recent years, and a growing number of statistical methods
have been developed. In this chapter, after first examining the major challenges with
subgroup identification that these methods are designed to address, we create a struc-
tured framework into which many of the methods can be placed. Such a framework
provides insight into the subgroup identification problem and methods, and can be
utilized to generate additional methods from existing ones. Using a small simulation
study, we also demonstrate a recently proposed approach to systematically evaluate
the performance of subgroup identification methods. Together, the methodological
framework and systematic assessment of performance can help to determine the
optimal analyses for various applications.

25.1 Introduction

In the drug development process, there is now an increasing amount of attention on
tailoring a new therapy to those patients who are most likely to benefit from it. An
important part of the effort to develop tailored therapeutics is the identification, using
data from randomized clinical trials, of patient subgroups that enjoy an enhanced
treatment response.

A number of statistical methods for the identification of such subgroups have
been proposed (Loh 2002; Su et al. 2008; Lipkovich et al. 2011; Dusseldrop and Van
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Mechelen 2014; Foster et al. 2011; Battioui et al. 2014; Bell et al. 2012), and new
ones regularly appear in the literature. With methods becoming more numerous, there
comes an acute need to understand these methods and their performance in various
settings. Although publications that present novel methods often contain simulation
studies, the many differences in the setup of these simulation studies make it difficult
to understand the relative performance of various methods. There is a strong interest
in consistent and rigorous evaluation of subgroup identification methods, a topic
addressed in Zink et al. (2015). In this chapter, we focus on a different question:
Can we create a framework into which most of these methods would fit? Such a
framework could help us gain much insight into the subgroup identification problem
itself and its desirable solutions. On the surface, many of the statistical methods for
subgroup identification look quite different from each other. However, in this chapter,
we attempt to show that a useful framework can indeed be used to capture the key
components of these methods. We will then demonstrate some important benefits of
this framework and new insights gleaned from it.

In Sect. 25.2, we briefly review some of the subgroup identification methods in
preparation for the discussion that follows. A methodological framework is pro-
posed in Sect. 25.3, and we show a few important applications of this framework in
Sect. 25.4 before concluding with Sect. 25.5.

25.2 Subgroup Identification Problem and Methods

25.2.1 Major Challenges

We first discuss the major challenges inherent in the problem of subgroup identi-
fication, which the various methods attempt to address in different ways. Perhaps
the most often mentioned of these challenges is multiplicity, appropriately so, given
the potentially severe impact it has on inflated type I error rate as well as on overly
optimistic estimates of treatment effect. An analysis to identify interesting subgroups
almost always includes multiple predictors—numbering in dozens for baseline patho-
physiological variables and sometimes thousands for genomic or genetic variables.
The number of predictors in an analysis is, however, not the only source of multi-
plicity, as there are at least two others. If a predictor is measured on a continuous
scale—such as expression level of a gene or the amount of a protein—the same
predictor can define many different patient subgroups when various cutoff values
are used. In addition, when an analysis attempts to explore beyond subgroups de-
fined by a single biomarker, the number of potential subgroups defined by the same
set of predictors increases exponentially with higher complexity of the subgroups
under consideration. For example, 100 binary biomarkers define 200 single-marker
subgroups, but about 20,000 subgroups when two biomarkers are used jointly.

Another major challenge, also derived from the potentially large number of candi-
date subgroups, is computational. Not only do we need to efficiently search through
a large number of subgroups in order to identify the most promising ones but we also
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often need to apply resampling approaches to address the aforementioned multiplicity
issue. Any of the various resampling techniques require an additional computational
loop around the search for subgroups. When these two factors—searching among
many subgroups and repeating the search for a larger number of resampled datasets—
are put together, the computational burden can be so severe as to render an otherwise
reasonable method infeasible.

High degree of multiplicity is not unique to the problem of subgroup identifi-
cation; rather it is prevalent in fields such as “high dimensional data analyses” or
“statistical learning,” of which subgroup identification can be considered a special
case. It is therefore natural to assume that many of the modern statistical techniques
developed for these fields can be applied to subgroup identification, and indeed many
of them prove to be useful. But now we come to a third major challenge of subgroup
identification. If we analyze data from patients receiving the same treatment and try
to identify subgroups with higher average response, we can directly utilize methods
such as classification-and-regression trees (CART) (Breiman et al. 1984). However,
since we are interested in subgroups with differential treatment effects, with “treat-
ment effect” defined as the difference in average responses between two treatment
groups (typically a new treatment and a control, the latter often in the form of placebo
or standard-of-care), the problem is one of identifying treatment-by-subgroup inter-
actions. Many statistical learning algorithms such as CART cannot be directly applied
to solve this more complex problem.

It should be noted that, while these challenges are the most important ones, there
are certainly others. For example, the naı̈ve estimate of treatment effect in the identi-
fied subgroup is known to be overly optimistic due to ascertainment bias associated
with the process of searching for the best subgroups. It is therefore desirable if a sub-
group identification method can provide bias-corrected estimates of treatment effect
so that the clinical importance of an identified subgroup can be properly judged.

25.2.2 Subgroup Identification Methods

Having discussed three major challenges in subgroup identification, we now provide
a brief survey of three methods that have been proposed for this problem.

In what is traditionally termed as “subgroup analysis,” most phase 2 and phase 3
clinical trials have in their statistical analysis plans lists of prespecified subgroups to
be investigated using interaction testing. In this chapter, we will refer to this method
as the “traditional” method. The testing for treatment by subgroup interaction is
performed one-at-a-time. Often, no formal multiplicity adjustment is made, although
the Bonferroni correction is sometimes used (if informally) in the interpretation of
results.

Recursive partitioning techniques are utilized by many modern statistical methods
for subgroup identification, including the next two methods to be reviewed in this
chapter (as well as Loh 2002; Su et al. 2008; Lipkovich et al. 2011; Dusseldrop and
Van Mechelen 2014; Bell et al. 2012). A detailed review of recursive partitioning
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can be found in the references (Breiman et al. 1984; Loh 2014). Briefly, a recursive
partitioning method creates a decision tree that classifies patients into subgroups
with differential treatment effects using sequential splits based on dichotomous (or
dichotomized) predictors.

The second method we consider in detail is the “virtual twin” method by Foster
et al. (2011). It borrows concepts from counterfactual models for causal inference.
As a first step, this method applies random forest model (Breiman 2001) to impute
the unobserved outcome for each patient; that is, the outcome of the patient if he or
she had been randomized to the other treatment group. This allows an individualized
treatment effect to be calculated for each patient since his or her responses to both
treatments are now available, for example, by subtracting one treatment response
from the other if the response variable is continuous. Recursive partitioning is then
applied to these individualized treatment effects in order to identify subgroups with
enhanced treatment effect. The authors considered a number of techniques to account
for multiplicity.

The final method to be discussed here is the “treatment-specified subgroup de-
tection tool” (TSDT) method by Battioui et al. (2014). It also utilizes recursive
partitioning to identify promising subgroups, albeit in two steps. First, one of the
treatment groups is selected based on practical considerations; this is often—although
not always—the group receiving the new treatment, since a hypothesized subgroup
effect is such that response to the new treatment is impacted much more by the
group status than is response to placebo or standard-of-care. Recursive partitioning
is applied to this selected treatment group to yield a list of candidate subgroups that
manifest differential response (note, not differential treatment effect, at this point).
As the second step, data from the other treatment group are utilized to ensure that a
given candidate subgroup does not reflect a similar differential response in the other
treatment group, which would render the subgroup uninteresting since there would
be little or no differential treatment effect. This two-step analysis is performed on a
number of datasets resampled from the original dataset using bootstrap or subsam-
pling. And finally, response values are permuted within each treatment arm to allow
the calculation of an adjusted p value for the best subgroup identified.

While other methods for subgroup identification have been proposed (e.g., Loh
2002; Su et al. 2008; Lipkovich et al. 2011; Dusseldrop and Van Mechelen 2014;
Bell et al. 2012), the above review of three representative methods is sufficient for
the introduction of a general methodological framework in the next section.

25.3 A Framework for Subgroup Identification Methods

Although the three methods reviewed above have many differences among them, a
number of important components emerge when we examine how they handle the
major challenges of subgroup identification presented in the previous section. We
will discuss each of these components below.
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25.3.1 Component “T”: How to Handle Treatment-By-Subgroup
Interaction

The “traditional” method deals with this directly by testing for interactions. An
interesting idea used by the “virtual twin” method is to first impute unobserved
outcomes, hence changing a problem of differential treatment effect (interaction) to
a simpler problem of differential response (main effect). Yet another strategy is used
by the “TSDT” method, where one treatment group is analyzed first, before the other
group is incorporated into the analysis to ensure an interaction effect.

By reviewing these and other methods, we can see at least the following
approaches:

1. “Model”: Testing for treatment-by-subgroup interaction in a regression model.
2. “Transformation”: Transforming the observed response, such as imputing for

unobserved outcome and then calculating individualized treatment effect (Foster
et al. 2011).

3. “Sequential”: Analyzing one treatment group first, before incorporating the other
group (Battioui et al. 2014).

4. “Direct”: Directly contrasting the observed average responses to two treatments
for any given subgroup (Lipkovich et al. 2011).

25.3.2 Component “S”: How to Search for Candidate Subgroups,
Ideally in a Computationally Efficient Manner

In this regard, the “traditional” method simply considers all possible subgroups, but
in doing so, essentially limits itself to considering only single-marker subgroups,
since testing treatment-by-subgroup interactions for more complex subgroups is of-
ten computationally prohibitive in practice. The other two reviewed methods both
utilize recursive partitioning, which counts computational efficiency as one of its
main strength. Although not all possible subgroups are considered, the recursive na-
ture of the algorithm allows much more complex subgroups to be considered, such
as those defined by two or even more predictors.

We therefore have the following options for this component:

1. “Exhaustive”: Studying all possible subgroups.
2. “Recursive partitioning”: Creating a decision tree that classifies patients into

subgroups with differential treatment effects using sequential splits based on
dichotomous (or dichotomized) predictors (Loh 2014).

3. “Stepwise modeling”: We use this option to represent the various penalized re-
gression techniques (Zou and Zhang 2012), which can also identify candidate
subgroups efficiently without considering all possible subgroups, but (unlike
option #2) does so in a regression setting.
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25.3.3 Component “M”: How to Address Multiplicity

The Bonferroni correction sometimes used in traditional subgroup analysis can be
impractical and overly conservative, and most subgroup identification methods uti-
lize one or a combination of resampling techniques. We have the following options
regarding this component:

1. “Simple”: Such as the Bonferroni correction.
2. “Permutation”: Using permutations of the original data to generate a reference

distribution of the test statistic under an appropriate null.
3. “Bootstrap”: Bootstrapping the original data to estimate the sampling distribution

of the test statistic and/or a bias-corrected estimates of effect sizes using out-of-bag
samples.

4. “Cross-validation”: Using m-fold cross-validation to estimate prediction accuracy
or other key quantities associated with a particular application.

5. “Subsampling”: Randomly dividing the original data into two smaller datasets
with prespecified proportions, with one used as training data and the other testing
data; this is often repeated a number of times with results then averaged over
subsamples.

6. “Combinations”: Using a combination of above approaches, such as “subsam-
pling & permutation.”

It should be noted that there are other options for each of the components above, as
the lists are not intended to be comprehensive. For example, some methods utilize
variable importance to further control false-positive findings. One could also say that
some of the options are fairly broad. For example, “recursive partitioning” covers
a wide range of actual methods, with one of the key differences being the criteria
used to determine whether and how to split at each node. In this regard, the “TSDT”
method uses a specific approach, while the method by Bell et al. (2012) allows any
user-defined criteria to be used. In theory, the user-defined criteria can optimize
the desirability of the identified subgroup according to practical considerations for
the specific application, such as the proper balance between subgroup size and the
magnitude of treatment effect in the subgroup. Nevertheless, we will see in the next
section that such a framework, even with simplifications on the options for each
component, can be quite useful.

25.4 Utilizing the Framework

An immediate application of this framework is that we can now catalogue seemingly
different methods for subgroup identification. For example, the “TSDT” method
can be represented by T(sequential) × S(recursive partitioning) × M(subsampling
& permutation). As another example, the method by Lipkovich et al. (2011) can be
represented by the following entry in the framework: T(direct) × S(recursive parti-
tioning) × M(permutation). Of course, it should be stated that such representation
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captures the key elements of each method, but not all its details. The “TSDT” method
utilizes out-of-bag samples from bootstrapping or subsampling to correct ascertain-
ment bias in estimating the treatment effect size in the identified subgroup, and such
details are not easily captured in a framework.

By considering the key components of subgroup identification methods, we are
able to enumerate multiple options for each component, hence gaining valuable
insight. By dissecting even a small number of methods, we now have a “toolbox”
where options for each component can be combined. This leads to an even more
interesting application, namely many “new” methods for subgroup identification
generated by this toolbox. For example, one can naturally combine T(transformation)
with S(exhaustive). In other words, we can perform the first step of the “virtual twin”
method and calculate individualized treatment effects, then perform a test for each
subgroup that is simpler than interaction tests. Intuitively, in situations where the
imputed outcome is of high quality, this method should outperform the “traditional”
method. With the options given above for each component, we have 4 × 3 × 6 = 72
combinations, each of which corresponds to a unique “method.” Some of these
methods, once described, are clearly impractical or inferior; but at the same time,
many of these methods appear reasonable, yet are “novel” in the sense that they have
not been proposed in the literature.

25.4.1 Systematic Method Evaluation

In addition to the value described above, we posit that such a framework of nu-
merous methods for subgroup identification should work very well with a system
to consistently and rigorously evaluate these methods, as proposed by Zink et al.
(2015). There are three components in this evaluation system: data generation, ap-
plication of analysis methods, and performance measurement. Consistency in data
generation and performance measurement allows a wide array of analysis methods
to be compared directly, thus leading to insight on strengths and weaknesses of each
method.

Of both technical and practical importance is the proposal to evaluate the perfor-
mance of a method on three levels: marker-level, subgroup-level, and subject-level.
Briefly, the marker-level performance measures capture the accuracy in which the
markers are correctly identified as predictive markers (or not); the subgroup-level
performance measures include the average size and treatment effect of the identified
subgroups, while the quality of associated treatment decisions for individual patients
is measured at the subject level. Section 25.4.2 will elaborate on these measures in
the context of a simulation study; additional details can be found in Zink et al. (2015).
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Table 25.1 Three subgroup identification methods compared in the simulation study

Method Component “T” Component “S” Component “M”

“Traditional” Model Exhaustive Simple (Sidak correction)

“VT” Transformation Recursive partitioning Permutation

“TSDT” Sequential Recursive partitioning Subsampling + permutation

25.4.2 Simulation Study

Here, as an example to demonstrate how this system works, we present a small
simulation study to compare three subgroup identification methods.

25.4.2.1 Subgroup Identification Methods

The methods have been briefly described in Sect. 25.2 and presented in Table 25.1
according to the framework we established. Here, we provide additional details of
each method:

• Traditional Method: Test for treatment by subgroup interaction (“T: model”) one-
at-a-time for all variables (“S: exhaustive”), with multiplicity adjustment made
using Sidak correction (“M: simple”).

• Virtual Twin Method: First apply random forest model to impute for each patient
the unobserved outcome as if he or she had been randomized to the other treat-
ment group (“T: transformation”). Then apply recursive partitioning (“S: recursive
partitioning”) to the individualized treatment effects calculated by subtracting the
“control outcome” from the “new treatment outcome” of the same patient. Finally,
use permutations of the original data to estimate a reference null distribution of
the test statistics for differential treatment effect in an identified subgroup, which
in turn provides a multiplicity adjusted p value (“M: permutation”).

• TSDT Method: In a subsample of the original data, construct candidate subgroups
with differential response based solely on the new treatment arm, and then incor-
porate data from the control arm to exclude any candidate subgroup that does not
show sufficient treatment-by-subgroup interaction (“T: sequential”). Candidate
subgroups are constructed using recursive partitioning (“S: recursive partition-
ing”). Confirm the directional consistency of any remaining candidate subgroup
in the corresponding out-of-bag sample. Averaging the results over all the ran-
dom subsamples, for each candidate subgroup, and calculate the proportion of
subsamples for which the subgroup is identified and shown to be consistent in
the out-of-bag sample. Finally, apply permutation of the original data to obtain a
reference null distribution of the consistency measure, which in turn provides a
multiplicity adjusted p value (“M: subsampling + permutation”).

For each of the subgroup identification methods, three different α levels (α = 0.1,
0.2, 0.3) are used for controlling type I error rate.
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Table 25.2 Five scenarios used in the simulation study

Scenario Number of subjects Number of markers Number of predictive markers

A 240 20 1

B 240 50 2

C 240 50 1

D 240 20 0

E 240 50 0

25.4.2.2 Simulation Scenarios

We generated 200 datasets in each of five scenarios, with Table 25.2 providing a
summary of these scenarios. In scenario A, each dataset contains 20 predictors,
with one of them being a predictive marker and hence the target of identification.
The number of predictors is increased to 50 in scenario B, with two of them being
predictive markers. Scenario C is chosen to provide comparisons with the first two
scenarios. It calls for generation of datasets with 50 predictors, one of which is a
predictive marker. Contrasting scenarios A and C will allow us to observe the impact
of the total number of predictors, while the comparison between scenarios B and
C can demonstrate the impact of the number of predictive markers. Scenarios D
and E are null scenarios with no predictive marker, included here for the purpose of
evaluating control of type I errors.

In all scenarios, there are 240 subjects, with a 3:1 randomization ratio between
the new treatment and control. For each dataset, an appropriate number (20 or 50) of
genetic markers with identical distribution were generated. Specifically, each marker
is a three-level ordinal variable with proportions of the three levels being 49, 42, and
9 %. According to the scenario, responses on a continuous scale were then generated
with either zero, one, or two of the genetic markers being predictive. The predictive
markers each confer the same magnitude of effect. When there is one predictive
marker (scenario A and C), the population consists of two subpopulations that are
both about 50 % in size and have average treatment effects 0.1 and 0.55, respectively.
When there are two predictive markers (scenario B), the population is divided into
four subpopulations that are each about 25 % in size and have average treatment
effects 0.1, 0.55, 0.55, and 1.00, respectively.

25.4.2.3 Performance Measures

The aforementioned performance measures were calculated for each method across
datasets. Specifically:

• Marker-level performance measures: Natural choices for presenting the accuracy
with which predictive markers are correctly identified by an analysis method are
sensitivity, specificity, positive predictive value, and negative predictive value.
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Fig. 25.1 Marker level performance for scenario A (solid line/solid dots = “Traditional,” dashed
line/hollow dots = “Virtual Twin,” dotted line/square dots = “TSDT”). a Sensitivity = proportion of
times that true predictive marker(s) are identified as predictive. b Specificity = proportion of times
that nonpredictive markers are identified as nonpredictive. c PPV = proportion of true predictive
markers among the markers identified as predictive. d NPV = proportion of nonpredictive markers
among the markers identified as nonpredictive

These values for a single analysis are easily calculated from the 2 × 2 table with
rows being the true status of a marker (predictive or not) and columns being the
results of identification (identified as predictive or not). The proportions are then
averaged across datasets.

• Subgroup-level performance measures: Toward the eventual objective of subgroup
identification—to tailor a potential medicine to those patients who are more likely
to respond—it is often desired that subsequent clinical trials would focus on the
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Fig. 25.2 Marker level performance for scenario B (solid line/solid dots = “Traditional,” dashed
line/hollow dots = “Virtual Twin,” dotted line/square dots = “TSDT”). a Sensitivity = proportion of
times that true predictive marker(s) are identified as predictive. b Specificity = proportion of times
that nonpredictive markers are identified as nonpredictive. c PPV = proportion of true predictive
markers among the markers identified as predictive. d NPV = proportion of nonpredictive markers
among the markers identified as nonpredictive

subgroup that has been identified. Whether such a tailored drug development
program is clinically and commercially prudent depends critically on the size
and treatment effect associated with the subgroup. Therefore, it is important to
capture these quantities (averaged over datasets) in simulation studies. While other
summaries across simulated datasets can be constructed, we start with the most
obvious ones by simply averaging the size and treatment effect of the identified
subgroup for each dataset.
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Fig. 25.3 Marker-level performance for scenario C (solid line/solid dots = Traditional,” dashed
line/hollow dots = “Virtual Twin,” dotted line/square dots = “TSDT”). a Sensitivity = proportion of
times that true predictive marker(s) are identified as predictive. b Specificity = proportion of times
that nonpredictive markers are identified as nonpredictive. c PPV = proportion of true predictive
markers among the markers identified as predictive. d NPV = proportion of nonpredictive markers
among the markers identified as nonpredictive

• Subject-level performance measures: Upon approval of a potential treatment by
regulatory agencies, the subgroup identified and confirmed in the drug develop-
ment program will impact clinical decision making. The status of each patient—in
terms of whether he or she belongs to the subgroup—can be considered as a deci-
sion rule of whether the patient should be given the new treatment. Naturally, the
quality of this decision rule can be measured using sensitivity, specificity, positive
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Table 25.3 Subgroup-level performance (α = 0.1)

Scenario Method Subgroup identified (%) Subgroup size (%) Subgroup treatment effect

A T 11 93.1 0.335

VT 22 88.8 0.359

TSDT 42 79.2 0.415

B T 16 92.5 0.574

VT 32 83.6 0.609

TSDT 49 75.8 0.658

C T 10 95.2 0.332

VT 21 89.7 0.352

TSDT 34 83.0 0.389

D T 9 93.7 –

VT 10 94.8 –

TSDT 10 94.9 –

E T 9 95.7 –

VT 12 94.3 –

TSDT 12 94.0 –

predictive value, and negative predictive value—this time with each subject as a
unit. However, since clinical decision making does not become important until
the new medicine is successfully developed, our simulation study here will not
focus on these measures.

25.4.2.4 Results

Figures 25.1, 25.2, 25.3 present the marker-level performance for each non-null
scenario, method, and α level. Across all scenarios and all measures, we can see that
the “TSDT” method performed the best, while the “traditional” method performed the
worst. The choice of α level had a moderate impact on the results. When comparing
between scenarios, we can see that when the number of predictors increased (scenario
C vs. A), sensitivity decreased for all three methods, as expected. On the other hand,
an interesting observation is that, when the number of predictive markers increased
(scenario B vs. C), sensitivity did not seem to improve.

The first column (“Subgroup identified”) of Table 25.3 provides further informa-
tion on how often each method identified a subgroup in these scenarios. We start
with the two null scenarios D and E, where all three methods appear to do a good
job of controlling the type I error rate at the stated nominal α level of 0.1. When we
look at the three non-null scenarios A, B, and C, we see that in every scenario, the
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“TSDT” method identified subgroups most often, whereas the “traditional” method
did so the least often.

The final two columns of Table 25.3 present the subgroup-level performance mea-
sures (for α = 0.1). It is evident that when the “TSDT” method identified subgroups
in non-null scenarios, the subgroups also tended to be of the best quality in terms of
having the largest treatment effect (“Subgroup Treatment Effect” column). Compar-
ing across scenarios, it is clear that identification of subgroup, especially high-quality
subgroups, is the most difficult for scenario C and easiest for scenario B, as one would
expect. The average size of subgroups identified by each method is closely related
to the frequency of identifying subgroups (since the size is 100 % of the population
when no subgroup is identified), and in this case it is not otherwise informative given
the identical distribution of all the predictors.

In summary, since all three methods control type I error rate at the same level in
the null scenarios, the performance in non-null scenarios indicates that the “TSDT”
is the most powerful method among the three in this simulation study.

25.5 Conclusions

In this chapter, we established a framework for statistical methods to identify pa-
tient subgroups with differential treatment effects in randomized clinical trials. By
focusing on three major challenges with subgroup identification, we submit that the
methods can be viewed as combinations of three key components: how treatment
by subgroup interaction is handled, how candidate subgroups are searched, and how
multiplicity is accounted for. This framework allows us to dissect existing methods,
identify the options they utilize for each component, and then combine these options
in other ways to easily generate additional methods. Such a system to catalogue and
index various methods also works well with the framework proposed by Zink et al.
(2015) to consistently evaluate performance of subgroup identification methods.
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