
Chapter 13
Inferiority Index, Margin Functions,
and Hybrid Designs for Noninferiority Trials
with Binary Outcomes

George Y. H. Chi

Abstract In the design of noninferiority (NI) trials with binary outcomes, two basic
problems are invariably present. The first problem pertains to the appropriateness of
a fixed margin. The two-step fixed margin approach recommended in the Food and
Drug Administration (FDA) guidance to industry on NI trials (US FDA, Guidance
to industry: non-inferiority clinical trials, 2010) relies on the availability of relevant
historical data and expert clinical knowledge and experience to provide the assurance
that the derived fixed margin is appropriate. Nonetheless, it still needs an objective
measure for assessing its stringency. The FDA approach has its merit in that the fixed
margin is determined empirically using the best control response rate and control
effect estimates and the best clinical judgment. This feature should be retained in
a new design. However, once this fixed margin has been determined, one is faced
with the second problem of what appropriate margin to use when the control rate
from the NI trial differs from the estimated control response rate. This question
was raised by the FDA Anti-infective Division at the November 2011 Anti-infective
Advisory Committee meeting. A hybrid design for NI trials with binary outcomes is
proposed here that integrates the FDA’s fixed margin approach with a variable margin
by applying the theory of inferiority index developed for Bernoulli distributions. The
inferiority index is an objective measure of the relative stringency of a margin, and
it can be used to define a special margin function that retains the empirical nature of
the fixed margin but also allows the margin to vary.

13.1 Introduction

In the late 1980s, Food and Drug Administration’s (FDA’s) Anti-infective Division
received submissions that include many active control studies. The Division was
wrestling with the difficult issue of how to set the noninferiority (NI) margin. Its ef-
forts resulted in the 1992 FDA Anti-infective Points-to-Consider Guidance (US FDA
1992) which reflects the Division’s best thinking at the time. The guidance recog-
nized that the nature of the problem lies in the fact that the margin is depended upon
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the true control response rate which is generally unknown. Therefore, the guidance
provided the following margin function to be used for guiding the selection of the NI
margin for the rate difference (RD) measure δRD = pT −pC , where pT and pC are
the response rates for treatment and control, respectively, in a parallel randomized
active control trial. The margin function is actually a step function defined to take
the value of − 0.20, for pC ≤ 0.80, the value of − 0.15, for 0.80 < pC ≤ 0.90, and
the value of − 0.10, for pC > 0.90. However, since the control response rate pC is
not known ahead of time, it is estimated from the NI trial data. The margin function
is then applied retrospectively using the estimate p̂C obtained from the NI trial. Var-
ious authors, including Weng and Liu (1994), Bristol (1996), Röhmel (1998, 2001),
and Senn (2000) had discussed problems associated with the discontinuous nature
of this function and the retrospective nature of its application. Röhmel and Senn
also proposed different continuous margin functions. Munk, Skipka and Stratmann
(2005) and Zhang (2006) considered NI hypotheses with variable margins that are
defined by general margin functions with some regularity properties. However, the
concept of a margin function did not receive its due attention from the regulatory
authority, probably due to a lack of justification for the choice of margin function
and a lack of an accompanied methodology.

In the FDA Guidance to Industry on NI Trials (US FDA 2010), a two-step fixed
margin approach is recommended. In this approach, an estimate of the control re-
sponse rate pC and an estimate of the control effect (CE) are obtained first from
available and relevant historical data. Then from the knowledge and experience of
clinical experts, a fraction of the CE estimate is determined as the fixed margin which
represents the amount of CE loss that can be tolerated or deemed clinically irrele-
vant. This two-step fixed margin approach is empirically based and reflects the best
clinical judgment as to the degree of stringency required. This is the current practice
for most NI trials. However, this two-step fixed margin approach cannot address the
question as to what would be the appropriate margin to use in the event the true
control response rate pC from the current NI trial appears to differ from the empiri-
cally based estimate of the control response rate pC . Indeed, at the November 2011
FDA Anti-Infective Advisory Committee meeting discussing the design of hospital-
acquired and ventilation-associated bacterial pneumonia (HABP/VABP) NI trials,
the FDA Anti-Infective Division posed the following questions among others to the
Committee. First, is the fixed margin derived using the two-step procedure for the
HABP/VABP trials appropriate? Second, what margin should one use in the event the
control response rate pC from the NI trial appears to deviate from the empirically
based estimate? However, the Committee did not provide an answer to this question.

In this chapter, a hybrid NI design for the RD measure that is defined by a special
linear margin is presented to address the above two questions raised by the FDA
Anti-Infective Division. In Sect. 13.2, the convergence theorem for the test statistic
associated with a general fixed margin NI hypothesis is established for the RD mea-
sure. This test statistic is more efficient than the classical Wald test and comparable
to the likelihood ratio test because it captures the heterogeneity of variance at the
boundary of the inferiority null hypothesis. This convergence theorem is used later to
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establish the convergence theorem for the test statistic associated with hybrid NI hy-
pothesis. In Sect. 13.3, it is shown that there is an index function linking the standard
inferiority index under the normal distributions to the RD measure and the control
response rate. Upon setting the index at a specific value in its inverse function, one
derives a margin function with a degree of stringency specified by that index. This
margin function also accommodates the potential heterogeneity of variance through
the variance ratio. Then, in Sect. 13.4, through an application of the index and mar-
gin function in tandem, it is shown how one can integrate a given fixed margin into
a linear margin that can be used to define a variable margin NI hypothesis which
will be termed a hybrid NI hypothesis. This hybrid design has the explicit degree
of stringency as measured by the index function at the empirically determined fixed
margin and control response rate. In addition, it can accommodate the adjustment of
the margin in the event the control response rate from the NI trial deviates somewhat
from the empirically based estimate of the control response rate. This hybrid design
therefore can address both questions posed by the FDA Anti-Infective Division dis-
cussed earlier and is consistent with the spirit stated in the Investigational New Drug
(IND)Application Format and Content (US FDA 2013) which mentions among other
things that “a protocol for a phase 2 or 3 investigation should be designed in such a
way that, if the sponsor anticipates that some deviation from the study design may
become necessary as the investigation progresses, alternatives or contingencies to
provide for such deviation are built into the protocols at the outset.” The performance
of the test statistic associated with the hybrid NI hypothesis is investigated and its
results discussed, and an application to the design of HABP/VABP trials is given.
The chapter concludes with a discussion.

13.2 The Scaled Relative Difference Measure and the Relative
Difference Measure

In this section, the scaled rate difference (SRD) measure for Bernoulli distributions
is first introduced and the related convergence theorem for the test statistic associated
with its fixed margin NI hypothesis is proved. The corresponding convergence the-
orem for the test statistic associated with the fixed margin NI hypothesis for the RD
is then deduced. The reason the scaled difference measure is important is because
it takes into account potential differences in the variance through the variance ratio.
This property is then passed to the RD measure through its relationship with the SRD
measure. The reason this is important is because under Bernoulli distributions, at the
boundary of the inferiority null, the variances are different since the treatment and
control have different response rates. Furthermore, the slope of the variance function
of Bernoulli distributions changes dramatically outside the range of (0.30, 0.70) as
the response rate approaches 0 or 1 (Chi and Koch 2012). This property is then also
captured in the hybrid design for the RD measure.
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13.2.1 The Scaled Relative Difference Measure

The scaled rate difference (SRD) measure plays an interesting and important role
in the development of the hybrid design which will become evident later. Consider
an active control trial with a treatment T , a control C and a clinical outcome X
of interest. Assume that the smaller the value of X, the worse is the outcome. Let
XT and XC denote outcomes on subjects treated with T and C, and FXT

(t) and
FXC

(t) denote their distributions with means μT and μC and variances σ 2
T and σ 2

C

respectively.
Let δSRD = μT −μC

σC
denote the SRD measure and δSRD, o denote a fixed NI margin

for δSRD. The adjective “relative” is used to emphasize the fact that the measure is
defined relative to the control C. However, for simplicity, it may henceforth simply
be referred to as the scaled difference measure. Then, an NI hypothesis for the scaled
difference measure δSRD defined by the margin δSRD, o is given by Eq. 13.1.

HSRD, o : δSRD ≤ δSRD, o vs .HSRD,a : δSRD > δSRD, o. (13.1)

Now, if furthermore, the distribution FXT
and FXC

have finite third and fourth
central moments denoted, respectively, by μ

(3)
T and μ

(3)
C , and μ

(4)
T and μ

(4)
C , then Li

and Chi (2011) proved Theorem 1.
For simplicity, it suffices for the purpose of this chapter to assume that the variance

ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o for some fixed number σ 2

o . In the general

setting where the variance ratio σ 2 = σ 2
T

σ 2
C

is not known, the forthcoming discussion

can be similarly developed with an appropriate adjustment to the asymptotic variance
given in Eq. 13.2 resulting in a correspondingly larger variance. This general case
will be discussed elsewhere.

Theorem 1 Assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o . Then at the boundary of the inferiority null hypothesis

in Eq. 13.1, the test statistic defined by T̂SRD = √
n(δ̂SRD − δSRD, o ) converges

asymptotically to a normal distribution N (0,�2
SRD, o), where the asymptotic variance

�2
SRD, o is given by Eq. 13.2,

�2
SRD, o = (

1 + σ 2
o

) + δ2
SRD, o

16

[
μ

(4)
T − σ 4

T

σ 4
T

+ μ
(4)
C − σ 4

C

σ 4
C

]
− δSRD, o

2

[
μ

(3)
T

σCσ
2
T

+ μ
(3)
C

σ 3
C

]
.

(13.2)

The following two corollaries follow directly from Theorem 1.

Corollary 1 When XT ∼ N
(
μT , σ 2

T

)
and XC ∼ N

(
μC , σ 2

C

)
are normally dis-

tributed, then assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o then at the boundary of the inferiority null hypothesis in

Eq. 13.1, the test statistic T̂SRD = √
n(δ̂SRD − δSRD, o ) converges asymptotically to
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a normal distribution N (0, �2
SRD, o) where the asymptotic variance �2

SRD, o is given
by Eq. 13.3,

�2
SRD, o = (

1 + σ 2
o

)+ δ2
SRD, o

4
. (13.3)

Proof The proof follows from Theorem 1 by noting that for normal distributions,
their third central moments are μ

(3)
T = 0 and μ

(3)
C = 0 and their fourth central

moments are μ
(4)
T = 3σ 4

T and μ
(4)
C = 3σ 4

C respectively. �
Corollary 2 When XT ∼ Bernoulli(pT ) and XC ∼ Bernoulli(pC) are Bernoulli

distributed, assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o then at the boundary of the inferiority null hypothesis in

Eq. 13.1, the test statistic T̂SRD = √
n(δ̂SRD − δSRD, o) converges asymptotically to

a normal distribution N (0, �2
SRD, o) where the asymptotic variance �2

SRD, o is given
by Eq. 13.4,

�2
SRD, o = (

1 + σ 2
o

) [
1 + δ2

SRD, o

16σ 2
Cσ

2
o

]
+ δ2

SRD, o

2
. (13.4)

Proof The proof follows from Theorem 1 by noting that for the Bernoulli distribu-
tions, their third central moments μ

(3)
T = pT (1 − pT )(1 − 2pT ) and μ

(3)
C =pC(1 −

pC)(1−2pC), and their fourth central moments μ(4)
T = pT (1 − pT )(1 − 2pT )2 +σ 4

T

and μ
(4)
C = pC(1 − pC)(1 − 2pC)2 + σ 4

C , respectively. �
Now for obvious reason, under Bernoulli distributions, the scaled difference mea-

sure δSRD will be called the SRD measure. The importance of the SRD measure under
normal distributions or the SRD measure under the Bernoulli distributions is that by
definition, it accommodates for potential differences between the variance of the
treatment and the variance of the control through their variance ratio. Hence, it is the
natural parameter to consider if one cannot assume homogeneity of variance. This
property is captured in the asymptotic variance of their test statistics associated with
the fixed margin NI hypothesis in Eq. 13.1. In the next section, it will be shown how
this property can be transferred to the RD measure under the Bernoulli distributions,
which is a measure that is more commonly used in practice. Analogous derivation
can be done for all other binary effect measures as discussed in Chi and Koch (2012),
but will not be discussed here.

13.2.2 The Rate Difference Measure

The rate difference (RD) measure δRD = μT − μC under normal distributions has
been discussed in Chi (2012) within the context of the Behrens–Fisher problem under
the NI hypothesis. It will be further dealt with elsewhere in the context of design of
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bioequivalence study for highly variable drugs. For the purpose of this chapter, the
focus is on the RD measure δRD = pT − pC under the Bernoulli distributions.

Under the Bernoulli distributions, the relationship between the SRD measure δSRD

and the RD measure δRD is given by Eq. 13.5,

δRD = fRD(δSRD,pC) = σCδSRD = √
pC(1 − pC) δSRD. (13.5)

Let δSRD, o be a fixed NI margin for δSRD associated with a given control response
rate pC,o Then, Eq. 13.5 indicates that

δRD,o = √
pC,o(1 − pC,o) δSRD, o (13.6)

is the corresponding NI margin for the RD measure δRD at the same control response
rate pC,o.

Let the NI hypothesis for the RD measure δRD corresponding to the NI hypothesis
in Eq. 13.1 for the SRD measure δSRD be defined by

HRD,o : δRD ≤ δRD,o vs HRD,a : δRD > δRD,o. (13.7)

Then, using the test statistic T̂SRD = √
n(δ̂SRD − δSRD, o ) in Corollary 2 for the SRD

measure as the pivoting statistic, one can derive Theorem 2 for the RD measure δRD .

Theorem 2 When XT ∼ Bernoulli(pT ) and XC ∼ Bernoulli(pC) are Bernoulli

distributed, assuming that the variance ratio σ 2 = σ 2
T

σ 2
C

is known and σ 2 = σ 2
o

for some fixed number σ 2
o then at the boundary of the inferiority null hypothesis

in Eq. 13.7, the test statistic defined by T̂RD = √
n(δ̂RD − δRD,o ) asymptotically

converges to a normal distribution N (0, �2
RD,o), where the asymptotic variance

�2
RD,o is given by Eq. 13.8,

�2
RD,o =

[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o

2

]
− [(

1 − 2pC,o
)
δRD,o

]
,

(13.8)

where σ 2
C,o = pC,o(1 − pC,o) and σ 2

T ,o = σ 2
C,oσ

2
o .

Proof The result follows from an application of the Taylor theorem to the function
δRD = fRD(σC , δSRD) given by Eq. 13.5 and the test statistic T̂SRD of Corollary 2,
and calculating the product term. �

It is of interest to point out that the asymptotic variance of T̂RD takes into consid-
eration the variance differences through the relationship between δRD and δSRD as
given by Eq. 13.7 to arrive at Theorem 2. Equation 13.8 shows that the asymptotic
variance adjusts for the rate of change of the variance function for the Bernoulli
distribution at pC,o, since (1 − 2pC,o) = d

dpC
pC(1 − pC)|pC=pC,o . This is impor-

tant because as discussed in Chi and Koch (2012), the variance of the Bernoulli
distribution decreases to 0 as response rate approaches 1 and the rate of change
in the variance function of Bernoulli distributions begins to accelerate when the
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response rate exceeds 0.7 and dramatically so as the response rate approaches 1
(or 0). As shown in Chi and Koch (2012), Theorem 2 for the test statistic T̂RD is
already an improvement over the corresponding classical Wald test for control re-
sponse rate in the range (0.5, 1). This improvement is quite substantial for control
response rate pC that approaches 1 due to the fact that the difference in the variance
at the boundary of the inferiority null has been taken into account in the test statistic
T̂RD . As just noted, this difference in variance at the boundary of the inferiority
null needs to be accounted for since the rate of change of the variance function
of the Bernoulli distribution changes dramatically as the control response rate pC

approaches 1. One can show that this improvement is a result of the fact that the

inequality

[(
σ 2
C,o + σ 2

T ,o

) δ2
RD,o

16σ 2
C,oσ

2
T ,o

+ δ2
RD,o
2

]
<
[(

1 − 2pC,o
)
δRD,o

]
holds for 0.5<

pC,o < 1 at the boundary of the inferiority null. In addition, within this range of
(0.5, 1), the performance of the test statistic T̂RD is comparable to the likelihood
ratio test as shown in Chi and Koch (2012).

Remark 1 It should be pointed out that similar results can be established for other
binary effect measures, including odds ratio, log odds ratio, relative risk and relative
risk reduction by utilizing the corresponding relationship between the SRD measure
δSRD, and each of these binary effect measures analogous to that given by Eq. 13.5

between δSRD and δRD . Details of these derivations may be found in Chi and Koch
(2012). They are outside the scope of this chapter and is not discussed further here.

In the above derivation thus far, the fixed margins δSRD, o or δRD,o are assumed to
have been given and are associated with a given assumed control response rate pC,o.
For example, δSRD, o or δRD,o could have been determined through the FDA’s two-step
fixed margin approach (US FDA 2010). But the fixed margins δSRD, o and δRD,o are
generally not given by an explicit margin function of the control response rate. The
desire to have such a function is apparent in the 1992 FDA Anti-Infective Guidance
(US FDA 1992), where it was suggested that a step function, as mentioned earlier,
linking the control response rate pC to the RD measure δRD should be used, albeit
it was retrospectively implemented. Since then, other continuous margin functions
have been proposed by various authors as discussed in Chi and Koch (2012). Can an
explicit margin function be derived between δRD and pC in a natural way that has
all the desired properties? The answer is yes, and it is shown in Sect. 13.3 that the
SRD measure δSRD again plays a critical role in establishing such an explicit margin
function through its relationship to the inferiority index and the control response rate.
Then, in Sect. 13.4, it is shown how to use the empirically derived fixed margin δRD,o

and control response rate pC,o to define a special margin functions for δRD with
an empirically based degree of stringency. This special margin function for δRD is
then used to integrate the given empirically derived fixed margin into a linear margin
called the hybrid margin.
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13.3 The Inferiority Index and Margin Function

The definition of an inferiority index between two distributions was defined in Li
and Chi (2011) as follows. Again consider an active control trial with a treatment
T , a control C, and a clinical outcome X of interest. Assume that the smaller the
value of X, the worse is the outcome. Let XT and XC denote outcomes on subjects
treated with T and C, and FXT

(t) and FXC
(t) denote their cumulative distributions,

respectively.

Definition The inferiority index of the distribution FXT
relative to the distribution

FXC
is the quantity

ρ = ρ(FXT
, FXC

) = Sup−∞<t<∞ [ FXT
(t) − FXC

(t)]. (13.9)

The inferiority index ρ(FXT
, FXC

) measures the one-sided maximum separation
between the distributions FXT

and FXC
and represents the excess proportion of

subjects under treatment T compared to that under treatment C that responded prior
to some point t∗ at which the maximum separation occurs. Since 0 ≤ ρ < 1 is
a probability, it can be viewed as an index measuring the degree of inferiority of
FXr

relative to FXC
. The inferiority index defined in Eq. 13.9 is simply the one-

sided distributional analogue of the Kolmogorov–Smirnov statistics. It reflects the
distributional differences resulting from various moment differences between the two
distributions. For other related distributional concepts, one may refer to the discussion
in Li and Chi (2011). An important and useful property of ρ(FXT

, FXC
) is that it is

invariant under parallel location and scale transformations, i.e., if a and b > 0 are

constants, then ρ
(
FXT −a

b

,FXC−a

b

)
= ρ(FXT

,FXC
).

13.3.1 The Standard Index and Margin Functions Under Normal
Distributions

First consider the inferiority index under normal distributions. Let XT ∼N (μT , σ 2
T )

and XC ∼N (μC , σ 2
C) be normally distributed with μT , μC and σ 2

T , σ 2
C denoting

the respective means and variances of their distributions FXT
and FXC

. Let X∗
T =

(XT − μC)/σC and X∗
C = (XC − μC)/σC denote the parallel location and scale

transformation of XT and XC relative to XC , respectively. Then, X∗
T ∼N (δSRD, σ 2)

and X∗
C ∼N (0,1), where δSRD = (μT −μC)/σC is the scaled difference measure and

σ 2 = σ 2
T /σ

2
C is their variance ratio. It then follows from the invariance property that

ρ = ρ(FXT
, FXC

) = ρ(FX∗
T

, FX∗
C

) = Sup−∞<t<∞ [&((t − δSRD)/σ ) − &(t)],
(13.10)

where & denotes the standard normal distribution. In light of Eq. 13.10, the
inferiority index between two normal distributions will be called the standard
inferiority index and denoted by ρS = ρ(FXT

, FXC
) for short. From Eq. 13.10, one
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can see that ρS is linked naturally to the scaled difference measure δSRD and the
variance ratio σ 2 by the function gS(δSRD, σ ) as defined by Eq. 13.11.

ρS = gS(δSRD, σ ) =
⎧⎨
⎩

[2&(−δSRD/2) − 1], −∞ < δSRD ≤ 0, if σ 2 = 1

&((t∗ − δSRD)/σ ) − &(t∗), −∞ < δSRD ≤ 0, if σ 2 �= 1
,

(13.11)

where t∗ = − δSRD σ−2 −
√

δ2
SRD σ−2 + (1−σ−2) logσ 2

(σ−2−1) denote the point at which the
supremum in Eq. 13.10 is attained. The function ρS = gS(δSRD, σ ) is called the
standard inferiority index function, or simply the standard index function for short.
For any value δSRD, o of the scaled difference measure δSRD and any value σ 2

o of
the variance ratio σ 2, the standard inferiority index function gS(δSRD, o, σo) assigns
an inferiority index value ρS,o indicating the degree of stringency of δSRD, o at the
given variance ratio σ 2

o .
Conversely, for a specified level of the standard inferiority index ρS = ρS,o, there

is a standard margin function δSRD(σ |ρS,o), which is defined by Eq. 13.12.

δSRD(σ |ρS,o) =
⎧⎨
⎩

−2&−1
(

ρs,o+1
2

)
< 0, for σ = 1, 0 ≤ ρS,o < 1

g−1
S (ρS,o, σ ), σ ε (σ1(ρS,o), σ2(ρS,o)) & σ �= 1, 0 ≤ ρS,o < 1

.

(13.12)

For a given inferiority index value of ρS,o, the interval (σ1(ρS,o), σ2(ρS,o)) in
Eq. 13.12 is determined by setting δSRD = 0 under the second alternative in Eq. 13.11
when σ 2 �= 1 as shown by Eq. 13.13.

ρs = &

(
tmax (0, σ (ρs))

σ

)
− &(tmax (0, σ (ρs))

= &( −√
(1 − σ−2)logσ 2/(1 − σ−2)σ ) − &( −√

(1 − σ−2)logσ 2/(1 − σ−2)).

(13.13)

In Eq. 13.12, when the variance ratio σ = 1, the margin function δSRD(σ |ρS,o) is

given by −2&−1
(

ρs,o+1
2

)
, which is derived from the first alternative in Eq. 13.11. For

variance ratio σ ε (σ1(ρS,o), σ2(ρS,o)) and σ �= 1, the inverse function g−1
S (ρS,o, σ )

is solved implicitly from the second alternative in Eq. 13.11.
For a specified value of the inferiority index ρS = ρS,o, the standard margin

function δSRD(σ |ρS,o) in Eq. 13.12 has the same degree of stringency given by ρS,o

throughout the interval (σ1(ρS,o), σ2(ρS,o)). Then, for any given variance ratio σ 2
o ,

the margin function defines a fixed margin δSRD, o = δSRD(σo|ρS,o) that can be used
to define a fixed margin NI hypothesis for δSRD as given in Eq. 13.14 with the degree
of stringency ρS,o.

HSRD, o : δSRD ≤ δSRD, o = δSRD(σo|ρS,o) vs.

HSRD,a : δSRD > δSRD, o(σ ) = δSRD(σo|ρS,o). (13.14)
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Therefore, if the fixed NI margin δSRD, o = δSRD(σo|ρS,o) happens to be derived from
the margin function defined by Eq. 13.12 at a specified standard inferiority index
level ρS,o and a given variance ratio σ 2

o , then Corollary 1 would be applicable and
the NI hypothesis in Eq. 13.14 may be rejected at the α = 0.025 level of significance
if the test statistic T̂SRD, o = √

n (̂δSRD − δSRD(pC,o|ρS, o) )/�SRD, o > 1.96.

13.3.2 The Standard Index and Margin Functions Under the
Bernoulli Distributions

Now let XT ∼ Bernoulli (pT ) and XC ∼ Bernoulli (pC) be two independent
Bernoulli random variables with distributions FXT

(t) = 1 − pT , at t = 0 and =
pT , at t = 1, and FXC

(t) = 1 − pC , at t = 0 and = pC , at t = 1. Assuming
pT < pC , then from the definition of the inferiority index given in Eq. 13.9, it fol-
lows that ρ(FXT

,FXC
) = [FXT

(0) − FXC
(0)] = −(pT − pC) = −δRD . Thus, based

on the definition given by Eq. 13.9, the inferiority index between two Bernoulli dis-
tributions is simply equal to the negative of the RD measure δRD and is not a function
of the variance ratio σ 2. What this implies is that the index ρ(FXT

,FXC
) = −δRD

cannot account for any potential difference in the variance between the treatment
and control. This is important because as discussed in Chi and Koch (2012), for
Bernoulli distributions, the slope of the variance function changes dramatically out-
side the range (0.3, 0.7) when the response rate moves towards 1 (or 0). This is the
precise reason why one needs to adjust the margin for the RD measure by σC if one
wants to be able to define a margin function that properly accounts for the anticipated
differences in the rate of change of σT and σC at the boundary of the inferiority null
hypothesis. This is especially relevant when the control response rate is outside the
range of (0.30, 0.70). This is consistent with the intuition that as the control response
rate pC moves closer to 1 (or 0), then the NI margin should become tighter and
tighter. Therefore, the inferiority index as defined in Eq. 13.9 would not be useful
under Bernoulli distributions and a different strategy is needed. The alternative strat-
egy is to use the standard index function ρS given in Eq. 13.11 under the normal
distributions for the Bernoulli distributions. This strategy is possible on account of
Theorem 3.

13.3.2.1 Linking the Standard Inferiority Index to the Scaled Rate Difference
Measure δSRD

Theorem 3: Let
{
XT ,i

}n
i=1 and

{
XC,i

}n
i=1 be two independent random Bernoulli

samples, where XT ,i ∼Bernoulli ( pT ) and XC,j ∼Bernoulli ( pC). Let p̂T =∑n
i=1 XT ,i/n and p̂C = ∑n

j=1 XC,j /n denote the sample means of XT and XC ,
respectively, and p̂∗

T ,n = √
n[(p̂T − pC)/σC] and p̂∗

C,n = √
n[(p̂C − pC)/σC]

denote their parallel location and scale transforms. Let ρn = ρ(Fp̂∗
T ,n

, Fp̂∗
C,n

) denote
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the inferiority index between the distributions of the two transformed statistics. Then,

lim
n→∞ ρ(Fp̂∗

T ,n
, Fp̂∗

C,n
) = ρS(&(δSRD, σ 2), &) (13.15)

where ρS(&(δSRD, σ 2), &) is the standard inferiority index between the cumu-
lative normal distribution &(δSRD, σ 2) and the standard normal distribution &,
where δSRD = (pT − pC)/σC with σC = √

pC(1 − pC) and σ 2 = σ 2
T /σ

2
C with

σT = √
pT (1 − pT ).

Proof: It follows from the central limit theorem that p̂T ∼N (pT , σ 2
T /n) and

p̂C ∼N (pC , σ 2
C/n), where σ 2

T = pT (1 − pT ) and σ 2
C = pC(1 − pC). Then, one has

p̂∗
T ,n = √

n[(p̂T −pC)/σC]∼N (δSRD, σ 2) and p̂∗
C,n = √

n[(p̂C−pC)/σC]∼N (0, 1),
where δSRD = (pT − pC)/σC and σ 2 = σ 2

T /σ
2
C . Then, Eq. 13.15 follows from

the definition of inferiority index, its invariance property under parallel location and
scale transformation and an application of the Berry–Esseen theorem (Berry 1941,
Esseen 1942) on the uniform convergence of the central limit theorem. Details are
omitted. �

Then, from Eqs. 13.11 and 13.15, one has

ρS = ρS(&(δSRD, σ 2), &) = gS(δSRD, σ ). (13.16)

Therefore, Theorem 3 and Eq. 13.16 show that the SRD measure δSRD = (pT −
pC)/σC and the variance ratio σ 2 = σ 2

T /σ
2
C under the Bernoulli distributions are

asymptotically linked to the standard inferiority index ρS by the standard index
function gS. Now, by substituting the functional relationship between pT , pC , and
δSRD as given by πT (pC , δSRD) in Eq. 13.17,

pT = πT (pC , δSRD) = pC + σCδSRD = pC +√
pC(1 − pC) δSRD, (13.17)

into the variance ratio σ 2 = pT (1 − pT )/pC(1 − pC) in Eq. 13.16, one derives the
index function g∗

SRD,

ρS = g∗
SRD (δSRD,pC)

= gS

(
δSRD,

√
πT (pC , δSRD) (1 − πT (pC , δSRD))

pC (1 − pC)

)
, for δSRD < 0 and 0 <pC < 1.

(13.18)

Equation 13.18 shows that the standard inferiority index ρS is now asymptotically
linked to SRD measure δSRD and the control response rate pC by the function g∗

SRD
which is defined through the composition of the standard index function gS and
the variance ratio as a function of δSRD and pC given by σ 2 = γ (δSRD, pC) =
πT (pC , δSRD)(1−πT (pC ,δSRD))

pC (1−pC ) , where πT is defined in Eq. 13.17. The key point here is

that the index function g∗
SRD has now incorporated the variance ratio σ 2 into its

relationship, even though it now appears to be only a function of δSRD and pC . This
index function g∗

SRD then allows one to use the standard inferiority index ρS as an
objective measure for assessing the degree of stringency for any value of the SRD
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measure δSRD = δSRD, o at any control response rate pC = pC,o. Conversely, upon
setting the standard inferiority index ρS at a specific level ρS,o in its inverse function
g*−1

SRD, which is derived from the inverse function g−1
S through Eq. 13.18, one derives

a margin function δSRD (pC |ρS, o) for the SRD measure δSRD as given by Eq. 13.19,

δSRD (pC |ρS, o) = g*−1
SRD(ρS, o,pC). (13.19)

This specific indexed margin function corresponds to a level curve of the surface of
the index function g∗

SRD given in Eq. 13.18 by setting the index level ρS = ρS, o.
Thus, in a given application, if the control response rate pC is thought to be equal to
pC,o, then Eq. 13.20

δSRD, o = δSRD(pC,o|ρS, o) = g∗−1
SRD(ρS, o,pC,o) (13.20)

defines a fixed margin at the control response rate pC,o with the degree of stringency
ρS, o. With this fixed margin δSRD, o, the NI hypothesis for δSRD can then be stated as

HSRD, o : δSRD ≤ δSRD, o = δSRD(pC,o|ρS, o) vs.

HSRD,a : δSRD > δSRD, o = δSRD(pC,o|ρS, o) (13.21)

and Corollary 2 would be applicable. It shows that the test statistic T̂SRD, o at the
boundary of the inferiority null of Eq. 13.21 for the SRD measure δSRD converges
asymptotically to a normal distribution. The inferiority null hypothesis in Eq. 13.21
may be rejected at the α = 0.025 significance level if the test statistic T̂SRD, o =√
n (̂δSRD − δSRD(pC,o|ρS, o) )/�SRD, o > 1.96.

13.3.2.2 Linking the Standard Inferiority Index to the Rate Difference
Measure δRD

The relationship between δSRD and δRD is given by δSRD = fRD(δRD ,pC) = δRD/σC .
Upon substituting this relationship into Eq. 13.18, one obtains the index function g∗

RD

given in Eq. 13.22,

ρS = g∗
RD(δRD , pC) = g∗

SRD(fRD(δRD ,pC), pC) , for 0 < pC < 1, (13.22)

which links the standard inferiority index ρS to δRD and pC . From Eq. 13.22, one can
derive the margin function given by Eq. 13.23 that links ρS and pC to δRD given by

δRD = g∗−1
RD (ρS ,pC), for 0 < ρS < 1 and 0 < pC < 1. (13.23)

Analogous to the case for the SRD measure δSRD, one can use the index function
g∗
RD defined by Eq. 13.22 to assess the degree of stringency of any value of the RD

measure δRD = δRD,o at any given control response rate pC = pC,o. Similarly, by
setting the standard index ρS = ρS,o in Eq. 13.23, one can define a specific indexed
margin function for δRD given by Eq. 13.24

δRD(pC |ρS,o) = g∗−1
RD (ρS , o,pC), for 0 < pC < 1 (13.24)
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Fig. 13.1 Margin functions δRD(pC |ρS ) for inferiority index ρS = 0.10, 0.105, and 0.125. RD rate
difference

with a degree of stringency given by ρS,o. Now, for a given pC = pC,o, the indexed
margin function Eq. 13.24 defines a fixed margin δRD,o = δRD(pC,o|ρS,o) =
g∗−1
RD (ρS,o, pC,o) for the RD measure δRD . Note that the fixed margin δRD,o has

now been adjusted for σC via δSRD through fRD in Eq. 13.22. One can then use
this fixed margin δRD,o to define a NI hypothesis relative to δRD with the degree of
stringency ρS, o as given by Eq. 13.25,

HRD, o : δRD ≤ δRD,o = δRD(pC,o|ρS,o) vs.

HRD,a : δRD > δRD,o = δRD(pC,o|ρS,o). (13.25)

Theorem 2 shows that the test statistic T̂RD,o at the boundary of the inferiority null of
Eq. 13.25 for the RD measure δRD converges asymptotically to a normal distribution.
The inferiority null hypothesis in Eq. 13.25 may be rejected at the α = 0.025 signifi-
cance level if the test statistic T̂RD,o = √

n (̂δRD − δRD(pC,o|ρS, o) )/�RD,o > 1.96.
It is of interest to note that the inverse function defined by Eq. 13.23 defines a

family of margin functions given by Eq. 13.26

{δRD(pC |ρS) = g∗−1
RD (ρS , pC), for 0 < ρS < 1 and 0 < pC < 1} (13.26)

as illustrated in Fig. 13.1.
By setting the standard index ρS equal to a specific value ρS,o, then δRD(pC |ρS,o)

defines an indexed margin function with a stringency level of ρS,o for δRD as a
function of the control response rate pC . This entire margin function δRD(pC |ρS,o)
will have the same degree of stringency ρS,o at every control response rate pC ,
for 0 < pC < 1. Furthermore, at the given index level ρS, o, the margin func-
tion δSRD (pC |ρS, o) defined by Eq. 13.19 and the margin function δRD (pC |ρS, o)
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defined by Eq. 13.24 are equally stringent with the same degree of stringency ρS,o.
At a given control response rate pC,o, these margin functions define equally strin-
gent NI hypotheses as given by Eqs. 13.21 and 13.25. However, the performance of
the test statistics T̂SRD, oand T̂RD,ofor their respective NI hypotheses, Eqs. 13.21 and
13.25, may differ. Similar derivations can be done for other binary effect measures
by using their corresponding functional relationship with the SRD measure δSRD or
the RD measure δRD to arrive at equally stringent margin functions for these binary
effect measures. These equally stringent margin functions can then be used to define
equally stringent NI hypotheses. The relative performance of the test statistics for
these equally stringent NI hypotheses can then be investigated. One may refer to
Chi and Koch (2012) for a discussion of such an investigation comparing the RD
measure and the log odds ratio measure.

13.4 A Hybrid Design for the Rate Difference Measure

It has been shown in Sect. 13.2 how to improve the efficiency of the test statistic for
testing the fixed margin NI hypothesis in Eq. 13.7 by incorporating the information on
the variance ratio at the boundary of the inferiority null of Eq. 13.7 into its asymptotic
variance. In Sect. 13.3, an index function g*

RD has been derived in Eq. 13.22 that
links the RD measure δRD and control response rate pC to the standard inferiority
index ρS . Furthermore, its inverse function g*−1

RD in Eq. 13.23 links the standard
inferiority index ρS and control response rate pC to the RD measure δRD so that by
setting the standard inferiority index ρS at a specified level ρS,o, the inverse function
then defines a margin function δRD(pC |ρS,o) given by Eq. 13.24 which has the degree
of stringency ρS,o.

In this section, these results are combined to produce a hybrid design for NI trials
with binary outcomes intended to address the question of how to set a margin and
what margin to use in the event the true control response rate appears to deviate from
the assumed control response rate.

13.4.1 An Empirically Based Margin Function for the Rate
Difference Measure

How to set the NI margin is a problem that has been around for quite a while. The
FDA’s proposed two-step empirically based fixed margin approach is really a very
good approach. However, it needs to be supplemented by an objective measure of
the degree of stringency of the empirically derived fixed margin, and in addition, the
fixed margin design needs to be modified to be able to accommodate variability in the
margin in the event the true control response rate actually deviates from the assumed
rate. It is the purpose of this section to show how the index function g∗

RD defined by
Eq. 13.22 and the margin function g∗−1

RD defined by Eq. 13.23 can be used in tandem
to address both issues in a hybrid design that preserves the empirical nature of FDA’s
fixed margin approach.
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Now consider the problem of designing an NI trial with binary outcomes using
the RD measure δRD . Assume that relevant historical studies involving the active
control and placebo are available. Using the FDA’s two-step fixed margin approach
described above, one can derive an estimate pC,o for the control response rate pC

and a conservative estimate of the CE. Furthermore, with input from clinical experts,
an NI margin δRD,o is derived which represents the maximum amount of loss of the
CE that can be tolerated.

Then, from the pair of empirically based estimates (δRD,o,pC,o), one can derive
the degree of stringency of the margin δRD,o at pC,o from the index function g∗

RD

defined by Eq. 13.22, which is given by

ρS,o = g∗
RD(δRD,o,pC,o). (13.27)

Now, the index ρS,o given by Eq. 13.27 is empirically based because it is derived
from the empirically based estimates (δRD,o,pC,o) through the index function g∗

RD

as defined by Eq. 13.27.
Using this empirically based index ρS,o, one can define an empirically based

margin function through the inverse function g∗−1
RD given by Eq. 13.24, or Eq. 13.28,

δRD(pC |ρS,o) = g∗−1
RD (ρS,o,pC), for 0 < pC < 1. (13.28)

It is obvious that when this margin function is evaluated at the estimate pC,o, it should
yield the empirically based margin δRD,o, i.e., one has

δRD(pC,o|ρS,o) = δRD,o. (13.29)

Thus, from the empirically based pair of estimates (δRD,o,pC,o), one is able to derive
the corresponding empirically based standard inferiority index ρS,o through the index
function g∗

RD as given by Eq. 13.27. Then, using empirically based index ρS,o, one
can define an empirically based margin function δRD(pC |ρS,o) given by Eq. 13.28 that
has the degree of stringency given by ρS,o. Thus, out of the family of possible margin
functions defined by Eq. 13.26, one identifies a special indexed margin function
δRD(pC |ρS,o) that is based on the empirically based pair of estimates (δRD,o,pC,o).

Hence, it has now been shown that from the empirically based pair of estimates
δRD(pC |ρS,o), one can derive its implicit degree of stringency ρS,o through the index
function g∗

RD(δRD ,pC) given by Eq. 13.22. In actual practice, based on the degree
of stringency ρS,o, one may opt to further tighten or relax the empirically derived
fixed margin δRD,o as deemed appropriate. Now assume that such adjustment has
been done if needed. Then, one can simply define the NI hypothesis in Eq. 13.25
using this empirically based margin δRD,o and test the inferiority null hypothesis
using Theorem 2. This approach without the link to the standard index function ρS is
essentially what has routinely been done. But as noted earlier, the FDAAnti-Infective
Division has posed the question as to what margin to use in the event the control
response rate from the current NI trial appears to deviate from the estimated control
response rate pC,o? Obviously, by simply defining an NI hypothesis (Eq. 13.25)
based on an empirically derived fixed margin, one will not be able to address this
question. So, further work is needed and is discussed in the next section.
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13.4.2 A Hybrid Design with a Linear Margin

Now consider the NI hypothesis in Eq. 13.30

HRD,o : δRD ≤ δRD(pC |ρS,o) vs HRD,a : δRD > δRD(pC |ρS,o), 0 < pC < 1.
(13.30)

Unlike the NI hypotheses in Eq. 13.25, the NI hypothesis in Eq. 13.30 is actually
defined by a margin function, and not by a fixed margin. But it is not just any margin
function. It is a natural and empirically derived margin function with the empirically
determined degree of stringency ρS,o. In Zhang (2006), the author starts off with
a given margin function and develops his method for a general variable margin.
In Sect. 13.4.1, a natural and special indexed margin function is derived with the
empirically determined degree of stringency. In this section, this empirically based
margin function will be used to integrate the fixed margin into a linear margin for
the hybrid design to be proposed.

Figure 13.1 displays the graphs of margin function δRD(pC |ρS) at three selected
degrees of stringency. From these graphs, one can see that the power for testing
the NI hypothesis in Eq. 13.30 will be low if the true control response rate pC is
considerably larger (or smaller) than the empirically based estimate pC,o because the
margin is getting tighter as pC approaches 1 (or 0).

Since the index function g∗
RD is continuously differentiable, it follows from the

implicit function theorem that the margin function δRD(pC |ρS,o) given by Eq. 13.28
is continuously differentiable and its derivative is given by

∂δRD(pC |ρS,o)

∂pC

= ∂g∗−1
RD (ρS,o,pC)

∂pC

= −
∂g∗

RD

∂pC

∂g∗
RD

∂δRD

. (13.31)

Now consider the first-order Taylor approximation of the margin function
∂δRD(pC |ρS,o) expanded around the point pC,o given in Eq. 13.32 as illustrated by
Fig. 13.2:

L(pC |ρS,o,pC,o) = g∗−1
RD (ρS,o,pC)|pC=pC,o + ∂g∗−1

RD (ρS,o,pC)

∂pC

|pC=pC,o (pC − pC,o)

= δRD(pC,o|ρS,o) + ∂g∗−1
RD (ρS,o,pC,o)

∂pC

(pC − pC,o) = δRD,o

+ ∂g∗−1
RD (ρS,o,pC,o)

∂pC

(pC − pC,o). (13.32)

The expression in the linear approximation L(pC |ρS,o,pC,o) in Eq. 13.32 is equal

to the fixed margin δRD,o plus the linear term
∂g∗−1

RD (ρS,o ,pC,o)
∂pC

(pC − pC,o). If the
true control response rate pC from the NI trial turns out to be equal to pC,o,
then L(pC,o|ρS,o,pC,o) = δRD,o. But if pC deviates from pC,o, then the margin
is equal to the given fixed margin L(pC |ρS,o,pC,o) = δRD,o plus the deviation term
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Fig. 13.2 First-order Taylor approximation to the margin function δRD(pC |ρS,o = 0.10) at pC,o =
0.80. RD rate difference

∂g∗−1
RD (ρS,o ,pC,o)

∂pC
(pC − pC,o), which represents a first-order adjustment to the margin

δRD,o for the deviation.
The linear margin L(pC |ρS,o,pC,o) is called a hybrid margin because it explicitly

integrates the given empirically derived pair (δRD,o,pC,o) based on FDA’s two-step

fixed margin approach with a variable term
∂g∗−1

RD (ρS,o ,pC,o)
∂pC

(pC −pC,o) that can accom-
modate the possibility that the true control response rate pC may deviate somewhat
from the best empirically based estimate of the control response rate pC,o.

Now a natural question to ask is how stringent is the linear margin
L(pC |ρS,o,pC,o)? The empirically based margin function δRD(pC |ρS,o) has the strin-
gency ρS,o, so the linear margin function L(pC |ρS,o,pC,o) cannot be at this same
stringency level except at pC = pC,o. But the important point to note is that this
linear margin has approximately the same degree of stringency ρS,o as the mar-
gin function δRD(pC |ρS,o) in a certain interval around pC,o. For example, with
(δRD,o,pC,o) = (−0.10, 0.80), this interval is approximately (0.75, 0.90) as shown in
Table 13.1.

Therefore, now one may consider the following hybrid NI hypothesis as approx-
imately equivalent to the NI hypothesis in Eq. 13.30 within a certain interval of pC :

HRD,o : δRD ≤ L(pC |ρS,o,pC,o) vs

HRD,a : δRD > L(pC |ρS,o,pC,o),po,L < pC < po,R. (13.33)
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Table 13.1 Comparing the
margin functions
δRD(pC |ρS,o) and L(pC |ρS,o,pC,o)
with Taylor expansion at
pC,o = 0.80

True control Margin function

Response ate pC δRD(pC |ρS,o) L(pC |ρS,o,pC,o)

0.50 − 0.1228 − 0.1859

0.55 − 0.1246 − 0.1706

0.60 − 0.1239 − 0.1553

0.65 − 0.1207 − 0.1399

0.70 − 0.1146 − 0.1246

0.75 − 0.1058 − 0.1093

0.80 − 0.0939 − 0.0939

0.85 − 0.0789 − 0.0767

0.90 − 0.0601 − 0.0614

0.95 − 0.0360 − 0.0460

The hybrid NI hypothesis (Eq. 13.32) can be equivalently written as the NI
hypothesis in Eq. 13.33,

HRD,o : δRD − L(pC |ρS,o,pC,o) ≤ 0 vs

HRD,a : δRD − L(pC |ρS,o,pC,o) > 0,po,L < pC < po,R. (13.34)

13.4.3 The Test Statistic for the Hybrid Design NI Hypothesis

Now consider a binary outcome trial and let
{
XT ,i

}n
i=1 and

{
XC,i

}n
i=1 be two in-

dependent random Bernoulli samples, where XT ,i ∼ Bernoulli(pT ) and XC,j ∼
Bernoulli(pC). Let p̂T = ∑n

i=1 XT ,i/n and p̂C = ∑n
j=1 XC,j /n denote the sample

means of XT and XC , respectively.
Consider the statistic

'̂RD = [δ̂RD − L(p̂C |ρS,o,pC,o)]. (13.35)

Then,

E('̂RD) = E[δ̂RD − L(p̂C |ρS,o,pC,o)] = δRD − L(pC |ρS,o,pC,o).

Let

'̂RD,o = ['̂RD − E('̂RD|Ho)]. (13.36)

The asymptotic normality of the test statistic '̂RD,o at the inferiority null of the
hybrid NI hypothesis (Eq. 13.33 or Eq. 13.34) is established in Theorem 4.
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Theorem 4 The statistic
√
n'̂RD,o is asymptotically normal N (o,

∑
(pC |Ho)) at

the boundary of the inferiority null of Eq. 13.33 or Eq. 13.34, where
∑

2(pC |Ho) =
∑

2
RD,o(pC |Ho)

+
⎡
⎣2

(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)
+
(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)2
⎤
⎦pC(1 − pC),

(13.37)

and

�2
RD,o

(
pC,o|Ho

) =
[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o

2

]
− [(1 − 2pC,o

)
δRD,o

]

is the variance of the statistic under the fixed margin NI hypothesis (Eq. 13.25) with

the fixed margin δRD,o = δRD(pC,o|ρS,o), σ 2
o = σ 2

T ,o

σ 2
C,o

, where σ 2
C,o = pC,o(1 − pC,o),

σ 2
T ,o = pT ,o(1 − pT ,o), and pT ,o = pC,o + δRD,o.

Proof The proof follows from the central limit theorem and a derivation of the
asymptotic variance of
√
nΔ̂RD,o = √

n
[̂
δRD − δRD

(
pC,o|ρS,o

)]

−
[
∂g∗−1

RD (ρS,o,pC,o)

∂pC

(p̂C − pC) + ∂g∗−1
RD

(
ρS,o,pC,o

)

∂pC

(
pC − pC,o

)]

by applying Eq. 13.8 of Theorem 2. �
Hence, the hybrid test statistic,

T̂ HB
RD,o =

√
n '̂RD, o√
�(pC |Ho)

∼N (0,1), (13.38)

where the unknown true pC may be substituted by the sample proportion p̂C . The
hybrid inferiority hypothesis in Eq. 13.33 or Eq. 13.34 may be rejected at the α =
0.025 significance level if T̂ HB

RD,o = √
n

[̂δRD−L(p̂C |ρS,o ,pC,o)]
�(p̂C |Ho) > 1.96.

13.4.4 The Performance of the Hybrid Test Statistic T̂ HB
RD,o

It should be pointed out that the focus of the hybrid NI design is still on the fixed
margin δo = δRD(pC,o|ρS,o) at the assumed control response rate pC = pC,o, even
though one has added the flexibility in the event the true control response rate pC

may deviate somewhat from pC,o. Therefore, it would be of interest to investigate
the performance of the test T̂ HB

RD,o at pC,o.
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Fig. 13.3 Simulated overall type I error rate for hybrid design with the linear margin
L(pC |ρS,o,pC,o), where ρS,o = 0.10, Pc,o = 0.80, and α = 0.025

13.4.4.1 Simulation of the Type I Error Rate

The type I error rate of T̂ HB
RD,o is given by

α(pC) = 1 − &

( √
n'̂RD,o√

� (pC |Ho)

)
. (13.39)

Figure 13.3 displays the simulated type I error rate as a function of the true control
response rate pC . It shows that at the one-sided nominal significance level of 0.025,
the type I error rate will be somewhat inflated when the true control response rate
pC ≤ pC,o. This should be expected because the true pC is unknown and is being
estimated by p̂C . Furthermore, for pC < pC,o, the margin becomes more liberal,
whereas for pC > pC,o, the margin becomes tighter. Therefore, by using a piecewise
linear margin as discussed in Remark 3 should improve the type I error control
substantially for pC < pC,o.

In light of the type I error rate inflation when pC = pC,o, one may wish to control
this by lowering the significance level α. Table 13.2 and Fig. 13.4 show that if the
overall significance level is lowered to approximately α = 0.020, then the simulated
type I error rate when pC = pC,o is roughly controlled at 0.025.

However, instead of lowering the significance levelα = 0.025 to 0.020, it might be
more preferable to consider replacing the linear margin L(pC |ρS,o,pC,o) by a piece-
wise linear margin constructed by joining together two or more (if necessary) linear
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Table 13.2 Simulated
unadjusted and adjusted type
I error rates for hybrid design
with Taylor expansion at the
point pC,o = 0.80

True control Significance level

Response rate pC 0.025 0.020

0.50 0.0448 0.0398

0.55 0.0473 0.0383

0.60 0.0472 0.0415

0.65 0.0436 0.0370

0.70 0.0378 0.0376

0.75 0.0358 0.0302

0.80 0.0298 0.0248

0.85 0.0217 0.0167

0.90 0.0096 0.0082

0.95 0.0020 0.0011

margins L(pC |ρS,o,pC,o,1) and L(pC |ρS,o,pC,o,2) at their point of intersection. For ex-
ample, by piecing together L(pC |ρS,o,pC,o,1) with pC,o,1 = 0.65 and L(pC |ρS,o,pC,o)
with pC,o = 0.80 would improve substantially the approximation by the linear mar-
gin L(pC |ρS,o,pC,o) alone as illustrated in Fig. 13.5. This would further improve the
type I error control for pC < pC,o.

Fig. 13.4 Simulated overall type I error rate for hybrid design with the linear margin
L(pC |ρS,o,pC,o), where ρS,o = 0.10, Pc,o = 0.80, and α = 0.020
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Fig. 13.5 Constructing piecewise linear margin for hybrid design with linear margin
L(pC |ρS,o,pC,o) expanded around pC,o = 0.65 and 0.80. RD rate difference

13.4.4.2 Power Function

To derive the power function for the test statistic T̂RD,o, one notes that under the
specific alternative hypothesis Hsa : δRD(pC) ≡ 0, it follows from Eq. 13.35 that

E('̂RD|Hsa) = E [̂δRD − L(p̂C |ρS,o,pC,o)|Hsa] = −L(pC |ρS,o,pC,o). (13.40)

Now, let

'̂RD,a = '̂RD − E
(
'̂RD|Hsa

) = '̂RD + L
(
pC |ρS,o,pC,o

)

=
[
δ̂RD − ∂g∗−1

RD (ρS,o,pC,o)

∂pC

(p̂C − pC)

]
. (13.41)

Then, it follows that under the specific alternative Hsa: δRD(pC) ≡ 0,√
n '̂RD,a ∼N (0,�(pC |Hsa)), where the asymptotic variance�(pC |Hsa) is given by

�(pC |Hsa) =
⎡
⎣2 + 2

(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)
+
(
∂g∗−1

RD (ρS,o,pC,o)

∂pC

)2
⎤
⎦pC(1 − pC).

(13.42)
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Fig. 13.6 Power functions for hybrid design with linear margin L(pC |ρS,o,pC,o) at expansion points
pC,o = 0.75, 0.80, 0.85, and 0.90 and n = 386, α = 0.025

Thus,

T̂ HB
RD,sa =

√
n '̂RD, a√

�(pC |Hsa)
∼N (0,1). (13.43)

Now, from Eqs. 13.32 and 13.41, one has

T̂ HB
RD,o = T̂ HB

RD,sa

√
�(pC |Hsa)√
�(pC |Ho)

−
√
n[L(pC |ρS,o,pC,o)]√

�(pC |Ho)
. (13.44)

Therefore, it follows that the power function is given by,

1 − β = 1 − &

(
1.96

√
� (pC |Ho) + √

nL(pC |ρS,o,pC,o)√
� (pC |Hsa)

)
. (13.45)

Now for the power function plot in Fig. 13.6, n = 386 was selected because it corre-
sponds to an 80 % power for the hybrid design with a linear margin L(pC |ρS,o,pC,o),
where ρS,o = 0.10 and pC,o = 0.80. Similarly, for Fig. 13.7, n = 516 corresponds
to a 90 % power for the hybrid design with a linear margin L(pC |ρS,o,pC,o), where
ρS,o = 0.10 and pC,o = 0.80. Both power plots in Figs. 13.6 and 13.7 show that the
power drops off quickly when pC > pC,o due to the dramatic change in variance
as pC → 1. The deflation in type I error rate for pC > pC,o might be a desirable
feature since it raises a natural barrier to prevent ejection of the inferiority null of
Eq. 13.33 or 13.34 when the true control response rate pC is much greater than the
assumed control response rate pC,o.

The powers for selected true control response rate pC in the plots in Figs. 13.6
and 13.7 are given in Table 13.3.
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Fig. 13.7 Power functions for hybrid design with linear margin L(pC |ρS,o,pC,o) at expansion points
pC,o = 0.75, 0.80, 0.85, and 0.90 and n = 516, α = 0.025

Table 13.3 Pointwise power across pC at a significance level of α = 0.025 and different expansion
point pC,o

Expansion point pC,o

Sample size for hybrid design pC pC 0.75 0.80 0.85 0.90

375 0.70 0.895 0.917 0.946 0.975

(80 % Power for pC,o = 0.80) 0.75 0.855 0.869 0.902 0.943

0.80 0.803 0.803 0.832 0.883

0.85 0.738 0.712 0.725 0.779

0.90 0.651 0.581 0.564 0.604

0.95 0.515 0.369 0.305 0.312

500 0.70 0.959 0.969 0.983 0.994

(90 % Power for pC,o = 0.80) 0.75 0.936 0.943 0.961 0.981

0.80 0.905 0.901 0.918 0.949

0.85 0.863 0.836 0.840 0.877

0.90 0.807 0.733 0.703 0.729

0.95 0.726 0.549 0.446 0.428
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Fig. 13.8 Plots of sample size per group at α = 0.025 and 80 % power for hybrid design with linear
margin L(pC |ρS,o,pC,o) at ρS,o = 0.10 and expansion points pC,o = 0.75, 0.80, 0.85, and 0.90

13.4.4.3 Sample Size Calculation

From Eq. 13.44, the sample size formula is derived by setting

−z1−β = 1.96
√
�(pC |Ho) + √

n L(pC |ρS,o,pC,o)√
�(pC |Hsa)

.

Solving for n, one obtains,

n = (1.96
√
�(pC |Ho) + z1−β

√
�(pC |Hsa))

2

L2(pC |ρS,o,pC,o)
. (13.46)

Figures 13.8 and 13.9 display the sample size plots for the hybrid design with linear
margin L(pC |ρS,o,pC,o) at the expansion points pC,o = 0.75, 0.80, 0.85, and 0.90
(Table 13.4).

As discussed in Sect. 13.4.3.1, if one also wishes to control the type I error rate
at pC = pC,o at α = 0.025, then one needs to increase the sample size accordingly.
Table 13.5 shows the sample size needed for such adjustment.

13.4.5 An Application to the Design of HABP/VABP Trials

The FDAAnti-infectiveAdvisory Committee convened in November 2011 to discuss
issues related to the design of NI trials for HABP and VABP [US FDA (2011)]. In
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Fig. 13.9 Plots of sample size per group at α = 0.025 and 90 % power for hybrid design with linear
margin L(pC |ρS,o,pC,o) at ρS,o = 0.10 and expansion points pC,o = 0.75, 0.80, 0.85, and 0.90

Table 13.4 Selected sample
size per group at α = 0.025
for hybrid design with linear
margin L(pC |ρS,o,pC,o) at
ρS,o = 0.10 and expansion
points pC,o = 0.75, 0.80, 0.85,
and 0.90

Power

Taylor expansion pointPC,o 80 % 90 %

0.75 323 435

0.80 386 516

0.85 450 605

0.90 593 798

Table 13.5 Unadjusted and
adjusted sample size per
group for hybrid design with
Taylor expansion at the point
pC,o = 0.80

Significance level

Power 0.025 0.020

0.80 386 400

0.90 516 529

the briefing book provided to the Committee members, FDA presented the following
data based on two historical placebo-controlled studies and five recent active control
studies (Table 13.6).

The estimated control survival rate is equal to 80 %. An estimate of the CE is given
by CE = [(0.52 − 0.23) − 0.09] = 0.20, which is obtained by taking the difference
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Table 13.6 Estimated
mortality rates and 95 %
confidence intervals

Mortality rate 95 % CI

Placebo 62 % (52 %, 71 %)

Control 20 % (18 %, 23 %)

Table 13.7 Sample size
calculated by FDA for the
rate difference measure δRD

Power HABP VABP

80 % 834 714

90 % 1114 894

HABP hospital-acquired bacterial pneumonia,
VABP ventilation-associated bacterial pneumonia

between a conservative estimate of the mortality rate under placebo (52 %) and a
conservative estimate of the mortality rate under control (23 %) and then subtract 9 %
to account for factors that may impact on the underlying assumptions of constancy
and assay sensitivity. The proposed NI margin was then set at δRD, o = −CE × 1

2 =
−0.20 × 1

2 = −0.10, where the fraction of one half is based on clinical judgment
regarding the size of the margin. FDA posed to the Committee several questions,
including the following: What margin should one use in the event the control survival
rate from the NI trial appears to deviate from the estimated control survival rate of
80 %?

For the RD measure δRD , FDA calculated the sample sizes required for 80
and 90 % power at a significance level of 0.025 after an adjustment of 60 %/70 %
microbiologic evaluability rate for HABP/VABP trials, respectively, as given in
Table 13.7.

Thus, with the given fixed margin of δRD,o = − 0.10 at an estimated survival
rate of pC,o = 0.80 (equivalent to a 20 % mortality rate), the degree of stringency
for the empirically derived pair (δRD,o, pC,o) = (− 0.10, 0.80) can be assessed using
the standard index function in Eq. 13.22 and is equal to ρS,o = g∗

RD(δRD,o,pC,o) =
g∗
RD(−0.10, 0.80) = 0.1057. Now, for simplicity of discussion, consider rounding it

to an index level of ρS,o = 0.10 instead of the actual index level of 0.1057, since type
I error simulations, power plots, and sample size calculations presented previously
used the index level of 0.10. This is equivalent to considering a margin of δRD,o =
− 0.0939 instead of the margin of δRD,o = − 0.10, at pC,o = 0.80. Now upon setting
the inferiority index level to ρS,o = 0.10 in the margin function given by Eq. 13.24,
one obtains the special indexed margin function δRD(pC |0.10) = g∗−1

RD (0.10, pC)
with the degree of stringency specified by ρS,o = 0.10. After applying the Taylor ex-
pansion around the point pC,o = 0.80, one finds the linear margin function is equal to

L(pC |ρS,o, pC,o) = L(pC |0.10, 0.80) = δRD(pC |0.10)

+ ∂g∗−1
RD

∂pC

(0.10, 0.80)(pC − 0.80)

= −0.0939 + 0.3066 (pC − 0.80).
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The hybrid NI hypothesis is then defined by

Ho : δRD − [−0.0939 + 0.3066 (pC − 0.80)] ≤ 0

vs.

Ha : δRD − [−0.0939 + 0.3066 (pC − 0.80)] > 0. (13.47)

Based on the hybrid design that has just been discussed in Sect. 13.4, to test the hybrid
NI hypothesis (Eq. 13.47) at the expansion point pC,o = 0.80 with a significance
level of α = 0.025 and a power of 80 %, a sample size of n = 386 subjects per
group would be needed (see Table 13.3, Table 13.4 or Table 13.5). Now the sample
size per group needed for an HABP/VABP trial is given by 643/551, reflecting an
adjustment for a 60 %/70 % microbiologic evaluability rate, or for a total sample size
of 1286/1102. On the other hand, for the fixed margin NI hypothesis, the sample size
per group is n = 283. After adjusting for 60 %/70 % microbiologic evaluability rate,
this gives rise to a sample size per group of 472/404 or a total sample size of 944/809
for HABP/VABP trials (see Chi and Koch 2012), reflecting a 36.2 %/36.4 % increase.

Thus, one can see that at a significance level of α = 0.025 and a power of 80 %,
the flexibility realized in a hybrid NI design with a linear margin L(pC |ρS,o, pC,o)
derived at the empirically based inferiority index value of ρS,o = 0.10 and the ex-
pansion point pC,o = 0.80, which is the estimated control response rate, is gained at
the cost of about a 36 % increase in the size over that required for a corresponding
fixed margin NI design.

Now the hybrid design with its NI hypothesis given by Eq. 13.33 or 13.34 has
a linear margin L(pC |ρS,o,pC,o) that allows the true control response rate pC to
deviate somewhat from the assumed control response rate of 0.80 at the design
stage. If the true control response rate pC > 0.80, then from the type I er-
ror simulations, one knows that the probability of rejecting the null of Eq. 13.33
or Eq. 13.34 is low and very low when pC > 0.90. However, with the given
sample size, the test still has about 60 % power in rejecting the margin given by
L(0.90|0.10, 0.80) = −0.0614 at pC = 0.90, which is very comparable to the mar-
gin δRD(0.90|ρS,o) = g∗−1

RD (0.10, 0.90) = −0.0601 based on the margin function
in Eq. 13.24 as shown in Table 13.1. The power of the test also decreases rapidly
as pC moves away from 0.80 towards 1. However, if the true pC < 0.80, then
there is inflation in the type I error rate despite the adjustment. Without adjustment
by lowering the nominal significance level from α = 0.025, one may consider
a better alternative discussed earlier by constructing a piecewise linear margin by
joining another linear margin L(pC |ρS,o,pC,1) derived from first-order Taylor ex-
pansion of the same indexed margin function δRD(pC |ρS,o) at another point pC,1,
where 0.50 < pC,1 < pC,o, with the original linear margin L(pC |ρS,o,pC,o). Phillips
(2003) has actually constructed piecewise linear margin based on consensus opin-
ions of clinical experts. It is not linked to any index function and is unrelated to the
piecewise linear margin as discussed in this chapter. The theoretical properties of an
NI design with a piecewise linear margin has been investigated by Zhang (2006) for
the likelihood ratio test. The method developed there may be applicable to the hybrid
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design with a piecewise linear margin. It should be of practical interest to investigate
this matter further for the RD measure along the line as suggested in Sect. 13.5.

13.5 Summary Discussion

At the November 2011 FDA Anti-Infective Advisory Committee (US FDA 2011)
meeting discussing the design of HABP or VABP trials, the agency posed several
questions to the Committee. This chapter attempts to address two of the questions.
The first question concerns the appropriateness of the empirically derived fixed
margin associated with an estimated control response rate using FDA’s two-step
procedure. The second question pertains to what margin one should use when the
expected control response rate pC from the NI trial appears to deviate from the
estimated control response rate pC,o. Should one use the same margin or a different
margin? If one is to use a different margin, then what should that margin be? Is there
a prospective strategy that one can use to address this problem?

The hybrid NI hypothesis proposed in this chapter is defined by a special linear
margin, L(pC |ρS,o,pC,o), which is the first-order Taylor expansion of a specific
indexed margin function around the estimated control response ratepC,o. The specific
indexed margin function is defined as follows. First, derive the index value ρS,o =
g∗
RD(δRD,o,pC,o) from the index function given in Eq. 13.22 at the empirically derived

pair (δRD,o,pC,o). Therefore, ρS,o is an empirically derived inferiority index value.
Next, set the index ρS in the margin function δRD = g∗−1

RD (ρS , pC) given in Eq. 13.23
equal to this empirically derived index value ρS,o which defines the specific margin
function δRD(pC |ρS,o) = g∗−1

RD (ρS,o, pC) given by Eq. 13.24. Now define the linear

margin given by L(pC |ρS,o,pC,o) = δRD(pC,o|ρS,o) + ∂g∗−1
RD (ρS,o ,pC )

∂pC
(pC − pC,o) as

the first-order Taylor approximation to the margin function δRD(pC |ρS,o) expanded
around pC = pC,o. Clearly, L(pC,o|ρS,o,pC,o) = δRD(pC,o|ρS,o) = δRD,o when
pC = pC,o.Thus, if the true control response rate pC = pC,o, then the hybrid margin
reduces to the given fixed margin, but if the true control response rate pC �= pC,o,
then the hybrid margin adjusts the given fixed margin δRD(pC,o|ρS,o) = δRD,o by the

quantity
∂g∗−1

RD (ρS,o ,pC )
∂pC

(pC −pC,o). Hence, the linear margin integrates the empirically
derived pair δRD,o, pC,o) with a variable component that adjusts for the deviation
(pC − pC,o). Thus, the NI hypothesis defined by such a linear margin is called a
hybrid design. Such a hybrid design conveys the stringency of the margin through
the empirically derived index value ρS,o and at the same time also has the flexibility
to adjust for the margin in the event the control response rate from the trial deviates
from the estimated control response rate pC,o. Of course, this flexibility of a hybrid
design is gained at the cost of a 33 % increase in sample size compared to that required
for a fixed margin design for the example considered.

The linear margin L(pC |ρS,o,pC,o) tends to be more liberal if the true con-
trol response rate is in the range of 0.50< pC < pC,o. For example, with
(δRD,o,pC,o) = (−0.10, 0.80), the linear margin closely approximates the margin
function δRD(pC |ρS,o) only for pC over the range (0.75, 0.90). One may try to
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minimize this type I error rate inflation by lowering the overall significance level.
But this approach would be too drastic and still would not fully resolve the problem.
An alternative strategy is to construct a piecewise linear margin by joining two
linear margins L(pC |ρS,o,pC,1) and L(pC |ρS,o,pC,o) at their point of intersection,
where 0.50< pC,1 < pC,o along the line of Phillips (2003) and Zhang (2006) who
demonstrated the asymptotic convergence of the likelihood ratio test statistic for
the NI hypothesis defined by a piecewise linear margin. However, an even better
strategy is to define a spline function that joins the two linear margins by smoothing
out the corner where they intersect [Reinsch (1967), Byrne and Chi (1972), De
Boor (2001)]. Such a spline margin would have the regularity property required
for the estimate as well as for the asymptotic convergence of the test statistic
associated with such hybrid NI hypothesis. The idea of a hybrid design with an
empirically determined spline margin based on the special indexed margin function
δRD(pC |ρS,o) deserves further investigation because it can provide margins closely
matching those from the margin function δRD(pC |ρS,o) throughout the interval (0.50,
1) and has sufficient regularity properties required for the convergence theorem to
hold. All of these hybrid designs are of special appeal because they integrate the
FDA’s two-step fixed margin approach with the flexibility of a variable margin and
their associated test statistics have reasonable performance characteristics by taking
advantage of the improvement made by the convergence theorem (Theorem 2) under
fixed margin for the RD measure. However, these positive attributes come with a
36 % increase in sample size over those required under a fixed margin NI hypothesis.

Looking beyond binary outcome trials, some of the ideas used in this chapter can
be extended to normal distributions to provide a natural framework for handling prob-
lems involving heterogeneity of variance, such as in establishing bioequivalence of
highly variable drugs. Unlike the case under Bernoulli distributions, where for a given
index value, the margin is simply a function of the control response rate pC , under
normal distributions, for a given index value, the margin would be a function of the
variance of the control σC and the variance ratio σ 2 when not assumed to be known.

Post Note: In this chapter, the author has corrected an error that appeared in the
original paper by Li and Chi (2011). Specifically, in Eq. 13.7 on page 293 of the Li
and Chi (2011) paper, the number “4” appearing in the denominator of the third term
should be replaced by the number “2” as shown in Eq. 13.2 in the present chapter.
This correction has no impact under normal distributions. But under Bernoulli dis-
tributions, the impact of this correction is to increase the variance S in Corollary 2
of Li and Chi (2011) on page 298 by an amount δ2(ρ,σ )

1+σ 2 and thus the variance there

should be S =
{

1 + δ2(ρ,σ )
16σ 2

Cσ 2

}
+ δ2(ρ,σ )

1+σ 2 . It should also be pointed out that at the end

of this same corollary, the variance estimate σ̂ 2
C is missing by a factor of ½ and it

should be given by σ̂ 2
C = 1

2

[
p̂T (1−p̂T )

σ 2 + p̂C(1 − p̂C)
]
.

This same error also appears in Chi and Koch (2012). Specifically, at the end
of Theorem 2 of Chi and Koch (2012), the variance �2

SRD, o should be given by

�2
SRD, o = (

1 + σ 2
o

) (
1 + δ2

SRD, o

16σ 2
Cσ 2

o

)
+ δ2

SRD, o
2 as given in Eq. 13.4 of the present chapter.
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Hence, it follows that Eq. 13.24 in Theorem 4 of Chi and Koch (2012) should be

replaced by �2
RD,o =

[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o
2

]
− (1 − 2pC,o)δRD,o

which is given by Eq. 13.8 of the present chapter. In addition, in Theorem 4 of Chi
and Koch (2012), in the expression for the variance � 2

LOR,o given by Eq. 13.26, the
variance �2

SRD, o in the first term should be as given above which is given by Eq. 13.4
of the present chapter.

Similarly, the same error appears in Chi (2013). In Theorem 1 of Chi (2012), the
variance term �2

RD,o(pC,o|Ho) in Eq. 13.15 should be replaced by�2
RD,o

(
pC,o|Ho

) =[(
σ 2
C,o + σ 2

T ,o

) (
1 + δ2

RD,o

16σ 2
C,oσ

2
T ,o

)
+ δ2

RD,o
2

]
− (1 − 2pC,o)δRD,o which is given by

Eq. 13.8 of this chapter.
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