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Collective Evidence in Drug Evaluation
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Disclaimer: The views presented in this chapter are the author’s
own views.

Abstract Multiple doses, endpoints, and tests are used in several clinical studies
to establish drug efficacy. Statistical evaluation relies heavily on multiplicity ad-
justments within one study to control the type I error rate. The use of multiplicity
adjustment procedures (MAPs) sometimes leads to conclusions that may not seem
logical. As drug efficacy evaluation involves aspects such as assessing efficacy, se-
lecting optimal doses, and labeling claims, incorporating all the aspects under the
umbrella of controlling type I error may not be an optimum strategy. Alternatively,
a practical approach that uses collective evidence is proposed to evaluate multiple
studies, doses, endpoints, and tests. Instead of controlling the type I error, specific
types of errors are controlled, such as the error of wrongly approving an ineffective
drug and the error of labeling false information. With the collective evidence ap-
proach, the need of MAPs in individual studies is debated when multiple studies are
available.

10.1 Introduction

Drug efficacy evaluation usually is based on evidence from multiple clinical studies
that assess multiple doses using multiple endpoints and tests. The multiplicity issues
arising from the clinical studies are classic problems in drug evaluation and have been
heavily studied by the regulatory agencies, pharmaceutical and biotech industries,
and research institutes (Chuang-Stein et al. [3]; Committee for Proprietary Medical
Products (CPMP) by EMEA [4]; Pocock [16]; Proschan andWaclawiw [17]; Shih and
Quan [18]). The majority of statistical methods, such as the closed testing procedure
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(Marcus et al. [12]), Bonferroni correction, and Hochberg procedure (Hochberg [7]),
referred to as multiplicity adjustment procedures (MAPs), have been developed based
on the logic that multiplicity, such as multiple doses, endpoints, or tests, increases
the chance of detecting a statistically significant result from an ineffective drug.
Commonly used analogies of the multiplicity issues have been situations such as
betting on a horse race or buying lottery tickets, where increasing the number of
horses that one bets on, or the number of tickets that one purchases, would increase
chances of winning.

These horse race and lottery analogies have, at times, misled the understanding
of multiplicity issues in drug evaluation and disguised rudimentary differences be-
tween drug evaluation and such games of chance. In a race, the determination of the
winning horse does not depend upon the distance between the winner and the losing
horses. That is, the relative speeds of the losing horses do not matter. However, in
drug evaluation, the efficacy determination of the drug depends upon the collective
performance of individual doses, endpoints, and studies. If only one dose shows a
statistically significant treatment effect while none of the other doses show any trend
of efficacy, the evidence is less convincing for an efficacious drug than the case where
multiple doses show trend of efficacy. Therefore, multiplicity in drug evaluation may
not necessarily increase the chance to claim that an ineffective drug is efficacious
when information is evaluated collectively.

In this chapter, a practical approach to evaluate evidence collectively is proposed.
This method controls the specific types of errors encountered in drug evaluation, such
as the error rate of wrongly approving an ineffective drug and the error rate of labeling
false information. Moreover, it controls the consistency of evidence. Sect. 10.2
discusses the problems of applying MAPs. Section 10.3 presents the concept of
the collective evidence and describes the practical approach. Section 10.4 covers
the application of collective evidence in cases of multiple studies, doses, endpoints
(including co-primary endpoints and secondary endpoints) and tests. Two cases are
discussed in Sect. 10.5 to illustrate the use of collective evidence in understanding the
effect of drugs. Throughout this chapter, one-sided p values and one-sided statistical
significant levels are used unless otherwise specified.

10.2 Problems of Applying MAPs

Prespecification is vital in the protocol development to ensure careful planning in
study design, experiment procedures, endpoint selection, and statistical analysis
plans, etc. However, it can be problematic to prespecify decision rules, which are
MAPs, in the individual study protocols. The intention of the prespecified decision
rule is to reduce the chance of claiming success, yet the selection of the decision rules
appears somewhat arbitrary. The same study results may reach different conclusions
depending upon the choice of the decision rules. For instance, p values 0.040 and
0.012 were observed for high and low doses, respectively, in a study. If the closed
testing procedure using high dose to protect low dose was prespecified, the results
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Table 10.1 P values of two studies with two doses in each study

1-sided p values

High dose Low dose

Study 1 0.028 0.015

Study 2 0.025 0.013

would not pass the decision rule and would yield an inconclusive conclusion. How-
ever, if either the Hochberg procedure or Bonferroni correction was prespecified, the
low dose would be considered to be efficacious. Clearly, these distinct conclusions
are the result of the prespecified decision rules, which are inflexible and, to a certain
extent, arbitrary.

Another problem is that the MAPs may overvalue the isolated effect. To illustrate
this, consider a study with three parallel doses and a control arm. If both high
and medium doses yielded p values of 0.500 and the low dose yielded 0.001, both
the Hochberg and Bonferroni procedures would conclude that the low dose was
efficacious, despite the fact that there was no sign of efficacy in the other doses.
Unless other information supported that this drug had narrow therapeutic window,
the evidence would not be considered convincing. Whereas if three doses from high
to low yielded p values of 0.028, 0.025, and 0.015, respectively, some MAPs would
consider such evidence inconclusive. Thus, only looking at the performance of the
individual doses rather than the totality evidence may not lead to useful conclusions.

The problem can be more confusing when data from more than one study are
available. In fact, two phase 3 studies have been the requirement by the US Food
and Drug Administration (FDA) for the purpose of establishing substantial evidence
(US FDA [19]; US FDA [20]). Suppose that two phase 3 studies were conducted
to support a claim. Also, suppose that two doses, high and low, were included in
both studies and a closed testing procedure using high dose to protect low dose was
placed in each study. The p values of the two doses from both studies were listed in
Table 10.1. Following the closed testing procedure, study 1 would be concluded as
a “failed” study since it failed to pass the closed testing procedure, whereas study 2
would be considered a successful study. However, the fundamental question of the
efficacy of the drug has not been answered.

The application of the MAPs is to protect the type I error. However, the meaning
of the type I error is not clear since it covers different types of errors that may occur
in various aspects and stages of drug evaluation. Errors can occur when deciding if a
drug works, selecting the optimal doses, and labeling drug information with selective
endpoints, etc. When deciding if a drug is efficacious, it is necessary to control the
error rate of wrongly approving an ineffective drug. When selecting the optimal
doses, it is necessary to reduce the error rate of selecting suboptimal doses. When
labeling drugs, it is necessary to limit the error rate of providing false information.
These different types of errors play different roles in the drug evaluation process and
may not necessarily be controlled simultaneously. It is easy to understand that the
error of selecting suboptimal doses, or the error of false labeling information would
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not occur if the drug is concluded to be ineffective. On the other hand, the error
made in efficacy decisions should not be impacted by the decision of selecting the
optimal doses and the decision of drug labeling. Therefore, it may be less confusing
to differentiate the types of errors in drug evaluation and control the different types
of error rates separately.

10.3 Concept of Collective Evidence

10.3.1 The Two Types of Logic

In preparation for discussing the alternative approach proposed, two types of logic are
considered. Mathematically, the “OR” logic is the union of all events and represented
as E1∪E2∪. . .∪EK ; the “AND” logic is the intersection of all events and formulated
as E1 ∩ E2 ∩ . . . ∩ EK , where Ek , k = 1, 2, . . ., K , are events. The K events can
be the number of bets that is put down in a horse race for example, or K doses, K
endpoints, or K individual studies in drug evaluation. The “OR” logic is the basis
for most of the MAPs where success is claimed if one event out of the K events is
true. On the contrary, the success definition with the “AND” logic requires that all
events are true. The main feature of the collective evidence approach is to include
the “AND” logic.

A discussion of Fig. 10.1 illustrates the concept of collective evidence. In
Fig. 10.1, the blue area represents the rejection region of Bonferroni correction to
control the error rate at the level of 0.025 for two independent p values p1 and p2. The
Bonferroni correction can be written as P (p1 ≤ 0.0125 ∪ p2 ≤ 0.0125) < 0.025 or
can be written as P (p(1) ≤ 0.0125 ∩ p(2) ≤ 1.000) < 0.025 where p(1) and p(2) are
ordered p values of p1 and p2. Notice that the Bonferroni correction is rewritten
using the AND logic, although it can be simplified to P (p(1) ≤ 0.0125) < 0.025 as
the event of a p value less than 1 is always true. Using γ1, γ2 to denote the p value
cut points for the ordered p values, respectively, the decision rule for the Bonferroni
correction can be written as (γ1, γ2) = (0.0125,1.000). This rejection region allows
the success claim if one of the p values is 0.0125 or less. It is important to understand
that the Bonferroni correction is not the only way of controlling the error rate at
the level of 0.025. The green area represents another rejection region that controls
error rate at the level of 0.025, that is, P (p(1) ≤ 0.025 ∪ p(2) ≤ 0.5125) ≤ 0.025.
The decision rule is (γ1, γ2) = (0.025,0.5125). This green rejection region supports
the success claim if the smaller p value is less than or equal to 0.025 and the larger
p value is less than 0.5125. The orange area represents yet another rejection region
that controls the same error rate with decision rule (γ1, γ2) = (0.050,0.275). This
decision rule covers the rejection region that allows the smaller p value to be 0.050
or less and the larger one has to be 0.275 or less. Notice that both the orange and
green rejection regions use the AND logic.
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Fig. 10.1 Rejection regions that control the error at the level of 0.025 under different decision rules

10.3.2 The Formulation of the Collective Evidence Approach

The concept of collective evidence was originally proposed by Li and Huque (Li and
Huque [10]) for the purpose of evaluating multiple studies and was extended to the
evaluation of co-primary endpoints by Li (Li [9]). The concept of collective evidence
approach can be described as follows:

1. Similar to a single hypothesis testing scenario, individual null and alternative
hypotheses, H0k and HAk , are used to test each individual event Ek and the test
yields p valuepk , k = 1, 2, . . ., K . Null represents no effect, while the alternative
is the complement. The K p values are ranked as p(1) ≤ p(2) ≤ . . . ≤ p(K).

2. Next is to formulate the overall hypothesis to test if a drug works. An overall null
hypothesis represents the case that all the individual null hypotheses H0k , k =
1, 2, . . ., K , are true, i.e., an ineffective drug. The corresponding alternative is that
at least one of the individual alternatives is true. The overall null and corresponding
alternative are denoted as H

1/K
0 and H

1/K
A , respectively, and formulated as

H
1/K
0 :

⋂K

k=1
H0k versusH 1/K

A :
⋃K

k=1
HAk
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The error of wrongly rejecting the overall null is defined as

P
H

1/K
0

(p(1) ≤ γ1 ∩ p(2) ≤ γ2 ∩ . . . ∩ p(K) ≤ γK ),

where γ1 ≤ γ2 ≤ . . . ≤ γK is a set of the decision rule. The error rate is controlled at
the level of α(H 1/K

0 ) under H 1/K
0 . When the events are independent studies, α(H 1/K

0 )
represents the error rate of wrongly approving an ineffective drug. For two studies,
the error rate α(H 1/2

0 ) is usually controlled at the level of 0.0252 = 0.000625 (Li
and Huque [10]). This level of error rate arises from the requirement of two statis-
tically significant studies as the substantial evidence for drug approval. When the
events are correlated endpoints within one study, α(H 1/K

0 ) represents the error rate
of wrongly claiming an ineffective drug to be efficacious. For two co-primary end-
points in one study, the error rate α(H 1/2

0 ) is controlled at the level of 0.025 (Li
[9]).

To further illustrate the point discussed here, Fig. 10.2 presents two rejection
regions for two independent studies in the coordinates p1 and p2, representing re-
sults of the two studies. Both rejection regions control the error rate at the level
of 0.000625. The orange area represents the rejection region for decision rule
(γ1, γ2) = (0.025,0.025) and the green area represents the rejection region for de-
cision rule (γ1, γ2) = (0.010,0.036). Therefore, if two studies yielded p values of
(0.010,0.030), this could be considered as convincing evidence for an efficacious
drug.

3. In addition, another set of overall hypotheses is formulated to test if all events
present efficacy—a reflection of consistency among all events. The overall alter-
native requires that all events show efficacy. The overall null is therefore that at
least one event does not have efficacy. The overall null and alternative are denoted
as H

K/K

0 and H
K/K

A , respectively, and formulated as

H
K/K

0 :
⋃K

k=1
H0k versus H

K/K

A :
⋂K

k=1
HAk

The level of the error should be controlled at the level of α(HK/K

0 ) under the overall
null hypothesis H

K/K

0 . It has been shown (Li [9]) that the error rate α(HK/K

0 ) of
rejecting the null is

P
H

K/K
0

(p(1) ≤ γ1 ∩ p(2) ≤ γ2 ∩ . . . ∩ p(K) ≤ γK ) ≤ γK ,

where γK is the largest p value cut point of the decision rule γ1 ≤ γ2 ≤ . . . ≤ γK .
For the decision rule (γ1, γ2) = (0.010,0.036) presented in Fig. 10.2, α(H 2/2

0 ) is
controlled at the level of 0.036 while α(H 1/2

0 ) is controlled at the level of 0.000625.

4. It is important to emphasize that α(HK/K

0 ) has different meaning from α(H 1/K
0 ).

Take multiple studies as an example, where the error rate of wrongly approving
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Fig. 10.2 Rejection regions that control the error rate at the level of 0.000625 for two independent
studies

an ineffective drug is controlled at the level of α(H 1/K
0 ). The error rate of accept-

ing the hypothesis that all studies present consistent evidence when it is false is
controlled at the level of α(HK/K

0 ). It makes common sense that α(H 1/K
0 ) should

be more stringent in comparison to (HK/K

0 ), as the error of approving an inef-
fective drug is more serious than the error of claiming consistent evidence when
in fact that efficacy is not consistently presented among studies. For two studies,
α(H 1/2

0 ) is controlled at the level of 0.000625, while α(H 2/2
0 ) is controlled at the

level of 0.025 for a decision rule (0.025, 0.025). For two co-primary endpoints,
α(H 1/2

0 ) is controlled at the level of 0.025, while α(H 2/2
0 ) can be controlled at the

level of 0.030 for a decision rule (0.023, 0.030).

The calculation of the decision rules has been described in detail in papers by Li
and Huque (Li and Huque [10]) and Li (Li [9]) and various sets of decision rules
can be calculated. The original approach of collective evidence requires that the
decision rule be prespecified. Since prespecifying a decision rule can be arbitrary
and can cause trouble, a practical approach is proposed to reduce the burden of the
prespecifying decision rule.
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10.3.3 The Practical Approaches to Evaluate Evidence
Collectively

To reduce the burden of selecting and prespecifying decision rules, the practical
approach uses only one set of decision rules for each K. The following set of deci-
sion rules can be considered for independent studies: (γ1, γ2) = (0.025, 0.025),
(γ1, γ2, γ3) = (0.025, 0.025, 0.100), and (γ1, γ2, γ3, γ4) = (0.025, 0.025, 0.100,
0.150) for K = 2, 3, and 4, respectively. The ideal evidence for K = 2 is to have
two studies demonstrate statistical significance at the same level of 0.025, therefore,
the decision rule (γ1, γ2) = (0.025, 0.025) should be considered for K = 2. The
decision rule (γ1, γ2, γ3) = (0.025, 0.025, 0.100) for K = 3 is developed from K = 2
by adding γ3 = 0.100. The choice of γ3 is primarily driven by controlling α(H 3/3

0 ),
the error rate of wrongly rejecting the overall null H 3/3

0 , at the level of 0.100. The
decision rule for K = 4 is similarly derived. Note that, the larger the K is, it is
reasonable to accept higher levels of error rates of wrongly rejecting the null HK/K

0 .
In cases of co-primary endpoints, doses, or tests within one study, the decision

rules that are recommended are formed with γk = 0.025, k = 1, 2, . . ., K . This
choice will conservatively control the error rate α(H 1/K

0 ), wrongly rejecting H
1/K
0

in one study, at the level of 0.025. This level of error rate can only be reached when
correlation among the co-primary endpoints, doses, or tests is 1. A more realistic level
of error rate can be calculated when the range of the correlation can be estimated.
The error rate α(HK/K

0 ) is also controlled at the level of 0.025 in one study for the
recommended decision rule.

If the p values of the study results satisfy the decision rules, all error rates are
adequately controlled. However, it may not be reasonable to require all study results to
satisfy the decision rules for drug approval. For example, if the p values of two studies
are (0.020, 0.028), this may be considered as convincing evidence for an effective
drug. It is therefore necessary to establish the standard of convincing evidence. To
address this, two quantities are proposed, one to measure the worst inflation and the
other for consistency.

The worst inflation is the maximum possible error that could be observed and is
defined in (10.1) below. It is the probability of observing the kth p value p(k) that
equals to max(γk ,pv(k)) or less, where pv(k), k = 1, 2, . . ., K , are the ordered
observed p values. The relative inflation is calculated using formula (10.2).

Max. Inf lated error = P
(⋂K

k=1
p(k) ≤ max

(
γk ,pv(k)

))
(10.1)

% of Inflation =
P
(⋂K

k=1 p(k) ≤ max(γk ,pv(k))
)

− P
(⋂K

k=1 p(k) ≤ γk

)

P
(⋂K

k=1 p(k) ≤ γk

) (10.2)

For example, if the observed p values of two independent studies are (0.020, 0.028),
the inflation is
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Table 10.2 Examples of max. inflation and consistency using decision rule (0.025, 0.025)

Observed p values Max. inflated error (%) Consistency

0.020, 0.026 0.000675 (8.0 %) 17.0 %

0.021, 0.026 0.000675 (8.0 %) 14.1 %

0.026, 0.026 0.000676 (8.2 %) 0.0 %

0.027, 0.027 0.000729 (16.6 %) 0.0 %

0.025, 0.028 0.000775 (24.0 %) 8.4 %

0.020, 0.030 0.000875 (40.0 %) 28.3 %

0.030, 0.030 0.000900 (44.0 %) 0.0 %

0.010, 0.036 0.001175 (88.0 %) 73.5 %

0.025, 0.036 0.001175 (88.0 %) 31.1 %

0.030, 0.036 0.001160 (101.6 %) 17.0 %

Max. Inf lated error = P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.028

) = 0.000775

% of Inf lation =
P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.028

)− P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.025

)

P
(
p(1) ≤ 0.025 ∩ p(2) ≤ 0.025

) = 24%.

The consistency is another measure that helps assess the variation of the observed
results against the decision rule (γ1, γ2, . . ., γK ). There can be several ways of as-
sessing the consistency. The measure introduced here is the sample variance of the
relative ratio of the ordered observed p value pv(k) versus the corresponding com-
ponent of decision rule γk , for k = 1, 2, . . ., K . The ratios are considered as the
normalized observed p values by the components of the decision rule. The calculation
can be written as (10.3):

Consistency =
√√√√ 1

K − 1

K∑
k=1

(
pv(k)

γk
− 1

K

K∑
k=1

pv(k)

γk

)2

(10.3)

For the same example above, the consistency is calculated as:

Consistency =
√(

0.028

0.025
− 0.96

)2

+
(

0.020

0.025
− 0.96

)2

= 22.6%.

Table 10.2 lists the calculation of the inflation and consistency of some observed p
values for the case of two independent studies using decision rule (0.025, 0.025).

The collective evidence approach uses one set of predetermined criteria which
control the desired level of error rates. To make the decision flexible and evidence
based, the evidence obtained from the study calculated as the maximum inflation
and consistency are also taken into consideration. An inflation of 24 % with less than
22.6 % consistency for two studies (p values are 0.020, 0.028) may be considered
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as convincing evidence. However, the approval decision should be determined in
conjunction with the disease indication, drug safety profiles, and availability of other
drugs for the same indication in the market. Other factors such as the selection of
outcome measures and the similarity of study design among the studies included for
evaluation may also be factored in for the decision making.

10.4 Collective Evidence in Drug Evaluation

As discussed earlier, it can be helpful to divide the error into different types, i.e.,
the error of wrongly approving an ineffective drug, the error of wrongly choosing
the optimal doses, and the error of false labeling drug information. The first logical
step in drug evaluation is to evaluate if a drug is efficacious by controlling the error
rate of wrongly approving an ineffective drug. Once it is concluded that the drug
is efficacious and reasonably safe, the next step is to identify the optimal doses.
Selection of optimal drug doses is not discussed, as it involves evaluating the risk–
benefit ratio and possibly pharmacokinetic information which is beyond the scope of
this chapter. The discussion of the multiple doses is focused on the efficacy evaluation
here. The next step is the labeling decision by controlling the error rate of labeling
false information. The error rates are discussed in this section for cases of multiple
studies, doses, endpoints, and tests.

10.4.1 Multiple Studies

The total evidence from multiple studies can be obtained by conducting a meta-
analyses or using the collective evidence approach. For either approach, the first step
is to decide which studies are to be included in the evaluation, since diversely designed
studies may not always be informative when evaluating evidence collectively. The
studies should be selected based on the study population, design, and the conduct
of the studies, rather than the results of studies. It is also important to select studies
based on a well-defined patient population. Study design factors, such as blinding,
treatment duration, endpoints, and usage of concomitant medications, are important
considerations as well. The conduct of the studies, such as the time period and
condition of implementation, can be crucial too. For example, studies of seasonal
allergic rhinitis may need to be conducted during allergy seasons when high levels of
pollen are apparent in the air. If heavy rain occurs, the participants may not be exposed
to sufficient allergen to develop allergic reactions. Inadequate exposure could be a
legitimate reason to exclude the study, whereas, certain design differences may not
be a valid reason to exclude studies. For instance, study endpoints may be evaluated
differently among studies in allergic conjunctivitis studies. The redness of the eyes
can be evaluated either by study subjects themselves or by practitioners. This may
not be a valid reason to exclude studies even though it can be argued that the self
evaluation may inherit larger variability than that from the practitioners. To obtain
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an unambiguous analysis, a good practice is to develop an integrative analysis plan
to prespecify criteria for study selection.

The following step is to select a statistical method to evaluate the evidence col-
lectively. Patient-level meta-analyses to poll studies have been popular approaches
and are desirable if the number of studies is large and all studies are similarly de-
signed. The collective evidence approach can be desirable in situations when it is
important to understand the individual study results and consistency among them;
also when differences in study design prohibit study pooling and cause difficulties
in interpretation for meta-analyses.

The collective evidence approach for independent studies is relatively easy to
use and interpret. To illustrate, take another hypothetical example of a set of p
values from three independent studies. The evaluation could be simple if the results
satisfy the decision rule for K = 3, (γ1, γ2, γ3) = (0.025,0.025, 0.100). The error
rate should be controlled at the level of 0.000156 based on P (

⋂3
k=1 p(k) ≤ γk) =

6γ1γ2γ3−3γ3γ
2
1 −3γ 2

2 γ1+γ 3
1 . If the observed p values were 0.001, 0.020, and 0.120,

it would be necessary to calculate the inflation and consistency using Formulas (10.2)
and (10.3). The % inflation and consistency is 24.0 and 58.9 %, respectively. Suppose
that the results were obtained from three studies used to support allergic conjunctivitis
and redness was the primary endpoint. Further, assume that the endpoint was assessed
by the patients in the study yielding the p value of 0.120 and the other two were
assessed by physicians. If patients were less trained, the reporting variability could
be larger than the clinician reported outcomes. Hence, the level of inflation and
consistency could be considered reasonable for recommending approval. Even if the
endpoints were assessed consistently in all three studies, such results might reflect
a possible situation that the drug worked for certain patients that were included in
the studies, perhaps not consistently. Depending upon the consistency level and the
observed maximum p value, it might be useful to further investigate who were more
likely to benefit from the drug and who were not.

10.4.2 Multiple Doses to Support Efficacy Evaluation

The evaluation of multiple doses may serve two different purposes: the efficacy
evaluation and the selection of the optimal doses. Discussion in this chapter is focused
on the efficacy evaluation only.

A typical multiple dose study design includes parallel arms of several doses and
placebo where MAPs are traditionally applied. As a result of the stringent significance
levels by controlling the type I error, the sample sizes for each arm need to be
increased. The application of MAPs could limit the enthusiasm and feasibility to
include multiple doses, which are imperative for better understanding of the efficacy
as well as dose–response relationship.

It could be suggested that the MAPs for multiple doses in individual studies do not
appear to be useful in either efficacy evaluation or the identification of the optimal
doses. The fact that all doses show the trend of efficacy is strong evidence against an
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Table 10.3 Illustration of strategies of evaluating two doses in two studies using the practical
collective evidence approach

p values Strategy 1 Strategy 2

Study High dose Low dose Trend
test

Inflate error
for studies

Inflated error
for dose

Inflated error
for studies

1 0.028 0.015 0.023 0.000625 (0 %) 0.028 0.000775 (24 %)

2 0.024 0.013 0.021 0.025

ineffective drug. It can be even stronger evidence if a reasonable dose–response re-
lationship is demonstrated consistently in multiple studies. Some believe that MAPs
are necessary for identifying the effective doses. The counter argument could be
made that if a drug is efficacious, many of the dose levels should be efficacious.
Whether the dose levels can reach statistical significance is a matter of sample size
and treatment difference. Instead of identifying the efficacious doses by the signif-
icance, a helpful strategy is to determine the optimal doses, which should be based
on the risk–benefit profiles, effect sizes, and other information. If p values play any
roles in the identification of the optimal doses, the rank of the p values is usually
sufficient. It is unnecessary to use any adjusted p values because the rank of either
adjusted or unadjusted p values is the same.

An exception to keep in mind is that certain drugs may have a narrow therapeutic
window where many doses may not support the efficacy. In those cases, the under-
standing of the dose–response relationship is more important than adjusting p values.
The efficacy can then be established by a consistent dose–response relationship in
multiple studies.

Evaluation of multiple doses should depend upon the study design. For a typical
phase III study, two or three doses that are likely to be the optimal doses are selected
based on information from early phase studies. It is expected that all doses would
demonstrate efficacy to a certain degree. Two strategies are discussed to evaluate
multiple doses collectively. The first one is to use directional tests to establish the
efficacy by modeling the dose–response trend. This requires a good understanding
of the true dose–response which could be obtained from early phases of clinical
studies. Guidance on the directional tests, also referred to as the trend tests, is
discussed by Li and Lagakos (Li and Lagakos [11]). When multiple studies are
available, the trend tests should be first performed within individual studies. Then
the p values obtained from the trend tests should be evaluated using the practical
collective evidence approach. The second strategy is to evaluate the multiple doses
within the individual studies first by using the practical collective evidence approach,
then to evaluate the evidence across studies. The two strategies are illustrated in the
following hypothetical example, using two studies with two doses in each study. The
p values of high and low doses of the two studies as well as the results of the two
strategies are listed in Table 10.3.

• To illustrate strategy 1, assume from early phase studies that decreased trend
was observed as the dose increased. The pseudo-dose indicators were coded as
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2 for the low dose and 1 for the high dose. The p values of the trend tests were
hypothetical values, 0.023 and 0.021 for studies 1 and 2, respectively. The results
satisfied the two-study decision rule (γ1, γ2) = (0.025,0.025).

• To illustrate strategy 2, the worst inflated error for multiple doses for each
study was calculated first. The decision rule used for two doses was (γ1, γ2) =
(0.025,0.025). The worst inflated error due to two doses for study 1 was 0.028,
a result by assuming the worst possible correlation between two doses (a very
conservative approach). Similarly, the worst inflation for study 2 was 0.025. The
worst inflation for two studies was then calculated as 0.000775 with 24 % infla-
tion. The consistency was 8.4 %. If the correlation between two doses was known
or can be estimated, the inflated error could be calculated relatively accurately
and should be smaller than that presented in Table 10.3. It can be concluded that
the evidence of efficacy is convincing.

If MAPs are applied to this example, depending upon the choice of the procedure, it
is likely that results in study 1 are considered inconclusive. The statistical decision
rules across studies are unavailable.

Strategy 1 should also be considered when many doses are included in a single
study, such as phase II dose ranging studies. Strategy 1 should be particularly useful
for drugs with narrow therapeutic windows where a nonlinear dose–response trend
could be specified.

10.4.3 Multiple Endpoints

Diseases are multifaceted entities where one endpoint is usually insufficient to de-
scribe a certain aspect of a disease or reflect disease changes. Therefore, multiple
endpoints are used in clinical studies. Endpoints are chosen based on the study ob-
jectives, usually the indications for drugs. For example, a drug approved for chronic
obstruction pulmonary disease (COPD) can have indications as a bronchodilator,
to reduce exacerbation, or to prolong survival. Each indication is evaluated by a
set of prespecified endpoints. The endpoints are usually organized as the primary,
secondary, and exploratory endpoints in the study protocols. The primary endpoints
are defined by the medical communities, including the FDA, and are crucial for the
approval of drug indications. The selection of the secondary endpoints is relatively
flexible and may depend upon the secondary objectives or features relevant to the
primary endpoints and a particular drug. The exploratory endpoints may be less
relevant to the indication and often are included in the study for other purposes.

In efficacy evaluations, the primary endpoints must demonstrate clinically and
statistically significant benefits in order for the indication to gain approval. The
secondary endpoints should be supportive of the primary endpoints by showing trend
of treatment benefit. Clearly, the primary and secondary endpoints play different roles
and have different expectations in efficacy evaluation. The natural hierarchical order
among the different types of endpoints implies that the secondary endpoints would



176 Q. H. Li

not contribute any additional error in the efficacy evaluation for a specific indication.
Hence, no MAPs are needed because of the hierarchical structure of the different
types of endpoints for evaluating a specific indication.

In the labeling process, the primary endpoints of the approved indication are
always described in the label. What is less clear is the selection of the secondary
endpoints. Again, because of the natural hierarchical order, MAPs are not needed
for the different types of endpoints in labeling process. However, MAPs may be
considered for the multiple secondary endpoints in labeling. This is discussed in
detail in a later section.

10.4.4 Co-Primary Endpoints

Often more than one primary endpoint is used to evaluate a disease condition. Eu-
ropean Medicines Agency (EMEA) (Committee for Proprietary Medical Products
(CPMP) by EMEA [4]) requires all co-primary endpoints to be statistically sig-
nificant at the level of one-sided 0.025. The limitation of this approach is that as
more co-primary endpoints are used, it becomes more difficult to show all end-
points statistically significant. The ordinary least squares (OLS) and generalized
least squares (GLS) tests proposed by O’Brien (O’Brien [15]) consider consoli-
dating all co-primary endpoints into one test. Another practice is to develop one
composite primary endpoint by combining all co-primary endpoints. The problems
of the composite endpoints are widely discussed in the literature (Kip et al. [8];
Montori et al. [13]). The main problem of the O’Brien’s OLS and GLS tests as well
as the composite endpoints is that they may disguise the heterogeneity in treatment
responses among the co-primary endpoints.

The approach of collective evidence is similar to EMEA’s approach which em-
phasizes the understanding of individual performance of all co-primary endpoints.
The collective evidence approach simply recognizes the room of flexibility when
controlling the error rate of wrongly rejecting the null hypotheses. When there are
multiple studies, similar to the case of multiple doses, the collective evidence of the
co-primary endpoints is to first calculate the maximum inflated error within each
study. Using the maximum inflated error of the individual studies, the maximum in-
flated error for all studies is then calculated as well as the consistency index. Again, a
hypothetical example is used to illustrate the application in a scenario of two studies
using two co-primary endpoints. The p values as well as the results of applying the
practical collective evidence approach are listed in Table 10.4.

10.4.5 Secondary Endpoints

This section focuses on the discussion of controlling the error rate of labeling false
information due to multiple secondary endpoints. Often, the statistically significant
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Table 10.4 Illustration of evaluating two co-primary endpoints using the practical collective
evidence approach

Study Primary 1 Primary 2 Inflated error of
co-primary endpoints at
the level of 0.025

Inflated error of two
studies at the level of
0.000625

1 0.023 0.030 0.030 0.000875 (40 %)

2 0.018 0.025 0.025

secondary endpoints are labeled. With such practice, the more endpoints that are
evaluated, the higher chance to show statistical significance. For this reason, it may
be necessary to use MAPs to control the error rate of labeling false information,
however, not within individual studies when multiple studies are available.

Without loss of generality, the case of two studies is illustrated. Suppose that both
studies evaluate Endpoints A and B. Let A1 and A2 represent the results of Endpoint
A from study 1 and study 2, respectively, and B1 and B2 for Endpoint B from study 1
and study 2, respectively. If a MAP is used in the individual studies, the logic should
be written as

(A1 ∪ B1) ∩ (A2 ∪ B2) = A1A2 ∪ A1B2 ∪ A2B1 ∪ B1B2

The logic controls the error rate for four possible outcomes A1A2,A1B2,A2B1,
and B1B2 that have the potential to become statistically significant or positive, when
they are in fact false. With a close look of the four possible outcomes, it is only
possible to claim A1A2 or B1B2, as they represent the situations where the same
endpoint is significant in both studies. The outcomes A1B2 and A2B1 would never
be considered in the label in reality as they represent the cases that endpoint A is
significant in one study as well as B is significant in the other. Thus, it is unnecessary
to control the error that would never be committed.

Alternatively, if each endpoint is first evaluated across studies collectively, the only
possible outcomes are A1A2 or B1B2. Then it makes sense to apply MAPs to control
error due to the two possible outcomes to make claim. For instance, if the error rate
of labeling false information should be controlled at the level of 0.025 and there are
ten secondary endpoints, applying the Bonferrion correction, each endpoint should
be controlled at α(H 1/K

0 ) = 0.0025 for K studies. Notice that it is not recommended
that the level of error rate for the secondary endpoints be as stringent as the error
rate of wrongly approving an ineffective drug. The mistake of wrongly approving
an ineffective drug is a more serious matter than that of labeling a false endpoint. In
practice, p values that are significant at level of 0.025 consistently across studies are
labeled, which is more stringent than necessary. Hence, the adjustment with MAPs
may not be necessary unless the number of secondary endpoints is in the scale of
hundreds and more.

Often, it is useful to order the secondary endpoints based on the clinical importance
in the integrative statistical analysis plan. This is equivalent to using the closed testing
procedure on the secondary endpoints. So, the clinically more relevant endpoints are
labeled if there is consistently convincing evidence across studies.
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It can be further debated whether only placing the significant secondary endpoints
in drug labels is an efficient way of communicating drug information. For clinically
important secondary endpoints, the statistically insignificant results may be as im-
portant to share as the significant ones with patients and practitioners. Insignificant
results may inform practitioners that the drug has not shown convincing evidence on
certain clinically important secondary endpoints.

10.4.6 Multiple Tests

In this chapter, multiple tests are referred to as performing multiple analyses on the
same endpoint and using the same set of data, which is different from the multiple
tests for different endpoints, such as gene analyses. Multiple tests are commonly
used in clinical studies and usually structured as the primary analysis and secondary
analyses (or sensitivity analyses). The primary endpoints are often analyzed using
multiple methods, usually with the prespecified primary analysis in an intent-to-
treat (ITT) population and several secondary analyses. The multiple tests are used to
ensure a good understanding of the treatment benefit from the primary analysis and
relatively consistent evidence across all tests.

It is important that all the primary and secondary analyses should be valid and
reasonable analyses. Valid analyses are unbiased under null. Reasonable analyses
are those that the power under alternative is not seriously distorted and the treatment
benefit is not overly underestimated or exaggerated. For example, baseline-carry-
forward is sometimes used in missing data imputation and a valid analysis under
null. However, this approach may not be a reasonable analysis as it could be overly
conservative and the test result would be biased towards null if the treatment is to
prevent disease from deterioration. In other scenarios, the approach could exaggerate
the treatment difference if the disease symptoms can be improved over time without
treatment. The worst-case-carry-forward approach is another valid test under null;
however, it is not considered reasonable, as it could overly exaggerate the treatment
differences under alternatives in certain scenarios. Another valid test is the test for
proportions. It may not be a reasonable test when there are differential dropouts
between treatment arms, perhaps due to toxicities.

It may not be equitable that the primary analysis is the most powerful analysis or
the only important analysis in making conclusion. This is particularly true when han-
dling missing outcome data. Often missing outcome data are missing-not-at-random
and there is not one imputation approach that is better than others. The good practice
is to prespecify one imputation method for the primary analysis. Multiple methods,
served as sensitivity analyses, are used to confirm that the result of the primary anal-
ysis does not deviate from other imputation methods too much and that the impact
of the missing data is small. In addition, the totality of evidence obtained from mul-
tiple tests may enhance the understanding of treatment difference. For example, the
family of weighted log-rank tests and the proportional hazard model are all similarly
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structured (Harrington and Fleming [6]) and are valid tests under null, but can be sen-
sitive to different types of treatment differences revealed in the data. The commonly
used log-rank test, the unweighted test, is more sensitive to differences manifested
later than the Wilcoxin log-rank test which is more sensitive to differences exhibited
earlier. The discussion here is not to undermine the importance of prespecifying the
primary analysis. Prespecifying one primary analysis is particularly important when
reporting the results in publications and drug labels. The rule of thumb is to report
the primary analysis, rather than by picking the best results among all analyses,
while all analysis results should be taken into consideration for decision making and
interpretation.

It can also be argued that multiple tests may not necessarily inflate the type I error
rate, given that all tests are reasonable and valid. A valid test has a 0.025 chance to
reach statistical significance under null. The chance for the majority of the tests to
show statistical significance together cannot be larger than 0.025 under null. Follow-
ing the principle of collective evidence, it would not be convincing evidence if only
one test shows a significant result, while other analyses lack statistical significance.
Conversely, the evidence would be considered convincing if the majority of the tests
reveal statistically significant (or close to) results.

10.5 Case Studies

10.5.1 Case 1: The Primary Endpoint Failed

All relevant information discussed in this case can be found in the FDA advisory
briefing package (US [21]). Spiriva Handihaler (tiotropium) was first approved for
maintenance treatment of COPD based on forced exploratory volume in 1 second
(FEV1). In 2009, the sponsor submitted the results of a study titled understanding the
potential long-term impacts on function with tiotropium (UPLIFT) seeking several
usage indications, among them, COPD exacerbation. UPLIFT was a randomized,
double-blinded, and placebo-controlled multicenter study. A total of 5993 COPD
patients were randomly assigned to tiotropium or placebo in a 1:1 ratio, 2987 to
tiotropium and 3006 to placebo. The patients were treated over a 4-year period. An-
other 6-month study that was conducted in approximately 2000 COPD veterans (VA)
was also available. The exacerbation results of the two studies are summarized in
Table 10.5. As can be seen from Table 10.5, the primary endpoint for exacerbation,
the time from randomization to the first exacerbation episode, was statistically signif-
icant in both studies. The average risk reduction over time in both studies was about
15 % in tiotropium in comparison to placebo. All the secondary endpoints listed in
Table 10.5 were statistically significant at the two-sided level of 0.050. Despite the
statistically significant results shown in two studies, the approval of the exacerba-
tion indication was debated among FDA’s statistical reviewers and in the advisory
committee meeting.
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Table 10.5 Summary of exacerbation results in the UPLIFT and VA studies

UPLIFT VA study

Tio
N = 2986

Placebo
N = 3006

Ratio (p val) Tio
N = 914

Placebo
N = 915

Ratio (p val)

Median time
(month)

16.7 12.5 0.86
(< 0.001)

– – 0.83 (0.034)

Total # of
events

6691 7183 – 376 446 –

Rate (#/p-y) 0.73 0.85 0.86
(< 0.001)

0.71 0.88 0.81 (0.037)

# of
exacerbation
days/p-y

12.1 13.6 0.89 (0.001) 10.0 12.6 0.79 (0.056)

The complication was that the primary endpoint of the UPLIFT study was the rates
of decline in FEV1. UPLIFT failed to show any difference in rates of decline in FEV1.
Exacerbation was a secondary endpoint in the UPLIFT study. Furthermore, the study
prespecified a closed testing procedure requiring that the primary endpoints show
statistically significant treatment differences before testing the secondary endpoints.

Following the prespecified decision rule, it was argued that because the primary
endpoint failed, the secondary endpoints should no longer be tested for the reason
of protecting type I error. Consequently, there was no sufficient evidence for the
exacerbation indication.

An opposing view stated that overly emphasizing the prespecified statistical de-
cision rules could be problematic, and the fact that multiple studies were available
could have reduced the need to use the decision rule. The prespecified decision rule
was not necessarily scientifically valid as it was based on the expectation to the study,
which was a hypothesis to be tested. The gambling nature of the prespecified deci-
sion rule made the selection appear to be arbitrary. In UPLIFT, the study allowed
patients to take any COPD treatments available in the market. The expectation of
tiotropium slowing down the deterioration of pulmonary function at the design stage
may no longer be valid over the course of the study as COPD treatments evolved over
time. Furthermore, when multiple studies were available, the error rate of wrongly
approving an indication could be tightly protected.

The advisory committee voted to approve the exacerbation indication. This case
exemplified the arbitrary nature of the prespecified decision rules. If the Bonferroni
procedure was prespecified, no one would question the efficacy on exacerbation for
the exact same study results. The lesson learned is that the evidence-based drug eval-
uation should not rely on the prespecified decision rule, particularly when multiple
studies are available. The collective evidence approach can be useful in post hoc eval-
uation. In this case, when applying the practical approach proposed in this chapter,
as both the UPLIFT and VA studies were statistically significant at the 2-sided level
of 0.050, there was no error inflation with the decision rule (γ1, γ2) = (0.025,0.025).
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Fig. 10.3 Cumulative CV events curves observed in APPROVe

The error rate of wrongly approving an ineffective drug was indeed tightly protected
at the level of 0.000625. The fact that all secondary endpoints were highly significant
in both studies further supported the efficacy of tiotropium for treating exacerbation.

10.5.2 Case 2: Dispute on Vioxx (rofecoxib) Cardiovascular Risk

Rofecoxib is a COX-2 agent that was first approved by the FDA in 1999 and with-
drawn from market in 2004 due to cardiovascular risk findings in the adenomatous
polyp prevention on Vioxx (APPROVe) study (Bresalier et al. [1]). The APPROVe
study was a randomized, double-blinded, parallel-grouped, and placebo-controlled
study to evaluate the occurrence of neoplastic polyps in patients with a history of
colorectal adenomas. Eligible patients were randomized to rofecoxib 25 mg daily or
placebo in a 1:1 ratio; 1287 receiving rofecoxib 25 mg and 1299 receiving placebo. At
a planed interim analysis, 46 patients developed at least 1 confirmed thrombotic event
over 3059 patient-year in the rofecoxib group, and 26 events over 3327 patient-year
in the placebo group. The hazard ratio was 1.92 (p value = 0.008) and the cardio-
vascular risk (CV) risk in rofecoxib was statistically significantly greater compared
with placebo. The cumulative incidence curves of the confirmed thrombotic events
of the two groups were shown in Fig. 10.3 (Bresalier et al. [1]).

The APPROVe results were published in 2005 in the New England Journal of
Medicine (NEJM) (Bresalier et al. [1]). In the paper, it was stated that a test of
the proportional-hazard (PH) assumption, evaluating the interaction between the
treatment and a time logarithm, was specified in the statistical analysis plan for
analyzing the cardiovascular risk. Based on this test, the p value of the interaction
was statistically significant (two-sided p value = 0.010). It was therefore concluded
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that the CV risk between the two groups was not proportional over time. Additional
post hoc analyses indicated that the CV risk was evident after 18 months of rofecoxib
treatment, whereas the CV risk was similar between rofecoxib and placebo for the
first 18 months of treatment.

Later, the investigation team reported to NEJM that an error had been identified
when reporting the test for the PH assumption (Business Wire [2]) in the original
publication (Bresalier et al. [1]). The reported result used linear time rather than the
time logarithm that was specified in the analysis plan. The test using the time loga-
rithm yielded a 2-sided p value of 0.07, which failed to reach statistical significance
at the 2-sided level of 0.05. However, Merck insisted that using linear time was an
appropriate analysis based on their diagnostic tests. Therefore, their conclusion of
CV risk after 18 months would be unchanged (Business Wire [2]).

NEJM issued a correction (NEJM [14]) in 2006 indicating that the prespecified test
using a time logarithm should be the correct analysis. As this analysis did not reach
statistical significance, the PH assumption was not rejected. Therefore, a conclusion
about the CV risk of rofecoxib should not be made for treatment after 18 months.

An important lesson learned from this case is the interpretation of multiple tests
of the PH assumption. Both tests, using linear time or logarithm of time, are valid
and reasonable tests. The prespecified test is not necessarily the best test. On the
other hand, it is a good statistical practice to report data using the prespecified test.
In disputing the PH assumption, although the test using a time logarithm does not
reach statistical significance at the two-sided level of 0.05, a p value of 0.07 was
considered marginally significant. Adding the evidence from the test using linear
time, which was statistically significant, the totality of evidence demonstrated that
the CV risk ratio was not constant over time. However, the fact that risk ratio was not
constant over time did not infer the absence of the CV risk in the first 18 months of
the rofecoxib treatment. The interaction tests simply could not answer if rofecoxib
caused harm in the first 18 months of treatment.

It is important to reemphasize that the collective evidence approach is not to
abandon the prespecification and planning. On the contrast, careful planning and
designing experiments, prespecifying the experiment procedures, hierarchy of end-
points, the primary analyses, and all other secondary or sensitivity analyses, as well
as safety measures and evaluation are imperative for achieving scientific rigor. How-
ever, throughout the discussion of the chapter, prespecifying a decision rule in a
study appears to add more confusion in drug evaluation.

10.6 Remarks

Drug evaluation is a complex process that involves multidisciplines including medi-
cal, drug safety, statistical, clinical pharmacology, chemistry, and preclinical reviews.
The decision is based on collective evidence from all disciplines, a different level of
synthesizing evidence collectively. Still, drug efficacy is the key element, as none
of the other evaluations would be necessary if a drug was ineffective. This explains
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why there have been significant efforts to develop statistical methodologies to define
systematic approaches to control the error of wrongly approving an ineffective drug.
The collective evidence approach is an effort to enrich and improve the systematic
approaches.

The collective evidence approach reintroduces the “AND” logic which has been
overlooked in drug evaluation. With this foundation, the approach takes all available
evidence in decision making, controls various errors occurring in drug evaluation,
balances the need for consistency among evidence, and allows reasonable variation.
The proposed practical approach may reduce the burden of arbitrarily selecting pre-
specified decision rules in the individual study protocols. It is noteworthy that this
approach does not relax the standard of drug approval; rather it provides an alternative
way of evaluating evidence with proven scientific rigor.

Rigidly using the collective evidence approach can also be problematic. As dis-
cussed earlier, drugs having narrow therapeutic windows may not have multiple
doses supporting the efficacy. However, the collective evidence approach can be ap-
plied to examine if a consistent dose–response relationship is exhibited in multiple
studies. The application of the collective evidence approach may need special care in
drug safety evaluation as well. The safety evaluation usually takes a less conservative
approach. On one hand, the risk signal that occurred in one study or one dose can
be valuable information for practitioners and patients. On the other hand, a trend of
risks consistently occurring in multiple studies, albeit statistically insignificant, can
raise serious concerns.

This discussion does not cover the multiplicity issues occurring in subgroup
analyses, multiregion studies, and interim analyses. The problems noted in such
situations may not all be simple multiplicity problems. Nevertheless, the principles
of the collective evidence approach can be applied in evaluating evidence when these
multiplicity issues occur.

For future research in the area of collective evidence, utility function can be an
alternative approach to summarizing evidence collectively. Eriksen and Keller (Erik-
sen and Keller [5]) proposed a quantitative way of combining evidence from clinical
efficacy and safety data to preclinical safety data of drugs using utility function. This
idea can be extended to combine multiple endpoints, multiple doses, and multiple
studies. More research needs to be done to further develop this approach.
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