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Abstract. A rectilinear dual of a plane graph refers to a partition
of a rectangular area into nonoverlapping rectilinear polygonal mod-
ules, where each module corresponds to a vertex such that two mod-
ules have side-contact iff their corresponding vertices are adjacent. It is
known that 8-sided rectilinear polygons are sufficient and necessary to
construct rectilinear duals of maximal plane graphs. The result stands
even if modules are restricted to T-shape polygons. We show that the
optimum polygonal complexity of T-free rectilinear duals is exactly 12.
It justifies the intuition that T-shape is more powerful than other
8-sided modules. Our construction of 12-sided T-free rectilinear duals
only requires monotone staircase modules. We also consider the issue of
area-universality, and show that monotone staircase modules are not suf-
ficient to construct area-universal rectilinear duals in general even when
an unbounded polygonal complexity is allowed; however, eight sides are
sufficient for Hamiltonian plane graphs. This line of research regarding
monotone staircase modules is also motivated by the so-called monotone
staircase cuts in VLSI floorplanning. We feel that our results provide a
new insight towards a comprehensive understanding of modules in recti-
linear duals.

Keywords: Floorplanning · Rectilinear polygon · Plane graph · Recti-
linear dual

1 Introduction

Given a graph with nodes and edges representing circuit components and inter-
connections, respectively, floor-planning in VLSI chip design refers to the parti-
tion of a rectangular chip area into nonoverlapping rectilinear polygonal modules
in such a way that modules of adjacent nodes share a common boundary. If we
further require that each rectilinear polygon be a rectangle, such a floorplan
is called a rectangular dual. As they play key roles in VLSI physical design,
rectangular duals of planar graphs have been studied extensively over the years
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from both theoretical and practical viewpoints. A necessary and sufficient condi-
tion for the existence of a rectangular dual for a planar graph was established by
Kozminski and Kinnen [9]. A floorplan is said to be sliceable if it can be obtained
by recursively cutting a rectangle into two parts by a horizontal or a vertical line.
Sliceable floorplans enjoy certain nice properties, facilitating global routing by
taking advantage of the hierarchical structure of partitioning by the cut lines, for
instance. As a generalization of sliceability in floorplanning, monotone staircase
cuts have been proposed (see, e.g., [7,11]), which are able to yield a richer set
of floorplan structures while retaining certain attractive properties enjoyed by
sliceable floorplans.

Rectilinear duals represent a generalization of rectangular duals, in which
vertices are represented by interior-disjoint rectilinear polygons such that edges
correspond to side-contact of polygons. A monotone staircase polygon is a poly-
gon formed by two monotonically rising staircases, each of which is a sequence
of alternatingly horizontal and vertical line segments from the bottom-left cor-
ner to the top-right corner of the polygon. A staircase polygon is a rectilin-
ear polygon resulting from rotating a monotone staircase polygon 90◦, 180◦, or
270◦. Figure 1(2) is a rectilinear dual of the plane graph given in Fig. 1(1) using
monotone staircase polygons. In fact, floorplans using monotone staircase poly-
gons are exactly those that can be obtained using monotone staircase cuts. See
Fig. 1(2)–(3), for instance. Note that staircase polygons are orthogonally convex,
in the sense that for any horizontal or vertical line, if two points on the line are
inside a polygonal region, then the entire line segment between these two points
is also inside the polygonal region. The reader is referred to [5,6,8] for more
about sliceability, rectangular and rectilinear duals of plane graphs.

Fig. 1. A floorplan constructed by monotone staircase cuts.

The study of rectilinear duals using monotone staircase polygons is also of
interest from the graph drawing perspective. In the field of graph drawing, there
is a large amount of work investigating contact representations of graphs. In such
drawing styles, vertices are represented by geometric objects such that edges cor-
respond to certain contacts between those objects. The so-called polygonal com-
plexity of a rectilinear dual refers to the number of sides in any of the rectilinear
polygons found in the rectilinear dual. Yeap and Sarrafzadeh [13] showed that
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every maximal plane graph admits a rectilinear dual using polygons of at most
eight sides, which matches the lower bound. Liao et al. [10] later improved the
above result by showing that it suffices to use only I-shape, L-shape, and �-shape
modules, whereas in [13], Z-shape modules are also required. See Fig. 2 for these
four types of modules. In fact, I-shape and L-shape modules are degenerated cases
of �-shape modules, as an I (resp., L) can be obtained from a � by chopping off
two ends (resp., one end) of the horizontal segment of the �. As a result, [10] sug-
gests that �-shape modules are sufficient in constructing rectilinear duals of max-
imal plane graphs. See also [1–3]. It is not difficult to see that I-shape and L-shape
modules are also degenerated cases of Z-shape modules; however, �-shape and
Z-shape modules are incomparable to each other. Note that a Z-shape is an 8-
sided staircase polygon. If we take into account the �-shape, another 8-sided
rectilinear polygon incomparable with �-shape and Z-shape, floorplans using
staircase polygons are exactly those free from �-shape and �-shape modules (and
their generalizations), which can also be characterized as those using orthogo-
nally convex polygons without �-shape modules (and their generalizations).

In view of the above, it is therefore of interest and importance to study
rectilinear duals of plane graphs using staircase polygons. Along this line of
research, a natural question to ask (in view of [10]) is whether Z-shape modules
and their degenerated cases are sufficient in constructing a rectilinear dual of
any maximal plane graph. As it turns out, we are able to answer the question in
the negative, suggesting that �-shape is, in a sense, more powerful than Z-shape
from the viewpoint of polygonal complexity in rectilinear duals.

Fig. 2. I-shape, L-shape, �-shape and Z-shape modules

Motivated by cartographic applications, there is also an increasing interest
in the design of rectilinear/rectangular duals subject to a given area assignment,
in the sense that the area of each of the polygonal regions equals the associ-
ated weight. Given an area assignment for vertices, a cartogram is a rectilinear
dual that realizes such an assignment. A rectilinear dual of a plane graph is
area-universal iff every possible area assignment can be realized by a combi-
natorially equivalent rectilinear dual. For rectangular duals, it is known that
area-universality can be characterized by one-sidedness [4]; however, no simple
characterizations are known for rectilinear duals. Regarding the polygonal com-
plexity of area-universal rectilinear duals for maximal plane graphs, it is known
that eight is sufficient, which is also optimal [1]. In this paper, we also investi-
gate the issue of area-universality of rectilinear duals using monotone staircase
polygons.
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Our contributions in this paper include the following:

1. We define a partial order on the structure of rectilinear polygons that captures
the intuitive idea of degeneracies of polygons naturally. Such a partial order
provides a foundation for our subsequent discussions on rectilinear duals using
monotone staircase polygons (which are �-free and orthogonally convex).

2. An algorithm is devised for constructing rectilinear duals of maximal plane
graphs using 12-sided monotone staircase polygons. The bound (i.e., 12 sides)
is also shown to be tight.

3. Regarding area-universality, we prove that there exists a maximal plane graph
that does not admit any monotone staircase area-universal rectilinear dual;
however, for Hamiltonian maximal plane graphs, eight sides suffice.

2 Preliminaries

A graph G = (V,E) is planar iff it can be drawn in the plane without edge
crossings. In a planar drawing of a graph, the outer face is the unbounded one;
a face is called inner iff it is not outer. A plane graph is a planar graph with a
fixed combinatorial embedding and a prescribed outer face. A cycle C divides a
plane graph G into two regions. The one that is inside (resp., outside) cycle C
is called the interior region (resp., outer region) of C. We write G(C) to denote
the subgraph of G containing exactly C and vertices and edges residing in its
interior region. When H is a connected subgraph of G with C as its boundary
cycle, G(H) is defined to be G(C).

Fig. 3. An example of a separation-tree.

Let � be a triangle (a cycle of length 3). We call � a separating triangle
(also known as a complex triangle) iff G(�) �= � in any planar embedding G.
G� is defined to be the induced subgraph of the set of vertices {v ∈ V (G(�))|
for any triangle �′ �= � in G(�), v does not reside in the interior region of �′}.
For graph G depicted in Fig. 3, G{a,b,c} is the subgraph induced by {a, b, c, d}.
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The separation-tree of a maximal plane graph G is defined to be the unique
rooted tree whose vertices are separating triangles and the boundary triangle in
G, with � being a descendant of �′ iff � is contained in G(�′). See Fig. 3. The
reader is referred to [12] for more about the above notations and definitions.

The contraction of a triangle � is an operation that replaces G(�) with
�; the un-contraction of a (previously contracted) triangle � is an operation
that replaces � with G�. The descendants of � remain contracted when we
un-contract �. For convenience purpose, we write region(S), S ⊆ V , to denote
the union of region of x, x ∈ S, in the rectilinear dual of G.

Fig. 4. Illustration of insert-
ing sub-drawing.

An internally triangulated plane graph G
admits a rectangular dual iff we can augment G
with four vertices {N,E, S,W} such that (1) the
new outer face is the quadrangle {N,E, S,W} and
(2) the resulting graph is internally triangulated
and contains no separating triangle [9]. The tight
connection between separating triangles and rec-
tangular duals makes separation-trees particularly
useful in constructing rectilinear duals. Here we
sketch a general framework of building rectilinear
duals based on separation-trees: (1) Let �1,�2, . . . ,�k be a level-order traversal
of the separation-tree. We let G′ = �1 (the boundary triangle). (2) Construct a
rectangular dual of G′ as the initial drawing. (3) For i = 1 to k, we un-contract
�i, and plug-in the rectangular drawing of G�i

\�i to the current drawing. See
Fig. 4 for a conceptual illustration of inserting rectangular dual of G�i

\�i when
�i = {s, t, r} is un-contracted. Note that the exact location at which the rec-
tangular dual is inserted will be explained in detail in our subsequent discussion.
The reader is referred to [12,13] for more.

3 Rectilinear Polygons

Throughout the paper, all the rectilinear polygons are simple.Two rectilinear poly-
gons are considered the same iff they admit the same circular order of angles.
Therefore, it is without loss of information to use circular order of angles to
represent a rectilinear polygon. For example, rectangle (or called I-shape),L-shape,
�-shape, W-shape, �-shape can be represented by (V, V, V, V ), (V, V, V, C, V, V ),
(V, V,C, V, V, C, V, V ), (V, V, V, C, V, C, V, V ), (V, V, V, C,C, V, V, V ), respecti-
vely, where the letters V and C represent convex and concave corners, respectively.
Given a sequence P of Cs and V s, we let �C(P ) and �V (P ) denote the numbers of
concave and convex corners, respectively.

Here we define a partial order “�” on rectilinear polygons as follows:

Definition 1. Let P and Q be two rectilinear polygons. P � Q iff Q can be
obtained by iteratively inserting (C, V ) or (V,C) to P .

Let R be a rectilinear dual, we call it Q-free iff for each module of shape P used
in R, we have Q �� P . We remark that the partial order “�” actually reflects
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the intuitive idea of degeneracy in the way that P � Q indicates that Q can
degenerate to P . Therefore, the notion of “Q-freeness” captures the idea of “Q is
not a degenerated form of any rectilinear region in the drawing”. Here we define
a class of rectilinear polygons called staircase as follows:

Definition 2. Let P be a rectilinear polygon. P is monotone staircase iff P =
(a, S1, b, S2) clockwise, where a = b = V and both S1 and S2 consist of Cs and
V s appearing alternatively and both start and end with V , where the two points
a, b are exactly at the most south-western (i.e., lower left-hand) and the most
north-eastern (i.e., upper right-hand) corners.

Fig. 5. Some examples.

In words, a monotone staircase polygon
is a polygon formed by two monotoni-
cally rising staircases, each of which is a
sequence of alternatingly horizontal and
vertical line segments from the bottom-
left corner to the top-right corner of the
polygon. A staircase polygon is a recti-
linear polygon resulting from rotating a
monotone staircase polygon 90◦, 180◦, or 270◦. The following facts are easy to
observe, and may be explicitly or implicitly applied in the discussion throughout
the paper.

Fact 1. �V (P ) − �C(P ) = 4 in any rectilinear polygon P .

Fact 2. A rectilinear polygon is orthogonally convex iff it does not contain con-
secutive concave corners.

Fact 3. A rectilinear polygon P is staircase iff ��� P and P is orthogonally
convex.

Fact 4. A rectilinear polygon P satisfies �� P iff P = (S1, a, S2, b, S3, S4) such
that a = b = V and �C(S2) = �V (S2), �C(S1) − �V (S1) = �C(S3) − �V (S3) = 1.

Figure 5(1) is an example of a staircase module. The polygon in Fig. 5(2) is
degeneratable to �-shape by removing the two pairs of corners (circled in the
picture); the reader can verify Fact 4 by considering its representation (C, V, V, V,
C,C, V, V, V, V, C, V ) = (S1 = (C), a = V, S2 = (), b = V, S3 = (V,C,C), S4 =
(V, V, V, V, C, V )).

4 Lower Bound of Polygonal Complexity

In this section, we prove that �-free rectilinear duals of maximal plane graphs
must have polygonal complexity of at least 12, which is higher than the 8 in the
general case when �-shape modules are allowed. We define the plane graph H0

in Fig. 6, which is a key structure that is behind the higher polygonal complexity
of �-free rectilinear duals.
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Fig. 6. Definition of H0 and illustration of the proof of Lemma 1.

Lemma 1. Let H be a subgraph of a maximal plane graph G such that H is
isomorphic to H0 (with x, y and z as the three vertices on the outer cycle) and
G(H) = H. For any �-free rectilinear dual of G, there must be at least two
concave corners in regions associated with x, y, and z which are located along
the border between region({x, y, z}) and region({u, v, w, c}).
Proof. Clearly there must be at least one concave corner. If there is only one
such concave corner, without loss of generality, we let x be the one containing
the concave corner. Now, the boundary of the region({u, v, w, c}) must be a
rectangle, illustrated in Fig. 6. Note that since module c in Fig. 6 must touch x
and x borders the rectangular region along its west and north sides, by symmetry,
we can assume that c touches the west boundary without loss of generality. We
identify four points p1, p2, p3 and p4 on the boundary of c as illustrated in Fig. 6.
By setting a = p2, b = p3, S1 = the segment between p1 and p2, and S3 = the
segment between p2 and p3, it is easy to see that if all the regions are drawn
rectilinearly, such assignments must satisfy the statement of Fact 4, and hence
we must have �� c, which is a contradiction. 	�
Theorem 1. There exists a maximal plane graph G such that every �-free rec-
tilinear dual of G must have polygonal complexity of at least 12.

Proof. Let G0 = (V,E) be an n-node maximal plane graph with n ≥ 10. We
replace each inner face of G0 with a copy of H0 by adding new vertices and
edges. Let the resulting graph be G1, and we let R be any �-free rectilinear dual
of G1. According to Lemma 1, since the number of inner faces in G0 is 2n − 5,
the number of concave corners in regions associated with vertices of V must be
at least 2 × (2n − 5) = 4n − 10 > 3n = 3|V |. Therefore, there must be a region
in R containing at least 4 concave corners. By Fact 1, such a region has at least
4 + (4 + 4) = 12 corners. 	�
In the lower part of Fig. 6, we give three examples of rectilinear duals of H0. The
left two drawings are both �-free and contain two concave corners in regions
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associated with x, y, and z; the rightmost one contains only one concave corner
but the region associated with c is a �-shape. These two �-free drawings serve
as prototypical concepts of the algorithm presented in the next section.

5 Construction of 12-Sided �-free Rectilinear Duals

In this section, we present an algorithm to construct 12-sided �-free rectilinear
duals for maximal plane graphs. Our construction uses only monotone staircase
modules, which are orthogonally convex ones that cannot degenerate to �-shape
modules (Fact 3).

Our algorithm is an inductive approach based on the separation-trees
described in Sect. 2. What remains to be done is to make sure that when insert-
ing the rectangular dual of G� \ � to the current rectilinear dual during the
course of the construction, (1) every region preserves the shape of a monotone
staircase and (2) the total number of concave corners on the boundary of each
region is at most 4.

5.1 Un-contracting a Separating Triangle

When we un-contract a triangle � = {x, y, z}, a rectangular space is allocated
to accommodate the details of G� \ �, which in turn imposes a concave corner
to one of the border of region({x, y, z}). Without loss of generality, we assume
such a concave corner to be on the boundary of region x. As observed in Sect. 4,
one concave corner in region({x, y, z}) may not be enough in some cases. In
order to enforce the staircase constraint, we further annotate one of its four
sides as “allowed to add a concave corner”, which is indicated by an arrow in
the illustration. See Fig. 7.

Since region x is monotone staircase, x borders either the entire west and
north boundary or the entire east and south boundary of the rectangular space.
Therefore, there are eight cases in total since the arrow can point to any one of
the four sides of the rectangular boundary. It is sufficient to consider the following
two cases: (1) region x borders the west and north sides, and the arrow points
to the north side; and (2) region x borders the west and north sides, and the
arrow points to the east side, as the remaining cases are symmetric (by flipping
the entire drawing around the north-west to south-east line or the north-east to
south-west line). Now, we fix region y to be the one that borders the east side
of the rectangular space.

A key in our un-contracting process is to identify three special vertices asso-
ciated with each separating triangle. Consider Fig. 7. Let u, v, and w be the three
vertices in G�\{x, y, z} such that u, v, and w are adjacent to {x, y}, {y, z}, {x, z},
respectively. It is easy to see that u, v, and w are uniquely determined; other-
wise, there must be a separating triangle in G�, which contradicts its definition.
Unless |V (G�)| = 4 (in this case, u = v = w), u, v and w must be different
from each other (otherwise, a separating triangle can be found in G�). When
the rectangular dual of G� \{x, y, z} is constructed to fill the rectangular space,
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we may further assume the rectangular dual to have region w adjacent to the
entire west side. Such a drawing must exist since there is no separating triangle
inside the quadrangle {x, y, z, w}.

If we consider the children of the node associated with � = {x, y, z} in the
separation tree, there are two types of separating triangles:

1. Separating triangles associated with triangles {x, y, u}, {y, z, v}, and {x, z, w}
possibly. (Note that some of these three triangles may not be separating
triangles.)

2. Separating triangles in the subgraph surrounded by vertices {x, u, y, v, z, w}.
See Fig. 7.

Fig. 7. The left part shows the two cases explained in Sect. 5.1. The right part shows
how the rectangular regions associated with u, v, and w are located in the rectangular
space for the separating triangle {x, y, z}.

We first consider Type 1 separating triangles, i.e., those associated with trian-
gles {x, y, u}, {y, z, v}, and {x, z, w} possibly. Depending on whether the arrow
points to the north side or the east side of the rectangular space for G{x,y,z},
the solutions are depicted as those regions surrounded by dashed boundaries
in the rightmost figures in the upper and lower parts of Fig. 8, respectively. Note
that in each of the cases, these three regions correspond to the regions allocated
for Type 1 separating triangles, with some of which possibly be void if they are
not separating triangles. Special attention should be given to the directions of
the arrows in those regions. The checkered regions represent those allocated for
the special vertices u, v, and w. The white spaces in Fig. 8 are parts of rectangu-
lar duals of the subgraph surrounded by vertices {x, u, y, v, z, w}, and the white
dots indicate points at which there may be separating triangles when Type 2
separating triangles are included.

Now we consider Type 2 separating triangles. Recall from Fig. 4 that when
a separating triangle is un-contracted, a rectangular region is inserted at the
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juncture of the three regions associated with the three vertices of the separating
triangle. Depending on the orientation of the three regions, there are four cases
as illustrated in the upper part of Fig. 9. Attention should be given to the arrows
in those regions, which indicate the sides where additional concave corners are
possible during the course of future un-contraction. Although Fig. 9 shows the
general rule for allocating spaces to accommodate Type 2 separating triangles,
there is an exception. Consider the white point incident to both u and x in the
upper illustration of Fig. 8 (see also the lower illustration of Fig. 9). One can
see from Fig. 8 that the u module stretches upwards in order to make room for
the separating triangle {x, u, y} (i.e., the top-most red region in the upper illus-
tration of Fig. 8). As a result, we apply rule (3) in Fig. 9, as opposed to rule
(4), as illustrated in the lower illustration of Fig. 9. Such special care prevents
the creation of an additional (undesired) concave corner to region({x, y, z}).
A similar situation occurs at the juncture of regions u and y in the lower illus-
tration of Fig. 8.

It is clear from the above that all operations preserve monotone staircase
shape. What remains to do is to count the number of concave corners for each
region. In Fig. 9, when we make a rectangular space at point p, if p is a non-
corner of region s, no concave corner is imposed on s. Therefore, for any vertex
s not belonging to {u, v, w}, the number of concave corners imposed on s is at
most four since a rectangle has four corners.

For the special vertices u, v, w, if s = u = v = w, it is easy to see that we
also impose at most four concave corners on s. In Fig. 8, we make one concave
corner and three arrows (which may potentially become concave corners) to s.
For the case that u, v, w are distinct vertices, the results are summarized in the
following:

u: 0 concave corner, 1 arrow, and 3 white dots; the total amount is 4.
v: 1 concave corner, 1 arrow, and 3 white dots; the total amount is 5.
w: 0 concave corner, 1 arrow, and 2 white dots; the total amount is 3.

So far, our algorithm can compute a monotone staircase rectilinear dual that
uses modules of at most 14 (=2 × 5 + 4) sides, as the number of sides = 2 × (the
number of concave corners) + 4. To lower the polygonal complexity from 14 to
12, our approach is to transfer one concave corner from v to w. Our solution is
presented in the following sub-section.

5.2 Transferring Concave Corners

Let S = V (G�) \ {x, y, z}, and given a rectangular dual R0 of G� \ {x, y, z}
that satisfies the conditions described in Sect. 5.1, i.e., (1) the west and north
boundaries of R0 are adjacent to x, the east and south boundaries of R0 are
adjacent to y and z, respectively, and (2) w (the unique vertex adjacent to x
and z) borders the entire west boundary of R0, we define a relation “←” on S:

Definition 3. Given S and R0, “←” is a relation on S such that: s ← s′ iff
(1) the west side of s is more west than (i.e., on the left-hand side of) the west
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Fig. 8. Illustration of un-contracting Type 1 triangles.

side of s′, and (2) there is a point p in R0 such that p is a 180◦ corner in s and
a 90◦ corner in s′.

Regarding the separating triangle {x, y, z} discussed in Sect. 5, the following
lemmas are easy to observe. Lemma 2 directly follows from the fact that w is the
unique vertex adjacent to x and z.

Lemma 2. w is the only one that touches both the north boundary and the south
boundary of R0.

Lemma 3. There exists a path v = s1, s2, . . . , sk = w in S such that si+1 ← si
for 1 ≤ i ≤ k − 1.

Let s1, s2, . . . , sk be the path that satisfies Lemma 3. Our concave corner transfer
algorithm works as follows: For i = 1 to k, if there is a separating triangle
�′ = {si, si+1, t} for some t ∈ S, we re-build the rectangular space for �′ as
depicted in Fig. 10, which is capable of “shifting” 1 concave corner from si to
si+1. Note that in the first two illustrations in Fig. 10, the concave corner in
si is explicit, whereas in the last two illustrations, the concave corner in si is
implicitly indicated by the arrow. The procedure terminates if there is no such
triangle; in this case, the number of concave corners in si must be smaller than
four before the execution of this algorithm. Therefore, all the regions must have
at most four concave corners after the concave corner transfer algorithm ends.
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Fig. 9. Illustration of un-contracting Type 2 triangles.

Fig. 10. Illustration of transferring concave corners.

It is easy to see that the algorithm presented in this section for constructing
monotone staircase rectilinear duals can be implemented in linear time.

Theorem 2. �-free rectilinear duals for maximal plane graphs have polygonal
complexity of at most 12. Moreover, there is a linear time algorithm that con-
structs monotone staircase rectilinear duals for maximal plane graphs.

6 Area-Universal Drawing

Motivated by the applications to cartogram design and floorplanning, for
instance, there has been an increasing interest in the study of area-universality
of rectilinear duals. A rectilinear dual is area-universal iff every possible area
assignment can be realized by a combinatorially equivalent one. In view of our
earlier discussion, it is natural to investigate how or whether area-universal rec-
tilinear duals can be constructed in the absence of �-shape modules. Our first
result shows that restricting modules to monotone staircases is insufficient to
construct area-universal rectilinear duals for maximal plane graphs.
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Fig. 11. Illustration of concepts in Sect. 6.

To proceed further, we require some definitions. We denote the most south-
western point and the most north-eastern point of a monotone staircase module
as SW and NE, respectively. Separated by these 2 points, the boundary of
the module is divided into the upper part and lower part naturally, which we
denote as Up and Low, respectively. See Fig. 11(1) for an illustration. We define
relations −−−→

X,Y
for X ∈ {SW,NE}, Y ∈ {Up,Low}, and give a condition for

rectilinear duals being not area-universal.

Definition 4. For X ∈ {SW,NE}, Y ∈ {Up,Low}, and any two regions s, t of
monotone staircase shape, s −−−→

X,Y
t iff X(s) is located in Y (t), where X(s) and

Y (t) denote the X point of region s and the Y boundary of region t, respectively.

Lemma 4. For any monotone staircase rectilinear dual R, if there exist three
regions r, s, t and Y ∈ {Up,Low} such that s −−−−→

NE,Y
r, t −−−−→

SW,Y
r, and NE(s) is

more south-west than SW (t), then R is not area-universal.

Proof. (Sketch) In Fig. 11(2), s, t must be confined in quadrant I, III, respec-
tively, making the sum of areas of s and t to never exceed 50 % of the enclosing
rectangular region. 	�
Similar to what we have done in Sect. 4, let G be a maximal plane graph and H be
a sub-graph of G such that H is isomorphic to H0 and G(H) = H. We consider a
monotone staircase rectilinear dual R of G. It is easy to observe that the border
between 2 monotone staircase regions cannot intersect with both Up and Low
of one of them (otherwise, the other cannot be monotone staircase). Therefore,
by the pigeonhole principle, in H we have that two of {u, v, w} border c in
one of {Up(s), Low(s)}. We denote these two vertices as s1, s2, and the border
between s1, c is more south-west than that of s2, c. Let r ∈ {x, y, z} be the
unique vertex adjacent to both s1 and s2, the next lemma reveals a relationship
between s1, s2, c, and r.

Lemma 5. If we require R to be area-universal, exactly one of the following
must be satisfied for H:
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1. SW (r) is located in Up(c), s1 −−−−−→
NE,Up

r, and s2 −−−−−→
NE,Low

r.

2. NE(r) is located in Up(c), s1 −−−−−→
SW,Low

r, and s2 −−−−→
SW,Up

r.

3. SW (r) is located in Low(c), s1 −−−−−→
NE,Low

r, and s2 −−−−−→
NE,Up

r.

4. NE(r) is located in Low(c), s1 −−−−→
SW,Up

r, and s2 −−−−−→
SW,Low

r.

Theorem 3. There exists a maximal plane graph G such that every monotone
staircase rectilinear dual of G is not area-universal.

Proofs of Lemma 5 and Theorem 3 are omitted due to space limitation. Intu-
itively speaking, Lemma 5 says that, when the structure depicted in Fig. 11(2)
is forbidden, the relative positions of r, s1, s2 must obey certain constraints. The
idea behind the proof of Theorem3 is similar to that of Theorem 1. In particular,
we are able to show that, for the graph G1 defined in the proof of Theorem1,
the structure depicted in Fig. 11(2) is unavoidable.

Such an impossibility result motivates us to consider sub-classes of maximal
plane graphs. It is easy to observe that the above theorem still holds even restrict-
ing to plane 3-trees since replacing a triangle with H0 preserves the property of
being a plane 3-tree. Beside plane 3-trees, Hamiltonian maximal plane graphs,
which subsume maximal outer plane graphs and 4-connected plane graphs, are
another important sub-class of maximal plane graphs. Contrasting the above
results, the following theorem can be shown easily by modifying the �-shape
cartogram drawing algorithm described in [1] (by reversing the construction
order of the right part, we can get a monotone Z-shape drawing).

Theorem 4. Hamiltonian maximal plane graphs admit 8-sided area-universal
monotone staircase rectilinear duals.

7 Conclusion

We formalized the concept of “freedom from certain module type” in the study
rectilinear duals, and presented a linear-time algorithm to construct �-free rec-
tilinear duals for maximal plane graphs with optimal polygonal complexity 12.
Our construction uses only monotone staircase modules. Towards a more com-
prehensive understanding of modules in rectilinear duals, a natural direction for
future research is to investigate other kinds of previously unstudied restrictions
to modules.

We also showed that monotone staircase modules are insufficient for con-
structing area-universal rectilinear duals of maximal plane graphs, and proved
that for Hamiltonian plane graphs, eight sides are sufficient. As all existing con-
structions for area-universal rectilinear dual of maximal plane graphs are not
�-free, whether �-free modules are sufficient to construct such drawings remains
an interesting open problem.
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