
Approximate Aggregation for Tracking Quantiles
in Wireless Sensor Networks

Zaobo He1, Zhipeng Cai1(B), Siyao Cheng1,2, and Xiaoming Wang3

1 Department of Computing Science, Georgia State University, Atlanta, USA
zcai@gsu.edu

2 School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

3 School of Computer Science, Shaanxi Normal University, Xi’an, China

Abstract. We consider the problem of tracking quantiles in wireless
sensor networks with efficient communication cost. Compared with the
algebraic aggregations such as Sum, Count, or Average, holistic aggre-
gations such as quantiles can better characterize data distribution. Let
S(t) = (d1, . . . , dn) be the multi-set of sensory data that have arrived
until time t in the entire network, which is a sequence of data orderly
collected by nodes s1, s2, . . . , sk. The goal is to continuously track
ε-approximate φ-quantiles (0 ≤ φ ≤ 1) of S(t) at the sink for all φ’s
with efficient total communication cost and balanced individual commu-
nication cost. In this paper, a deterministic tracking algorithm based on
a dynamic binary tree is proposed to track ε-approximate φ-quantiles
(0 ≤ φ ≤ 1) in wireless sensor networks, whose total communication
cost is O(k/ε · log n · log2(1/ε)), where k is the number of the nodes in a
network, n is the total number of the data items, and ε is the required
approximation error.

1 Introduction

Wireless Sensor Networks (WSNs) consist of many nodes which interact with
each other through wireless channel. They are now being widely deployed to
monitor physical information, such as temperature, pressure, light intensity and
so forth [1,2,6–8,10,18,21]. With the development of technologies, the scale of
a WSN can be very large [19]. However, the most severe constraint imposed on
the extensive applications is the limited power supply as the on-board power is
still the main power source which is not rechargeable in most cases. Compared
with data computation or storage control, communications among nodes con-
sume more energy. According to [25], the energy consumption for sending one
bit data is equal to that for executing 1000 instructions for one sensor. Thus,
how to extract information from a huge amount of sensor data with efficient
communication cost becomes a crucial problem.

Much effort has been spent on studying various aggregation operations
(denoted by function f), including algebraic aggregations such as Sum, Count,
or Average [5,16,17], holistic aggregations such as Heavy hitters [20], Quantiles
c© Springer International Publishing Switzerland 2014
Z. Zhang et al. (Eds.): COCOA 2014, LNCS 8881, pp. 161–172, 2014.
DOI: 10.1007/978-3-319-12691-3 13

162 Z. He et al.

[9,13,15,24], and complex correlation queries in the database area such as Dis-
tributed joins [22]. Quantile allows one to extract the order statistics information
from the dataset which is widely used in network monitoring [4,29] and database
query optimization [11], so that data distribution can be much better character-
ized. In-network aggregation algorithms are efficient techniques to track algebraic
aggregations through computing partial results at intermediate nodes during the
process of routing data to the sink [5,13,15,17,24]. By preventing nodes from
forwarding all the data to the sink, in-network aggregation algorithms signif-
icantly reduce energy consumption. In-network aggregation algorithms can be
conducted efficiently for algebraic functions due to the decomposable property of
these aggregations [3]. Unfortunately, unlike Sum, Count, or Average, quantiles
are not decomposable so that the traditional in-network aggregation algorithms
do not work well to track quantiles [9]. The φ-quantile (0 ≤ φ ≤ 1) of an ordered
dataset S is the data x such that φ|S| elements of S are less than or equal
to x and no more than (1 − φ)|S| elements are larger than x, particularly, the
1
2 -quantile is the median of S.

Since exact results always require huge storage space and large communica-
tion cost in WSNs, approximate results are generally expected. The work in [27]
shows that a random sample of size Θ(1/ε2) is needed to be drawn from a dataset
to compute ε-approximate quantiles with a constant probability. Moreover, in
many applications, the approximate results, rather than exact ones, are good
enough for users to perform analysis and make decisions, such as trend analysis
[9], anomaly detection [26], and so on. Based on these reasons, an ε-approximate
φ-quantile is expected which can be formally defined as follows:

Definition 1. ε-approximate φ-quantiles: The ε-approximate φ-quantiles are
those elements in dataset S such as element x that satisfies (φ − ε)n ≤ r(x) ≤
(φ + ε)n where r(x) is the rank of x in S and n is the total number of the data
items.

For quantile-tracking objective, the data model can be divided into three classes:
static model, single-stream model and multi-stream model. For the static model,
data is predetermined and stored at nodes and f is computed over the union
of these multiple datasets. For the single-stream model, there is only one node
and data arrives at it in an online fashion. The goal is to track f over the
items that have arrived with the minimum storage space or communication cost.
Nowadays, the multi-distributed streaming model attracts a lot of attention since
it is more general in the physical environment. In this model, data streams into
each node in a distributed way and the tracking results are returned in a logical
coordinator. If all the nodes are connected to one coordinator directly, it is
called a flat model. The nodes in a WSN is organized into a spanning tree and
the tracking results are returned at the sink. Moreover, for tracking results,
the querying mode can be divided into two classes: single φ-quantile and all
φ-quantile. For the single φ-quantile tracking mode, a certain summary always
is maintained by a coordinator to compute a certain φ-quantile. Comparatively,
the data structure or summary preserved by a coordinator for all the φ-quantiles

Approximate Aggregation for Tracking Quantiles 163

can be used to compute any φ simultaneously. The bottleneck of single φ-quantile
is that frequent tracking operations, such as multiple sampling, are needed to
satisfy different user-defined φ’s.

The aforementioned reasons motivate us to track quantiles in WSNs in a
general way, which can be described as follows. The sensor nodes are organized
into a spanning tree and sensory data streams into each node in an online fashion.
The intermediate nodes not only need to relay data of its descendants, but also
hold a local dataset for itself. S(t) is the multi-set of items of the entire network
that have arrived until time t. S(t) = (d1, . . . , dn) is a sequence of data that
is collected orderly by nodes s1, s2, . . . , sk. The goal is to continuously track
ε-approximate φ-quantiles (0 ≤ φ ≤ 1) of S(t) at the sink for all φ’s.

The main contribution of this work can be summarized as follows: First,
quantiles can be tracked over the arrived data at any time t rather than through
a one-time computation over a predetermined dataset. Second, quantiles are
computed based on an arbitrary topological spanning tree rather than the cen-
tralized flat model. Third, a data structure can be maintained in the tree from
which all the φ-quantiles can be tracked simultaneously rather than for just a
specific φ.

Thus, our tracking operation is conducted on a platform that combines multi-
steam and all φ-quantile computations, but it is also significantly complex either.
Finally, our algorithm can continuously track the φ-quantiles over dataset S(t)
for all φ’s and has a total communication cost of O

(
k
ε log n log2 1

ε

)
, where k is

the number of the sensor nodes in the network, n is the total number of the data
items, and ε is the required approximation error.

2 Related Works

The previous quantile tracking techniques can be divided into three categories,
which are the exact algorithms, deterministic algorithms and probabilistic algo-
rithms. For a given φ, the exact algorithms are to return the exact φ-quantile
result to users. According to [23], the space complexity for computing the exact
median with p passes is Ω(n1/p). Clearly, the space complexity of the exact
algorithms is high, especially when the number of the passes p is small.

To further reduce the time and space complexities during tracking quan-
tiles, the deterministic algorithms are proposed, such as the recent works
[12,15,24,28]. Unlike the exact algorithms, the deterministic algorithms return
an ε-approximate φ-quantiles of a dataset. Since the deterministic algorithms just
require approximate results, they have lower space and communication complex-
ities. In 2005, Cormode et al. [9] proposed an all-tracking algorithm with the cost
of O

(
k
ε2 log n

)
. The work in [28] improves this result by a Θ(1ε) factor, whose

result has an upper bound O
(

k
ε log n

)
. Note that the work in [28] discusses the

all φ-quantiles tracking problem under the flat model, however, it is unclear how
to track quantiles in the tree model.

Considering that the approximate quantile with a probability guarantee can
be accepted by users in most cases, the complexity of tracking the quantile

164 Z. He et al.

can be further reduced. Thus, a group of probabilistic algorithms [5,15,17] were
proposed. Different from the above two types of the algorithms, the probabilistic
algorithms require that the ε-approximate φ-quantile result is guaranteed with
a probability. For example, the work in [15] proposes a quantile estimator and
partitions the routing tree to compute ε-approximate quantiles within constant
probability with the total communication cost of O(

√
kH/ε) where H is the hight

of the routing tree. However, this work just carries out one-time computation
over the predetermined dataset, so it is not clear whether it works well for the
data stream model.

3 Problem Definition

Without loss of generality, we assume that there are k sensor nodes in a WSN,
denoted by {s1, s2, ..., sk}. Meanwhile, we assume that each node samples a
sensory value from the monitored environment at each time slot and it holds
a small dataset before the algorithm is initiated. Δt is used to denote the
length of the interval between two adjacent time slots and si(t) denotes the
sensory dataset sampled by node i (1 ≤ i ≤ k) until time t. Therefore, a sen-
sory dataset can be obtained at node i for any given time t ∈ [0,+∞), and
S(t) = s1(t) ∪ s2(t) ∪ ... ∪ si(t) denotes the entire sensory dataset in the network
at time t ∈ [0,+∞). We assume at the initial time, each node si preserves an
initial dataset si(0).

For any given φ (0 ≤ φ ≤ 1) and integer n (0 ≤ n ≤ 1), if there exists
t′ ∈ [0,+∞] satisfying n = |S(t′)|, then the proposed algorithm is to return
the ε-approximate φ-quantiles at t (∀t ∈ [0, t′]). Note that the definition of ε-
approximate φ-quantile is given in Definition 1. Specifically, the problem studied
in this paper is defined as follows.

Input:
1) ε (ε ≥ 0) and φ (0 ≤ φ ≤ 1).
2) n and Δt.
3) {si(0) | i = 1, 2, . . . , k}.
Output:
ε-approximate φ-quantile for any t ∈ [0, t′], where t′ satisfies that n = |S(t′)|.

4 The Proposed Algorithm

In order to efficiently track quantiles in WSNs, the whole network is organized
by a spanning tree rooted at the sink. The nodes in the spanning tree can be
distinguished as the leaf nodes and the intermediate nodes, where the com-
munication cost of the intermediate nodes is large since they not only need to
maintain local datasets but also need to relay data of its descendants. Therefore,
one key problem of tracking quantiles in WSNs is to reduce the communication
cost of the intermediate nodes. To achieve this goal, we develop a global data
structure over the routing tree and maintain it dynamically with a bounded
communication cost.

Approximate Aggregation for Tracking Quantiles 165

We divide the entire tracking period into O(log n) rounds, denoted by mi (i =
1, 2, . . . log n). Whenever |S(t)| has increased by a constant factor, e.g., |S(t)| is
doubled, a new round is started. Assuming at time t′′, round mi is launched. We
use Mi to denote the set of data at the beginning of round mi, i.e., Mi = S(t′′).
Mi is fixed throughout round mi, i.e., |Mi| ≤ |S(t)| and t′′ ≤ t. It is always true
that ε|S(t)| = Θ(ε|C · S(t)|) for constant C and |Mi| = C · |S(t)| is ensured in
one round. Thus, in round mi, we have ε|S(t)| = Θ(ε|Mi|).

Based on this reason, our goal can be described in another way: along with
data streaming into network continuously, the goal is to maintain a data struc-
ture over S(t), based on which the rank of any data item x (x ∈ S(t)) can be
extracted with error O(εMi), where Mi ⊆ S(t) ⊆ Mi+1 and 1 ≤ i ≤ log n.

Since the operations of initialization, maintenance and tracking are similar
in each round, we first focus on one round and then obtain the total cost for all
rounds naturally. For simplicity, we assume that all the data values are distinct.
In summary, the algorithm for tracking quantiles in WSNs is described as follows.

First, initialize a binary tree T based on {si(0) | 1 ≤ i ≤ k}. The detailed
structure of T is provided in Sect. 4.1 and the specific steps of the initialization
algorithm are presented in Sect. 4.2.

Second, an accumulatively updating algorithm given in Sect. 4.3, is carried
out to reduce the transmission cost when new data arrives.

Third, we need to maintain the binary tree T so that the height and the leaf
nodes of T satisfy some requirements. The detail of the binary tree maintenance
algorithm is given in Sect. 4.4.

Fourth, the sink computes the rank of x (x ∈ S(t)), i.e., r(x), based on the
binary tree T .

Finally, the above four steps are executed iteratively until the number of the
execution times reaches log n, where n is the total number of the sensory values
in the network as given in Sect. 3.

4.1 The Data Structure

The data structure for querying is a binary tree T that is initialized at the begin-
ning of each round and maintained throughout one round. We take a specific
round mi as an example to describe the data structure. T is constructed in the
following way. The root of T is the approximate median of Mi, which divides Mi

into two subsets. Each subset is recursively split by selecting their approximate
median as the root of the subtree. The splitting process is iteratively executed
until the number of the items in each subset is no more than ε|Mi|/β, where β is
a constant satisfying β > 1 and ε is a user-defined error parameter as shown in
Sect. 3. Thus, the data structure is a binary tree with ε/β as the error parameter.

Obviously, T has Θ(β/ε) nodes in total and the height of T is h = Θ(log β/ε).
Meanwhile, each node in T , denoted by b, corresponds to an interval Ib = [lb, ub],
where lb and ub are the smallest and largest values in the subtree rooted at b
respectively.

The exact results can be obtained if we update Ib whenever a new sensory
value arrives. However, it incurs a huge communication cost if both the size

166 Z. He et al.

of the network and sampling frequency of each sensor are large. In practice,
each node b just needs to correspond to an approximate interval Ab so that
the corresponding interval does not need to be updated every time, where Ab

satisfies |Ib| − μ ≤ |Ab| ≤ |Ib|, μ satisfies hμ + ε|Mi|/β = ε|Mi|, and h is the
height of binary tree T .

The tracking process for r(x) is a traversal process over T from the root to
leaf node v such that x ∈ Av. For each root-to-leaf path, whenever following a
right child, the approximate interval size of its left sibling is summed up. Since
there are at most h such intervals, the total error introduced by the traversal
process is at most hμ. Finally, since the interval size corresponded by a leaf
node is less than ε|Mi|/β, one can query r(x) in S(t) with absolute error of
O(hμ + ε|Mi|/β). If let hμ + ε|Mi|/β = ε|Mi| with corresponding parameters μ
and β, the error of r(x) is O(ε|Mi|).

4.2 Initialization of the Binary Tree

Algorithm Description. The initialization algorithm is initiated at the begin-
ning of each round to build a global binary tree T . For any node a in the spanning
tree, tra denotes the tree rooted at a and ca denotes the number of children for
node a. ktra

is used to denote the number of the nodes in tra. |tra(0)| denotes
the total number of the data items preserved by the nodes within tra at the
initial time. r is the sink of the network. p and q denote the number of the leaf
nodes and the intermediate nodes in the spanning tree respectively, where the
leaf node set is denoted by {vi | i = 1, 2, . . . , p} and the intermediate node set is
denoted by {ui | i = 1, 2, . . . , q}. The binary tree built by node a is denoted by
Ta and the binary tree built for spanning tree tra is denoted by Ttra

.
The initialization algorithm in one round has the following 5 steps.

Step 1. Based on its initial dataset, each node si (1 ≤ i ≤ k) builds its own
approximate balanced binary tree Tsi

with ε/β as the error parameter. Now
querying any r(x) in si(0) has an error of ε|si(0)|/β.

Step 2. Each leaf node vi (1 ≤ i ≤ p) transmits its binary tree Tvi
to its parent

node in the spanning tree.

Step 3. Assume vi (1 ≤ i ≤ cuj
) is the child node of node uj (1 ≤ j ≤ q). Based

on Tvi
(1 ≤ i ≤ cuj

) and Tuj
, uj can compute any r(x) within truj

with an error
of

∑cuj

i=1 ε|si(0)|/β = ε|truj
(0)|/β, which is enough for uj (1 ≤ j ≤ q) to build a

binary tree Ttruj
with ε/β as the error parameter. Finally, Tuj

is transmitted to
the parent node of uj in the spanning tree.

Step 4. Step 3 is iteratively executed until sink r is reached. Then r broadcasts
T to the network through the spanning tree.

Step 5. After receiving T , each node si (1 ≤ i ≤ k) computes the exact number
of items in each interval and transmits to its parent node, where the total number
of intervals corresponded by the global binary tree T is Θ(β/ε).

It is clear that each interval size of T is exact at the initial time.

Approximate Aggregation for Tracking Quantiles 167

Communication Cost. The communication cost of the initialization algo-
rithm in one round is analyzed as follows. In Step 2, the communication cost of
the network is O(pβ/ε) since each leaf node vi (1 ≤ i ≤ p) needs to transmit the
binary tree Tvi

to its parent node and the size of Tvi
is Θ(β/ε). Similarly, the

communication cost generated in Step 3 is O(qβ/ε) since the intermediated nodes
also need to report the binary tree to their parents. In Step 4, the communica-
tion cost is O(kβ/ε) since the global binary tree T needs to be broadcasted to
k nodes and the size of T is Θ(β/ε). Finally, each node needs to transmit the
number of the items in each interval to its parent along the spanning tree, and
the communication cost is O(kβ/ε). In summary, the communication cost of the
initialization algorithm in one round is O(kβ/ε).

4.3 Updating the Interval Size Accumulatively

Algorithm Description. After initialization, each node si (1 ≤ i ≤ k) pre-
serves a global binary tree T . The naive method of updating T is to report all
sensory values sampled by the nodes to the sink leading to the communication
cost of O(nH), where H is the height of the spanning tree. Obviously, the cost
is very huge since n is generally far larger than k and 1/ε, otherwise, we just
need to send each sensory data to the sink. Thus, an accumulatively updating
algorithm is proposed to reduce the communication cost in the updating phase
with an accumulative report strategy. Although the error is generated during
the quantile tracking process, the proposed algorithm dramatically reduces the
communication cost for updating the global binary tree T .

Int is used to denote an arbitrary interval of T . As described in Sect. 4.1,
each Int has an exact interval size and an approximated interval size denoted
by |I| and |A| respectively. Meanwhile, each node keeps a set of counters for
counting the size of each Int.

The accumulatively updating algorithm includes the following two steps:

Step 1. With new sensory data continuously streaming into si (1 ≤ i ≤ k), si

monitors Int continuously.

Step 2. If the local count of Int at si (1 ≤ i ≤ k) has increased by a threshold
since its last communication to its parent about the local count of Int, si must
report an updated local count for Int to its parent. Then, each si (1 ≤ i ≤ k)
resets the counter to 0 and continuously monitors Int.

Among the steps of the accumulatively updating algorithm, determining the
threshold is very important since it affects the communication cost and accuracy
of the algorithm. Fortunately, this problem can be solved by Theorems 1 and 2.

Theorem 1. To satisfy that any r(x) (x ∈ S(t)) can be extracted with error
O(εMj), where Mj ⊆ S(t) ⊆ Mj+1 and 1 ≤ j ≤ log n, the condition |I| − μ ≤
|A| ≤ |I| should be ensured, where μ = (1 − 1/β) · ε/h · |Mj |.
The proof of Theorem 1 is given in our technique report [14].

168 Z. He et al.

Theorem 2. Assuming si (1 ≤ i ≤ k) is a node located at layer li (0 ≤ li ≤ H)
in the spanning tree, its ancestor node set is {Pf | 0 ≤ f ≤ li − 1, Pf is the
parent of Pf+1 and Pli−1 is the parent of si}. cPf

is the number of children of
Pf . If si (1 ≤ i ≤ k) reports an updated local count for Int to its parent when
the local count of sensory data in Int at si has increased by a threshold δi, where
δi = (

∏li
f=1 cPf

)−1 · μ, querying any r(x) in T has error O(ε|Mj |).
The proof of Theorem 2 is given in our technique report [14].

Communication Cost. Now we analyze the communication cost for the accu-
mulative updating process in one round. Note that the cost for one time com-
munication is regarded as one unit. When si (1 ≤ i ≤ k) sends an updated
count message for |A| to its parent, the communication cost incurred by the
accumulated δi sensory data is viewed as one unit so that the average cost
of one item is O(1/δi). Since each item may incur h times of such a message
shipping process, the average cost incurred by an item is O(h/δi). After sub-
stituting the expression of δi, one can obtain O(h/δi) = O((1 − 1/β)−1 · h2/ε ·
|Mj |−1 · ∏li

f=1 cPf
). Since in one round, the number of the data items streaming

into si (1 ≤ i ≤ k) is Θ(|Mj(i)|), the cost of updating the local count of |A|
at si (1 ≤ i ≤ k) is O(h|Mj(i)|/δi) = O((1 − 1/β)−1 · h2/ε · |Mj(i)|/|Mj | ·
∏li

f=1 cPf
). Thus, combing the condition h = Θ(log(β/ε)), the total cost of

updating the binary tree T in one round is O((1 − 1/β)−1 · 1/ε · log2(β/ε) ·∑k
i=1(|Mj(i)|/|Mj |

∏li
f=1 cPf

)). Assuming data streams into each node with a
similar speed i.e., |Mj(i)|/|Mj | = 1/k, the above expression can be rewritten as
O((1 − 1/β)−1 · 1/ε · log2(β/ε) · 1/k · ∑k

i=1(
∏li

f=1 cPf
)). It is easy to derive that

∑k
i=1(

∏li
f=1 cPf

) ≤ k2, then the communication cost for the accumulative updat-
ing process in one round is O((1 − 1/β)−1 · k/ε · log2(β/ε)).

4.4 Maintaining the Binary Tree

Algorithm Description. The global binary tree T may become unbalanced
with new items arriving in the data stream, which leads to a high communi-
cation cost for tracking quantiles. Thus, the approximate median as a splitting
element should not deviate from the exact median too much. Meanwhile, the
data structure requires that the interval size corresponded by the leaf nodes of
T should not be beyond ε|Mi|/β in round mi (1 ≤ i ≤ log n). Thus, our goal is to
maintain the height of the binary tree T as h = Θ(log(β/ε)) and the interval size
corresponded by the leaf nodes of T . Before presenting the specific maintenance
algorithm, we first introduce Lemma 1 and Theorem 3.

For any intermediate node u in binary tree T , let v and w be the left and
right child of u respectively. |Au|, |Av| and |Aw| denote the approximate interval
size of T corresponded by node u, v and w respectively. Meanwhile, |Iu|, |Iv|
and |Iw| denote the exact interval size of T corresponded by node u, v and w
respectively.

Approximate Aggregation for Tracking Quantiles 169

Lemma 1. For any intermediate node u with left child v and right child w in
T and parameter λ (0 < λ < 1/2), if λ|Iu| ≤ |Iv| ≤ (1 − λ)|Iu| is ensured, it is
always true that h = Θ(log(β/ε)).

The proof of Lemma 1 is given in our technique report [14].

Theorem 3. For each |Au|, |Av| and |Aw|, if condition

η|Au| ≤ |Av| ≤ (1 − η)|Au| (1)

is always satisfied, the height of T is bounded by h = Θ(log(β/ε)), where η =
(λhi + 1)/(hi − 1), 0 < λ < 1/2 and hi is the height of T at the beginning of a
round.

The proof of Theorem 3 is given in our technique report [14].
Thus, Theorem 3 provides the critical condition whether binary tree T is

unbalanced or not. Next, we will introduce the maintenance algorithm to let the
height of T always satisfy h = Θ(log(β/ε)).

When the critical condition (1) in Theorem 3 is violated, i.e., one of the two
conditions |Av| < η|Au| or |Av| > (1 − η)|Au| is satisfied for the binary tree
rooted at u, a partial rebuilding is needed to restore condition (1) for the partial
binary tree rooted at u. If one of these two conditions is satisfied at several nodes
in T simultaneously, we rebuild the highest tree rooted at one of these nodes.
Operation of rebuilding the binary tree rooted at u needs to initialize the binary
tree rooted at u. The initialization algorithm is shown in Sect. 4.2.

Meanwhile, as data items arrive, we need to make sure that the interval
size of T corresponded by each leaf node of T is not larger than ε|Mi|/β, i.e.,
|Av| ≤ ε|Mi|/β, where v is a leaf node of T . In each round, each approximate
interval |Av| will be monitored and v will be split by adding two children for v
as new leaves whenever |Av| > ε|Mi|/β − μ. Because Av has error of at most μ,
|Av| > ε|Mi|/β −μ will ensure that |Av| ≤ ε|Mi|/β. The splitting process is also
to initialize the interval of T corresponded by v.

Communication Cost. If the sink detects that the binary tree rooted at u
is unbalanced, it just needs to initialize the partial binary tree rooted at u,
so that the cost of this partial initialization operation is O

(
kβ
ε · |Iu|

|Mi|
)
. Since

Iv ⊆ Iu, it means that a new rebuilding operation for the binary tree rooted at
u is needed iff |Iu| has increased by a constant factor. Thus, the average cost for
an item to rebuild the tree rooted at u once is O(kβ

ε · 1
|Mi|). Since each item is

contained in O(h) intervals, i.e., one item may incur O(h) times of rebuilding,
the average cost for an item to rebuild the tree rooted at u is O(kβ

ε · h
|Mi|).

Thus, the communication cost for maintaining the balance of T in one round is
O(kβ

ε · h
|Mi| · |Mi|) = O(kβ

ε · h) = O(kβ
ε · log(β/ε)).

To split the leaf node v of T , the sink launches the initialization algorithm
for the interval corresponded by v. Since the initialization operation is con-
ducted on the interval corresponded by leaf v, it incurs a cost of O

(
kβ
ε · |Iv|

|Mi|
)
.

170 Z. He et al.

Since the interval size corresponded by v is less than ε|Mi|/β, i.e., |Iv| ≤ ε|Mi|/β,
one can derive O

(
kβ
ε · |Iv|

|Mi|
)

= O(k). Since T has at most β/ε leaf nodes, the
cost for the splitting operation in one round is O(kβ/ε).

In summary, the communication cost of the maintenance algorithm in one
round is O(kβ

ε · log(β/ε)).

4.5 Total Communication Cost

The above analysis shows that the communication cost for accumulative updat-
ing algorithm is dominant. Since β is a constant factor, we can obtain the
following conclusion:

Proposition. There is a deterministic algorithm that can continuously track
ε-approximate φ-quantiles in WSNs for all φ (0 ≤ φ ≤ 1) with a communication
cost of O

(
k/ε · log n · log2 1

ε

)
.

5 Conclusion

This paper studies the problem of tracking quantiles in WSNs. A binary tree
based data structure is proposed to achieve continuous tracking of ε-approximate
φ-quantiles (0 ≤ φ ≤ 1) over the arrived sensory data for all φ’s. The communica-
tion cost of the proposed algorithm is O

(
k/ε · log n · log2 1

ε

)
. Compared with the

previous works, the proposed algorithm can (1) track quantiles over distributed
data stream; (2) obtain quantiles over an arbitrary topological spanning tree;
and (3) track all φ-quantiles simultaneously. Therefore, the proposed algorithm
can better satisfy the requirements of quantile computation for the distributed
stream data model with efficient a communication cost.

References

1. Cai, Z., Chen, Z.-Z., Lin, G.: A 3.4713-approximation algorithm for the capacitated
multicast tree routing problem. Theoret. Comput. Sci. 410(52), 5415–5424 (2008)

2. Cai, Z., Lin, G., Xue, G.: Improved approximation algorithms for the capacitated
multicast routing problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595,
pp. 136–145. Springer, Heidelberg (2005)

3. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators: New Trends and
Applications. Physica-Verlag GmbH, Heidelberg (2002)

4. Cao, J., Li, L.E., Chen, A., Bu, T.: Incremental tracking of multiple quantiles for
network monitoring in cellular networks

5. Cheng, S., Li, J., Cai, J.: O(ε)-approximation to physical world by sensor networks.
In: INFOCOM, pp. 3084–3092 (2013)

6. Cheng, X., Du, D., Baogang, X.: Relay sensor placement in wireless sensor net-
works. Wireless Netw. 14(3), 347–355 (2008)

7. Cheng, X., Huang, X., Li, D., Weili, W., Du, D.: A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks 42(4), 202–208 (2003)

Approximate Aggregation for Tracking Quantiles 171

8. Cheng, X., Thaeler, A., Xue, G., Chen, D.: Tps: A time-based positioning scheme
for outdoor wireless sensor networks. In: IEEE INFOCOM 2004, pp. 2685–2696,
Hong Kong, China, 7–11 March 2004

9. Cormode, G., Garofalakis, M.: Holistic aggregates in a networked world: Distrib-
uted tracking of approximate quantiles. In: SIGMOD, pp. 25–36 (2005)

10. Ding, M., Chen, D., Xing, K., Cheng, X.: Localized fault-tolerant event boundary
detection in sensor networks. In: IEEE INFOCOM 2005, pp. 902–913, Miami, USA,
13–17 March 2005

11. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: Domain-driven data
synopses for dynamic quantiles. IEEE Trans. Knowl. Data Eng. 17(7), 927–938
(2005)

12. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile sum-
maries. In: SIGMOD ’01, pp. 58–66. ACM, New York (2001)

13. Greenwald, M.B., Khanna, S.: Power-conserving computation of order-statistics
over sensor networks. In: PODS ’04, pp. 275–285. ACM, New York (2004)

14. He, Z., Cai, Z., Cheng, S., Wang, X.: Appendix: Approximate aggregation for track-
ing quantiles in wireless sensor networks. http://www.cs.gsu.edu/zcai/reports/
2014/COCOAAppendix.pdf

15. Huang, Z., Wang, L., Yi, K., Liu, Y.: Sampling based algorithms for quantile
computation in sensor networks. In: SIGMOD ’11, pp. 745–756. ACM, New York
(2011)

16. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient distrib-
uted monitoring of thresholded counts. In: SIGMOD ’06, pp. 289–300. ACM, New
York (2006)

17. Li, J., Cheng, S.: (ε, δ)-approximate aggregation algorithms in dynamic sensor net-
works. IEEE Trans. Parallel Distrib. Syst. 23(3), 385–396 (2012)

18. Li, J., Cheng, S., Gao, H., Cai, Z.: Approximate physical world reconstruction
algorithms in sensor networks. IEEE Trans. Parallel Distrib. Syst. (2014)

19. Liu, Y., He, Y., Li, M., Wang, J., Liu, K., Mo, L., Dong, W., Yang, Z., Xi, M.,
Zhao, J., Li, X.-Y.: Does wireless sensor network scale? a measurement study on
greenorbs. In: 2011 Proceedings IEEE INFOCOM, pp. 873–881, April 2011

20. Metwally, A., Agrawal, D., El Abbadi, A.: An integrated efficient solution for com-
puting frequent and top-k elements in data streams. ACM Trans. Database Syst.
31(3), 1095–1133 (2006)

21. Mo, L., He, Y., Liu, Y., Zhao, J., Tang, S.-J., Li, X.-Y., Dai, G.: Canopy closure
estimates with greenorbs: Sustainable sensing in the forest. In: SenSys ’09, pp.
99–112. ACM, New York (2009)

22. Moon, B., Fernando Vega Lopez, I., Immanuel, V.: Efficient algorithms for large-
scale temporal aggregation. IEEE Trans. Knowl. Data Eng. 15(3), 744 (2003)

23. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. In: SFCS
’78, pp. 253–258. IEEE Computer Society, Washington, DC (1978)

24. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: New
aggregation techniques for sensor networks. In: SenSys ’04, pp. 239–249. ACM,
New York (2004)

25. Siew, Z.W., Wong, C.H., Kiring, A., Chin, R.K.Y., Teo, K.T.K.: Fuzzy logic based
energy efficient protocol in wireless sensor networks. ICTACT J. Commun. Technol.
(IJCT) 3(4), 639–645 (2012)

26. Thatte, G., Mitra, U., Heidemann, J.: Parametric methods for anomaly detection
in aggregate traffic. IEEE/ACM Trans. Networking 19(2), 512–525 (2011)

27. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies
of events to their probabilities. Theory Probab. Its Appl. 16(2), 264–280 (1971)

http://www.cs.gsu.edu/zcai/reports/2014/COCOAAppendix.pdf
http://www.cs.gsu.edu/zcai/reports/2014/COCOAAppendix.pdf

172 Z. He et al.

28. Yi, K., Zhang, Q.: Optimal tracking of distributed heavy hitters and quantiles.
Algorithmica 65(1), 206–223 (2013)

29. Yu, B.: Comment: Monitoring networked applications with incremental quantile
estimation. Stat. Sci. 21(4), 483–484 (2006)

	Approximate Aggregation for Tracking Quantiles in Wireless Sensor Networks
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 The Proposed Algorithm
	4.1 The Data Structure
	4.2 Initialization of the Binary Tree
	4.3 Updating the Interval Size Accumulatively
	4.4 Maintaining the Binary Tree
	4.5 Total Communication Cost

	5 Conclusion
	References

