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Abstract We describe the reasons and choices we made when designing an
architecture for a multilingual Natural Language Processing (NLP) system for
mobile devices. The most tangible limitations and problems are limited processing
power of mobile devices, strong influence of idiolect (or generally personal language
usage differentiation between individual users in their personal communication),
effort required to port the NLP system to multiple languages, and finally the
additional processing layers required when dealing with real-world data as opposed
to controlled academic set-ups. Our solution is based on a strict differentiation
between server-side preprocessing and client-side processing, as well as maximized
usage of unsupervised techniques to avoid the problems posed by personal language
usage variations. Hence it represents an adequate combination of solutions to
provide robust NLP despite all these limitations.

1 Introduction

Natural Language Processing is a field that has evolved dramatically over the past
fifty years. Some of the early core areas of study were syntax, morphology, and
semantics of languages. The main goal is to provide methods to let computers
do at least some of the work that us humans do with information embedded in
unstructured data.1 By now there is a wide range of use cases for which at least
practically acceptable solutions exist, such as Machine Translation, Information

1Assuming the dichotomy between structured and unstructured data to be loosely defined as
“information or pieces of data stored in explicit relations with each other (cf. relational data bases)
to be structured data and information stored without explicit relations within unanalyzed texts to be
unstructured”. Another possible definition is that “any data base is structured if it is possible to use
a simple and precise query system which guarantees to retrieve a particular piece of information if
it exists”. No current system is able to achieve that fully with textual information.
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Retrieval, Spell Checking, and Speech processing, amongst others. Most of these
approaches are based on explicitly distinguishing individual languages. This makes
it possible to build dedicated modules for each language such as for English versus a
module for Spanish or French, etc. It is often assumed implicitly that a module built
for English will be more or less uniformly valid for the language and all possible
texts written in it. Yet it is obvious that there are distinguishable subdomains such
as medicine versus technical documents within languages. Accordingly, much of
the effort in NLP goes into solutions to the domain dependency problem to either
reduce that dependency or find easier ways to port a solution from one domain to
another.

In its entirety, any approach based on building language modules can be
described as top-down, because at the core it will be about some particular language
or language family. It splits the problem of building an NLP system top-down into
solutions for particular languages of a language family and finally for domains
inside a language. But what would a bottom-up approach be in this case? The most
reasonably extreme form of that would be to treat the production and perception of
language by a single person as distinguishable from that of any other person, which
is very close to the one sense per discourse idea, but not as extreme.

A single person typically speaks one or more languages, is a specialist in one or
more subdomains of each language she/he speaks, and also uses words, expressions,
and even syntactic constructs in a highly idiosyncratic way. So much so, in fact,
that it is even possible to detect original authorship of texts purely based on
word frequency differences with a certain degree of confidence [33], distinguish
individual persons based on their language production patterns even within the
same location, profession, and topics [5], or conduct linguistic forensics pertaining
to individual language usage [31]. The idiolect, the difference in language use
amongst individual language users, may not seem very large. However, typical inter-
annotator agreement figures show that these differences are far from negligible. For
example, [21] show correlation scores ranging from 0.71 to 0.84 (Kappa) between
human annotators while [11] show that even a task such as the detection of chemical
Named Entities (which appears relatively easy) achieves 93 % F-score agreement
between human annotators.

The relatively recent rapid adoption of new communication channels such as
short messaging services (SMS) has brought about entirely new interaction limita-
tions, which in turn spawned entirely new language domains, which additionally
interact with existing domains. For example, lawyers and researchers are likely
to exhibit different kind of language usage when they use SMS on smartphones
or email on PCs. This leads to a further dispersion of personal language usage
into larger numbers of different subdomains, cross-domains, and complex domain
interaction phenomena. So much so that trying to build domain specialized NLP
solutions for each of these possible interactions becomes more and more intractable.
But is there any other way? Is it even possible to think of a solution that solves or
circumvents these problems? In order to tackle these and other problems related to
building NLP solutions for mobile devices, we formulate the following hypotheses
and show that incorporating experimental results and observations arising from



A Structuralist Approach for Personal Knowledge Exploration 117

these hypotheses improves user-centric performance levels of our NLP solution
significantly.

Language usage variation hypothesis We assume that language usage between
different users differs so strongly that any additional mechanism of adapting to
user-specific language usage will easily outperform any pre-built NLP systems
that do not adapt.

Limited language usage variation hypothesis We assume that the language
usage variation is stronger (weaker) in some areas of language. Hence it makes
sense to preprocess some parts of the language models on a large corpus on a
server and only compute the more variable parts directly on-device.

Principle of minimal language dependence We assume that a solution to an
NLP problem which requires substantial professional input2 will be inferior to
a solution which provides slightly inferior results in an evaluation but requires
significantly less or no professional input on real-world data in order to adapt it
to a new language or domain.

Additional processing layers Real-world data contains many more structural
levels compared to theoretical models of language usage which often focus on
morphemes, words, sentences, paragraphs, and larger text units. We assume that
any system that provides even basic support for dealing for additional levels (e.g.
lists, tables, log files) will provide noticeably improved quality levels on real-
world data.

Our solution is a combination of traditional NLP methods with structuralist
methods as extensions of statistical algorithms and in some occasions simple word
lists. This approach extends many of the more basic approaches described in [24].
We particularly want to show that such solutions can be built in a sufficiently
efficient way so that they can even be employed on the weakest possible computing
devices, that is, mobile devices. One reason to do this is that in the past, excessive
computing power requirements of structuralist approaches have been used as a
counterargument—as we think—erroneously.

1.1 The Structuralist Approach and Personal Data

In structuralism signs (e.g. words) get their meaning from their relationships and
contrasts with other signs [12]. Related to this, an unsupervised approach is loosely
defined as a solution to an NLP problem that relies on finding structure within
the input text on its own, rather than assuming structure through pre-annotated
training data or explicit rules and assignments [23]. Such algorithms are based on
measuring the observable patterns of usage of, for example, words with other words.
An unsupervised part-of-speech tagger, for example, clusters words according to

2Input by people educated in a relevant field of linguistics.
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their syntactic usage as measured by occurrence with other nearby words, instead
of assuming rigid categories such as nouns or verbs. This typically requires a large
amount of raw data in order to produce good results, and there is a logarithmic
dependency between data size and quality, as observed in Chap. 3 in [6]. Hence, the
first step is to assess what kind of input data can be used as input and whether it is
sufficient. Personal data can be found in and between the realms of structured and
unstructured data. Examples for structured personal data include:

• address books across various device/application combinations such as email
client, mobile phone, or notebook

• calendar applications
• equipment or book rental lists in custom data base designs (often, this is given

just by a single Excel table)
• music and video files
• bookmarks of favorite websites and histories of visited websites

Beyond that, a large bulk of real information is stored in unstructured data (or
semi-structured data):

• documents the user wrote or received (note that usually information about the
creator of a particular document does not exist explicitly)

• emails the user wrote or received
• short messages the user wrote or received on a multitude of devices (mobile

phone, notebook, PC, various websites such as Facebook).

The level of detail available in personal data from both data sources is already
staggering. With enough personal data, a highly accurate map of a given user’s daily
life can be achieved. No current systems are able to come even close to enabling the
user to work with all her/his own knowledge in a seamless, fully integrated way. The
main obstacles that need to be overcome include, among other things, the following
ones:

• The individual structured data bases are scattered among a great variety of
completely different and incompatible non-standardized custom data bases.

• There exists no software that is able to reliably extract clean bits of knowledge
from all the unstructured data that the user has. There are only large-scale projects
such as NELL3 [7], or Google knowledge graph4 or IBM Watson5 [15] which
cannot be applied on the personal data and needs of a single user. Other solutions
such as Apple’s Siri, Google’s Google Now are typically server based and do not
possess capabilities yet to analyze the unstructured data of the user.

But what kinds of real-world use cases would such a software enable. Is it
possible to solve some of these use cases with existing technology?

3rtw.ml.cmu.edu/rtw, retrieved on 24.03.2014.
4www.google.com/insidesearch/features/search/knowledge.html, retrieved on 24.03.2014.
5www-05.ibm.com/de/watson, retrieved on 24.03.2014.

rtw.ml.cmu.edu/rtw
www.google.com/insidesearch/features/search/knowledge.html
www-05.ibm.com/de/watson
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1.2 Mobile Devices

Natural language processing on mobile devices poses a particularly hard combi-
nation of challenges, such as extremely limited computing power or very limited
interaction with the device due to small screens and tiny virtual keyboards.
Excluding spoken language from the scope of this contribution still leaves us with
an immense variety of communication types such as SMS, emails, and web pages,
amongst others. The amount of data available for each of these types will be small
compared to what computational linguists are used to work with, but not too small
to consider statistical approaches. It is reasonable to expect a single user to handle
on the order of a thousand SMS, emails or visited websites per year. Additionally,
each of these sources of different text type poses problems which, at first, seem to
be peripheral from the point of view of traditional NLP.

For example, SMS messages feature and encourage strongly abbreviated lan-
guage patterns. Emails contain huge amounts of seemingly non-linguistic compo-
nents, such as signature text parts, quoted email parts, tables, ASCII art, emoticons
etc. Websites typically devote very small areas for content proper and use most of
the screen estate for ancillary data such as menus, advertisements, and (un)related
content. When viewing emails or websites, the human eye quickly catches all
relevant parts and discards irrelevant parts even quicker. However, simulating even
this task as an algorithm proves to be surprisingly difficult [28] and is only solved
using indirect tricks, such as comparing different websites from the same provider
with each other and tracking the similar parts.

Finally, mobile devices are sold and used on a global scale now, so any NLP
solution will also have to be useful for a wide variety of languages, from English
through Finnish to Korean and Japanese. This means that even very basic traditional
components such as tokenizers, sentence boundary detectors and part-of-speech
taggers can become obstacles in some cases. It also means that the effort of adapting
a NLP system to a new language must be as cost-efficient as possible in order to
make it feasible to cover several dozen languages.

2 Our Solution

Considering all the problems and limitations described above, we have built and
tested in a commercial product6 a solution which offers a robust NLP capabil-
ity for a variety of use cases, including information extraction, text similarity
measurement, and various classification tasks. This solution is a hybrid system
including rule-based parts as well as purely statistical parts. The system is split
into two parts, one for pre-processing on the side of the server and a second for

6The product is an email client with enhanced NLP capabilities; see http://mailbe.at.

http://mailbe.at


120 S. Bordag et al.

on-device computation. We employ rule-based systems for basic NLP tasks such
as tokenization or sentence boundary detection as well as for tasks of information
extraction system as, for example, time extraction. We further employ rule-based
systems for detecting macro-structures such as detecting quoted text, bulleted lists
and tables. We use self-learning classifiers for signature detection in emails, website
scraping, email classification and other on-device learning components. We employ
server-side bootstrapping algorithms for our generalized named entity recognition
framework and client-side trained and compressed models. Finally, we use entirely
unsupervised solutions for text similarity estimations, text summarization, induc-
ing semantic networks and other components which are strongly influenced by
personal language variation. Some of the learning components, in particular all
classifiers, run exclusively on the mobile device. Some components, such as the
pre-computation of a part-of-speech tagger model (clustering and training) run on
the server and produce compressed language models for client-side deployment.

2.1 Pledge for Additional “Language” Layers

When developing NLP solutions, one of the most critical steps is to introduce an
evaluation framework which measures success and error rates. Our main finding
of the study reported here was that the primary source of errors is not partial
intelligence in the NLP solution (even if it is just a baseline solution) but that
most errors are introduced by applying the solution in the wrong way or on
the wrong data. For example, even a very simple sentence boundary detection
algorithm usually produces very few mistakes (typically around abbreviations). This
is demonstrated, for example, in [27] which show that the difference between the
best and worst system is only 1,5 % (error rate) on the Brown corpus. However,
when applied to the raw text of an email, it is not uncommon to see that error
rates jump up to nearly 100 %. This is because an email may contain a single
sentence and a long log printout with lots of dots scattered around (none of which
signify sentence boundaries), and no dots at the end of each log entry (which would
constitute sentence boundaries). In an academic setting, it is easy to discard such
examples as invalid or unfitting data. When it comes to real-world applications, it is
impossible to use such an argument because real-world applications need to detect
and make automatic decisions whether to use or ignore data of any kind. Taking
into account all of these issues and challenges, the architecture of our NLP system
for mobile devices can be seen in Fig. 1. The basic idea underlying this architecture
is to design in a way that the traditional NLP modules (such as time and named
entity recognition) are applied only after extensive pre-processing steps. These steps
detect text types and blocks, and apply the analytic algorithms only on data where
and when it makes sense. This approach reduces error rates to levels comparable to
the ones reported in the literature and also keeps the error levels relatively constant.

Another aspect of our architecture is that it divides between server-side process-
ing of language models and client-side processing for auxiliary modules. There
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Fig. 1 An overview of the architecture of our NLP solution for mobile devices

are some algorithms that require a huge amount of input data in order to deliver
acceptable results. Examples of such algorithms include part-of-speech tagging [29]
and the differential analysis used for key word extraction [39]. On the other hand,
there are algorithms that require relatively little data. However, they expect data
which fits the problem very well. A good example of that is signature detection
(based on observing similarities between emails from the same sender) or quote
detection (where a helpful feature is whether some part of text has been seen
previously) (cf. [8]).

In the following two sections we show how different parts of our architecture can
be combined to achieve optimal performance levels. The next section describes the
influence of the various parts and limitations of a mobile device on text similarity
measurement followed by a detailed section on information extraction.

3 Text Similarity Measurement

Measuring semantic text similarities is a topic of NLP with a large variety of
use cases. Finding semantically related content is an extension of the core use
case of search in information retrieval. We can simply reformulate the typical
information retrieval use case using arbitrary documents as a query, for example in
the vector space model [34]. However, apart from information retrieval, many other
applications that deal with textual data may benefit from text similarity algorithms
and associated index structures. For example, in an email application, it can be used
to show emails related to the one the user is currently reading or writing. It can also
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be used as a basis for text clustering, automatic filtering, automatic classification of
emails into folders, and even recipient prediction or verification.

On the other hand, it is a computationally intensive problem because the worst
case time complexity of exhaustive comparisons amongst texts is quadratic. One
possible technique to reduce the number of comparisons is a pruned inverse index
that associates a term with a limited set of documents. But any kind of pruning
has the implied risk of missing relevant information by simply skipping it. This
might lead to a reduction of the number of actually found similar items. A good
pruning, however, could even increase the quality of the found items in terms of
semantic similarity by inspecting only relevant terms. The central problem hereby
is the computational representation of relevancy. Often, this is done by employing
measures of statistical significance. The differential analysis formula presented in
[40] (which is in turn based on the log-likelihood significance test [14]) is used in the
following experiments to build a proprietary document index based on the frequency
of a word in a document in comparison to its frequency in a pre-processed corpus
as well as the size of the document.

Another aspect of measuring semantic similarities is that, even without any prun-
ing, there is a risk of missing documents of the same topic(s) that use different words
of close, similar or related meanings. For example, the two sentences “That tank
fired a round” and “Armor fire detected” would be missed by an index that is based
only on words. Additional knowledge (as provided, for example by a thesaurus) is
needed to allow the text similarity system for matching words of related meaning.
This knowledge can be provided by a lexical database like WordNet [32, 38]. The
availability or size of such manually compiled lexical databases is rather limited for
some languages. In some cases even their applicability beyond academic projects
is limited. However, as discussed under the distributional hypothesis earlier [6],
a corpus in a language and a domain is sufficient to automatically compute a
knowledge base of distributional semantics that may serve the same purpose.

As a result, text similarity systems consist of a variety of components. Figure 1
shows the main building blocks of our NLP solution. Pre-processing starts with
parsing of raw documents like textual emails, HTML, XML, or Office documents,
and then continues with language detection, tokenization and text cleaning. The
text cleaning part is highly dependent of the source and text type of the data. For
generic web pages, for example, we employ a self-learning module that learns
to skip advertisements and structural data like menus. In the email use case,
processing and correct handling of quotations and signatures is central to the quality
of the text similarity algorithm and other parts of the NLP processing chain. We
have discovered that when our system does not recognize signatures and hence
cannot exclude them from any processing, the performance of the text similarity
system degrades severely for users who share many messages on different topics
(e.g. co-workers or friends). Although in theory there is a convention regarding
how to separate signatures from the main body (- \n), many if not most users
choose not to follow the convention. Signature detection has thus been defined
as a classification task [8] with the conventional pattern as just one out of many
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possible features or as one part of a generalized email structure classifier as outlined
above [30].

Typically, a complex information retrieval system also includes a lemmatization
module which maps, for example, “fired” and “fire” on the same lemma. It may also
contain the aforementioned thesaurus module which would allow for matching tank
with armor. We assume that usage differences of personal language affect some
areas of language more than others. For example, differences in pronunciation or
choice of words tend to be stronger than differences in grammar or morphology. As
a consequence, we state that some modules might profit only very little or not at
all from a perfect fit to the data of the user. Other modules, however, would profit
much more. In order to show the potential influence of personalizing NLP systems
through self-learning techniques we now discuss several experiments.

3.1 Evaluation Method

Traditionally, evaluation of Information Retrieval (IR) systems has been centered
around the so-called Cranfield Experiments using gold standards (e.g. TREC7).
These gold standards offer various beneficial properties for the research community
like comparability and repeatability. They are limited in scope and availability, how-
ever. Apart from that personalized information retrieval systems are hard to evaluate
using standardized gold sets, since gold sets cannot easily capture the applied
personalization. This might explain why the evaluation of personalized IR systems
has focused on user studies [13]. While these user studies can clearly capture the
personalization, they are limited in terms of repeatability and comparability. Gold
standards require higher up-front costs but may be reused any number of times.
User studies on the other hand lead to continuous costs for each experiment or
improvement cycle. Simulated user studies or a living lab as described in [3, 26]
might be a solution to combine the desired repeatability of experiments with the
ability to capture personalization.

In order to quickly measure the impact of certain improvements, a specialized
gold standard may provide a good estimate of the impact in the final product. Due
to licensing restrictions and the previously mentioned scope and limitations of avail-
ability, we decided to create our own gold standard data sets. We distinguish gold
standards by their language, source and content type. Each gold data set consists of
a document collection with a list T of topics from a defined text source. Each topic
contains a number of associated documents. We make a conscious simplification by
assuming that a document is related to exactly one topic. Additionally we evaluated
our system using the data from the SemEval 2012 and 2013 tasks on Semantic Text
Similarity [1, 2].

7trec.nist.gov.

trec.nist.gov
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3.2 Experiments on News and Email Text Collections

For evaluation we add the entire collection to the index and then iterate over all
documents d in the current document collection D. For each d we query a ranked
top n list of similar documents d 0. Each d 0 is then compared to the content of
T (a list of topics, see above) of the original document d . From these counts of
matching and non-matching documents we calculate the precision, recall and F1-
score (i.e., the harmonic mean of precision and recall). We use two different English
gold standards which encompass:

• A collection of 26 topics in news texts where exactly 20 texts are given per topic
• A collection of 18 topics in emails from a single user with an average of 12 emails

per topic.

The following experiments show the impact of domain dependence and advanced
domain dependent filtering on our semantic text similarity index. To show the
influence of domain dependence we compare pre-trained models with models
trained directly on the evaluation data. Additionally we show the impact of signature
detection to the email use case.

For the following experiments we used word frequencies and distributional
semantic clusters pre-calculated on a 1 million lines newspaper corpus comparable
to those available from the Wortschatz project [18]. In addition, we created a small
corpus from the email gold data set with about 6,000 lines of text and computed
distributional semantic clusters based on that as well.

E0 is the baseline experiment evaluated on the news gold standards using our
pruned index, distributional semantics, and word frequencies calculated from our
newspaper corpus. E1 evaluates the email gold standard using the same parameters
as E0. For E2 we employed adapted models by using the distributional semantic
clusters computed on the email corpus. For E3, E4 and E5 we additionally executed
a signature detection module to filter the emails. E3 hereby uses the same default
semantic clusters as employed in E1 and a generic pre-trained version of our custom
signature detection classifier. E4 refines the signature detection classifier by training
it directly on the emails. Finally E5 is a combination of both the adapted semantic
clusters as in E2 and the trained signature detection classifier. For each of the
experiments we show the aggregated precision, recall and F1-score as computed
by querying the index for the top 10 similar items to each given text. The results are
summarized in Table 1.

With an F1-scores of 72:43% Experiment E0 clearly outperforms Experiment
E1 (56:73%). There are two main reasons for this. First of all, the real-world email
data of E1 is noisier than the manually cleaned news text. Among others, the email
dataset contains large signatures, complicated quotes, bad spelling, ASCII art and
even partial email headers in quotes, tables or stack traces. Secondly, we assume that
the trained newspaper model is a better match for the news gold standard than for the
emails. Further evidence for this assumption can be observed by using the computed
distributional semantics of the email gold set as described above. By comparing the
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Table 1 Experiments on source-dependent text cleaning and domain-dependent distributional
semantics in text similarity measurement

E
Semantic
clustering

Signature
detection Data set Top N Precision (%) Recall (%) F1-score (%)

E0 Default n/a News 10 72.51 72.36 72.43

E1 Default None Email 10 55.94 57.54 56.73

E2 Email None Email 10 59.03 58.01 58.51

E3 Default Pre-trained Email 10 42.28 41.99 42.13

E4 Default Trained Email 10 53.65 54.88 54.26

E5 Email Trained Email 10 58.31 55.45 56.84

F1-scores of E1 versus E2 and of E4 versus E5, we note a rather small but persistent
difference of about 2% (F1). The small factor is partly due to the fact that we only
fitted the distributional semantics. As described earlier, the distributional semantics
module only works as an extension to the general pruned index which is similar
to a thesaurus. All other parameters like the very important word frequencies are
kept identical. Considering the size of the two corpora (one with 6,000 lines of
email text and the other with 1 million lines of generic newspaper text), this effect
is nonetheless surprising, especially since prior work [6] on the effect of corpus
size and the quality of semantic relation extraction showed a direct logarithmic
dependency of both. From these findings it seems that domain adaptation is at least
as important as corpus size. Hence it can be predicted that, on larger personal email
collections, the performance will increase for the personalized semantic model. At
the same time, performance is likely to stay the same for the trained model or even
degrades if the discourse of the personal communication moves away from general
topics. While the distributional semantic model benefits from on-device adaptation
our generic signature detection algorithm needs to be trained on specific emails to
actually perform well. This can easily be seen by means of Experiment E4 and E5

which clearly outperform E3.
In summary, we have shown that for a task like signature detection per-user adap-

tation is a requirement in order to provide acceptable performance. Furthermore,
even for algorithms like semantic clustering, we have initial evidence showing that
domain adaptation and on-device training can be more important than corpus size
and design.

In regard to our discussion so far it seems strange that E4 and E5 do not
outperform E1 and E2 as clearly as E3. This effect is, however, due to the relatively
small size of our email gold standard. As noted earlier, there is a strong correlation
between senders and topics in the gold standard. Since many topics in the email set
contain only a discussion of a few selected people, signatures turn out to be good
features for association. On a more complete email inbox a user will most probably
have discussions on different topics with the same persons over the course of time.
This is clearly an example of how challenging it is to scope gold standards correctly
to reflect the final use cases.
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3.3 (Unofficial) Semantic Text Similarity Experiments

In an effort to provide evaluation data on standard datasets we also ran our system
against the shared Semantic Text Similarity task (SemEval workshops of 2012 and
2013 [1, 2]). The STS evaluations consist of sentence pairs associated with scores
between 0 and 5 to indicate their observed semantic relatedness. Here 0 is not
related and 5 is identical on a semantic level. The evaluation pairs were gathered
from different sources such as video subtitles, statistical machine translation, news
headlines or glossaries (cf. [1, 2]). In 2012 35 teams submitted a total of 88 system
runs, in 2013 34 teams participated in the similar CORE sub-task submitting 89
system runs in total.

Before considering the results, it is necessary to stress the following facts. Neither
did we optimize our system to perform well on sentence-level comparisons (it is
optimized to compare entire emails with each other), nor do the STS evaluations
take the amount of CPU cycles to compute the similarity, RAM usage or resources
disk space usage into account when comparing the quality of the algorithms. Our
system, for example, has to have response times for computing the 10 most similar
documents in a collection of 1,000 documents of less then several hundreds of
milliseconds (exact numbers depending on specific phone models). The linguistic
processing also has to never exceed more than a couple of megabytes of RAM usage
(irrespective of other factors, e.g., document size), because any android process
using more than 35 megabytes will be terminated by android without warning
and the application has to perform many other operations such as user interface
processing or data base handling at the same time. Additionally, download sizes
of applications still typically range within a few dozen megabytes, with anything
bigger than that considered to be too large. Hence, we were forced to optimize our
entire language models to be around one to three megabytes per language.

In 2012 most algorithms with decent results relied on a mixture of different
string- or word-based similarity algorithms combined with external knowledge
sources (e.g. WordNet), or complex linguistic tools (e.g. parsers, PoS-taggers,
machine learning and sometimes even machine translation (an overview is provided
in [1, p. 392])). UKP, the best performing system in 2012, which also served as
a baseline for 2013 and still performed very well, uses a combination of many
different string and word based features, explicit knowledge from WordNet and
Wikipedia and a distributional thesaurus leading to more than 300 different vectors
[4]. We do not have access to exact numbers, but it is likely a computationally rather
complex approach to the problem.

Our results were matched to the gold standard using the WEKA toolkit [22] to
calculate a simple supervised linear regression for each dataset. To work around
one issue of our system when dealing with very short sentences consisting solely
of stopwords, we defined a return value of 5 in cases where the lowercased words
between both sentences all matched. The results are summarized in Table 2. Our
unofficial results show us at rank 57 of 88 in the 2012 challenge. A run on the freely
available parts of the 2013 gold sets using regression parameters obtained on 2012
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Table 2 Pearson correlation
on STS 2012 and 2013
datasets including the rank

Dataset Year Correlation Rank

MSRpar 2012 0.37072 77

MSRvid 2012 0.69851 57

SMTeuroparl 2012 0.49825 17

OnWN 2012 0.57392 59

SMTnews 2012 0.42229 7

Weighted mean 2012 0,52431 57

Headlines 2013 0.62939 52

OnWN 2013 0.63346 26

FNWN 2013 0.14607 78

data shows us again at a mid range position. Due to the distribution restrictions on
one 2013 dataset, we cannot provide an overall mean.

Our system appears to have a particular weakness regarding the headline
paraphrases of the MSRpar dataset of 2012 and the FrameNet-WordNet glossary
pairs in the FNWN dataset, which we will look into in future improvement rounds.
Presently, our system also does not contain several modules yet, because they are
still under development or because they are excluded for reasons of efficiency,
such as unsupervised lemmatization, our time extraction module, or the extraction
module for measurement units.

4 Information Extraction

The extraction of information out of textual data is a complex and challenging
task in NLP. The field of information extraction has evolved over the last few
decades. Starting with early conferences focusing on message understanding [19,
20], information extraction was firstly defined as the task of extracting entities,
events, and relations. These entity types range from names of locations, persons
and organizations, temporal expressions and monetary values; the defined relation
types cover logical relations between those entities (e.g. Located-In(Org, Loc)).

Today, research efforts in this area are closer to a deep understanding of language
[10, 37]. This includes detection and extraction of manifold entities which are
not necessarily restricted to named entities (e.g. entities from the biomedical
domain [25] or arbitrary expressions for practical purposes such as shopping list
items). For many use cases extraction of simple logical relations is only a minor
step towards more complex structures. We consider detecting and understanding
flight confirmations as one representative example. This task includes extraction
of numerous entities (e.g. airports, departure / arrival time and flight durations)
and logical relations (e.g. departure airport / time, arrival airport / time), sanity
constraints (e.g. departure time must be earlier than arrival time, time zone(s)), and
additional information (e.g. baggage restrictions, flight booking references).
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Mee�ng invita�on

Informa�on

Address
book

Fig. 2 An overview of the information extraction system

In order to master information extraction for these and similar complex tasks, we
created a hybrid information extraction system (see Fig. 2) combining the strength
of established statistical approaches for Named Entity Recognition (NER) with rule-
based approaches to ensure special properties of the information to be extracted
without neglecting characteristics of personal data and restrictions of applying this
system on mobile devices. Furthermore, the information extraction system should
be able to pass extracted information arbitrarily from one layer to another (e.g. from
the layer of complex information extraction back to the layer of simple information
extraction). This leads to an iterated information extraction process capable of using
features which were not there during a first run through the text (e.g. after the text
type extractor found out that the current text is a flight confirmation then the normal
NER module could use this information to increase the possibility of three letter
abbreviations to be airport codes).

4.1 (Named) Entity Recognition

We divide the extraction of (named) entities into two approaches: the rule-based
and the statistical one. We developed flexible and robust rule-based solutions for
detecting temporal expressions (e.g. 04/12/2014, yesterday in the evening, today)
and measurements (e.g. $100, 12 km).

Statistical approaches are used for detecting person names, places and company
names. Our system is based on the well-established Maximum Entropy classifier
architecture [9] rather than on Conditional Random Fields (CRFs) due to lower
resource usage. It is trained using many of the features that have achieved
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competitive results such as lexical features, PoS-tags, affix information, and word
structure information [35].

In contrast to common NER systems that operate on PCs, we have to deal with a
number of limitations:

• Mobile devices have slow CPUs and limited amount of memory which poses
serious limitations on the model size and, thus, on number of features that can be
processed.

• Supervised PoS-taggers do not perform well on noisy data [36] and require large
models.

• User-generated data (e.g. SMS, emails, Twitter messages) are very noisy: they
contain a high number of (personal) abbreviations, no reliable case information,
and highly personalized personal language patterns.

We developed a number of strategies to circumvent these major challenges. We
incorporated a fast, unsupervised PoS-tagging producing a small model size, and
which does not require huge amounts of memory (our model is based on [29]).
Furthermore, unsupervised PoS-tagging adds a semantic differentiation to the PoS
which provides additional information to the NER model (e.g. there is no class
containing all normal nouns, there are multiple semantic classes containing normal
nouns separating words like weekdays, cities, countries, first names, last names
etc.). Additional semantic classes for all words within a sentence provide more
information about the content of a sentence to the classifier which is more robust
against idiosyncratic language structures and case information (which is sometimes
missing and sometimes completely broken due to automatic corrections made by
T9 (text on 9 keys)). Most importantly, our unsupervised PoS-tagging naturally
adapts itself to any domain by virtue of being completely unsupervised. Hence,
domain adaptation for our system is reduced to the (still sometimes challenging)
task of collecting a sufficient amount of text samples of the domain in question. For
example, when we trained a PoS-tagging model on a biomedical domain corpus, it
produced POS-tags with highly useful distinctions between genes as one “POS-
tag” vs. diseases and medical ingredients as another cluster instead of lumping
everything together into one huge “noun” cluster.

In addition to these restrictive adaptations, our NER system benefits from the
usage of personal resources that are available on-device.

4.2 Integration of Personal Resources

Although there are massive restrictions regarding running NER systems on mobile
devices, is it possible to use their personal resource storage to improve the
information extraction system. The NER classifier can be backed up by various
approaches as exemplified subsequently.
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4.2.1 Address Book

What kind of information is available on all mobile phones? The obvious answer is:
an address book. It contains the names and telephone numbers of the most frequent
communication partners of a person. It may also contain addresses and user names
of this person in social networks or communication platforms like Facebook, Twitter
and Skype. Especially the latter ones are typically very hard to detect with traditional
name extraction methods. Merely adding all the contained names and places to the
personal name list of the NER system easily increases the perceived performance of
the entire system.

Nevertheless, the disambiguation of names is still a necessary step since people
do not always use full names when writing messages, for example when the
receiver knows which Christian or Mr. X the sender refers to due to context or
previous messages. Even the address book might contain multiple persons sharing
the same first or last name (typical due to family name sharing). Since this
disambiguation step is not important during the NER step, it is postponed to a
semantic disambiguation module.

Another important benefit is the automatic linking to alternate names of the
people stored in the address book. Most pre-trained NER modules are unable to
detect nicknames used in social networks or communication apps like Skype or
Twitter unless they are trained on respective pre-annotated corpora with adapted
feature sets that do not exist for multiple languages. They are even less able to
resolve nicknames to real names without a complex system which collates and keeps
track of information across different sources. Using the information of an address
book that contains real-world names linked with various nicknames of various social
networks enables our NER module to use matches of these nicknames as on-device
training instances.

4.2.2 Exploiting the Personal Corpus

The personal corpus contains many documents of personal communication.
Although it is not possible to train a complex classifier directly on-device, it is
possible to exploit the personal corpus in several ways. The main challenge of
a NER system is to classify unseen entities. It also has to rely on the context
within neighboring tokens, the sentence or even the document. This context can be
extended to the complete personal corpus, too. In many cases, the direct context
does not contain enough information to classify an entity into its correct class. Most
approaches take context tokens occurring within a window of two tokens around
the target token into account. Such contexts seldom contain sufficient information
to decide the target word’s type (e.g. “[quiet around] X [for the]”). Looking at the
complete sentence unveils more valuable context and the decision becomes easier:
“After months of hype, it’s been pretty quiet around X for the last few weeks.” But
still, X could be a person, company, place or even a fancy new candy.
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In news texts the document would most likely contain X in other positions with
more context information than in this sentence and it should be possible to classify
the token(s) based on the additional information. Short messages, emails, and
tweets are very short because in personal communication explanations of common
knowledge is left out as discourse participants are relatively familiar with each other.
Hence, further references to entities might not exist in the document.

This is where the personal corpus can be used to find more evidence for entities
that the user might be interested in. The personal corpus contains all communication
data and thus, the entities which are important / interesting for the user. Our
assumption is that crawling previously extracted entities can yield a high chance
to find more contexts for the token(s) in question that makes it easier to extract
proper name type (or conversely to prove that no name is present in a given text).

4.2.3 Combining Precomputed NER Models with Personal Models

Precomputed models work well when they are applied on data that is similar to
the training corpus used. When applied to personal communication the personal
language of the user becomes a non-negligible factor. Complete on-device NER
model creation is not possible due to hardware restrictions and the lack of annotated
data. Furthermore, the model would need a very long time to collect enough
instances to make confident decisions. Thus, we propose a combined model
consisting of a pre-computed model and a less complex personal (e.g. a Naïve Bayes
classifier [16]) model which is iteratively trained directly on-device.

The user should get the possibility to revise extractions made by the NER system.
A convenient GUI should be able to provide inconspicuous feedback loops for
extracted names (e.g. the possibility to cross out false positives, verify true positives
and add false negatives upon result list presentation). In addition, the personal
model can be trained using this user feedback additionally to boost instances like
address book matches that are not recognized by the general model and confident
classification results made by the general model in order to provide more training
instances.

Both models are members of an ensemble [17] and are weighted differently.
Regular evaluation runs that validate the personal model against the general model
provide a reliability score for the personal model. This score is used to weight the
personal model and to account for its steadily improving classification performance.
The combined model then applies both classifiers and combines the resulting scores
according to the respective weights of the classifiers.

In order to demonstrate the crucial information gain obtained by including the
address book as a list of known names we sampled some statistics from an authentic
email box. This email box contains 913 emails in which the trained NER model
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Table 3 Experiments on incorporating user feedback during iterative training of a NER module

Precision(%) Recall(%) F-Score(%)

Without user feedback 77.67 56.99 65.74

With user feedback 89.68 74.40 81.33

tagged about 16.8 k tokens as person names.8 More than 8.6 k of them are tokens
covered by matching against the address book (which only contains 65 different
person name tokens). Although the address book is not very comprehensive, this
experiment shows that the most common names in personal communication are
covered by address books. Furthermore, it provides a considerable amount of
positive training instances, even in fragmentary contexts like signatures or in SMS
that lack proper case patterns. We thus expect further work to prove our hypothesis
that even lightweight classifiers which are trained on-device can improve the
performance of pre-trained models significantly.

We also performed an experiment to evaluate the impact of user feedback on
iterative NER module training. Iterative training uses a precomputed model and
applies it to the user’s data. An intuitive GUI provides the possibility of manual
corrections (e.g. deny false positive matches, annotate missing matches or correct
the boundaries of detected entities) to the user. This feedback is used to improve the
training data of the iteratively trained classifier which afterwards achieves superior
result to the precomputed one. In our experiment on English data (mixture of user-
generated data and web texts with 1,139 annotated person names) the user feedback
resulted in an increase of more than 15 % (F1) (see Table 3), although the user was
told to only focus on the most frequent mistakes. This also means that each user
may improve the performance of the NER module until the quality fulfills the user’s
expectations.

5 Conclusions

We have built a robust and efficient NLP system for mobile devices. We have shown,
partially demonstrated, and briefly explained the most important design decisions
which make any mobile-centric NLP system different from typical NLP systems
that have access to virtually unlimited CPU and RAM resources, and which deal
with clean data.

Even though our on-going task is to continually develop our system, there are
already several clear conclusions that can be drawn as follows:

8This equals an average of more than 18 person name tokens per mail. Besides many false positives
(classified incorrectly due to broken contexts in log file texts, quoted mails and signature parts),
most of them can be verified as correct.
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Personal language variation Our work shows that the influence of personal
language variation on the performance of an NLP system is indeed very strong
and goes very deep through many layers of language processing. The influence
appears to be about as strong as that of corpus size. This also implies that
optimal performance can only be achieved if sufficient amounts of everyday
communication content from a particular user can be input into the system. Doing
so can optimize both the analysis of personal language usage as well as corpus
size.

Personal data Personal data constitutes an extremely rich and varied domain in
terms of the data types present and the amount of data available. Large amounts
of personal data can easily be used for automatic, on-device refinement of various
NLP subsystems.

On-device processing Since personal data is very sensitive in terms of data
protection and privacy issues, the best way to build trust with the users is to not
send their data anywhere but to analyze it directly on the device. Thus, the results
of the analyses belong to the user and remain on her/his device. We observed that
many users displayed a certain amount of uneasiness when they discovered the
high quality of some (from their perspective) more advanced analyses such as
the compelling automatic semantic recipient suggestion (or alert in case the user
clearly added the wrong recipient) based on the contents of the email they are
writing. These emotions did not develop further into an outright rejection because
the users were always fully aware of the fact that their personal data would not
be transmitted anywhere.

At least baseline It is common knowledge that many NLP solutions require
context for their decisions. However, in real-world applications many contexts
are completely misleading. For example, attempting to run a PoS-tagger on the
textual lines found in a flight ticket confirmation will result in very low hit
rates because in this case the algorithm degenerates to plain vocabulary look-up
performance levels at best. Hence, a robust real-world NLP solution will provide
at least baseline solutions for all levels of processing. Even just detecting a flight
ticket as non-valid input into the PoS-tagger and NER system will prevent many
false detections.

Robustness and language scale-out Real-world applications have to deal with
very diverse and noisy data. Besides employing advanced adaptive preprocess-
ing techniques, we focus our efforts on robust unsupervised algorithms such
as an unsupervised PoS-tagger or automatically computed semantic clusters.
Although these algorithms are known to produce output of lower quality when
being applied under artificial conditions of scientific evaluations, we emphasize
robustness, performance and model size over the last percent of theoretical
performance. If the employed algorithm is good enough in terms of user
acceptance, we simply use it rather than that we focus solely on theoretical
numbers. Another benefit of using unsupervised algorithms is the possibility
to scale up the number of supported languages and domains with minimal
manual effort. This is a central aspect for a rather small company addressing
an international market.
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We found that the increased processing power of the mobile devices and
the possibilities of compressing NLP subsystems converged sufficiently to allow
ubiquitous NLP systems to be pre-installed on even mid-range mobile devices
without hurting their core performance in any noticeable ways. Nevertheless, the
processing power of current mobile devices is still not sufficient to run all possible
or necessary core analyses directly on-device. Moreover, some analyses also require
initial background corpus processing in order to produce good results. The most
obvious example in this regard is the background corpus-based word frequency
computation for keyword extraction where the deviation of personal language usage
from default language usage patterns is estimated. Another example is the PoS-
tagger clustering and training which definitely requires a corpus larger than what
would could be compiled from limited personal language usage samples, and which
also requires considerable CPU and space resources that are not yet available on
current mobile devices. We have found a good balance between server-side and
client-side processing which is facilitated by the fact that all server-side processing
can be done as a pre-analysis that results in compressed models eventually shipped
to the user.
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