
Chapter 8
FSM-Based Logic Controller Synthesis
in Programmable Devices
with Embedded Memory Blocks

Grzegorz Borowik, Grzegorz Łabiak, and Arkadiusz Bukowiec

Abstract. For a typical digital system, the design process consists of compilation,
translation, synthesis, logic optimization, and technology mapping. Although the
final result of that process is a structure built of standard cells, logic cells, mac-
roblocks, and similar components; the characteristics of the system (the silicon
area, speed, power, etc.) depend considerably on the logic model of the digital sys-
tem. Therefore, the synthesis and logic optimization has a significant impact on the
quality of the implementation. In this chapter, we describe methods of designing
and synthesis for logic controllers in novel reprogrammable structures with embed-
ded memory blocks. This chapter is generally based on the ideas published in [5],
however, a number of issues were extended and provide detailed information about
the methods and algorithms used in the problem, including [6, 13, 14, 38]. The
method starts with the formal specification of a logic controller behavior. To specify
the complex nature of a logic controller we have chosen statechart diagrams [21].
The main advantage of this specification is the possibility of detecting all reach-
able deadlocks [26]. It is particularly important in the case of safety-critical systems
since any failure of such system may cause injury or death to human beings. Having
graphically specified the behavior, it is subsequently converted into a mathematical
model [30]. Next, the mathematical model of the statechart is transformed into an
equivalent finite state machine (FSM) [29]. Thus, the logic controller in FSM form
can be synthesized by applying ROM-based decomposition method [6] or archi-
tectural decomposition method [13], and finally implemented in embedded mem-
ory block equipped architectures [45, 48]. Such architectures offer ability to update
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the functionality, partial reconfiguration, and low non-recurring engineering costs
relative to an FPGA design.

8.1 Preliminaries

Logic controller is an electronic digital device used for automation of electrome-
chanical processes, such as control of machinery on factory assembly line, lighting
fixtures, traffic control systems, household appliances, and even automation of sys-
tems whose role is to maintain an ongoing interactions with their environment, i.e.
controlling mechanical devices, such as a train, a plane, or ongoing processes, e.g.
processes of a biochemical reactor.

Logic controller receives signals both from controlled object and optional oper-
ator, and repeatedly produces outputs to controlled object. If controller operates on
binary values, as opposed to continuous values, it is called binary control system (bi-
nary controller). Therefore, binary controller can easily be implemented as a digital
circuit. The general idea of binary control system is presented in Fig. 8.1.
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Fig. 8.1 Binary control system

An important application of binary controllers is embedded systems design [19,
20]. In particular, it is advisable for data processing systems. Thus, such system can
be realized according to application-specific architecture known as a control unit
with datapath (Fig. 8.2). Datapath module receives data and process them according
to implemented algorithm and sends status signal to control unit. Control unit sig-
nals steers the data among the units and registers of datapath. If data are of discrete
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Fig. 8.2 Control unit with datapath architecture
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values the whole system can be implemented in Field Programmable Gate Arrays
(FPGA); the basic architecture for General-purpose processors [44].

Logic controllers can find their practical application in different areas of biotech-
nology. In [40] a technology of smart hand prosthesis control based on myoelectric
signals is presented. The key elements of this design are arithmetic and control
units. Bioreactor controller is the focus of the paper [23]. It provides an overview of
current and emerging bioreactor control strategies based on unstructured dynamic
models of cell growth and product formation. Nevertheless, process control plays a
limited role in the biotechnology industry as compared to the petroleum and chemi-
cal industries. This demand for process modeling and control is increasing, however,
due to the expiration of pharmaceutical patents and the continuing development of
global competition in biochemical manufacturing. The lack of online sensors that al-
low real-time monitoring of the process state has been an obstruction to biochemical
process control. Recent advances in biochemical measurement technology, however,
have enabled the development of advanced process control systems [23].

To specify a complex nature of a controller we have chosen statechart diagrams.
A statechart diagram is a state-based graphical scheme enhanced with concurrency,
hierarchy and broadcasting mechanism. It may describe a complex system, but re-
quires the system is composed of a finite number of states [21].

To synthesize statechart-base logic controller it is necessary to precisely define
its behavior, however, the issue of hardware synthesis of statecharts is not solved ul-
timately. There are many implementation schemes depending on target technology.
First, published in [17], consists of transformation of the statechart into the set of
hierarchically linked FSMs traditionally implemented. In [18], a special encoding
of the statechart configurations targeted at PLA structures is presented. The draw-
back of this method is that diagram expresses transitions between simple states only.
In [36], Ramesh enhanced the coding scheme by introducing a prefix-encoding.
However, the common drawbacks of the presented methods is the lack of support
for history attributes and broadcast mechanism. Other implementation methods us-
ing HDL and based on ASIP are presented in [4, 24] and [10], respectively. In [16]
statechart diagram is used as a graphic formalism for program specification for PLC
controller, where UML language heavily support the design process.

In this chapter, we describe methods of designing and synthesis for logic con-
trollers in novel reprogrammable structures with embedded memory blocks. It is
generally based on the ideas published in [5], however, a number of issues were
extended and provide detailed information about the methods and algorithms used
in the problem, including [6, 13, 14, 38]. In subsection 8.2, we start with the exam-
ple of a chemical reactor and its formal specification using the statechart diagram,
as well as provide assumptions of hardware implementation. Having graphically
specified the behavior, it is subsequently converted into a mathematical model [30].
Next, the mathematical model of the statechart is transformed into an equivalent fi-
nite state machine (FSM) [29] that is described in subsection 8.3. Finally, the logic
controller in FSM form can be synthesized by applying ROM-based decomposition
method [6] (see subsection 8.4.2) or architectural decomposition method [13] (see
subsection 8.4.3), and finally implemented in embedded memory block equipped
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Fig. 8.3 Transformation and synthesis of logic controller

architectures [45, 48]. Such architectures offer ability to update the functional-
ity, partial reconfiguration, and low non-recurring engineering costs relative to an
FPGA design (subsection 8.4.1). The idea of transformation and synthesis of logic
controller is provided in Fig. 8.3.

8.2 Example and Assumptions of Hardware Implementation

The statechart diagram can certainly specify reactive system behavior. As an exam-
ple of practical application, the schematic diagram of a chemical reactor and ap-
propriate statechart diagram of its logic controller are presented in Fig. 8.4 and 8.5,
respectively.
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Fig. 8.4 Schematic diagram of chemical plant with wagon
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Fig. 8.5 Statechart diagram of chemical reactor controller

The working of the reactor is as follows. Initially, the reacting substances are kept
in containers SV1 and SV2 (Fig. 8.4), and the emptied wagon waits in its initial po-
sition on the far right site (Fig. 8.5, state WaitingForStart). Then, the operator starts
the proces with the signal x0. The pump y1 and the pump y2 make that liquid sub-
strates from containers SV1, SV2 are being measured out in scales MV1 and MV2,
respectively (state Preparations). During this, the wagon is coming back to its far
left position. After the substrates are measured out, the main reaction starts (state
Reaction). Next, scales fill main container R with agents (state AgentDispensing)
and agitator A starts rotating (state StirringControl). After filling up the main con-
tainer, the product of the reactor is poured to the wagon (state EmptyingReactor).
Then, the wagon goes to empty (states WagonRight and EmptyingWagon).



128 G. Borowik, G. Łabiak, and A. Bukowiec

Rounded rectangles in the statechart diagram, called states, correspond to activ-
ities in the controlled object (in this case chemical reactor). In general, states can
be in sequential relationship (OR state), or in concurrent relationship (AND states).
Then, these states make sequential or parallel automaton. States can be simple or
compound. The latter state can be nested with other compound or simple states. In
the diagram (Fig. 8.5), the AND states are separated with a dashed line. States are
connected with transitions superimposed by predicates. Predicates must be met to
transform activity between states connected with an arrow.

To synthesize statechart-based logic controller it is necessary to precisely define
its behavior in terms of logic values. In Fig. 8.6 a simple diagram and its wave-
form illustrate the main dynamic features. Logic value 1 means activity of a state or
presence of an event, and value 0 means their absence. When transition t1 is fired
(T = 350) event t1 is broadcast and becomes available to the system at next instant
of discrete time (T = 450). The activity moves from state START to state ACTION,
where entry action (keyword entry) and do-activity (ongoing activity, keyword do)
are performed (events entr and d are broadcast). Now, transition t2 becomes en-
abled. Its source state is active and predicate superimposed on it (event t1) is met.
So, at the instant of time T = 450, the system transforms activity to the state STOP,

t1: i / {t1}
ACTION

entry / entr

do/ d

exit / ext

START STOP
t2: t1 / {t2}

i
START

ACTION

entr, d, t1

STOP,

ext, t2
STOP

b)

a)

c)

Fig. 8.6 Simple diagram with main features (a), its waveform (b), and equivalent FSM (c)
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performs exit action (keyword exit, event ext) and triggers event t2, which do not
affect any other transition. The step is finished.

Summarizing, dynamic characteristics of hardware implementation are as
follows:

• system is synchronous,
• system reacts to the set of available events through transition executions,
• generated events are accessible to the system during next tick of the clock.

Basing on the assumptions, hardware implementation involves mapping syntax
structure of statechart into hardware elements, namely, every state and action (transi-
tion actions, entry and exit actions) are assigned flip-flops and every event is a signal.
Both flip-flops and signals have their functions (flip-flops have excitation functions)
which are created based on rule of transitions firing and on presented hardware as-
sumption [27, 28].

8.3 Transformation to FSM Model

The transformation of statechart diagram into FSM model [22] involves building
equivalent FSM Mealy automaton using statechart elements which for external ob-
server behaves just the way statechart does. Final Mealy automaton is described in
KISS format [42]. The main notion the transformation revolves around is a global
state of the statechart [29, 30]. The general idea is to create an equivalent target Mealy
automaton whose states corresponds to the global states of a statechart. The global
state of a statechart is defined as a superposition of local activities, namely, local
states, transition events, entry and exit actions. In hardware implementation these
activities are implemented by means of flip-flops and their excitation functions (see
subsection 8.2). The whole process is explained on the example diagram in Fig. 8.7.

The diagram in Fig. 8.7 features both concurrency and hierarchy. It consists of
five simple states {s1,s3,s4,s5,s6}, one compound state s2, and two do actions {x,y}
assigned to states, s4 and s6, respectively. The diagram has three input signals {a,b,c}
and two output signals {x,y}. There is no transition action nor entry and exit actions.
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a

c*!a

Fig. 8.7 Simple concurrent and hierarchical diagram
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Fig. 8.8 Equivalent FSM Moore automaton of diagram in Fig. 8.7

Having defined a global state of a statechart as a vector of local activities, it is pos-
sible to construct hypothetical equivalent Moore type automaton. Fig. 8.8 presents
such an automaton. Names of the states correspond to local activities of the orig-
inal diagram, e.g. state s2s4s6 corresponds to the activity of the statechart states
{s2,s4,s6}, respectively, and broadcast events {x,y}. Transition labels are Boolean
expressions which must be met to fire transitions. It is necessary to emphasis that
both models statechart and FSM are deterministic and their transition predicates
must be orthogonal. In general, due to concurrency and hierarchy, equivalent FSMs
have more states and transitions, which is a big drawback of the transformation.

The vector of local activities with their excitation functions allows us to symbol-
ically express a global state as well as the characteristic function for every global
state of a statechart. In terms of Boolean algebra, global state is defined as a prod-
uct of signals representing local activities, e.g. initial global state of the statechart
which corresponds to state s1 of FSM is G0 = s1s2s3s4s5s6. Characteristic func-
tion χG of a set of elements G ⊆ U is a Boolean function which yields true value
(χG(g) = 1) when g ∈ G, otherwise yields false value. It means that a characteris-
tic function represents a set, and Boolean operations on the characteristic functions
(e.g. +, ∗, negation) correspond to the operations on sets which they precisely repre-
sent (e.g. ∪, ∩, complement). Coding every global state of a statechart, just like G0,
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and summing them we obtain characteristic function representing every global state
of a statechart. For the diagram in Fig. 8.7 the characteristic function is as follows:

χ[G0〉 = s1s2s3s4s5s6 + s1s2s3s4s5s6 + s1s2s3s4s5s6 +

+ s1s2s3s4s5s6 + s1s2s3s4s5s6 (8.1)

Computation of the characteristic function is carried out according to the algo-
rithm 8.1 performing symbolic traversal.

Listing 8.1 Symbolic traversal of state space

1symb _trav_of_S tate ch a rt ( Z , i n i t _ s t a t e ) {
χ[G0〉 = c u r r _ s t a t e s = i n i t _ s t a t e ;

3 whi l e ( c u r r _ s t a t e s != 0) {
n e x t _ s t a t e s = Image_computation (Z , c u r r _ s t a t e s ) ;

5 c u r r _ s t a t e s = n e x t _ s t a t e s ∗ χ[G0〉 ;
χ[G0〉 = c u r r _ s t a t e s + χ[G0〉 ;

7 }
}

Sets of global states are represented by their characteristic functions (put in
italic). The operations on the sets are represented by Boolean operations on cor-
responding characteristic functions. The algorithm starts with init_state (e.g. G0)
and in breath-first manner generates the set of all reachable global next states in
one formal step (line no. 4). In line no. 5, only new global states are calculated
(curr_states), and in line no. 6, new states are added to the so far generated global
states (χ[G0〉). The algorithm stops when there is no new curr_states (line no. 3).

The formal step from line no. 5 is performed by the Image_computation procedure.
For the curr_states it generates their image in the transformation with the functional
vector (δS) of excitation functions of local activities in the statechart diagram. Hence,
it is possible, in one formal step to compute the set of all reachable global next states
for the set of global states (curr_states). The procedure is as follows:

next_states = ∃s∃x(curr_states∗
n

∏
i=1

[s′i � (curr_states∗ δSi(s,x))]), (8.2)

next_states = next_states〈s′ ← s〉, (8.3)

where s,s′,x denote the present state, next state and input signals, respectively;
∃s and ∃x represent the existential quantification of the present state and signal vari-
ables; n is a number of state variables; � and ∗ represent logic operators XNOR and
AND, respectively; equation 8.3 means swapping variables in expression.

Characteristic function does not contain information on transitions. This informa-
tion can be obtained by the calculation of the transition relation under input (χTRI)
using the following equation:

χT RI(s
′,x,s) =

n

∏
i=1

[s′i � δSi(x,s)], (8.4)
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where the symbol � represents the logic XNOR operator and n is the number of
state variables. The relation χTRI(s′,x,s) = 1 implies that in state s, there exists
a transition to state s′ on input x.

The transformation of Moore automaton (Fig. 8.8) into Mealy automaton (Fig. 8.9)
is very simple [22], but we must add one extra state (start) to include output for initial
state. The two characteristic functions (χ[G0〉 and χT RI) provide enough information
to generate equivalent FSM in KISS format. The algorithm 8.2 starts with character-
istic function of global states space χ[G0〉 and with characteristic function χTRI . The
transition regarding input signals is represented by the product t, which is a rela-
tion between current (Gi) and next (G′

j) states, represented as conjunction formulae
(line no. 4). For every pair of states: current state and next state (Gi,G′

j), it is being
checked whether there is a transition between them (line no. 5). In line no. 6 state
variables (s,s′) are removed from transition product t, hence tx represents the only
part of the expression which solely depends on input variables x. Thus, current and
next states are put into 4-tuple KISS line (lines 7 and 8) and sent into KISS file (line
no. 21). Between lines 15 and 20 the input vector is being computed and dependency
on input variables is being checked for each minterm in tx expression. It is formally
computed according the following formula:

∂ f
∂xi

= fxi ⊕ fxi , (8.5)
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Fig. 8.9 KISS of the FSM in Fig. 8.8
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Listing 8.2 Transitions generation algorithm

T r a n s i t i o n s _ G e n e r a t io n ( Z , χ[G0〉 , χT RI ) {
2 f o r each g l o b a l s t a t e Gi χ[G0〉 (Gi) = 1 ;

f o r each g l o b a l s t a t e G′
j χ[G0〉

(
G′

j

)
= 1 ; {

4 t = χT RI(s′,x,s)∗Gi ∗G′
j ;

i f t = 0 then con t i n u e ;
6 tx = ∃s′∃st

c u r r e n t −s t = Gi ;
8 next−s t = G′

j〈s′ ← s〉 ;
f o r each o u t p u t yi ∈ Y {

10 i f G′
j〈s′ ← s〉 ∗λM i �= 0 then o u t [ i ] = 1

e l s e o u t [ i ] = 0 ;
12 }

f o r each minterm mi i n tx {
14 f o r each i n p u t x j ∈ X {

i f ∂ mi
∂ x j

�= 0 then { / / deps on x j

16 i f mi ∗x j �= 0 then i n [ j ] = 1
e l s e i n [ j ] = 0 ;

18 }
e l s e i n [ j ] = −;

20 }
KISS << <in , c u r r e n t −s t , next−s t , out >

22 }
}

24}

where fxi , fxi are positive and negative algebraic cofactor, respectively, and the sym-
bol ⊕ represents XOR operator. In lines 16, 17 and 19 we determine the impact of
signal x j on the transition. Subsequently, in lines from 9 to 11, we compute the out-
put vector, where yi is an i-th output variable, and λi is its signal function. Although
this is not presented in the algorithm, it is enough to execute these four lines only
once per the next state s′.

Figure 8.9 presents final Mealy automaton and its KISS file of the diagram
from Fig. 8.7. Binary labels both, states and transitions, correspond to signals
and states activities from statechart diagram according to the following order: in-
put [a,b,c], output [x,y], state [s3,s5,s4,s6,s1,s2]. A single line in KISS file, e.g.
1-- 000010 110001 00, defines transition from state s1 (000010) to state
s2s3s5 (110001) under the input a without active outputs.

The transformation has been successfully implemented in academic HiCoS sys-
tem [47] and all Boolean transformations have been performed by means of Binary
Decision Diagrams [33, 35].
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8.4 Synthesis

In modern logic synthesis, regardless of the implementation technology (program-
mable devices, Gate Array or Standard Cell structures), the problem of finite state
machine synthesis (in particular – the problem of internal state encoding) is an issue
of significant practical importance.

Many methods for structural synthesis of FSMs have been reported in the liter-
ature. Their diversity is a consequence of different assumptions taken to simplify
calculations, as well as different types of intended target components. Thus, differ-
ent methods of FSM synthesis have been developed for PLA structures [32, 34, 41],
for ROM memories [6, 37, 38], and for PLD modules [15].

A distinctive feature of traditional methods of FSM synthesis is the application of
logical minimization before the process of state encoding. This minimization is pos-
sible when the inputs and outputs of the combinational part of the sequential circuit
is represented with multi-valued symbolic variables. Unfortunately, such methods
are limited to two-level structures. For other implementation styles different meth-
ods are needed. The research in this area goes into two directions: one concerns
the implementation with multilevel gate structures, while the other embraces imple-
mentations with cellular FPGA and CPLD structures.

In the first case, like for two-level structures, the starting point of the synthesis
process is a structure in which the combinational circuit is connected to the inputs
of a register operating as state memory (Fig. 8.10a), whereas in the other case, the
combinational circuit is connected to the outputs of such a register (Fig. 8.10b).

a) b)
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outputs

w

r

combinational
logic

R
E
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G
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T
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Fig. 8.10 Two models of a sequential circuit: classical (a), with microprogramming capabil-
ity (b)
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Until recently, mainly the first model (Fig. 8.10a) was used in synthesis of se-
quential machines. The optimization of the selection of state encoding was done for
two-level or multilevel gate structures and was aimed at the reduction of hardware
resources (silicon area).

The second model (Fig. 8.10b) was used in microprogrammed control circuits,
with the combinational circuit implemented with ROM memory [1]. In the micro-
programmed version of the sequential circuit, the fixed ROM memory was a separate
element – separated from the rest of the circuit. The advantage of this structure was
an ability to program the microcode memory, which was the only possible way to
reconfigure the circuit at that time. These advantages made the capacity of the mem-
ory to be a non-critical factor, although the reduction of this capacity was a common
optimization criterion.

Microprogrammed control has been a very popular alternative implementation
technique for control units. However, as systems have become more complex and
new programmable technologies have appeared, the concept of classical micropro-
gramming has become less attractive for control unit implementations. But the main
idea of Microprogrammed Control Units, i.e. implementation of combinational part
of the sequential circuit with a ROM, has gained new motivation after the ap-
pearance of programmable logic devices [3]. In particular, the growing interest in
ROM-based synthesis of finite state machines has been caused by the inclusion of
Embedded Memory Blocks in modern FPGAs.

8.4.1 Modern Technologies of Controller Manufacture

Field-programmable devices are very often used for the implementation of logic
controllers. Since these devices can be programmed by the user during the design
process, they are a good platform for dedicated control algorithms. There are many
different types of such devices – from simple Programmable Logic Devices (PLDs)
through Complex PLDs (CPLDs) to advanced Field Programmable Gate Arrays
(FPGAs) [25].

The research presented in this chapter is oriented towards FPGA devices with
Embedded Memory Blocks.

FPGAs are built with a matrix of small configurable logic blocks (CLBs), which
are connected using internal programmable interconnections and surrounded by pro-
grammable input/output blocks (IOBs) for communication with the environment
(Fig. 8.11) [25]. An FPGA contains from several to tens of thousands of CLBs. Each
logic block is built of look-up tables (LUTs), D type flip-flops, and some additional
control logic. One LUT has typically four inputs, however up to six or more [39],
and can implement any Boolean function of this number of variables, i.e. working
of four-input LUT can be perceived as 16×1 ROM.

The new FPGAs have also memory blocks [45, 48]. They have different names
depending on vendor, for e.g. Embedded Memory Block (EMB) in Altera devices or
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Fig. 8.11 Structure of an FPGA device

Block RAM in Xilinx devices. These blocks are placed in columns typically in outer
areas of device (Fig. 8.11). These memories are from 512 bits up to 36 Kbits in size.
The most popular size of the memory block of cheaper FPGAs is 4 Kbits. The very
big advantage of such block is existence of feature that allows them to be set to one
of several modes of data width (Tab. 8.1). They can also work in one of modes, like
single-port RAM, a dual-port RAM or ROM. When an embedded memory block
works in the ROM mode, it is initiated with the content during the programming
process of an FPGA device. In this mode, it can be used for the implementation of
combinational functions.

Table 8.1 Typical configuration modes of 4-Kbit embedded memory block

Mode
Number Width
of words of the word

[bits]

4K×1 4096 1
2K×2 2048 2
1K×4 1024 4
512×8 512 8
256×16 256 16
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8.4.2 Functional Decomposition and ROM-Based Synthesis

One of the main goals of the synthesis is not only technological implementation
of logic controller but also optimization of hardware resources consumption. It is
particularly important when the design is intended for novel programmable structure
containing LUT-based cells and embedded memory blocks. The other factor of vital
importance is Boolean minimization strategy. Authors’ proposition is to apply the
idea of functional decomposition, i.e. a structure with address modifier (Fig. 8.12b),
which is best suited for the FSMs in KISS format from previous section [6, 37, 38].

A limited size of embedded memory blocks available in FPGAs is the main rea-
son behind the application of this structure. The implementation of an FSM shown
in Fig. 8.12b can be seen as a serial decomposition of the memory block included in
the structure of Fig. 8.12a into two parts: an address modifier and a memory block
of smaller capacity than required for the realization of the structure in Fig. 8.12a.
In the considered FSM implementation both parts are implemented in embedded
memory blocks which are configured as ROM memory, with its content determined
at the time of the programming. The address modifier (first block) is used here to
reduce the number of memory address lines of the second block.

ad resd s

m

r

p

REGISTER

ROM

inputs

outputs

a)

m

r

p

u

v

w - u

w w < m + p

REGISTER

ADDRESS
MODIFIER

ROM

inputs

outputs

b)

Fig. 8.12 FSM implementation: using ROM memory (a), with the addition of an address
modifier (b)
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As a result, sequential circuits requiring large-capacity ROM memories (and thus
not implementable in the architecture of Fig. 8.12a) can be implemented using mem-
ory blocks with a smaller number of inputs. Then, the size of the required memory
[6] is equal

M = 2v · (w− u)+ 2w · (r+ p). (8.6)

For explaining the work of functional decomposition with address modifier par-
tition description and partition algebra are applied [22]. They describe logic depen-
dencies in considered FSM.

Let � be an isomorphic function between the domain Dδ of the transition func-
tion and the set T = 1, . . . , t, where t = |Dδ |. Set T represents the ROM cells needed
to store the next state pair δ (v,s) for each pair (v,s). A characteristic partition Pc of
the FSM is defined in the following way: each block BPc of the characteristic par-
tition includes these elements from the set T which correspond to these pairs (v,s)
from the domain Dδ which the transition function δ (v,s) = s′ maps onto the same
next state s′.

A partition P on the set T is related to a partition π on the states set S if for any
inputs va, vb the condition that si, s j belong to one block of the partition π implies
that the elements from T corresponding to pairs (va,si) and (vb,s j) belong to one
block of the partition P. A partition P on set T is related to a partition θ on the input
symbols set V if for any state sa, sb the condition that vi, v j belong to one block
of the partition implies that the elements from T corresponding to pairs (vi,sa) and
(v j,sb) belong to one block of the partition P. In particular, a partition P on set T is
related to the set {π ,θ} if it is related to both π and θ .

Let Pa and Pb be partitions on the set T , and Pa ≥ Pb. Then a partition Pa|Pb,
whose elements are blocks of Pb and whose blocks are those of Pa, is a quotient
partition of Pa over Pb.

For a partition Pa ≥ Pb let Pa|Pb denote the quotient partition and let ε(Pa|Pb)
be the number of elements in the largest block of partition Pa|Pb. Let e(Pa|Pb)
be the smallest integer equal to or greater than log2(ε(Pa|Pb)) (i.e., e(Pa|Pb) =
�log2(ε(Pa|Pb))�). Then, the notion of r-admissibility of the two-block partitions’
set {P1, . . . ,Pk} on S in relation to the partition P on S, is defined as r = k+ e(σ |ρ),
where σ is the product of {P1, . . . ,Pk} and ρ is the product of σ and P.

Let Π = {π1, . . . ,πp} is the set of two-block partitions on S and Θ = {θ1, . . . ,θm}
is the set of two-block partitions on V , while Pk is a partition on the set T which
is related to either πi or θ j. Then, � = {P1, . . . ,Pm+p} is the set of all partitions
related to partitions {π1, . . . ,πp,θ1, . . . ,θm}. Partitions in Π correspond to the state
variables and partitions in Θ correspond to the input variables.

Fact. To achieve unambiguous encoding of address variables and at the same time
maintain the consistency relation � with the transition function, two-block parti-
tions �= {P1, . . . ,Pw} have to be found, such that:

P1 ·P2 · . . . ·Pw ≤ Pc. (8.7)
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This is a necessary and sufficient condition for {P1, . . . ,Pw} to determine the ad-
dress variables. This is because each memory cell is associated with a single block
of Pc, i.e., with those elements from T which map the corresponding (v,s) pairs onto
the same next state.

Although some of the partitions for the � set can be selected from the � set, the
selection is made in such a way that the simplest addressing unit (address modifier)
is produced. Such a selection is possible thanks to the method [9], based on the
notion of r-admissibility.

Assume that u partitions {π1, . . . ,πl} and {θ1, . . . ,θu−l} were chosen. These par-
titions correspond to the address lines driven by a single variable, either a state
variable q or an external variable x. The result is the state and input symbol partial
encoding; i.e.,

a1 = q1, . . . ,al = ql ,al+1 = θ1, . . . ,au = θu−l .

This encoding of state variables is possible thanks to the method of construction and
coloring weighted graphs.

Then, inequality (8.7) can be written as:

Pi1 ·Pi2 · . . . ·Piu ·Piu+1 · . . . ·Piw ≤ Pc, (8.8)

where PU = Pi1 · Pi2 · . . . · Piu is related to the partitions {π1,π2, . . . ,πl ,θ1,θ2, . . . ,
θu−l}.

The encoding of the part of the state variables remaining after the partial encoding
(input variables, in general) can be obtained from the following rules:

π1 ·π2 · . . . ·πl ·π = π(0),
θ1 ·θ2 · . . . ·θu−l ·θ = θ (0),

where π and θ represent partitions corresponding to these remaining state variables.
π(0) as well as θ (0) are partitions whose blocks are equal to their elements.

Since the design process may be considered as a decomposition of the mem-
ory block into two blocks: a combinational address modifier and a smaller memory
block, we need to find function G which will determine the second part of the mem-
ory address bits.

Inequality (8.8) can be transformed into:

PU ·PG ≤ Pc. (8.9)

Now, a partition PG has to be constructed, such that:

PG ≥ PV , (8.10)

where PG = Piu+1 · . . . ·Piw and PV is related to the partition set {π ,θ}. Let us assume
that input variables are encoded.
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Theorem. Partition PV can be constructed in the following way:

PV = PS ·PVθ , (8.11)

where PS is the partition related to π(0) on the set of states S, and PVθ is the partition
related to θ .

Proof. Let us assume that PV = PVπ ·PVθ , where PVπ is related to π , and PVθ is related
to θ . Since PU and PV satisfy PU ·PV ≤ Pc, we have PU ·PVπ ·PVθ ≤ Pc. As a result,
PU ·PS ·PVθ ≤ Pc.

Let 〈V,R,E,P〉 be a quadruple where: V – set of elements, R – an equivalence
relation on the set V , E – set of pairs in relation P on the set V , P – two-element rela-
tion. A triple M(V |R,E,P) is a multi-graph, where V |R – is an equivalence class for
an equivalence relation on the set V . Since there exists an isomorphism V |R ↔V ′,
we can construct a natural mapping from the multi-graph M(V |R,E,P) to the graph
G(V ′,E ′,P). This mapping ψ :M → G allows for calculation of a chromatic number
χ(G) = χ(M).

Inequality (8.9) allows us to construct a quotient partition PU |Pc. Then, the triple
〈PV ,E1,P1〉, where: PV is a partition given by equation (8.11), P1 is a relation which
represents incompatibilities in quotient partition PU |Pc on the set T (relation of in-
compatibility in quotient partition PU |Pc is a relation among all elements in each
block of the partition separately) and E1 is the set of pairs in the relation P1; is
a multi-graph M1(PV ,E1,P1).

After mapping ψ1:M1 → G1 we calculate a chromatic number χ(G1) which is
equal to χ(M1). The coloring of the graph G1 determines the PG partition. The value
of

μ = |U |+ �log2(χ(M1))� (8.12)

determines memory size required.
In case of μ > w, a new partition P′

V has to be constructed. Then, PV has to be
multiplied by appropriately chosen two-block partitions related to those which are
generated by input variables from the set U . In that case, we obtain a non-disjoint
decomposition [8].

In the next step we calculate the remaining state variables. The triple 〈PS,E2,P2〉,
where: PS is the partition related to π(0) on the states set S, P2 is a relation which
represents incompatibilities in quotient partition PVθ |PG and E2 is the set of pairs in
the relation P2; is a multi-graph M2(PS,E2,P2).

Similarly to the case discussed above, by coloring an image graph G2 for the
multi-graph M2, we obtain a new partition on the set S. We encode this partition
with the minimal binary code. Value �log2(χ(M2))� determines the number of bits
needed to encode the remaining state variables and value

ν = |Vθ |+ �log2(χ(M2))� (8.13)

determines the number of inputs to address modifier.
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The issue of finite state machine functional decomposition for FPGA structures
with embedded memory blocks has been successfully implemented in university
software FSMdec [46].

Applying the software to the chemical reactor from Fig. 8.4 transformed to KISS
format (Fig. 8.13) we have obtained the content of the address modifier and ROM,
as well as state code assignment (Fig. 8.14).

.i 10

.o 9

.p 263

.s 33

.r strst
(...)
---1---0-- s7 s6 000001000
-------0-1 s8 s6 000001000
---1---0-1 s9 s6 000001000
-------1-- s6 s10 000000000
---1---1-- s7 s10 000000000
-------1-1 s8 s10 000000000
---------1 s11 s10 000000000
(...)

Fig. 8.13 Chemical reactor from Fig. 8.4 transformed to KISS format

a)
.i 13
.o 2
.p 57
.type fr
(...)
1-------01111 00
-----0-000111 00
01----0--0000 00
01------10001 00
-0----0-100-- 01
-0------100-1 01
-0------1001- 01
(...)

b)
.i 9
.o 19
.p 87
.type fr
(...)
-00001101 0001100101000011000
-00110101 0001100101000011000
--0000110 0011010011000000000
--0001001 0011010011000000000
-1000-110 0011010011000000000
-10010101 0011010011000000000
-10110111 0011010011000000000
(...)

c)

(...)
s7 := 0001100101
s8 := 0000100110
s9 := 0110100111
s10 := 0011010011
s11 := 0001001000
s12 := 0010101000
s13 := 0101001001
(...)

Fig. 8.14 Content of address modifier (a), ROM (b), and state code assignment (c); after
functional decomposition of chemical reactor
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In Fig. 8.15 we provide results for FSM from Fig. 8.9.

a)

.i 5

.o 2

.p 14

.type fr
--000 00
0-0-0 00
0101- 00
11101 00
--001 01
000-1 01
10-01 01
0-100 10
0010- 10
10011 10
1-010 11
1-100 11
1101- 11
01101 11
.e

b)

.i 4

.o 6

.p 11

.type fr
11-- 000100
1-1- 000100
-000 000100
000- 000100
1001 110100
0110 110100
0100 101011
0011 101011
0101 101110
0111 010001
0010 010001
.e

c)

start := 0000
000010 := 0001
001101 := 1010
011001 := 1011
100101 := 0100
110001 := 1101

Fig. 8.15 Content of address modifier (a), ROM (b), state code reassignment (c)

8.4.3 Synthesis Based on Architectural Decomposition

Other method which cut down the hardware implementation resources for FSMs
is architectural decomposition [1, 3]. In this method, the FSM circuit is imple-
mented in a double- or multi-level structure. The circuit of single-level is a com-
binational circuit that implements Boolean functions of the decomposed FSM. In
comparison to the single-level circuit the gain on this circuit is that it implements
less Boolean functions and typically requires less look-up tables for its implementa-
tion. The second-level circuit works as a decoder. Functions describing its behavior
have a regular structure. It means that it can be implemented into new FPGA devices
with the use of embedded memory blocks. Overall, such a circuit requires less logic
elements but additional memory resources, although memories in FPGAs are very
often not used for any other purpose.

Special methods of encoding [3] and modifications of a logic circuit structure are
applied. Presented method is based on multiple encoding of internal states [12] and
microinstructions [11]. The encodings are performed independently to each other
and they can be applied both together [13] or separately [11, 12]. In the former
solution the current state is used as partitioning set. In this case, the code of a
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microinstruction K(Yt) is represented by concatenation of the multiple code of the
microinstruction Ks(Yt) and the code of the current state K(s):

K(Yt) = Ks(Yt)∗K(s). (8.14)

The code of the internal state K(s′) is represented by concatenation of the multiple
code of the internal state Ks(s′) and the code of the current state K(s):

K(s′) = Ks(s
′)∗K(s). (8.15)

A digital circuit of a FSM with such encodings can be implemented as a double-
level structure (Fig. 8.16) called PAY0 [13]. In this structure, the combinational
circuit implements logic functions that encode microinstructions:

λ1 : X ×Q →Ψ , (8.16)

and internal states:
δ1 : X ×Q → T, (8.17)

where Q is the set of variables storing the code of current state, and |Q| = p =
�log2 |S|�. T is the set of variables storing the code of internal state, and |T| = p1.
Ψ is the set of variables storing the code of microinstruction, and |Ψ | = r1. The
instruction decoder implements a function of a decoder of microinstructions:

λ2 : Ψ ×Q → Y (8.18)
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Fig. 8.16 The structural diagram of PAY0 Mealy FSM
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and functions λ1 and λ2 yield the function λ of mathematical transformations. The
state decoder decodes internal states and generates excitation function:

δ2 : T×Q → Φ (8.19)

and, in similar way, functions δ1 and δ2 yield the function δ of mathematical trans-
formations. These mathematical transformations proof that application of architec-
tural decomposition do not change the behavior of FSM. The register is build with
D-type flip-flops.

The starting point for synthesis process with architectural decomposition is the
KISS file obtained from transformation of the statechart, and it consists of the fol-
lowing steps:

• multiple encoding of microinstructions and internal states,
• formation of the transformed table,
• formation of the system of Boolean functions,
• formation of the instruction decoder table,
• formation of the state decoder table,
• implementation of the logic circuit of the FSM.

The multiple encoding of microinstructions and internal states is based on
binary encoding of microinstructions and internal states in each subset.

In the case of chemical reactor example (Fig. 8.4, Fig. 8.13), there are 33 states.
It means that there are 33 subsets of microinstructions and 33 subsets of internal
states. There are maximum 16 microinstructions in one subset. It means that for
encoding only 4 bits are required. For example, for the subset based on the state s8,
the following encoding is obtained:

Ks8(000001000) = 0000,
Ks8(000000000) = 0001,
Ks8(000001100) = 0010,
Ks8(000000100) = 0011.

Similar situation is obtained for internal states.
The formation of the transformed table is the base for forming system of

Boolean functions. It is created from the original table (described in the KISS file)
by replacing the state, the microinstruction and the internal state with their codes.
Part of transformed KISS table is shown in Fig. 8.17.

The formation of the system of Boolean functions is the base for obtain-
ing Boolean functions. These systems are obtained from the transformed table, in
a classical way [1]. For example:

ψ1 = x1x2x3x4x̄9Q̄1Q2Q̄3Q̄4Q5Q̄6 +x1x̄2x̄3x4x̄9Q̄1Q2Q̄3Q4Q5Q̄6

+x1x2x̄3x4x̄9Q̄1Q2Q̄3Q4Q5Q̄6 +x1x2x3x4x̄9Q̄1Q2Q̄3Q4Q5Q̄6

+ x̄1x2x3x4x̄9Q̄1Q2Q̄3Q̄4Q5Q̄6 + x̄1x̄2x̄3x4x̄9Q̄1Q2Q̄3Q4Q5Q̄6

+ . . .
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.i 10

.o 9

.p 263

.s 33

.r strst
(...)
---1---0-- 000110 0000 0000
-------0-1 000111 0001 0000
---1---0-1 001000 0000 0000
-------1-- 000101 0001 0001
---1---1-- 001001 0001 0001
-------1-1 000111 0001 0001
---------1 001010 0000 0001
(...)

Fig. 8.17 Example of transformed KISS description

The formation of the instruction decoder table. This step forms the table that
describes the behavior of instruction decoder. This table has four columns:

• binary code of the current state;
• binary code of the microinstruction (from adequate subset);
• binary representation of the microinstruction (from adequate subset);
• number of the line.

Table 8.2 shows part of such table for our example.

Table 8.2 The part of the instruction decoder table

K(s) Ks(Yt) Yt h

000000 0000 000000000 1
000001 0000 010000000 2
000001 0001 000000000 3
000010 0000 010000000 4
000010 0001 000100000 5

The formation of the state decoder table. This step forms the table that describe
behavior of the state decoder. This table has four columns:

• binary code of the current state;
• binary code of the internal state (from adequate subset);
• binary representation of excitation functions that switches the memory of the

FSM;
• number of the line.
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Table 8.3 The part of the state decoder table

K(s) Ks(s′) D h

000000 0000 000011 1
000001 0000 000001 2
000001 0001 000011 3
000010 0000 000001 4
000010 0001 000010 5

Table 8.3 shows part of such table for the presented example.
The implementation of the logic circuit of the FSM . The combinational cir-

cuit and the register are implemented with CLBs – LUTs and D-type flip-flops. The
instruction decoder is implemented using embedded memory blocks with 2(p+r1)

words of r bits. The content of the memory is described by the instruction decoder
table, where concatenation of the binary code of the current state and the binary
code of a microinstruction (Fig. 8.14) is the memory address, and the binary repre-
sentation of a microinstruction is the value of the memory word. The state decoder
is also implemented in an embedded memory block with 2(p+p1) words of p bits.
The content of the memory is described by the state decoder table, where concate-
nation of the binary code of the current state and the binary code of the internal
state (Fig. 8.15) is the memory address, and the binary representation of excitation
functions is the value of the memory word. Any (don’t care) value can be assigned
for addresses missing in both tables, since such concatenations of codes for both
memories are never used. Both decoders are implemented by memory blocks of an
FPGA device working in ROM mode. Schematic diagram for an FPGA technology
of multi-level structures is presented in Fig. 8.18.

This diagram is based on Xilinx Spartan and Virtex FPGAs but they can be easy
adopted to other FPGAs vendors, like Altera Cyclone and Stratix, since all logic
elements, especially memory blocks and their connections, are very similar.

It should be mentioned, that memory blocks in popular FPGAs are synchronous
[45, 48]. The clock signal for memory blocks is the same as for the register but
memory blocks are trigged by opposite edge (in this case falling edge). It cause
that data are ready to read after one cycle and there is no need to wait one clock
cycle more until data are stable. It is especially important when an internal state is
encoded. It also means that memory blocks can work as an output register in case
when microoperations are encoded. Such registers are needed in each digital system
with Mealy’s outputs to stabilize its operation [2, 25]. Other input signals of memory
blocks are connected to logic 1 or logic 0, according to specification of Xilinx Block
RAM [48], to satisfy read-only mode.
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Fig. 8.18 The schematic diagram of PAY0 Mealy FSM

This is only one possible architecture that could be obtained after architectural
decomposition with the application of multiple encoding. The architecture depends
on which parameter(s) is(are) encoded and which parameter is used as partition
set [14]. The presented architecture yields very good results [13], but the gain in
hardware resources consumption is strongly dependent on the characteristics of the
control algorithm [3]. It means that architecture and method of encoding should be
chosen individually for each algorithm.

8.5 Summary

The increasing complexity of the digital systems and novel advanced technologies
have become essential for application of efficient logic synthetic methods as well as
digital design and mapping tools. However, the commercial tools usually take into
account some trade-off between computational complexity and the quality of the
physical implementation of the projects [45, 48]. The diversity of implementations
requires the use of advanced methods of logic synthesis, however most existing
systems on digital market does not implement such solutions using the outdated
synthesis methods. The advancement of logic synthesis methods, the complexity of
procedures, and novel digital structures leads to the situation that only computer-
aided systems developed mainly at academic research centers are able to support
digital design [6, 9, 13, 14, 16, 27, 29, 31, 38, 39, 46, 47].

The idea presented in the chapter is targeted at complex concurrent behavior
specified with statechart, which is finally implemented in modern programmable
devices equipped with memory blocks and configurable logic. The transformation
from statechart diagram into FSM model is carried with symbolic formal meth-
ods efficiently implemented by means of Binary Decision Diagrams. Both synthesis
strategies (ROM-based scheme with address modifier and architectural decomposi-
tion) consume hardware resources to different extent.

ROM-based method uses only memory blocks. Table 8.4 presents the gain in
memory bits obtained with functional decomposition scheme and implementation
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in the architecture with address modifier and memory (Fig. 8.12b) in comparison
to the implementation without address modifier. Decreasing ratio is of the order of
tens and the method is especially efficient for more complex behavior. However, the
address modifier, as well as the memory content, can easily be implemented in logic
cells [38] making the method universal for heterogeneous programmable structures.

Table 8.4 FSM synthesis results before and after introduction of address modifier

before after gain dec.
name #in #out #q #cube #bit #bit % ratio

Garage 6 3 4 49 7168 1664 77 4.3
TVRemoteControl 8 5 4 55 36864 6912 81 5.3

SimpleReactor 10 15 8 986 6029312 294912 95 20.4
ReactorWithWagon

(Fig. 8.4) 10 9 6 263 983040 26112 97 37.6

gain =
#bitbe f ore−#bita f ter

#bitbe f ore
·100% decreasing ratio =

#bitbe f ore
#bita f ter

Architectural decomposition uses both, memory and configurable logic. Accord-
ing to Figure 8.16, blocks CC and Y are mapped into memory, and blocks P and
RG are implemented in LUTs. Table 8.5 presents the gain in LUTs obtained with
the application of architectural decomposition in comparison to standard FSM syn-
thesis method which is well known VHDL template utilizing only LUTs [43]. The
results were obtained using Xilinx tool with default settings.

Table 8.5 FSM synthesis results with standard method and as PAY0 Mealy FSM

Standard method PAY0 LUT gain dec.
name #LUT #FF #LUT #FF #BRAM % ratio

Garage 82 14 10 4 2 88 8.2
TVRemoteControl 102 12 28 4 2 73 3.6

SimpleReactor 1965 163 472 13 23 77 4.2
ReactorWithWagon

(Fig. 8.4) 423 33 46 6 5 89 9.2

gain =
#LUTstd_method−#LUTPAY0

#LUTstd_method
·100% decreasing ratio =

#LUTstd_method

#LUTPAY0

The idea of functional decomposition which is the base for address modifier con-
cept can be applied to any function [31]. Its application to functions implemented
in blocks P, Y and CC can bring further reductions in hardware resources, not only
memory bits, but also in configurable logic.
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Decomposition methods proved their efficiency for the latest programmable de-
vices. It seems that combining architectural synthesis with functional ROM-based
decomposition is very promising for logic controller design, especially for structures
equipped with embedded memory blocks.
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Adamski, M., Barkalov, A., Węgrzyn, M. (eds.) Design of Digital Systems and Devices.
LNEE, vol. 79, pp. 121–144. Springer, Heidelberg (2011)

39. Sasao, T.: On the number of LUTs to realize sparse logic functions. In: Proc. of the 18th
International Workshop on Logic and Synthesis, Berkeley, CA, U.S.A., July 31-August
2, pp. 64–71 (2009)
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