Chapter 10

Metaheuristic Algorithms for the Quadratic
Assignment Problem: Performance and
Comparison

Andreas Beham, Michael Affenzeller, and Erik Pitzer

Abstract. The quadratic assignment problem is among the harder combinatorial
optimization problems in that even small instances might be difficult to solve and
for different algorithms different instances pose challenges to solve. Research on the
quadratic assignment problem has thus focused on developing methods that defy the
problem’s variety and that can solve a vast number of instances effectively. The topic
of this work is to compare the performance of well-known “standard” metaheuristics
with specialized and adapted metaheuristics and analyze their behavior. Empirical
validation of the results is performed on a highly diverse set of instances that are
collected and published in form of the quadratic assignment problem library. The
data in these instances come from real-world applications on the one hand and from
randomly generated sources on the other hand.

10.1 Introduction

10.1.1 Quadratic Assignment Problem

The quadratic assignment problem (QAP) was introduced in [15] and is a well-
known problem in the field of operations research. It is the topic of many studies,
treating the improvement of optimization methods as well as reporting successful
application to practical problems in keyboard design, facility layout planning and
re-planning as well as in circuit design [10, 13, 7]. The problem is NP hard in gen-
eral and, thus, the best solution cannot easily be computed in polynomial time. Many
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different optimization methods have been applied, among them popular metaheuris-
tics such as tabu search [20, 14] and genetic algorithms [8].

The problem can be described as finding the best assignment for a set of facilities
to a set of locations so that each facility is assigned to exactly one location which in
turn houses only this facility. An assignment is considered better than another when
the flows between the assigned facilities have to be hauled over smaller distances.

The QAP is also a generalization of the traveling salesman problem (TSP). Con-
version of a TSP can be achieved by using a special weight matrix [15, 17] where
the flow between the "facilities" is modeled as a ring that involves all of them ex-
actly once. The flow in this case can be interpreted as the salesman that travels from
one city to another.

More formally the problem can be described by an N x N matrix W with elements
wir denoting the weights between facilities i and k and an N x N matrix D with
elements dy, denoting the distances between locations x and y. The goal is to find
a permutation 7 with 7(i) denoting the element at position i so that the following
objective is achieved:

N N
minz 2 Wik 'dﬂ(i)n'(k) (101)
i=1k=1
The complexity of evaluating the quality of an assignment according to Eq. (10.1)
is O(N?), however several optimization algorithms move from one solution to an-
other through small changes, such as by swapping two elements in the permutation.
These moves allow to reduce the evaluation complexity to O(N) and even O(1) if the
previous qualities are memorized [20]. Despite changing the solution in small steps
iteratively, these algorithms can, nevertheless, explore the solution space and inter-
esting parts thereof quickly. The complete enumeration of such a “swap” neighbor-
hood contains N x (N — 1)/2 moves and, therefore, grows quickly with the problem
size. This poses a challenge for solving larger instances of the QAP.
The QAP can also be used to model cases when there are more locations than fa-
cilities and also when there are more facilities than locations. In these cases dummy
facilities with zero flows or dummy locations with a high distance can be defined.

QAPLIB

The quadratic assignment problem library [4] (QAPLIB) is a collection of bench-
mark instances from different contributors. According to their website!, it originated
at the Graz University of Technology and is now maintained by the University of
Pennsylvania, School of Engineering and Applied Science. It includes the instance
descriptions in a common format, as well as optimal and best-known solutions or
lower bounds and consists of a total of 137 instances from 15 contributing sources
which cover real-world as well as random instances. The sizes range from 10 to 256
although smaller instances are more frequent. All 103 instances between 12 and 50

1 http://www.seas.upenn.edu/gaplib/
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have been selected for this study with the exception of esc16f, which does not
specify any flows.

10.1.2 Literature Review

Research on the QAP has a longer history, but is still very active. A few selected
publications shall be briefly described here to give the reader an overview on the
research efforts that have been conducted.

The first successful metaheuristic for the QAP was robust taboo search (RTS) and
has been introduced in [20]. This algorithm addresses one of the main weaknesses of
the standard tabu search (TS) algorithm. In tabu search it can often happen that the
search trajectory returns to the same solution over and over. This cycling behavior is
due to its rather deterministic nature and the attempt of Taillard was to randomize the
tabu tenure and therefore make the trajectory more robust. Taillard also noted that
some instances of the QAP, namely the e1s19, proved to be difficult to be solved.
The search would get stuck in a certain sub-region of the search space and would
be unable to escape as it would never climb high enough to leave it. He described
a simple diversification strategy that would choose to make diversifying moves at
certain times which were enough to solve the problem.

The genetic local search (GLS) algorithm has been introduced in [16]. It is a hy-
brid metaheuristic that combines elements of a genetic algorithm with local search.
The authors note that local search is already able to solve the QAP quite well if it is
applied multiple times, as will also be shown here. They developed a new crossover
operator which they named DistancePreservingCrossover. It is a highly disruptive
crossover that only preserves the common alleles and randomizes all other genes.
The common alleles are then fixed and the local search is applied to find a new local
optima for the other genes.

The performance of iterated local search was analyzed in [19]. In that work Stiit-
zle tested several strategies of an iterated local search algorithm. The local search is
a first-improvement local search that would make use of so called “don’t look bits”
which limit the neighborhood of the local search to the interesting parts. He also
uses concepts of variable neighborhood search in that he varies the degree of pertur-
bation of the solution from which the local search is restarted after it has landed in
a local optima. Finally, he hybridizes this algorithm with an evolution strategy that
achieves very competitive results.

A survey and a little bit of history on solutions to some quadratic assignment
problem instances is given in [9]. Drezner also proposed several new problem in-
stances, which have however not found their way into the QAPLIB yet.

The topic of fitness landscape analysis on the quadratic assignment problem has
initially been attempted in [17]. Merz and Freisleben described several measures
such as autocorrelation and correlation length to measure landscape ruggedness and
fitness distance correlation (FDC) to visualize the correlation between solution sim-
ilarity (to the optimum) and quality. Problems are easier to solve when it holds that
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the more similar a solution becomes to the optimum the better its quality. This can
lead the search to the optimum instead of deceiving it.

The problem ruggedness has also been analyzed in [3]. Angel introduced a rugged-
ness coefficient and stated that the QAP appears to be a rather smooth problem which
is beneficial for local search. Autocorrelation values recently have also been calcu-
lated exactly in [5]. Chicano et al obtain the autocorrelation function analytically
instead of empirically.

In the following chapter, results and a comparison between different algorithms
will be given on several instances of the quadratic assignment problem taken from
the QAPLIB. The quality differences will be given on a scale between the best-
known respectively optimal quality and an instance specific average. The reason
is that the typically used relative difference between the obtained solution’s fitness
f(s) and the best known solution f*, given as (f(s) — f*)/f*, cannot be used to
compare algorithm performance over multiple problem instances as a given instance
might appear to be solved well, when actually only the range between an average
solution’s quality and the optimum is narrow. Therefore, we use the average fitness
of the problem instance f to normalize this ratio and obtain a scaled difference as
(f(s) = £%)/(f = f*). It is shown in [5] that f can be computed exactly for any
instance of the QAP. The comparison of effort between the algorithms has been
normalized to the computational task to evaluate a solution. The swap move that is
often used can be calculated in O(N) and even O(1) [20]. If it is calculated in O(1)
there are just 4 operations necessary, otherwise there are 4 * N operations required.
The evaluation of a full solution requires N> operations. In this chapter solution
evaluation equivalents denotes the amount of full solution evaluations taking into
account that move evaluations need less operations. If not otherwise mentioned all
results in this chapter are computed as an average of 20 repetitions of the same
configuration.

10.2 Trajectory-Based Algorithms

Trajectory-based algorithms attempt to move from one solution to the next through
anumber of smaller or larger steps. Different strategies exist to guide the movement.
The most often used neighborhood in the QAP is the so called swap2 neighborhood
where two indices in the permutation are randomly selected and exchanged. For a
QAP solution this means that two facilities are placed in the location of the respec-
tive other facility. This move creates only a small change. All of the trajectory-based
algorithms in this chapter make use of this type of move.
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10.2.1 Local Search

Local search basically comes in two variants:

e Dbest-improvement: Considers a number of moves at the same time. It attempts
to make only the move with the maximum performance gain. It is sometimes also
referred to a steepest or gradient-descent heuristic. If no more improving moves
can be made the search knows to have reached a local optimum.

e first-improvement: Considers moves one after another and attempts to make
each move that would improve the current solution. It does not follow the steep-
est gradient, but in some cases where the neighborhood is much larger than the
number of steps to the local optimum first-improvement might be quicker to con-
verge. It knows to have reached a local optimum when it has tried all moves and
none constituted an improvement.

The performance of local search depends to a large degree on the number and
quality of local optima that would attract the search. Typically a quadratic assign-
ment problem contains many local optima that are scattered over the entire search
space. Only some instances lead the search into similar local optima. In Figure 10.1
the similarity of local optima is shown for two selected instances. In the e1s19
instance a randomly started local search often converges into similar local optima,
while in the bur?2 6a instance there are much more and scattered local optima.
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Fig. 10.1 Similarities of 1,000 randomly sampled local optima with each other for two se-
lected problem instances. The darker an entry in this matrix the more similar two local optima
are.

In Figure 10.2 it can be observed that the similarity of local optima reduces with
the problem size which can be expected given the increase of the search space.
However, the similarities change at a slightly slower rate (n¢) than search space (n!).
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Maximum similarity reduces to about 20% for problems of size 50 which means
that for a given local optimum there is at least one other optimum out of 999 that
is 20% similar. Average similarity compares the similarity among all other local
optima found.

As the results in Figure 10.3 show, small instances can be very deceptive for a
local search. Although the problems belonging to the rou family are still small
enough that the trajectory leads to the best solution the average trajectory ends up
about 20% away from the optimum and 45% in the worst observed case. In general,
the average quality of local optima varies greatly between the instances as well as
the effort to reach them. It is also interesting to note that in the 1 ipa-Db instances
the average fitness of local optima is rather high. The effort to find such an optimum
using a best-improvement local search based on the swap2 neighborhood is steadily
increasing with the problem size. While it takes on average 286 solution evaluation
equivalents to find a local optimum in the rou family it takes about 4,837 solution
evaluation equivalents for the wi1l50 problem instance. Although such a trend ex-
ists, the difficulty of instances of the quadratic assignment problem cannot only be
judged purely by problem size from the point of view of a local search algorithm.

% Maximum Similarity ~ + Average Similarity

100% 30%

80% 24%

60% 18%

40% 12%

20% 6%

0% T T T T T T T 0%
10 15 20 25 30 35 40 45 50 55

ProblemSize

Fig. 10.2 Correlation of local optima similarity and problem size

The local search is often repeated to find a different and better local optimum in
the next descent. Such a repetition might be performed from a completely random
solution, or from a slight perturbation of the current local optimum in which case it
is called an iterated local search (ILS). Table 10.1 shows the results from simple iter-
ated first- and best-improving local search strategies. The algorithms were run with
a maximum of 10,000 repeated starts. The search was stopped as soon as it reached
the known optimum or best-known quality and the effort is given in the average
number of evaluated solution equivalents. The search is restarted from a solution
where on average about i of the current solution is randomly perturbed. Tests were
also conducted with a simple repeated local search with comparable, but slightly
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Fig. 10.3 Distribution of local optima with respect to their fitness values. The graphic shows
the minimum, average, and maximum fitness for local optima found from 10,000 initial ran-
dom samples.

worse results. The main difference between a basic iterated local search and a re-
peated local search is the required effort. Starting over from completely new random
solutions requires considerable more effort to descend into a local optimum. When
starting closer to the just found local optimum finding a new local and possibly also
the global optimum is faster. In the case of iterated best-improvement local search
the effort is about 180% higher when repeating from a new random solution, in first-
improvement it is still about 52% higher. Nevertheless, there is the possibility that
the trajectory gets stuck in a certain region. In our case however the strategy was
very simple as the search always continued from the newly found local optimum
and the scramble operation is able to modify even the whole permutation, although
with only a very small probability.

It is also interesting to compare 1ipa-a and 1ipa-Db instances with tai-a
and tai-b. While the -b instances generally appear to be easier to solve 1lipa-b
also requires a lot less effort, the effort for tai-b however remains roughly the
same. Another interesting observation is that els of which the only instance is
els19 requires less effort in the best-improvement variant. This is noteworthy as
it is the most significant out of three groups that showed this behavior. Overall, the
roughly similar quality, but in general reduced effort of the first-improvement search
makes it much more attractive to be used.

10.2.2 Simulated Annealing

In contrast to local search simulated annealing allows the trajectory to worsen with
a certain probability. This counters the drawback of local search algorithms that
get stuck in local optima as they are missing a strategy for escaping it. Simu-
lated annealing uses a temperature parameter that governs the probability of accept-
ing a worsening move. An often used cooling schedule is the exponential cooling
where the probability to move from solution c¢ to solution x in the case of a fitness
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Table 10.1 Performance comparison of a simple first- and best-improving iterated local
search on several instances of the QAPLIB

First-improvement Best-improvement
Instance  Quality Effort Optimum Quality Effort Optimum
bur 0.000% 105,409 100.0% 0.000% 232,074 100.0%
chr 0.475% 570,816 59.3% 0.322% 1,091,356 66.4%
els 0.000% 62,496 100.0% 0.000% 14,808 100.0%
esc 0.037% 84,323 95.9% 0.025% 241,453 96.8%
had 0.000% 5,324 100.0% 0.000% 22,223 100.0%
kra 0.066% 790,856 80.0% 0.127% 3,091,380 70.0%
lipa-a 10.083% 1,592,687 61.3% 8.695% 4,678,133 68.8%
lipa-b 0.000% 10,777 100.0% 0.000% 41,671 100.0%
nug 0.011% 205,228 96.0% 0.014% 535,476 95.7%
rou 0.023% 297,756 83.3% 0.074% 558,576 81.7%
scr 0.000% 28,307 100.0% 0.000% 145,315 100.0%
sko 0.803% 3,558,891 7.5% 0.845% 12,069,038 7.5%
ste 0.212% 2,126,174 33.3% 0.259% 7,214,283 28.3%
tai-a 3.843% 1,700,668 37.8% 4.195% 4,270,270 36.1%
tai-b 0.032% 1,506,763 65.6% 0.043% 4,827,457 60.6%
tho 0.407% 2,103,004 37.5% 0.522% 6,299,726 30.0%
wil 0.693% 4,473,760 0.0% 0.661% 15,415,083 0.0%

0.849 % 713,103 76.4% 0.812% 2,063,833 76.6 %

deterioration is p(x,c) < eﬂ(');m) . As the temperature parameter T is reduced over
time the search is less and less likely to accept large uphill moves.

Ascanbe seen in the results of Table 10.2 the performance depends to a large degree
on the start temperature. If the initial temperature is not chosen high enough the search
will converge too quickly, if however the initial temperature is raised the search may
converge into better regions of the search space. However, raising the temperature
too far is not beneficial as the search would then only perform a random walk and
waste CPU time. In the table the initial temperatures have been chosen according to
the range between the average quality and the best-known quality. The search should
accept with a probability of 1% a solution that worsens the current solution by 1%,
4%, 16%, or 32% of the fitness range. Note that in this case the best-known quality
has been used, but if that is not available one could also use a suitable lower bound.

There are further parameters in simulated annealing that govern the speed of the
cooling as well as the initial and final temperature. Cooling speed of 1 represents a
linear cooling schedule while 0.01 and 0.00001 represent more rapid cooling sched-
ules that would quickly prevent the acceptance of uphill moves. As shown in Fig-
ure 10.4 experiments regarding the variation of these parameters have shown that
only the starting temperature has a significant influence on the final solution quality.

Detailed results are given in Table 10.3 for the configuration that worked best
overall. It is interesting to see that simulated annealing is having difficulties in
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Table 10.2 Performance of simulated annealing averaged over various configurations with
respect to the chosen start temperature

To Quality Effort Optimum

1% 7.155% 3,666,504 24%

4% 1.594% 2,507,105 53%

16% 0.503% 1,760,454 71%
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Fig. 10.4 Parameter range test for simulated annealing shows that start temperature has the
largest effect on the performance. In this case the results are averaged over all repetitions of
all tested instances.

solving the e1ls19 instance to optimality. On the other hand the algorithm has no
trouble solving many of the other instances. The seemingly difficult 1ipa-a in-
stances are solved with much more ease finding the optimum in all, but one case.
Instance families that simulated annealing is not as well suited as a simple iterated
local search are bur, had, nug, scr, and tai-b. In these instances the perfor-
mance is worse despite sometimes a much larger effort that is required in obtaining
good solutions. On the other hand simulated annealing is able to solve chr, kra,
rou, sko, ste, tai-a, tho, and wil better than the simple iterated local search.

10.2.3 Tabu Search

Like simulated annealing tabu search also has a strategy for escaping local optima,
which forces the search to make a move every time which is the best move that
can currently be made. Naturally, this would likely return the search to the previous
solution in the succeeding iteration so tabu search includes a memory that prevents
to revert a move that has been made recently. This memory thus allows the search
to explore greater parts of the search space.

The so called “standard" tabu search includes a simple memory that remembers
the previously assigned location. Every move is declared tabu if it would reassign
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Table 10.3 Performance of simulated annealing applied to several instances of the QAPLIB

16%
Instance  Average Effort Optimum
bur 0.247% 3,528,124 41.9%
chr 0.213% 2,137,507 67.1%
els 1.531% 4,901,637 15.0%
esc 0.000% 220,586 100.0%
had 0.183% 1,483,900 82.0%
kra 0.106% 1,544,613 85.0%

lipa-a 0.336% 839,576 98.8%
lipa-b 0.000% 802,769 100.0%

nug 0.035% 955,344 94.7%
rou 0.034% 1,095,646 81.7%
scr 0.000% 637,245 100.0%
sko 0.291% 1,962,898 25.0%
ste 0.082% 2,402,201 43.3%
tai-a 2.756% 2,101,099 38.3%
tai-b 0.345% 3,003,620 53.1%
tho 0.081% 2,072,757 50.0%
wil 0.406% 1,968,492 5.0%

0.379% 1,619,005 73.2%

a location to a facility that it had already been assigned to within the last n itera-
tions. Nevertheless sometimes a move should be made even though it is tabu, such
as when it would find a new best solution. The so called aspiration condition ensures
that such moves are considered nevertheless. In the “standard" tabu search the as-
piration condition typically reconsiders moves that would find a new best solution.
However, more advanced aspiration conditions exist that take the quality of a certain
move into account and would undo a move if it improved the quality from the last
time it was done. This can happen when other parts of the solution have changed
significantly. Tabu search typically has one important parameter that governs the
time that moves are kept tabu: the tabu tenure. The longer a certain move is kept
tabu the less likely the search returns and the more it will diversify. However, if it
is too long the search might be prevented to intensify and cannot explore the region
around local optima. With less possible moves in the neighborhood to choose from
the behavior approaches that of random search.

The results shown in Table 10.4 indicate the performance of standard tabu search
applied to the already mentioned problem instances. The algorithm generally shows
good search behavior, but it has problems to solve some instances such as from the
bur, els, had, and tai-b family. As Taillard states in [20] in certain instances
certain moves are never considered and thus the search is trapped in a sub-region of
the search space. One possibility to counter this would be to increase the tabu tenure
and thus force the search to diversify, however as already mentioned if the tenure
becomes too large the search is only diversifying and will not descend and explore



10 Metaheuristic Algorithms for the Quadratic Assignment 181

Table 10.4 Performance of a standard tabu search

MaxlIter = 2,000 MaxlIter = 100,000
tenure = N tenure = 2*N tenure = 2*N
Instance  Quality Optimum Quality Optimum Quality  Optimum
bur 2.772% 6.9% 2.341% 10.0% 2.121% 20.6%
chr 2.984% 16.8% 1.568% 23.2% 0.254% 69.6%
els 8.972% 0.0% 8.678% 10.0% 6.407% 10.0%
esc 0.320% 92.1% 0.214% 92.4% 0.015% 99.7%
had 1.539% 48.0% 1.265% 53.0% 1.069% 57.0%
kra 2.934% 11.7% 2.267% 21.7% 0.205% 90.0%
lipa-a 16.055% 40.0% 12.571% 55.0% 0.000% 100.0%
lipa-b 1.429% 97.5% 1.426% 97.5% 0.000% 100.0%
nug 0.821% 53.0% 0.644% 56.7% 0.057% 97.0%
rou 1.168% 36.7% 0.443% 68.3% 0.000% 100.0%
scr 1.570% 45.0% 0.100% 80.0% 0.000% 100.0%
sko 1.115% 2.5% 1.693% 0.0% 0.458% 12.5%
ste 1.326% 10.0% 1.152% 5.0% 0.169% 43.3%
tai-a 4.785% 10.6% 4.375% 19.4% 1.704% 46.7%
tai-b 8.258% 11.9% 7.559% 10.0% 7.325% 20.6%
wil 1.925% 0.0% 2.054% 0.0% 0.567% 0.0%

2.991% 39.2% 2.410% 44.1% 1.080% 69.6 %

interesting local optima. Therefore Taillard proposed the robust taboo search (RTS)
that would randomize the tabu tenure to counter the probability the search stagnates.
He also added a diversification strategy to explore still unseen parts of the search
space. This algorithm has thus two main parameters the tabu tenure that governs
the random variable from which the actual tenures are drawn and the aspiration
tenure that defines a fixed number of iterations after diversifying moves are being
made. These two parameters guide the intensifying and diversifying behavior of the
search trajectory. Smaller tabu tenures lead to more intensification of close local
optima, while larger tabu tenures will aim to diversify more. In a similar way a
small aspiration tenure leads to more frequent diversification while larger aspiration
tenures allow to intensify the search longer.

An extensive parameter study was conducted where for each of the 102 instances
90 configurations were tested. The configurations were chosen by combining each
of 9 different tabu tenures (25, 50, 100, 150, 200, 300, 400, 600, and 800) with 10
different aspiration tenures (100, 500, 750, 1000, 1500, 2000, 3500, 5000, 7500,
and 10000). The algorithm was allowed a total of 100,000 iterations. The averaged
results over all instaces from the study can be seen in Figure 10.5 while the results
of the average best configuration (tabu tenure of 200 and aspiration tenure of 7,500)
are given in Table 10.5.

The robust taboo search is generally a very well working metaheuristic for prob-
lems of this size, however the parameter configuration is a bit harder. Both the tabu
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Fig. 10.5 Parameter range test for robust taboo search shows that best results are achieved
with a moderate tabu tenure and a higher aspiration tenure. Each point in the grid was evalu-
ated 20 times by performing the algorithm on all 102 instances.

tenure and the aspiration tenure have a high and sometimes interdependent influ-
ence on the performance. Good parameter settings need to be chosen, otherwise the
search will perform worse. Unfortunately it is rather difficult to give a good figure
for tabu search’s effort. The ability to evaluate certain moves in O(1) as described in
[20] greatly increases the influence of other elements on the search effort. The effort
is calculated by computing each move evaluation as 4 operations in Table 10.5.

10.2.4 Variable Neighborhood Search

Variable neighborhood search (VNS) is a further trajectory-based algorithm with
another strategy to escape local optima. Instead of trying to simply “move on" as
would tabu search do or escape by probability as would simulated annealing do the
variable neighborhood search attempts to perform a set of changes to the current
solution in the hope of perturbing it to a degree that allows different local optima
to be reached. It is similar to an iterated local search, but it uses a more advanced
strategy to continue the search. The strength of the modifications increases with the
number of attempts: at first only small changes are made, but as the search remains
unsuccessful in finding a better local optimum the strength of the change is in-
creased. This creates a well working combination of fast local search behavior with
a mutation-based diversification strategy. The performance of VNS is also shown
in Table 10.5 in which the algorithm was run for 500 full cycles of shaking oper-
ators. The results shown are the averages of those runs. It finds comparable solu-
tions to a first-improvement local search although it has been given much less time.
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Table 10.5 Performance of the robust taboo search (RTS) and the variable neighborhood
search (VNS)

RTS VNS
Instance  Quality Iterations Effort Optimum Quality Effort Optimum
bur 0.112% 37,964 73,008 88.8% 0.000% 29,753 100.0%
chr 0.173% 36,709 69,834 75.4% 0.379% 210,424 59.3%
els 0.000% 23,805 45,103 100.0% 0.000% 14,187 100.0%
esc 0.025% 6,092 11,802 97.1% 0.021% 25,067 97.9%
had 0.228% 17,730 33,435 90.0% 0.000% 4,213 100.0%
kra 0.176% 37,061 71,690 91.7% 0.708% 548,332 53.3%
lipa-a 0.000% 11,712 22,833 100.0% 13.795% 630,936 50.0%
lipa-b 0.000% 1,106 2,156 100.0% 0.000% 32,010 100.0%
nug 0.000% 5,362 10,274 100.0% 0.103% 123,707 84.7%
rou 0.001% 9,244 17,543 98.3% 0.247% 144,587 70.0%
scr 0.000% 1,752 3,314 100.0% 0.000% 21,900 100.0%
sko 0.109% 58,454 114,423 55.0% 0.667% 1,259,354 20.0%
ste 0.015% 41,464 80,625 91.7% 0.097% 461,140 70.0%
tai-a 1.042% 50,626 98,112 62.8% 4.025% 597,374 27.8%
tai-b 0.116% 41,990 81,548 73.8% 0.048% 251,736 86.9%
tho 0.030% 51,952 101,211 57.5% 0.596% 843,418 17.5%
wil 0.137% 86,947 170,417 40.0% 0.702% 1,684,106 0.0%

0.159 % 24,836 47,895 86.6% 1.033% 244,711 75.1%

It applies swap2, swap3, scramble, inversion, insertion, translocation, and
translocation-inversion as shaking operators in this order [2].

10.3 Population-Based Algorithms

Population-based algorithms attempt to make use of a larger number of solutions
that are evolved over time. Often in optimization it is beneficial to explore the search
space more rigorously in order to find better solutions. There are a number of strate-
gies which involve various degrees of replacement and elitism, that control how the
algorithms would discard a solution and instead accept a new one. For instance, in
a genetic algorithm with generational replacement the newly evolved population al-
ways fully replaces the old population, even if it was of worse quality. Often only
one single best individual is retained from the old population. This strategy requires
the crossover operator to combine relevant genetic information of high quality indi-
viduals. In the offspring selection genetic algorithm however, the replacement strat-
egy puts more pressure towards fulfilling this requirement: The search accepts new
children only if they outperform their respective parents. This strategy often works
better than a standard genetic algorithm, however in each generation many more
children are produced and the convergence is slowed. At the same time this allows
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a more thorough exploration of the search space which should yield higher quality
results.

In contrast to trajectory-based algorithms, the introduction of a population should
benefit in those cases when the fitness landscape has many different basins of at-
traction [18]. This does correlate with the number of local optima, but not fully
as local optima might also be quite close to another and form valleys of attraction
(it is believed that e.g. the traveling salesman problem does generate such a “big-
valley” landscape in which good solutions are also quite similar to each other [6]).
Population-based search, at least in the beginning, is able to discover multiple such
basins and explore them simultaneously. Trajectory-based algorithms always only
explore to the root of one basin at a time and then have to find their way to the next
basin.

As was observed, the behavior of the standard tabu search on the els19 re-
sulted in a search trajectory that got stuck in a confined part of the search space.
The same problem instance is however comparably easy to solve for a genetic algo-
rithm. However, as mentioned, population-based algorithms are only successful if
the distributed information on relevant genes can be combined in one chromosome
through the process of survival of the fittest and crossover. Especially when solving
the QAP it can be observed that this process is not always successful.

10.3.1 Genetic Algorithm

The performance of the genetic algorithm depends to a large part on whether the
crossover operator can combine the relevant genes from multiple individuals in
a new offspring. However, as can be seen in a parameter study involving various
crossover operators which are generally deemed suitable, various mutation opera-
tors, and mutation probabilities the genetic algorithm population cannot effectively
converge in optimal regions of the search space. The search converges prematurely
and stagnates at a certain level to the known optimum with much of the diversity
lost. At this point crossover is not relevant anymore and only mutation may intro-
duce new alleles into the population. Table 10.6 shows the average performance of
standard genetic algorithm with a population size of 500, and full generational re-
placement. For the tests with roulette-wheel selection the algorithm was run only for
5,000 generations, but achieved on average better results than tournament selection
run for 10,000 generations. This shows that the lower selection pressure is able to
maintain genetic diversity longer which increases the chance of combining it in a
single solution.

As Figure 10.6 shows the genetic diversity in the population can be lost as early
as generation 30 if selection pressure is very high. After the search has converged
the continued evolution is mainly driven by random mutations with a low proba-
bility and therefore highly inefficient. Using a selection operator that excerts less
selection pressure such as roulette-wheel in this case shows that convergence can be



10 Metaheuristic Algorithms for the Quadratic Assignment

185

Table 10.6 Performance of a standard genetic algorithm with partially matched crossover

(PMX) [11], swap2 manipulation and 15% mutation probability

5-Tournament Roulette
Instance  Quality Effort Optimum Quality Effort Optimum
bur 1.221% 4,897,518 1.9% 1.338% 2,494,196 0.6%
chr 5.569% 4,765,084 4.6% 4.245% 2,212,262 15.4%
els 0.460% 1,508,229 70.0% 0.743% 2,400,715 5.0%
esc 1.307% 1,006,638 80.3% 1.089% 543,318 80.0%
had 1.505% 2,645,654 48.0% 0.984% 1,126,099 60.0%
kra 9.021% 4,990,500 0.0% 7.745% 2,493,571 1.7%
lipa-a 38.429% 4,928,337 1.3% 3.695% 2,388,408 5.0%
lipa-b 50.978% 4,435,188 11.3% 6.410% 2,158,538 17.5%
nug 6.122% 4,791,288 4.0% 4.488% 2,314,742 9.0%
rou 10.605% 4,990,500 0.0% 6.970% 2,137,933 15.0%
scr 4.701% 4,243,156 15.0% 3.702% 2,197,747 21.7%
sko 10.211% 4,990,500 0.0% 7.410% 2,495,500 0.0%
ste 5.342% 4,990,500 0.0% 7.326% 2,495,500 0.0%
tai-a 17.875% 4,962,855 0.6% 4.003% 2,408,973 3.9%
tai-b 3.334% 4,305,529 13.8% 2.773% 2,203,563 12.5%
tho 8.795% 4,990,500 0.0% 6.684% 2,495,500 0.0%
wil 9.227% 4,990,500 0.0% 0.459% 2,495,500 0.0%
8.737% 3,978,419 20.4% 7.315% 1,969,243 23.1%

—— Minimum Similarity Average Similarity —— Maximum Similarity —— Minimum Similarity Average Similarity —— Maximum Similarity

0.8 0.8
% 0.4 é 0.4
(2] 0]

0.2 0.2

’ B generatiosg B ” 500 122”6!’8“::!0 - =
(a) 5-Tournament (b) Roulette

Fig. 10.6 The chart displays the average similarities in the population. It can be seen that the
genetic diversity in the population of the GA is lost by generation 30 already when optimiz-
ing the 1ipa30a instance with high selection pressure. If the selection pressure is less the
population takes longer to converge allowing the search to explore more of the search space.

prolonged for many generations. Selection pressure generally refers to the ratio of
selecting better solutions to selecting worse solutions.
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10.3.2 Offspring Selection Genetic Algorithm

The offspring selection genetic algorithm (OSGA) [1, 2] is an advanced and more
robust variant of a genetic algorithm. Instead of relying on the undirected stochastic
nature of the crossover and mutation operators it introduces another selection crite-
ria for the newly created offspring. If the performance of the offspring surpasses that
of its parents it is admissible to the next population, if however it is worse than the
parents (the better parent) the offspring is discarded. This places a variable evolu-
tionary pressure on the population forcing it to produce better and better offspring.
The visible effect is that the OSGA performs much better than the standard GA in
both convergence speed and quality. Still, the performance is not entirely satisfying
and it is likely possible that even in this case the crossover operator is not able to
combine the relevant genetic information. The performance of OSGA is given in Ta-
ble 10.7. The SuccessRatio was set to 0.5 and the mutation probability was set to
25%. The algorithm selects one parent with tournament selection and a group size of
3 and the other parent randomly. In this case a variant was used where the individuals
that remained after the SuccessRatio was filled were not selected from the pool of
unsuccessful individuals, but were randomly selected from the previous population.

Table 10.7 Performance of the offspring selection genetic algorithm (OSGA)

Instance  Quality Effort Optimum

bur 0.479% 388,609 11.3%
chr 1.932% 416,956 27.1%
els 0.000% 63,000 100.0%
esc 1.033% 117,199 84.1%
had 0.590% 167,030 62.0%
kra 4.742% 462,953 0.0%

lipa-a 31.173% 626,594 12.5%
lipa-b 32.062% 557,218 47.5%

nug 1.987% 378,197 23.3%
rou 3.114% 406,432 20.0%
scr 0.742% 217,933 63.3%
sko 6.876% 669,170 0.0%
ste 2.332% 500,843 0.0%
tai-a 11.810% 528,069 14.4%
tai-b 1.319% 376,965 27.5%
tho 4.523% 477,328 0.0%
wil 4.787% 608,935 0.0%

5.013% 369,409 34.3%

As expected from previous applications of OSGA [2] the algorithm could greatly
improve the results compared to the standard genetic algorithm. However, a few ex-
ceptions are interesting to note regarding instances of type 1ipa-a and lipa-b,
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as well as tai-a and wil. In these instances OSGA was able to find the optimal
or best known solution more often, however the average quality is worse than in the
standard GA. It can also be seen that these are instances where the standard genetic
algorithm with tournament selection also struggled much more. A selection scheme
with less selection pressure seems to be the more favorable approach, meaning that
the search needs to diversify with a much greater degree. A similar observation can
be made when the results from standard tabu search and robust taboo search are
compared.

10.4 Hybrid Algorithms

The goal of hybridizing algorithms is to combine good properties of a number of
algorithms in one strategy. From the previous experience on performance indicators
it can be derived that trajectory-based algorithms with their step-wise local search
behavior appear to work very well given a certain diversification strategy.

The intent of this chapter is to show and analyze possible performance improve-
ments by combining population-based and trajectory-based algorithms to so called
memetic algorithms. The hope is that such algorithms inherent the good search prop-
erties of the strategies that they combine and are thus more universally applicable
than strategies that focus solely on a search trajectory or on the combination through
Crossover.

10.4.1 Memetic Algorithms

Memetic algorithms combine the advantages of genetic algorithms with local search
behavior. They are called “memetic" because the solutions are changed during the
generation as opposed to only in the time between generations. The GLS algorithm
mentioned in Section 10.1.2 is such a memetic algorithm. However, naturally one
needs to take care that in the design of such an algorithm the population does not
converge too quickly, as it draws its diversifying power from the genetic diversity in
the population. The problem known as genetic drift could be even worse in this case
when the local search decends into highly similar local optima. Here we compare
the performance of GLS with that of a simple genetic algorithm that is adapted with
local search.

In the results were the genetic algorithm was combined with a local search we
can see that the search could indeed be improved over just the genetic algorithm
or just the local search. The best-known solution was found only slightly more of-
ten than in the results of ILS (77.2% vs 76.6%), but the average quality could be
significantly improved with an effort in between the first-improvement and best-
improvement ILS. The algorithm did however not improve in all instances, but the
improvement can mainly be attributed to instances where the ILS gave worse results
such as 1ip-a and tai-a. It is interesting to see that GA+LS for example could
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Table 10.8 Performance of GLS and GA+LS compared

GLS GA+LS
Instance  Quality Effort Optimum Quality Effort Optimum
bur 0.000% 114,751 100.0% 0.050% 343,540 87.5%
chr 0.009% 627,206 98.6% 0.269% 352,540 62.9%
els 0.000% 57,803 100.0% 0.649% 96,586 55.0%
esc 0.004% 91,802 99.4% 0.002% 80,480 99.7%
had 0.000% 19,718 100.0% 0.000% 16,114 100.0%
kra 0.000% 797,324 100.0% 0.132% 428,414 85.0%
lipa-a 0.000% 1,196,204 100.0% 0.300% 334,641 98.8%
lipa-b 0.000% 64,669 100.0% 0.000% 48,404 100.0%
nug 0.000% 166,994 100.0% 0.081% 130,326 87.7%
rou 0.000% 549,678 100.0% 0.259% 103,860 65.0%
scr 0.000% 56,966 100.0% 0.010% 59,681 98.3%
sko 0.081% 9,733,115 65.0% 0.367% 1,328,217 35.0%
ste 0.012% 2,905,395 91.7% 0.110% 743,858 55.0%
tai-a 1.720% 6,431,136 52.2% 3.077% 914,393 22.8%
tai-b 0.000% 403,488 100.0% 0.054% 403,152 86.3%
tho 0.042% 8,894,650 55.0% 0.268% 742,103 22.5%
wil 0.146% 17,108,610 40.0% 0.391% 1,778,433 10.0%

0.158% 1,444,752 93.1% 0.378% 334,290 77.2%

not succeed in the e1s19 instance which the ILS perfectly solved. The hybrid in-
herited the problems of the genetic algorithm in this instance. GLS on the other hand
shows good performance throughout the instances often solving them to optimality.
Among all tested algorithms it did find the optimal or best-known solution most
often.

10.5 Summary

Two algorithms achieved very good results overall: Robust taboo search (RTS) and
genetic local search (GLS). However, the summarized results of the best perform-
ing metaheuristic for each problem instance family as shown in Table 10.9 suggest
that for certain problem instances there are different algorithms that emerge as best.
Algorithms in the table were deemed to perform better than another when they find
on average better quality solutions as the maximum allowable effort in each algo-
rithm was comparable. If two or more algorithms find equally good solutions, then
the better performing algorithm is the one that is requiring less actual effort. Vari-
able neighborhood search is not to be underestimated in situations where also the
repeated or iterated local search is delivering good results. Also an implementa-
tion of tabu search that is oriented on the template described in [12] outperforms
the robust variant on several instances. Usually both perform equally well, but the
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standard implementation uses less iterations. This shows the trade-off that robust
taboo search makes in that it is on average performing much better. Finally, genetic
local search showed the best overall results, but also emerged as the best algorithm
only in some cases.

Table 10.9 Summary table that lists the best performing results

Instance Best performing Instance Best performing
bur VNS rou Standard TS
chr Genetic LS scr Standard TS

els VNS sko Genetic LS

esc Genetic LS ste Genetic LS

had VNS tai-a Robust TS

kra Genetic LS tai-b Genetic LS
lipa-a Standard TS tho Robust TS
lipa-b Standard TS wil Robust TS

nug Robust TS

10.6 Conclusions

As we have shown in this work the quadratic assignment problem is an interest-
ing problem despite its age. Some standard metaheuristics from the first days do
not perform as well and several modifications need to be made. Metaheuristics of
later generations such as variable neighborhood search do perform very well out of
the box, but the clever combination of population-based and trajectory-based ap-
proaches can lead to very good results overall. It is interesting that the diversity
in the characteristics of these instances is reflected in the heterogeneity of the ap-
plied algorithms and while there exist overall well-performing algorithms they are
often not the best algorithm for every instance. The results also suggest that, despite
the overall strength of RTS and GLS there is no single best algorithm for all the
instances. To design better algorithms is one possible approach to continue mak-
ing progress in solving the QAP, but more importantly, research needs to be done
to decide which algorithm to choose for a concrete and previously unobserved in-
stance. As more experiments are performed in such studies the knowledge on the
performance on individual algorithms is increasing. The topic of fitness landscape
analysis seems to be most promising to extract problem instance characteristics that
could be used to indicate which algorithm to choose and constitutes an interesting
base for further research.
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