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Abstract. Recently, we have developed multiobjective robust controller using
difference signals of nonlinear plant for multiple CAN2s to learn and approxi-
mate Jacobian matrices of the nonlinear dynamics. Here, the CAN2 is an artifi-
cial neural net for learning efficient piecewise linear approximation of nonlinear
function. So far, by means of numerical experiments, we have shown that the
controller is capable of coping with the change of plant parameter values as well
as the change of control objective by means of switching multiple CAN2s. How-
ever, the controller have not been analyzed enough. This paper clarifies several
properties of the controller by means of examining the control of linear plants.

Keywords: Multiobjective robust control, Switching of multiple CAN2s, Dif-
ference signals, Generalized predictive control, Jacobian matrix of nonlinear dy-
namics.

1 Introduction

Recently, we have developed multiobjective robust controller using difference signals
of nonlinear plant to be controlled and multiple CAN2s (competitive associative nets)
[1,2,3]. Here, the CAN2 is an artificial neural net introduced for learning efficient piece-
wise linear approximation of nonlinear function by means of competitive and associa-
tive schemes [5,6,7]. Thus, a CAN2 is capable of leaning piecewise Jacobian matrices
of nonlinear dynamics of a plant by means of feeding difference signals of the plant
to the CAN2. In [1], we have constructed a robust controller using multiple CAN2s to
learn to approximate the plant dynamics for several parameter values. In [2], we have
focused on a multiobjective robust control, where we consider two conflicting control
objectives for a nonlinear crane system: one is to reduce settling time and the other
is to reduce overshoot. Our method enables the controller to flexibly cope with those
objectives by means of switching two sets of CAN2s for reducing settling time and
overshoot, respectively. In [3], we have tried to improve the control performance by
means of replacing single CAN2s by bagging CAN2s and shown several properties of
the controller. From the point of view of multiobjective control [8], the settling time is
reduced by tuning the number of units of the CAN2s, while the overshoot on average
is reduced by bagging CAN2s replacing single CAN2s and an overshoot for the plant
with certain parameter values is reduced by an augmentation of bagging CAN2s.
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However, these properties as well as other properties of the controller have not been
analyzed enough so far. In order to examine the controller, we analyze the controller by
means of applying it to simple linear plants. In the next section, we show the method to
control nonlinear and linear plant. In Sect. 3, we examine the method by means of nu-
merical experiments applied to linear plants involving changeable parameter values.

2 Multiobjective Robust Controller Using Difference Signals and
CAN2s

2.1 Plant Model Using Difference Signals

Suppose a plant to be controlled at a discrete time j = 1, 2, · · · has the input u[p]
j and

the output y[p]
j . Here, the superscript “[p]” indicates the variable related to the plant for

distinguishing the position of the load, (x, y), shown below. Furthermore, suppose that
the dynamics of the plant is given by

y[p]
j = f(x[p]

j ) + d[p]
j , (1)

where f(·) is a nonlinear function which may change slowly in time and d[p]
j represents

zero-mean noise with the variance σ2
d . The input vector x[p]

j consists of the input and

output sequences of the plant as x[p]
j �

(
y[p]
j−1, · · · , y[p]

j−ky
, u[p]

j−1, · · · , u[p]
j−ku

)T

, where

ky and ku are the numbers of the elements, and the dimension of x[p]
j is given by k =

ky +ku. Then, for the difference signals Δy[p]
j � y[p]

j − y[p]
j−1, Δu[p]

j � u[p]
j −u[p]

j−1, and

Δx[p]
j � x[p]

j − x[p]
j−1, we have the relationship Δy[p]

j � fxΔx[p]
j for small ‖Δx[p]

j ‖,
where fx = ∂f(x)/∂x

∣∣
x=x

[p]
j−1

indicates the Jacobian matrix (row vector). If fx does

not change for a while after the time j, then we can predict Δy[p]
j+l by

Δ̂y
[p]

j+l = fxΔ̃x
[p]

j+l (2)

for l = 1, 2, · · · , recursively. Here, Δ̃x
[p]

j+l = (Δ̃y
[p]

j+l−1, · · · , Δ̃y
[p]

j+l−ky
, Δ̃u

[p]

j+l−1,

· · · , Δ̃u
[p]

j+l−ku
)T , and the elements are given by

Δ̃y
[p]

j+m =

{
Δy[p]

j+m for m < 1

Δ̂y
[p]

j+m for m ≥ 1
and Δ̃u

[p]

j+m =

{
Δu[p]

j+m for m < 0

Δ̂u
[p]

j+m for m ≥ 0.
(3)

Here, Δ̂u
[p]

j+m (m ≥ 0) is the predictive input (see Sect. 2.3). Then, we have the predic-
tion of the plant output from the predictive difference signals as

ŷ[p]
j+l = y[p]

j +
l∑

m=1

Δ̂y
[p]

j+m. (4)

For linear plants, the plant function in (1) and the Jacobian matrix in (2) are modified
as f(x[p]

j ) = Ax
[p]
j and fx = A, where A ∈ IR1×k is constant.
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Fig. 1. Schematic diagram of (a) CAN2 and (b) a linear plant model of a car and the load

2.2 CAN2 for Learning and Identifying Nonlinear and Linear Plants

A CAN2 has N units. The ith unit has a weight vector wi � (wi1, · · · , wik)
T ∈

IRk×1 and an associative matrix (row vector) M i � (Mi1, · · · ,Mik) ∈ IR1×k for
i ∈ I = {1, 2, · · · , N} (see Fig. 1(a)). For a given dataset D[n] = {(Δx[p]

j , Δy[p]
j ) |

j = 1, 2, · · · , n} obtained from the plant to be controlled, we train a CAN2 by feeding
the input and output pair of the CAN2 as (x[can2], y[can2]) = (Δx

[p]
j , Δy

[p]
j ). We employ

an efficient batch learning method shown in [10]. Then, for an input vector Δx[p]
j , the

CAN2 after the learning predicts the output Δy[p]
j = fxΔx[p]

j by

Δ̂y
[p]

j = M cΔx[p]
j , (5)

where c denotes the index of the unit selected by

c = argmin
i∈I

‖Δx[p]
j −wi‖2. (6)

Here, we have assumed the following conjecture shown in [2,3]. Namely, M c � fx
may not be identified via Δx[p]

j because fx is not the function of Δx[p]
j generally.

However, an enlarged vector Δz[p]
j = (Δy[p]

j−1, · · · , Δy[p]
j−k′

y
, Δu[p]

j−1, · · · , Δu[p]
j−k′

u
)

for k′y = k+ky and k′u = k+ku enables a Jacobian matrix fz = ∂f/∂z to be a function

of Δz
[p]
j when the elements in Δz

[p]
j vary sufficiently and the plant parameter does not

change for a while. Thus, the above method with Δx[p]
j in (6) replaced by an enlarged

Δz[p]
j is supposed to select an appropriate cth unit in the situation of multiobjective and

robust control assuming the change of both plant parameters and control objectives.
However, this conjecture is hard to be verified because Jacobian matrix for a certain
duration of time involves approximation error in general, thus ky and ku to identify the
Jacobian matrix depend on the approximation error allowable for the control.
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On the other hand, the above conjecture does not seem to be applied to a linear plant
with f(x[p]

j ) = Ax[p]
j because there is only one Jacobian matrix fx = A. Thus, the

CAN2 with multiple units after the learning of the plant dynamics is considered to have
the following associative matrix for the ith unit as

M i = A+ δAi (7)

where δAi denotes approximation error ofA. The cth unit with the error δAc is selected
by (6) whose weight vector wc is near to the current difference input vector Δx[p]

j (or

enlargedΔz[p]
j ) consisting of the trained difference trajectory, i.e. Δy[p]

j−l and Δu[p]
j−l for

l = 1, 2, · · · . This interpretation of erroneous associative matrices can be also applied
to the control of nonlinear plants, and seems more plausible than the above conjecture
for nonlinear plants if the present controller also works for linear plants.

2.3 GPC Using Difference Signals

The GPC (Generalized Predictive Control) is an efficient method for obtaining the pre-
dictive input û[p]

j which minimizes the following control performance index [9]:

J =

Ny∑
l=1

(
r[p]
j+l − ŷ[p]

j+l

)2

+ λu

Nu∑
l=1

(
Δ̂u

[p]

j+l−1

)2

, (8)

where r[p]
j+l and ŷ[p]

j+l are desired output and predictive output, respectively. The parame-
ters Ny , Nu and λu are constants to be designed for the control performance. We obtain
û[p]
j by means of the GPC method as follows: at a discrete time j, use CAN2 to predict

Δy
[p]
j+l by (2) and then ŷ

[p]
j+l by (4). Then, owing to the linearity of these equations, the

above performance index is written as

J = ‖r[p] −GΔu[p] − y[p]‖2 + λu‖Δ̂u‖2 (9)

where r[p] =
(
r

[p]
j+1, · · · , r[p]

j+Ny

)T

and Δ̂u
[p]

=
(
Δ̂u

[p]

j , · · · , Δ̂u
[p]

j+Nu−1

)T

. Fur-

thermore, y[p] =
(
y

[p]
j+1, · · · , y[p]

j+Ny

)T

and y
[p]
j+l is the natural response ŷ

[p]
j+l of the

system (1) for the null incremental input Δ̂u
[p]

j+l = 0 for l ≥ 0. Here, we actually have

y[p]
j+l = y[p]

j +
∑l

m=1 Δy
[p]
j+m from (4), where Δy

[p]
j+l denotes the natural response of the

difference system of (2) with fx replaced by M c. The ith column and the jth row of the
matrix G is given by Gij = gi−j+N1 , where gl for l = · · · ,−2,−1, 0, 1, 2, · · · is the
unit step response y[p]

j+l of (4) for ŷ[p]
j+l = û[p]

j+l = 0 (l < 0) and û[p]
j+l = 1(l ≥ 0). It is

easy to derive that the unit response gl of (4) is obtained as the impulse response of (2).

Then, we have Δ̂u
[p]

which minimizes J by Δ̂u
[p]

= (GTG+λuI)
−1GT (r[p]−y[p]),

and then we have û[p]
j = u

[p]
j−1 + Δ̂u

[p]

j .
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2.4 Control and Training Iterations

We execute iterations of the following phases to obtain the training data for CAN2s
respectively and train the CAN2s.

(i) Control Phase: Control by a default control schedule at the first iteration, and by
the GPC using the CAN2s obtained by the previous training phase otherwise.

(ii) Training Phase: Train the CAN2s with the dataset D[n] = {(Δx[p]
j , Δy[p]

j |j =
1, 2, · · · , n)} obtained in the control phase.

The control performance at an iteration depends on the CAN2 obtained at the previ-
ous iterations. So, for the actual control of the plant, we use the best CAN2s obtained
through a number of iterations as shown below.

2.5 Switching Multiple CAN2s For Multiobjective Robust Control

To cope with the change of plant parameters and the change of control objective, we
employ the following method to switch CAN2s for each control objective Ol (l =

1, 2, · · · ). Let CAN2[θs]Ol
denote the best CAN2 from the point of view of Ol obtained

for the plant with parameter θs (s ∈ S = {1, 2, · · · , |S|}) through the above control
and training iterations.

Step 1: At each discrete time j in the control phase, obtain M [s]
c (= M c in (6)) for all

CAN2
[θs]
Ol

(s ∈ S).

Step 2: Select the s∗th CAN2, orCAN2[θs∗ ]Ol
, which provides the minimum MSE (mean

square prediction error) for the recent Ne predictions, or

s∗ = argmin
s∈S

1

Ne

Ne−1∑
l=0

∥∥∥∥Δy[p]
j−l − Δ̂y

[p][s]

j−l )

∥∥∥∥
2

, (10)

where Δ̂y
[p][s]

j−l = M
[s]
c Δx[p]

j−l (see (5)) denotes the prediction by CAN2
[θs]
Ol

.

3 Numerical Experiments Using Linear Plant Model

3.1 A Car and Load System

We consider a linear model plant of a car and the load shown in Fig. 1(b). This model
is derived from the overhead traveling crane system [3] by means of replacing the non-
linear crane by a load (mass) with a spring and a damper. From the figure, we have the
motion equations given by

mẍ = −K(x−X)− C(ẋ − Ẋ) (11)

MẌ = F +K(x−X) (12)

where x and X are the positions of the load and the car, respectively, m and M are
the weights of the load and the car, respectively, K the spring constant, C the damping
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coefficient, and F is the driving force of the car. From the above equations, we have the
following state-space representation for the state x = (x, ẋ,X, Ẋ)T ,

ẋ =

⎡
⎢⎢⎣

0 1 0 0
−K

m − C
m

K
m

C
m

0 0 0 1
K
M 0 −K

M 0

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

0
0
0
1
M

⎤
⎥⎥⎦F (13)

3.2 Parameter Settings

Suppose that the controller has to move the load on the car from x = 0 to the destination
position xd = 5m by means of operating F . We obtain discrete signals by u[p]

j =

F (jTv) and y[p]
j = x(jTv) with (virtual) sampling period Tv = 0.5s. Here, we use

virtual sampling method shown in [4], where the discrete model is obtained with Tv

(virtual sampling period) while the observation and operation are executed with shorter
actual sampling period Ta = 0.01s. We have used Ny = 20, Nu = 1 and λu = 0.01
for the GPC. and Ne = 8 samples for (10).

The parameters of the plant are set as follows; th weight of the car M = 100kg, the
spring constant K = 15 kg/s2, the damping coefficient C = 10 kg/s, and the maximum
driving force Fmax = 10N. To achieve the robustness to the load weight for m =
10, 15, 20, · · · , 100 [kg], we train the CAN2s with PLANT[θs] for the load weight θs =
m = 10, 40, 70, 100 [kg] and s = 1, 2, 3, 4, respectively, where PLANT[θ] indicate the

plant with the parameter θ. Let CAN2[θs]OS and CAN2
[θs]
ST denote the best CAN2s which

have achieved smallest overshoot and settling time, respectively, through 10 control and
training iterations. Here, at each iteration, we train the CAN2 with the control dataset
of two recent iterations, i.e. the current and the previous ones, because the number of
obtained data becomes huge and time consuming as the number of iterations increases
and the control performance does not seem improved even if we use all data. In order to
uniquely select the CAN2, the overshoot xOS and the settling time tST are ordered by
xOS + εtST and tST + εxOS, respectively, with small ε = 10−2. We have used the set
of CAN2s, or CAN2[θS ]

OS = {CAN2[θs]OS |s ∈ S} and CAN2
[θS]
ST = {CAN2[θs]ST |s ∈ S}

for the switching controller explained in Sect. 2.5, where S = {1, 2, 3, 4}.

3.3 Results and Analysis

Result Using CAN2s with Single Units. First, we have examined the controller using
true linear models and CAN2s with single units (N = 1). We use the input vector Δx[p]

j

with ky = 4 and ku = 1, which is not enlarged Δz[p]
j but has the original minimum

dimension of the true dynamics. From the experimental result shown in Table 1, we
can see that the controller using true model has achieved increasing settling time tST
and overshoot xOS with the increase of the load weight m = 10, 40, 70, 100 [kg] for
θi (i = 1, 2, 3, 4). This is because the present controller uses the performance index J
to be minimized shown in (9) with fixed control parameter values (Ny = 20, Nu = 1
and λu = 0.01). The conventional GPC has to tune the control parameters for mini-
mizing tST and xOS for the plants with different parameter values, while the present
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Table 1. Experimental result of settling time tST [s] and overshoot xOS [mm] obtained by the
controller using true linear models PLANT[θi] and trained CAN2[θi] with single units. The ith
raw from the top shows the result of the control of PLANT[θi] with θi = m = 10, 40, 70, 100
[kg] for i = 1, 2, 3, 4, respectively.

tST xOS tST xOS tST xOS

PLANT[θ1] 33.8 0 CAN2
[θ1]
ST 32.4 186 CAN2

[θ1]
OS 32.7 170

PLANT[θ2] 35.1 15 CAN2
[θ2]
ST 22.5 9 CAN2

[θ2]
OS 24.2 0

PLANT[θ3] 41.5 86 CAN2
[θ3]
ST 15.9 63 CAN2

[θ3]
OS 27.5 9

PLANT[θ4] 48.5 141 CAN2
[θ4]
ST 29.9 44 CAN2

[θ4]
OS 30.1 43

controller shows different performances by using different CAN2s for minimizing tST
and xOS, respectively, as shown in Table 1. The difference of the performance is sup-
posed to be obtained from the training datasets for the CAN2s derived from control
trajectories which may involve degenerations and/or fluctuations through control and
training iterations. However, the performance in Table 1 is not so good as to apply it
to the switching control using multiple CAN2s, e.g. CAN2[θ1]OS could not have achieved
overshoot less than xOS =170[mm] for the plant θ1 with m = 10 [kg].

Result Using CAN2s with Multiple Units. In order to improve the control perfor-
mance, we use CAN2s with multiple units. Here, note that the CAN2s with multiple
units involve erroneous models as shown in (7). However, the batch learning algorithm
of the CAN2 (see [10]) tries to reduce the total approximation error for a given training
dataset by means of using the condition called asymptotic optimality to equalize the
approximation errors for all units of the CAN2. Thus, we may expect that the error of
the associative matrix in (7), δAi = M i −A, does not grow so much for all units and
provides a variety of allowable control performances.

A statistical result of settling time tST and overshoot xOS obtained by the controllers
using multiple units is shown in Table 2, and four examples of time course of the input
F , the output X and x for the best and the worst control result using multiple CAN2s
are shown in Fig. 2. We can see that the best control for reducing settling time (top left)
and overshoot (lower right) are reasonable, while the worst control for reducing settling
time (top right) and overshoot (bottom right) are not so bad from their objectives.

From Table 2, we can see that the mean, max and std of settling time achieved by
the controller using multiple CAN2

[θS]
ST are smaller than those by the controller using

single CAN2
[θs]
ST for s = 1, 2, 3, 4. Incidentally, the controller using CAN2

[θ2]
OS has

achieved smaller mean, min and std of settling time, but CAN2[θ2]OS is the CAN2 having
achieved the minimum overshoot for θ2 and we cannot find out any reason for this good
performance in settling time.

On the other hand, the controller using multipleCAN2[θS]OS could not achieved smaller

performance than the controller using single CAN2
[θ3]
OS . It seems that this is owing that

CAN2
[θS]
OS involves CAN2[θ2]OS which has a big mean overshoot 49.4[mm]. In our pre-

vious study [3], we have shown a method of augmentation of CAN2s to reduce plant-
parameter-specific overshoots, and we apply the method as follows. First, we examined



Properties of Multiobjective Robust Controller 65

Table 2. Statistical summary of the performance obtained by the controller using CAN2s with
multiple units for the control of test plants with m = 10, 15, 20,· · · , 100 [kg]. The columns of
“trained θi” indicate the result by the controller applied to the training plants θi with m = 10,
40, 70, 100 [kg] for i = 1, 2, 3, 4, respectively. The columns of “mean”, “min”, “max” and
“std” for “settling time” and “overshoot” indicate the minimum, maximum and standard devi-

ation of the control result for all test plants. We denote CAN2
[θS′ ]
OS =CAN2

[70kg]
OS ∪CAN2

[97kg]
OS

and CAN2
[θS′′ ]
OS =CAN2

[70kg]
OS ∪CAN2

[90kg]
OS ∪CAN2

[97kg]
OS . The boldface figures indicate the best

(smallest) result in each block, while the italicface figures show the result not corresponding the
control objective of the CAN2 shown on the leftmost column.

CAN2 used settling time tST [s] overshoot xOS [mm]
for the trained test trained test

controller θi mean min max std θi mean min max std

CAN2
[θ1]
ST 19.6 26.06 19.6 35.4 5.91 98 97.3 55.0 142.0 28.5

CAN2
[θ2]
ST 20.5 26.18 20.3 35.5 5.93 59 108.3 51.0 172.0 43.9

CAN2
[θ3]
ST 25.1 27.36 23.1 35.1 3.55 44 75.6 34.0 162.0 41.6

CAN2
[θ4]
ST 28.6 30.68 25.6 39.0 3.74 94 25.9 0.0 103.0 36.1

CAN2
[θS ]
ST — 25.29 22.2 34.9 3.38 — 52.1 11.0 136.0 42.1

CAN2
[θ1]
OS 32.9 31.89 27.8 35.5 2.50 0 11.4 0.0 66.0 20.1

CAN2
[θ2]
OS 21.2 24.76 15.9 33.8 3.82 0 49.4 0.0 264.0 72.6

CAN2
[θ3]
OS 38.8 39.89 36.8 44.2 1.89 0 3.2 0.0 28.0 7.4

CAN2
[θ4]
OS 74.9 65.25 59.6 78.9 5.57 0 6.8 0.0 38.0 11.5

CAN2
[θS ]
OS — 37.11 31.9 45.5 4.04 — 6.6 0.0 35.0 11.9

CAN2
[θS′ ]
OS — 41.61 36.6 44.6 2.08 — 3.1 0.0 59.0 13.2

CAN2
[θS′′ ]
OS — 38.55 35.3 43.0 2.11 — 0.0 0.0 0.0 0.0

the overshoot obtained by the controller using CAN2
[θ3]
OS =CAN2[70kg]OS , and it has the

overshoot 3, 11, 18 and 28 [mm] for the plant with m = 85, 90, 95 and 100 [kg], re-
spectively, and 0 [mm] for other test plants. Therefore, we next examined the controller
using multiple CAN2

[70kg]
OS ∪CAN2[97kg]OS , and have an overshoot 59[mm] for the plant

with m = 100 [kg] and 0[mm] for other test plants. Finally, we executed trial and error,
and we have multiple CAN2

[θS′′ ]
OS =CAN2[70kg]OS ∪CAN2[90kg]OS ∪CAN2[97kg]OS which has

no overshoot for all test plants as shown in Table 2.

4 Conclusion

We have examined the multiobjective robust controller using difference signals and
multiple CAN2s by means of applying it to linear model plants. From the result of
numerical experiments as well as theoretical analysis, the following properties are ob-
tained. (1) The dimension of the input vector to select the associative matrix of the
CAN2 to approximate the Jacobian matrix of the plant to be controlled does not have
to be enlarged, which may reject the conjecture shown in [2,3] that the enlargement is
necessary for the present method. (2) The present controller using fixed GPC parame-
ters provides various control performances by means of involving errors of associative
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Fig. 2. Examples of time course of x[m], X[m] and F [10N]. Among the control of all test plants,
the results of the smallest and biggest settling time by multiple CAN2

[θS ]
ST are shown on the top

left and right, respectively, and those of the smallest and biggest settling time without overshoot

(xOS = 0[mm]) by CAN2
[θS′′ ]
OS are shown on the bottom left and right, respectively.

matrices of CAN2s to learn Jacobian matrices, which enables the controller to be multi-
objective robust controller by means of switching CAN2s. (3) Plant-parameter-specific
overshoots can be reduced by the augmentation of CAN2s, which has also been shown
possible for nonlinear plants [3].
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