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Abstract. In this paper, a novel robust finite-horizon Kalman filter is developed 
for discrete linear time-varying systems with missing measurements and norm-
bounded parameter uncertainties. The missing measurements are modelled by a 
Bernoulli distributed sequence and the system parameter uncertainties are in the 
state and output matrices. A two stage recursive structure is considered for the 
Kalman filter and its parameters are determined guaranteeing that the cova-
riances of the state estimation errorsare not more than the known upper bound. 
Finally, simulation results are presented to illustrate the outperformance of the 
proposed robust estimator compared with the previous results in the literature. 

Keywords: robust Kalman filter, miss measurement, state estimation, norm-
bounded parameter uncertainties. 

1 Introduction 

The Kalman filter which is based on the minimization of the filtering error covariance 
is the popular tool for the state estimation through the noisy observations. The key 
assumptions in the standard Kalman filtering are that the perfect model of the under-
lying system is priory known and all the measurements are available[1]. However, in 
the many real-world applications, for instance in the networked control systems, unre-
liability of the communication channels together with modeling uncertainties imposes 
significant challenges in the optimal state estimation [2-4]. 

The initial work on the filter design problem with missing measurements can be 
traced back to [5], and [6], where a binary sequence specified by a probability distri-
bution were utilized todescribe the missing data. On the other hand, robust Kalman 
filter with a guaranteed bound on the filtering error covariancefor systems with time-
varying norm-bounded uncertainties in the state and output matrices were proposed in 
[7,8] and [9], for discreet and continues time systems; respectively. 

Only a few papers have considered the common case wherein the problem of miss-
ing observations is combined with the norm-bounded modeling uncertainties. The 
infinite-horizon optimal filter was derived in [10], for discrete-time systems with 
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stochastic missing measurements and parameter uncertainties. However, finite-
horizon filters leads to better transient performance if the noise inputs are notstatio-
nary. Then, for linear discrete time-varying systems with time-varying norm-bounded 
uncertainty in the state matrix and missing measurements a robust finite-horizon 
Kalman filter was introduced in [11_ENREF_15].  In[12], robust finite- horizon Kal-
man filter was developed for the more comprehensive system withnorm-bounded 
uncertainty in the state and output matricessuffering from missing measurements. In 
[13], within the different framework, robust state estimator was suggested for the 
systems with missing measurements based on minimizing the sensitivity of the esti-
mation errors to the parameter variations.   

In this paper, robust finite-horizon filtering problem is derived for uncertain time-
varying linear system with intermittent measurements. The state and output matrices 
of the system model are subject to norm bounded uncertainty and missing data are 
described by Bernoulli distributed random sequence. Unlike [11] and [12], a two 
stage recursive structure is adopted for the robust Kalman filter and furthermore, a 
different augmented state space model is utilized to extract a procedure to determine 
filter parameters. Finally, simulation results are presented to illustrate that the intro-
duced estimator leads to the remarkably improved performance compared to the pre-
viously developed approach in  [12].  

The rest of the paper is organized as follows: The estimation problem is formulated 
in the section II. In section III, the optimal estimator is derived for the uncertain sys-
tem with missing observations. In section IV, numerical benchmark examples are 
presented to illustrate the outperformance of the proposed approach. Section V con-
cludes this note. 

Notations: ℜ  denotes real numbers set. Prob{}represents the probability of the 

stochastic variable. E{} is the mathematical expectation. The superscript T  stands for 

the matrix transposition.  

2 Problem Setup 

Consider the following class of the uncertain linear discrete-time stochastic systems: 
( 1) ( ) ( ) ( )t t tx t A A x t B w t+ = + Δ +  (1) 

with the measurement equation 
( ) ( ) ( ) ( )t t ty t C C x t v tγ= + Δ +  (2) 

where, ( ) nx t ∈ℜ is the state vector, ( ) my t ∈ℜ is the measured output, 

( ) nw t ∈ℜ and ( ) mv t ∈ℜ are the process and measurement noise, respectively. It’s 

assumed that ( )w t and ( )v t  are uncorrelated white noises with zero means and va-

riances Q and R . ,t tA B and  tC are known real time-varying matrices with appropri-

ate dimensions. tAΔ is a real-valued uncertain matrix satisfying: 

1,

2,

 
,    

tt T
t t t t

t t

HA
F E F F I

C H

 Δ 
= ≤  Δ     
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Here, 1, 2,,t tH H and tE  are known time-varying matrices of appropriate dimensions 

and tF represents time-varying uncertainties. The output sequence is defined in (2). 

Some measurement data may be lost. The stochastic variable tγ  which takes the val-

ues 0 and 1, is a Bernoulli distributed variable with mean μ . It is assumed that tγ is 

uncorrelatedwith ( )w t , ( )v t  and initial state 0x . From the properties of the Bernoulli 

distribution, thefollowingrelationshold: 

{ } { }Prob 1t tEγ γ μ= = = , { } { }Prob 0 1 1t tEγ γ μ= = − = −  

{ }2( ) (1 )tE γ μ μ μ− = − . Also, it is assumed that: { } 0tE F =  and  { } .t j tjE F F Iδ=  

The aim of this note is to design finite-horizon robust Kalman filter for discrete-
time systems with parameters uncertainty and missing observations. The structure of 
the proposed robust Kalman filter is given in (3) and (4).  The estimation of the state 
is computed by the following recursive equations:   

ˆ ˆ ˆ ( ) ( 1) ( ( ) ( 1))t tx t t x t t K y t C x t tμ= − + − −  (3) 

ˆˆ ˆ ˆ( 1 ) ( ) ( 1) ( ( ) ( 1))t t tx t t A t x t t L y t C x t tμ+ = − + − −  (4) 

where ˆ( )x t  is the estimate of the state ( )x t , and ˆ ,t tA L and tK  are time-varying filter 

parameters are determined such that filtering error ˆ( ) ( ) ( )e t x t x t t= − , and prediction 

error ˆ( ) ( ) ( 1)e t x t x t t= − − variances be smaller than positive-definite matrices ( )tΘ  

and ( ), (0 )t t NΣ < ≤ , respectively: 

{ }ˆ ˆ( ( ) ( ))( ( ) ( )) ( )Tx t x t t x t x t t tΕ − − ≤ Θ  (5) 

{ }ˆ ˆ( ( ) ( 1))( ( ) ( 1)) ( )Tx t x t t x t x t t tΕ − − − − ≤ Σ  (6) 

3 Filer Design 

In this section a procedure is developed to obtain the parameters of the two stage 
Kalman filter defined in (3) and (4). First, the upper bounds of the filtering and pre-
diction covariance matrices presented in (5) and (6)are determined in the form of 
discrete time Riccarti-like difference equation. 

3.1 Preliminaries 

In this subsection, some preliminaries are introduced which will be used in derivation 
of the main results. First, new augmented state vectors   and   are defined as follows: 

( ) ( )
( ) , ( )  

ˆ ˆ( ) ( 1)

e t e t
t t

x t t x t t
ζ ζ

   
= =   −      

  (7) 

Then, by combination of (1)-(4), the augmented system equations can be written as 
follows: 
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1 1 1 1

1 1

( 1) ( ) ( ) ( )

( ) ( ) 

c c k c e

e v

t A H F E t A t

A t G v t

ζ ζ ζ
ζ

+ = + +

+ +

 

 
 (8) 

2 2 2 2

2 2 2

( 1) ( ) ( ) ( )

( ) ( ) ( )

c c k c e

e v w

t A H F E t A t

A t G v t G w t

ζ ζ ζ
ζ

+ = + +

+ + +

  

 
 (9) 

where 

1 2 1 2

ˆ     0       A -A
,A  , ,  G

ˆ            I                     A  

t t t t t t t t t
c c v v

t t t tt t t

I K C A L C K L
A G

K C K LL C

μ μ
μ μ

 − − − −     
 = = = =     
       

[ ]1 1 2 2

      
, E     E ,G

0            

t t t t t
e c c t t w

t t t t

K C K C B
A E E

K C K C

 − −  
= = = =   
    

 

   

2, 1, 2,

2 1 2
2, 2,

 
A , H ,  

      

t t t t tt t t t
e c c

t t t tt t t t

K H H K HL C L C
H

K H K HL C L C

μ μ
μ μ

  − −   − −
= = =     

         

 

 

1 2

            
,

                        
t t t t t t t t

e e
t t t t

K C K C L C L C
A A

K C K C L C L C

η η η η
η η η η
− Δ − Δ − Δ − Δ   

= =   Δ Δ Δ Δ   
  In 

which 1 1 2 A , A ,Ae e e
 and 2Ae

  are stochastic matrix sequences with the zero mean 

and ( ) ,t tC Cη γ μ η= − = . The covariance matrices of the augmented state vector in 

(8) and (9) are represented as: 

{ }( 1) ( ) ( )Tt E t tζ ζΘ + =  (10) 

{ }( 1) ( ) ( )Tt E t tζ ζΣ + =    (11) 

According to the equations (8) and (10) the Lyapunov equations for the filtering 
covariance matrix can be obtained as the following:   

1 1 1 1 1 1

1 1

( 1) ( ) ( )( )T
c c t c c c t c

T
v v t t

t A H F E t A H F E

G RG ψ ψ
Θ + = + Σ +

+ + +

 


 (12) 

Similarly, regarding to the equations (9) and (11) the Lyapunov equations for the 
prediction covariance matrix can be attained as follows:  

2 2 2 2 2 2

2 1 2 2

( 1) ( ) ( )( )T
c c t c c c t c

T T
v v t t w w

t A H F E t A H F E

G RG G QGϕ ϕ
Σ + = + Σ +

+ + + +

 


 (13) 

where: 

{ }1 1( )

      
    ( )

               

T
t e e

T

t t t t t t t t

t t t t t t t t

E A t A

K C K C K C K C
t

K C K C K C K C

ψ

δ

= Σ

− − − −   
= Σ   

   




 

{ }1 1

2, 2, 2, 2,

2, 2, 2, 2,

( )

     -       -  
( )

            

T
t e e

T

t t t t t t t t t t t t

t t t t t t t t t t t t

E A t A

K H E K H E K H E K H E
t

K H E K H E K H E K H E

ψ

δ

= Σ =

− −   
Σ   
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{ }2 2( )

      
( )

         L          L

T
t e e

T

t t t t t t t t

t t t t t t t t

E A t A

L C L C L C L C
t

L C C L C C

ϕ

δ

= Σ =

− − − −   
Σ   

   




 

{ }2 2

2, 2, 2, 2,

2, 2, 2, 2,

( )

     -       -  
( )

              

T
t e e

T

t t t t t t t t t t t t

t t t t t t t t t t t t

E A t A

L H E L H E L H E L H E
t

L H E L H E L H E L H E

φ

δ

= Σ =

− −   
Σ   

      

  


 

where (1 )δ μ μ= − . The following theorem which introduces two RDEs is ob-

tained for equations (12) and (13). 
Theorem 1: If there exist positive scalar ta such that 1

2 2( ) 0,T
t c ca I E t E− − Σ >  where 

( )tΣ is symmetric positive-definite matrix, then 
1 1

1 1 1 1 1 1

1
1 1 1 1 1 1

( 1) ( ) ( ) ( ( ) )

                 ( )

T T T
c c c c c c

T T T
c c t t v v c c

t A t A A t E a I E t E

E t A G RG a H Hψ ψ

− −

−

Θ + = Σ + Σ − Σ

× Σ + + + +
                           (14) 

1 1
2 2 2 2 2 2

1
2 2 2 2 2 2 2 2

( 1) ( ) ( ) ( ( ) )

              ( )

T T T
c c c c c c

T T T T
c c t t c c v v w w

t A t A A t E a I E t E

E t A a H H G RG G QGϕ ϕ

− −

−

Σ + = Σ + Σ − Σ

× Σ + + + + +
 (15) 

and ( ) ( )t tΘ ≤ Θ and ( ) ( )t tΣ ≤ Σ ,where ( )tΘ  and ( )tΣ satisfy (12) and (13),  

respectively. 
Proof: The proof can be done along the lines of [2] and [11]. 

Briefly, the upper bounds of the prediction and filtering covariance matrices are 
written as follows: 

{ } [ ] [ ]( ) ( )   0 ( )   0 = ( )  
TTE t t I t I tζ ζ ≤ Θ Θ  (16) 

{ } [ ] [ ]( ) ( )   0 ( )   0 ( )
TTE t t I t I tζ ζ ≤ Σ = Σ   (17) 

3.2 Design of Robust Kalman Filter Parameters 

In this subsection,the upper bounds of the filtering and prediction covariances are 
computed in the form of Riccati-type equation. Then, the optimal values of the pro-

posed Kalman filter parameters in (3) and (4), ˆ ,t tA L and tK , are determined such that 

minimize ( )( )tr tΣ and ( ( ))tr tΘ . 

Theorem 2: Suppose ta  be a sequence of positive scalars. Let ( )tΣ  and ( )P t  are the 

positive-definite solutions of the following recursive equations: 
 

( )1 1
1, 1,

1 1 1
1, 2,

1 1
1, 2,

( 1) ( ) ( )

( ( )( ( )) )

( ( )( ( )) )

T T T T
t t t t t t t t t t

T T T
t t t t t t t t t

T T T T
t t t t t t t t

t B QB a H H A t I E M E t A

A t I E M E t C a H H

A t I E M E t C a H H

μ μ

μ μ

− −

− − −

− −

Σ + = + + Σ + Σ

− Σ + Σ + Λ

× Σ + Σ +

               (18) 
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( )2 1
2, 2,

1 2
2, 2,

( ) ( ) (1 ) ( ) )

(1 )

T T T T
t t t t t t t t t t

T T T
t t t t t t

C t I E M E t C H E P t E H

C PC R a H H

μ μ μ

μ μ μ

−

−

Λ = Σ + Σ + −

+ − + +

( ) 11
1, 1,( 1) ( ) T T T T

t t t t t t t t t tP t A P t a E E A a H H B QB
−−+ = − + +  (19) 

wherein 1 ( ) 0T
t t t tM a I E t E−= − Σ >  and  1 ( ) 0T

t t tP t a E E− − >  . The Kalman filter pa-

rameters in (3) and (4) are as follows:  
1ˆ ( ) ( ) T

t t t t t t t t tA A a A L C t E M Eμ −= + − Σ                                             (20) 
1 1 1

1, 2,( ( )( ( )) )   T T T
t t t t t t t t t tL A t I E M E t C a H Hμ μ− − −= Σ + Σ + Λ                (21) 

where 

( )1 1( ) ( )  T T
t t t t t tK t I E M E t Cμ − −= Σ + Σ Ξ  (22) 

in which 

( )1
2, 2,

1 2
2, 2,

( ) ( ) (1 ) ( )

(1 )

T T T T
t t t t t t t t t

T T T
t t t t t t

C I t E M E t C H E P t E H

C PC R a H H

μ μ μ

μ μ μ

−

−

Ξ = + Σ Σ + −

+ − + +



 
1 ( ) T

t t t tM a I E P t E−= −
 

Proof: Regarding (13) and (15), the ( )tΣ  can be rewritten as follows [8]: 

11 12

21 22

(t)      ( ) ( )          0
( )

(t)      ( )  0         P(t)- (t)

t t
t

t

 Σ Σ Σ 
Σ = =   Σ Σ Σ    

 

 
wherein ( )tΣ  and ( )P t  are defined in (18) and (19), respectively. In order to de-

termine Kt  that minimizes ( )tΘ , its first variation is computed as follows: 

2, 2,

1

( 1)
(1- ) ( ( ) )

                ( ) ( ) ( )( )  

+ ( ) ( )( ) 0

T T T
t t t t t t t t t

t

T T
t t t t t t

T
t t t t

t
K C PC K H E P t E H

K

I K C t E M E t C

K R I K C t C

μ μ

μ μ
μ μ

−

∂Θ + = +
∂

+ − Σ Σ −

+ − Σ − =

  (23) 

Then, the tK in (22) is achieved by straightforward manipulation of (23).On the 

other hand, considering the equations (15), (17), we have: 

[ ] [ ]

2, 2,

1
1, 2, 1, 2,

( 1)   0 ( )   0

ˆ ˆ( )( ( ) ( ))( ) ( ) ( )( )

             +(1- ) ( ( )( ) ( )( ) )

( )( )

          +( (

T

T T
t t t t t t t t t

T T T
t t t t t t t t t t t t

T T
t t t t t t t t t

t

t I t I

A A t P t A A A L C t A L C

L C P t L C L H E P t L H E L RL

a H L H H L H B QB

A P t

μ μ
μ μ

μ μ−

Π + = Σ

= − Σ − − + − Σ −

+ +

+ − − +
1ˆ) ( ) ( ( ) ( )))

ˆ( ( ) ( ) ( ( ) ( )))  

T
t t t t t t

T
t t t t

L C t A t P t E M E

A P t L C t A t P t

μ

μ

−− Σ + Σ −

× − Σ + Σ −



 (24) 

To determine the ˆ
tA , the first variation of  Π  is set to be zero: 
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1

( 1) ˆ( )( ( ) ( ))( )
ˆ

ˆ( ( ) ( ) ( ( ) ( )))

(( ( ) ( ))) 0

t t

t

t t t t

T T
t t t

t
A A t P t I

A

A P t L C t A t P t

E M E t P t

μ
−

∂Π + = − Σ −
∂

+ − Σ + Σ −

× Σ − =
 (25) 

Rearranging the (25) leads to: 
1 1

1 1

ˆ ( ( ( ) ) ( ) )

( ( ( ) ( )) )

T T
t t t t t t t t t t

T
t t t

A A I P t E M E L C t E M E

I t P t E M E

μ− −

− −

= + − Σ

× − Σ −

 

  (26) 

Adding and subtracting of 1( ) T
t t tt E M E−Σ  in (26) yields: 

1

1 1

ˆ ( ) ( )

( ( ( ) ( )) )

T
t t t t t t t t

T
t t t

A A A L C t E M E

I t P t E M E

μ −

− −

= + − Σ

× − Σ −



  (27) 

On the other side, the following relation is true [8]:  
1 1 1 1

1 1 1

[ ( ( ) ( )) ]

             [ ( ( ) ( ))]

T T T
t t t t t t t t t

T T
t t t t t t

E M E E M E I t P t E M E

I E M E t P t E M E

− − − −

− − −

= + Σ −

= + Σ −


 (28) 

1 1 1( ( ) ( )) [ ( ( ) ( )) ]T T
t t t t tI t P t E M E I t P t E M E− − −− Σ − = + Σ −  (29) 

Combining (27)-(29) the equation (20) is obtained.  Substituting (20) into (24), we 
have: 

1

2, 2,

1
1, 2, 1, 2,

( 1) ( ) ( )( ( ))( )

              +(1- ) ( ( )( ) ( )( ) )

( )( )

T T
t t t t t t t t t

T T
t t t t t t t t t t

T T T
t t t t t t t t t t t

t A L C t I E M E t A L C

L C P t L C L H E P t L H E

a H L H H L H B QB L RL

μ μ
μ μ

μ μ

−

−

Π + = − Σ + Σ −

+

+ − − + +


 (30) 

The matrix tL  is computed by taking the first variation of Π  in (30) as follows:  

1
1, 2, 2,

1

( 1)
( )( )

( ) ( )( ( ))( )

(1- ) ( ( ) ( )( ) ) 0

T
t t t t t t t

t

T T
t t t t t t t

T T
t t t t t t t t

k
L R a H L H H

L

A L C t I E M E t C

L C P t C L H E P t H E

μ μ

μ
μ μ

−

−

∂Π + = + −
∂

+ − Σ + Σ −

+ + =



(31) 

 

The matrix tL  in (21) is easily derived from (31). Substituting (21) into (30) leads 

to (18).The covariance matrix of the state is as follows: 

{ }
{ }

( 1) ( 1) ( 1)

= (( ) ( ) )(( ) ( ) )

          = (A + )P(t) (A + )

T

T
t t t t t t t t

T T
t t t t t t t t t t

P t E x t x t

E A A x t B w A A x t B w

H F E H F E B QB

+ = + +

+ Δ + + Δ +

+

(32) 

Relation (32) can be transformed to (19) [12]. 

4 Simulation Example 

we consider the following uncertain discrete-time systems with missing measure-
ments [12]: 
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[ ]

[ ] [ ]

0   0.1sin(6t) 0.5   1
( 1) 0.2   0.1 ( ) ( )

0.2          0.3   1 0.5

( ) ( 0.5 0.3sin(6 )   1 4 0.2   0.1 ) ( ) ( )

F sin(0.6 )

t

t t

t

x t F x t w t

y t t F x t v t

t

γ

      
+ = + +             
= + + +

=

The noise signals 

( )w t  and ( )v t  are uncorrelated with zero-mean and unity covariances. The scalar 

binary stochastic variable tγ  isBernoulli distributed.  Figures1 and 2compare the 

error variances of the results obtained by the proposed method and the one in [12]  
 

 

Fig. 1. Comparison of the error variances for the first state 

 

Fig. 2. Comparison of the error variances for the second state 
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by 100 times Monte-Carlo test, with 0.8μ =  and 3ta = . The outperformance of the 

introduced procedure is evident. 

5 Conclusions 

In this paper, a novel approach has been developed to design a finite-horizon robust 
Kalman filter for uncertain linear discrete time-varying systems subject to intermitten-
tobservations and time-varying norm-bounded uncertainties in the state and output 
matrices. Filter parameters are determined such that the upper bound on the estima-
tion error covariance matrix be minimal. The illustrative examples verified the advan-
tages of the proposed filter. 
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