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Abstract. Detection of visual saliency is valuable for applications like robot 
navigation, adaptive image compression, and object recognition. In this paper, 
we propose a fast frequency domain visual saliency method by use of the binary 
spectrum of Walsh-Hadamard transform (WHT). The method achieves saliency 
detection by simply exploiting the WHT components of the scene under view. 
Unlike space domain-based approaches, our method performs the cortical 
center-surround suppression in frequency domain and thus has implicit 
biological plausibility. By virtue of simplicity and speed of the WHT, the 
proposed method is very simple and fast in computation, and outperforms 
existing state-of-the-art saliency detection methods, when evaluated by using 
the capability of eye fixation prediction. 
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1 Introduction 

Visual saliency refers to the perceptual quality that makes an object or location stand 
out or pop out relative to its neighbors and thereby attract visual attention. Typically, 
visual attention is either driven by fast, pre-attentive, bottom-up visual saliency, or 
controlled by slow, task-dependent, top-down cues [1].  

This paper is primarily concerned with the automatic detection of bottom-up visual 
saliency, which has already attracted intensive investigations in the area of computer 
vision in relation to robotics, cognitive science and neuroscience. One of the most 
influential computational models of bottom-up saliency detection was proposed by Itti 
et al. [2], which is designed conforming to the neural architecture of the human early 
visual system and thereby has biological plausibility. Itti et al.’s model has been 
shown to be successful in detecting salient objects and predicting human fixations. 
However, the model is ad-hoc designed and suffers from over-parameterization.  

Some recent works addressed the question of “what attracts human visual 
attention” in an information theoretic way, and proposed a series of attention models 
based on information theory. These models based on information theory include the 
attention model based on information maximization [3], the graph-based visual 
saliency approach [4], and the discriminant center-surround approach [5]. While these 
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information theory-based models show better performance in saliency detection than 
Itti et al.’s model, they are more computationally expensive for some real-world 
systems.  

Another kind of saliency models are implemented in the frequency domain, which 
are not at all biologically motivated, but they have fast computational speed and good 
consistency with psychophysics. These frequency domain models include the so-
called spectral residual approach [6], and the approach using phase spectrum of 
quaternion Fourier transform [7]. Later works proposed by Yu et al. [8][9] asserted 
that visual saliency can be describes in terms of spatial correlation in the visual space, 
and that saliency information can be generated within a simple normalization process 
for principal component analysis (PCA) coefficients of the scene under view. Yu et 
al.’s saliency model has neurobiological plausibilities because the principal 
components of natural scenes can be obtained by using a Hebbian-based neural 
network. 

In this paper, we propose a bottom-up visual saliency method based on the Walsh-
Hadamard transform (WHT). Our saliency method simply projects the whole image 
into the WHT space and utilizes the signs of the WHT components to compute the 
saliency information of the visual space. This significantly reduces computations 
because unlike all spatial domain approaches, our method does not need to 
decompose the input image into numerous feature maps separated in orientation and 
scale, and then compute saliency at every spatial location of every feature map. Such 
a computation process may be quick for the massively parallel connections of the 
human visual pathway, but is comparatively slow for computer processors. The WHT 
[10][11] is perhaps the most well-known of the non-sinusoidal orthogonal transforms, 
which has gained prominence in various digital signal processing applications, since it 
can essentially be computed using additions and subtractions only. Consequently its 
hardware implementation is also simpler. The proposed saliency method is referred to 
as binary spectrum of Walsh-Hadamard transform (BWHT) in this paper. As 
compared to other frequency domain approaches, our method is simpler and faster in 
computation, and requires fewer storage spaces. 

The remainder of this paper is organized as follows. Section 2 describes the 
proposed method of bottom-up visual saliency as well as its neurobiological 
plausibility. Section 3 presents the experiments and quantifies the consistency of our 
saliency method with eye fixation data. Finally, conclusions are given in Section 4. 

2 Proposed Method 

In this section, we begin by providing an interpretation of bottom-up visual saliency, 
and then propose a saliency detection method based on the WHT. We will explain 
how our proposed method relates to visual saliency. 
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2.1 Visual Saliency 

Li [12] hypothesized that the primary visual cortex (V1) creates a bottom-up saliency 
map of the visual space and the contextual influence is necessary for saliency 
computation. For example, a red flower is salient in a context of green leaves. Each 
neuron in V1 is tuned to a particular visual feature such as color and orientation. The 
dominant contextual influence in V1 is the so-called “iso-feature suppression”, i.e., 
nearby neurons tuned to similar features are linked by intra-cortical inhibitory 
connections [13]. Besides Li’s hypothesis, a number of recent studies (e.g., 
[3][5][14][15]) have attempted to describe visual saliency in terms of surprise, 
interest, innovation, self-information and center-surround discrimination. These 
studies provided a general idea that higher information entropy accounts for higher 
saliency. 

Our visual environment is highly structured and thereby much information 
redundancy exists in the visual input. It has been shown that the dominant redundancy 
of our visual input arises from second order input statistics and that the human visual 
system is capable of reducing such redundancy of visual sensory data [16]. Yu et al. 
[9] found that visual saliency can be described in terms of statistical correlation in the 
visual space, and employed the PCA projection vectors to capture the second order 
correlated components among image pixels. They have attempted to suppress highly 
correlated image components and meanwhile highlight salient image regions by 
normalizing the PCA coefficients of the input image. Following Yu et al.’s 
interpretations of visual saliency, in the next subsection we use the WHT to capture 
highly correlated components in visual space and suppress them so as to highlight 
salient visual features.  

2.2 Saliency Map 

It has been noted that like the PCA for natural images, the WHT components reflect 
global features in the visual space, and the redundancy reflected in the second-order 
correlations between pixels can be captured by the WHT components of the image 
[10][11]. According to such an interpretation of visual saliency in the previous 
subsection, image regions with high spatial correlation with its surroundings can be 
suppressed through a normalization operation upon the WHT components. As a 
result, salient locations can be relatively highlighted. 

As compared to the PCA for natural images, the WHT is much simpler and faster, 
and has many fast algorithms for its computation. Moreover, a 2-dimensional WHT is 
separately performed in row and column, and therefore its computational complexity 
is significantly lower than a PCA transformation. 

We start by considering a gray-scale image X. According to previous analysis, we 
first conduct a 2-dimensional WHT on the image. Next, we normalize the WHT 
components by setting all positive coefficients to a value of 1 and all negative 
coefficients to a value of -1. This 2-dimensional orthogonal transformation followed 
by a normalization operation can be easily formulated as ࡮ ൌ signሺWHTሺࢄሻሻ,                          (1) 
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where “WHTሺ·ሻ ” denotes a 2-dimensional Walsh-Hadamard transform, and the 
notation “ signሺ·ሻ” is a signum function. The matrix B is referred to as binary 
spectrum of Walsh-Hadamard transform (BWHT) in this paper. It retains only the 
sign of each WHT component, discarding the amplitude information across the entire 
frequency spectrum. Note that B is expressed in binary codes (i.e., 1s and -1s) and 
thereby is very compact, with a single bit per component. The signum function, which 
normalizes the WHT coefficients, suppresses highly correlated components in the 
visual space and thereby accomplishes the computation of visual saliency in the WHT 
domain.  

To recover the saliency information in the visual space, we conduct an inverse 
WHT on the binary spectrum B, which is formulated as 
ࡲ  ൌ absሺIWHTሺ࡮ሻሻ,                        (2) 
 

where “IWHTሺ·ሻ” denotes the corresponding inverse Walsh-Hadamard transform, and 
the notation “absሺ·ሻ” is an absolute value function. Normally, the obtained matrix F, 
which carries the saliency information, is post-processed by convolution with a 
Gaussian filter for smoothing. This operation can be formulated as 
ࡿ  ൌ ࡳ כ  ଶ,                           (3)ࡲ
 

where G is a 2-dimensional Gaussian kernel, and S is the corresponding saliency map 
of the input image X. Note that F is squared for visibility. 

It is worth stating that we resize the image to a width of 64px and keep its aspect 
ratio before computing the saliency map. This spatial scale is chosen according to the 
heuristics of other frequency domain approaches (e.g., [6][7][9]).  

In the human visual pathway, the color space of natural images is decomposed into 
well decorrelated channels. The RGB color space is highly correlated, but an LAB 
color space transformation results in well decorrelated color channels for natural color 
images. In addition, the transformation is perceptually uniform, and it produces three 
biologically plausible channels: a luminance channel, a red-green opponent channel 
and a blue-yellow opponent channel.  

The complete BWHT algorithm from input image to final saliency map is given as 
follows. 

1. Perform an LAB color space transformation 
2. Resize the image to a suitable scale 
3. Perform a Walsh-Hadamard transform for each color channel and calculate 

the binary spectrum of all WHT components using equation (1) 
4. Obtain the saliency maps of each color channel using equation (2) 
5. Take the spatial maximum across the saliency maps of all color channels to 

obtain the final saliency map 
6. Post-process the saliency map by convolution with a Gaussian filter for 

smoothing and visibility as formulated in equation (3) 

For recombination, we take the maximum value, as argued by Li and Dayan [13], 
at each pixel location of the corresponding saliency maps instead of spatial 
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summation used by most models. The complete flow of the proposed method is 
illustrated in Fig. 1. The input image is initially decomposed into three biologically 
motivated channels: a luminance channel and two color opponent channels. Each of 
the three channels is then subjected to a Walsh-Hadamard transformation. Then, the 
binary spectrum of WHT is obtained by taking the signs of the WHT components of 
each channel. Afterward, the binary spectrum of each channel is subjected to an 
inverse Walsh-Hadamard transformation so that the saliency map of each channel is 
generated. Finally, a final saliency map is obtained by taking the spatial maximum 
value across all three saliency maps. Note that the saliency map is a topographically 
arranged map that represents visual saliency of a corresponding visual scene. The 
objects or locations with high saliency values may stand out or pop out relative to 
their surroundings, and thus attract our visual attention. From Fig. 1, it can be seen 
that the salient objects are the mountain tents, which pop out from the background.  
 

 

Fig. 1. An illustration of the BWHT method from input image to final saliency map 

3 Experimental Validation 

In this section, we present the experiments and quantify the consistency of our 
saliency method with eye fixation data. We compare our method to six popular state-
of-the-art saliency approaches in literature by providing an objective evaluation as 
well as the visual comparison of all saliency maps. 

To validate the saliency maps generated by our method, we use the data set of 120 
color images from an urban environment and corresponding human eye-fixation data 
from 20 subjects provided by Bruce and Tsotsos [3]. These color images consist of 
indoor and outdoor scenes, of which some have very salient items, and others have no 
particular regions of interest. In order to quantify the consistency of a particular 
saliency map with a set of fixations of the image, we employ an objective evaluation 
metric that is referred to as receiver operating characteristic (ROC) area under the 
curve (AUC). Note that a number of published papers employed ROC-AUC score to 
evaluate a saliency map’s ability to predict human eye fixations. 
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Following Tatler et al.’s approach [17], we compute the ROC-AUC score 
conforming to the following procedure. For one image, the positive point set is 
composed of the fixated locations from all subjects on that image, whereas the 
negative point set is composed of the non-fixated locations of the image. Each 
saliency map is binarized by a particular threshold and thereby considered as a binary 
classifier. At a particular threshold level, a binary saliency map can be divided into 
the target (white) region and the background (black) region. The true positive rate 
(TPR) is the proportion of the positive points that fall in the target region of the binary 
saliency map. The false positive rate (FPR) can be calculated in the same way by 
using the negative point set. Varying the threshold yields an ROC curve of TPRs 
versus FPRs, of which the area beneath provides a good measure of the capability of 
the saliency map to accurately predict where human eye fixations occurred on an 
image. Since the AUC is a portion of the area of the unit square, its value will always 
be between 0 and 1.0. Chance level is 0.5, and perfect prediction is 1.0. 

We compare our saliency maps generated from the proposed method to the 
following published saliency approaches: the original Itti et al.’s saliency model 
(ITTI) [2], Harel et al.’s graph-based visual saliency (GBVS) [4], Gao et al.’s 
discriminant center-surround model (DISC), Bruce and Tsotsos’s attention model 
based on information maximization (AIM) [3], Guo and Zhang’s phase spectrum of 
quaternion Fourier transform (PQFT) [7], and Yu et al.’s saliency approach based on 
pulsed principal component analysis (PPCA) [9]. All of the saliency approaches are 
based on the original Matlab implementations available on the author’s websites. 

An important note about these experiments is that the ROC-AUC score is sensitive 
to the number of fixations we use in calculation. Former fixations are more likely to 
be driven by bottom-up manner, whereas later fixations are more likely to be 
influenced by top-down cues [17]. We calculate the ROC-AUC scores for each image 
with respect to all fixations, and repeat the process but use only the first two fixation 
points. Table 1 lists the ROC-AUC score averaged over all 120 images for each 
saliency method. As expected, the ROC-AUC scores with only the first two fixations 
are higher than those with all fixations. It can be seen that in both tests our BWHT 
method has the best capability for predicting eye fixations. 

Table 1. The ROC-AUC performance of all seven methods 

Method BWHT PPCA PQFT AIM DISC GBVS ITTI 

All fixations 0.7792 0.7766 0.7751 0.7706 0.7605 0.7127 0.7062 

First 2 fixations 0.7983 0.7907 0.7846 0.7777 0.7683 0.7267 0.7182 

 
Fig. 2 gives the saliency maps for 6 sample images from the image data set, which 

provides a qualitative comparison of all saliency methods. A fixation density map, 
generated for each image by convolution of the fixation map for all subjects with a 
Gaussian filter, serves as ground truth. Analysing the qualitative results, we can see 
that BWHT shows more resemblance to the ground truth. The regions highlighted by 
our proposed saliency method overlap to a surprisingly large extent with those image 
regions looked at by humans in free viewing. In addition, high contrast straight edges 
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are suppressed to a much great extent using frequency domain approaches. Good 
performance with respect to color pop-out is also observed with BWHT compared to 
the other approaches. 

We also record the computational time cost per image in a standard desktop 
computing environment. Table 2 shows each method’s Matlab runtime measurements 
averaged over the data set. It can be noticed that, not only is BWHT the most 
predictive of fixations, it also runs faster than all competitors in our tests of 
computational performance. Note that three frequency domain methods (i.e., BWHT, 
PPCA and PQFT) are significantly faster than others. This is due to their small 
number of channels and calculations compared to other saliency methods. PPCA 

 

 

Fig. 2. Qualitative analysis of results for the Bruce data set 

employs the PCA transform and has a computational complexity of O(N2), where N 
denotes the total number of pixels of the image. PQFT uses the fast Fourier transform 
has a computational complexity of O(NlogN). Compared to PPCA and PQFT, the 
computation of BWHT is mainly comprised of the Walsh-Hadamard transform that 
can essentially be computed using additions and subtractions only. In computational 
mathematics, the fast Walsh-Hadamard transform requires only NlogN additions or 
subtractions and thereby its hardware implementation can be much simpler. 
Compared to the BWHT, which uses only three color channels at a single spatial 
scale, ITTI and GBVS rely on seven feature channels and multiple spatial scales; 
AIM uses 25 filters of 1,323 dimensions. Although these approaches can be 
accelerated with efficient C implementations, the computational complexity of the 
BWHT is lower, as suggested by the Matlab runtimes. All seven saliency approaches 
are implemented in the Matlab R2012a environment on such a computer platform as 
Intel 3.3 GHz CPU with 8 GB of memory. 
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Table 2. Computational time cost per image for all seven methods 

Method BWHT PPCA PQFT AIM DISC GBVS ITTI 

Time (s) 0.0018 0.2337 0.0151 5.0766 1.3778 2.5957 1.1842 

4 Conclusions 

This paper aims to find a bottom-up visual saliency method based on the Walsh-
Hadamard transform. We manifested that the saliency information of an image 
consists in the binary spectrum of Walsh-Hadamard transform, i.e., the signs of the 
transform domain coefficients. Experiments in this paper showed that the proposed 
method is simple and efficient in saliency detection, and outperforms existing state-
of-the-art saliency detection approaches. The potentials of our method lies in real-
time and interdisciplinary applications focused on computer vision in relation to 
psychology, robotics and neuroscience. 
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