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Abstract. Text categorization (TC), has many typical traits, such as large and
difficult category taxonomies, noise and incremental data, etc. Random Forests,
one of the most important but simple state-of-the-art ensemble methods, has been
used to solve such type of subjects with good performance. most current Random
Forests approaches with diversity-related issues focus on maximizing tree diver-
sity while producing and training component trees. There are much diverse char-
acteristics for component trees in TC trained on data of noise, huge categories
and features. Consequently, given numerous component trees from the original
Random Forests, we propose a novel method, Diversity Random Forests, which
diversely and adaptively select and combine tree classifiers with diversity learning
and sample weighting. Diversity Random Forests includes two key issues. First,
by designing a matrix for the data distribution creatively, we formulate a unified
optimization model for learning and selecting diverse trees, where tree weights
are learned through a convex quadratic programming problem with given sample
weights. Second, we propose a new self-training algorithm to iteratively run the
convex optimization and automatically learn the sample weights. Extensive ex-
periments on a variety of text categorization benchmark data sets show that the
proposed approach consistently outperforms state-of-the-art methods.

1 Introduction

Classification techniques, especially text categorization, have many applications in Data
Mining (DM) and Information Retrieval (IR), e.g., spam detection, sentiment detection,
personal email sorting and document ranking [1]. Typical issues in text categorization
and recommendation systems are large and difficult category taxonomies, huge sam-
ples, noise and incremental data, and various features. Classifier ensemble is a potential
solution for such type of subjects. Many research efforts demonstrated that the Ran-
dom Forests approach [2] is the most important but simple state-of-the-art ensemble for
classification, consequently, for text categorization.

Random Forests can exploit implicit and explicit diversities together. The method
combines the “Bagging” idea for instance sampling with the implicit diversity and the
random selection of variables for feature selection with the explicit diversity. Generally,
the performance of a classifier ensemble (including Random Forests) relies on not only
the accuracy but also the diversity of component trees. Consequently, how to diversely
generate and combine diverse classifiers plays an important role in Random Forests.
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On the field of Random Forests research, there are many researches for improv-
ing Random Forests with diversity-related issues, most of which focus on maximiz-
ing tree diversity while producing and training component trees. Liu et.al.[3] proposed
Max-diverse Ensemble method, which has the maximum diversity and uses only simple
probability averaging without any feature selection criterion or other random elements.
Later, Liu et.al.[4] proposed Coalescence method, which coalesces a number of points
in the random-half of the spectrum and is found to perform better than any single oper-
ating point in the spectrum, without the need to tune to a specific level of randomness.

Obviously, In TC, there are a lot of diverse characteristics for component trees which
are trained on data of noise, large categories and huge features, i.e., some trees or a
subset of trees by properly selecting will be much diverse from each other. Alternatively,
we improve Random Forests with diversity from pruning ensemble, as ensemble of
the partial available component trees may be better than that of the whole [5]. Given
numerous component trees from the original Random Forests, we want to diversely and
adaptively select and combine tree classifiers with diversity learning.

Moreover, in classifier ensemble, all existing diversity measures are calculated on
the training set, which means the performance of optimization relies on the samples
of training set besides the diversity learning itself [6,7,8]. In some relative fields, re-
searchers suggest sample weighting is needed to correct for imperfections in the sam-
ples that might lead to bias and other departures between the sample and the reference
population. Adaboost[9] is one of the most famous sample weighting models.

Consequently, given numerous component trees from the original Random Forests,
we propose a novel method, Diversity Random Forests (DRF), which diversely and
adaptively select and combine tree classifiers with diversity learning and sample weight-
ing. Diversity Random Forests uses a self-training algorithm to iteratively run the con-
vex optimization and automatically learn the sample weights. Each iteration of this self-
training algorithm consists of two main steps: (1) calculate tree weights by solving an
optimization problem with sample weights known, and then (2) update sample weights.
In the first step, diversity learning with sample weights is converted into a unified con-
vex quadratic programming optimization model, by creatively setting the sample dis-
tribution as a diagonal matrix. In the second step, sample weights are automatically
and adaptively updated with a dynamically damped learning trick. Therefore, the whole
self-training algorithm has a good convergence performance. Moreover, experimental
results on a variety of text categorization benchmark data sets definitely show that our
proposed approach has very promising performance.

The rest of the paper is organized as follows. The DRF model is presented in Section
2, and more details on the learning algorithm is described in Section 3. Section 4 shows
extensive experimental results. Finally, conclusion is drawn in Section 5.

2 Diversity Random Forests

2.1 Random Forests

Random Forests [2] are an ensemble learning method for classification. It generates a
multitude of decision trees based on bootstrap samples of the training data and outputs
the class that is the mode of the classes output by individual trees. For each node of a
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tree, m variables are randomly chosen and the best split based on these m variables is
calculated based on the bootstrap data. Traditionally, m is set to �√u�, where u stands
for the number of variable. Each decision tree results in a classification and is said to
cast a weighted vote for that classification, and Random Forests returns the class that
received the most votes.

As various theoretical and empirical studies shows[10,11,12], Random Forests are
fast and easy to implement, produce highly accurate predictions and can handle a very
large number of input variables without overfitting. In fact, they are considered to be
one of the most accurate general-purpose learning techniques available.

In the paper, we formulate an optimization model based on the original Random
Forests model [2]. Moreover, instead of the original output, the oracle output O of
Random Forests is used for the optimization. Let the number of samples set be N , and
the number of component trees L. O is a N × L matrix, and element

Oij =

{
1 the jth tree classified the ith sample correctly

−1 otherwise
(1)

2.2 Diversity Random Forests Model

As an ensemble approach, Random Forests can be improved by pruning component
trees. Specially, for weighted-vote Random Forests, the improvement is equivalent to a
mathematical optimization problem with tree weights. Define tree weights vector w =
[w1,w2, ...,wL], where

∑L
j=1 wj = 1, wj ≥ 0. Traditionally, w is learned by

wopt = argminwf1(w,P)
s.t. wopt � 0, 1Twopt = 1.

(2)

where P is the accuracy of each tree on training set. P = [P1, P2, ..., PL]
T , where Pj =∑N

i=1 Oij . The optimization function in Equation (2) usually has functional relationship
f1 with the accuracy P.

Previous works show that a multi-criteria searching for an ensemble that maximizes
both accuracy and diversity leads to more accurate ensembles than a single optimization
criterion. Thus, consider diversity in component trees of Random Forests and add a
regularization term about diversity to expand Equation (2) as,

wopt = argminwf1(w,P) + λdiv(w)
s.t. wopt � 0, 1Twopt = 1.

(3)

In Equation (3), div(w) is the diversity of ensemble with classifier weights w. If use
pairwise diversity method, div(w) can be calculated as an average,

div(w) = wTDw
D = fD(OTO,1T

N×1O)
(4)

where D is the diversity matrix of component trees, which has functional relationship
fD with OTO and 1TO.
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In the paper, the Disagreement(dis) [13] is chosen to measure diversity, which is
calculated by,

Ddis =
1

2N
(N1L×L −OTO) (5)

If use the average accuracy to calculate f1(w,P), and the pairwise diversity Dis-
agreement to calculate div(w), then Equation (3) equals,

wopt = argminw − λwTDdisw −Pw
s.t. wopt � 0, 1Twopt = 1.

(6)

One issue of the optimization is how to determine the parameter λ. However, empir-
ical analysis shows that the recognition rate has a very little change when the value λ
changes.

More importantly, the performance of optimization function is totally different be-
cause of different training set selection. Considering the influence of training set, we
expand Equation (6) as,

wopt = argminw − λwTDdis,Ωw −PΩw
s.t. wopt � 0, 1Twopt = 1.

(7)

where Ω is a parameter of the data distribution (sample weights). This (Equation (7)) is
the model of our Diversity Random Forests.

To simplify calculation and remain the optimization as a convex problem, we cre-
atively set Ω as a N × N diagonal matrix, and diag(Ω)i = Ωii stands for the weight
of sample xi, where diag(Ω)i ≥ 0, 1Tdiag(Ω) = 1. Thus, PΩ and Ddis,Ω can be
calculated by,

PΩ = 1TΩO
Ddis,Ω = 1

2 (1L×L −OTΩO)
(8)

Consequently, the optimization (7) can be simplified to a convex quadratic program-
ming problem with a given Ω.

3 DRF Algorithm

It is difficult to find the solution for the optimization in Equation (7) without both w and
Ω. However, with known Ω, the optimization is simplified to a quadratic programming
problem. Thus, we propose an iterative learning algorithm, Diversity Random Forests
(DRF) Algorithm, which is shown in Algorithm 1.

In Algorithm 1, the validation set is bootstrapped from the original training set of
Random Forests. We assume the sample weights parameter Ωt+1 has a relationship
with Ωt, and use a dynamically damped trick, i.e., the damped factor βt ∈ [0, 1] and
βt ≤ βt+1. In the paper, we set βt as,

βt =
1

t
(9)
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Algorithm 1: DRF Algorithm
Input:

Tr: the validation set. |Tr| = N
H = {h1, h2, ..., hL}: the component tree set, |H | = L.
M : pairwise diversity method.

Output:
w: the component tree weights.

Parameter:
T : the max epoch.
Ωt: a diagonal matrix, and diag(Ωt)i is the weight of

sample xi used to calculate w on the tth turn.
Ω∗

t : a diagonal matrix, and diag(Ω∗
t )i is the updated

weight of sample xi on the tth turn.
εt: the error rate on the tth turn.
βt: a parameter that βt ∈ [0, 1], and βt ≤ βt+1.

Procedure:
1: Set diag(Ω1)i = 1/N .
2: For t = 1, 2, ..., T ;
3: Use Equation (7) and (8) to calculate w.
4: Calculate εt by w and Tr.
5: Use εt to calculate updated weight Ω∗

t .
6: Ωt+1 = βtΩ

∗
t + (1− βt)Ωt

7: End

The updated weight matrix Ω∗
t increases the weights of easily wrong-classified sam-

ples. We update Ω∗
t by DRF-Exp, which gets the idea from the adaptive reweighting

step in Boosting [9]. In Boosting, a distribution of weights over training samples is
adaptively maintained, and component trees are created sequentially with each tree con-
centrating on instances that are not well learnt by previous ones. With this mechanism,
the learning process is more efficient. Similarly, DSWL-Exp updates Ω∗

t by,

α = 1
2 ln

1− εt
εt

diag(Ω∗
t+1)i =

diag(Ω∗
t )iexp(−αmi)
Zt+1

(10)

where Zt+1 is a normalization factor, then diag(Ω∗
t+1) is a valid distribution.

4 Experiments

We evaluated the performance of DRF by comparing against some state-of-art meth-
ods, such as Multinomial Naive Bayesian, J48, Support Vector Machines and Random
Forests, on a variety of document collections.

4.1 Experimental Data

The detailed characteristics of the various document collections used in our experiments
are available in [14].1 More information for the data sets is presented in Table 1.

1 http://sourceforge.net/projects/weka/files/datasets/
text-datasets/19MclassTextWc.zip

http://sourceforge.net/projects/weka/files/datasets/text-datasets/19MclassTextWc.zip
http://sourceforge.net/projects/weka/files/datasets/text-datasets/19MclassTextWc.zip
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Table 1. Benchmark Datasets

DataSet Source Docs Words Classes DataSet Source Docs Words Classes
fbis TREC 2463 2000 17 re1 Reuters 1657 3758 25

la1s TREC 3204 13472 6 tr11 TREC 414 6429 9

la2s TREC 3075 13472 6 tr12 TREC 313 5804 8

oh0 OHSUMED 1003 3182 10 tr21 TREC 336 7902 6

oh10 OHSUMED 918 3012 10 tr23 TREC 204 5832 6

oh15 OHSUMED 1050 3238 10 tr31 TREC 927 10128 7

oh5 OHSUMED 913 3100 10 tr41 TREC 878 7454 10

ohscal OHSUMED 11162 11465 10 tr45 TREC 690 8261 10

re0 Reuters 1504 2886 13 wap WebACE 1560 8460 20

4.2 Experimental Setup

The experiment compares DRF with some state-of-art methods, e.g., Multinomial Naive
Bayes(MNB), J48, Support Vector Machines(SVM,[15]), Random Forests(RF, [2]).
Both Multinomial Naive Bayes and J48 classifier are generated by WEKA,2 and Ran-
dom Forests classifier is generated by Matlab toolbox. 3 For each method, all parameters
are set by default. In SVM, the Linear kernel is used, and the best c and g parameter is
selected by cross validation from c = 2−5, 2−4, ..., 25, g = 2−5, 2−4, ..., 25.

In the experiment, 5-fold cross validation is performed on each data set. We as-
sign Ranks to evaluate the methods’ performance on each data set [16]. Mark the best
method Rank 1, and the worse, the larger. Then calculate the average Rank for each
method. Moreover, we also calculated the average recognition rate (AVE).

4.3 Results

The experimental results are shown in Table 2. In addition, the highest recognition rate
for each data set is highlighted in boldface. As shown in Table 2, we can observe:

– Among four state-of-art methods(J48, MNB, SVM, RF), the best rank corresponds
to RF(2.4), followed by SVM(2.8), MNB(3.6) and J48(4.6). On most data sets, RF
achieves the best recognition rate, and is slightly worse than SVM on ’fbis’, ’re1’,
’tr11’, ’tr21’, ’tr41’ and ’wap’ data sets. These results show that RF is a powerful
technique for text categorization.

– Moreover, DRF ranks 1.6, and is 0.9% higher than Random Forests for the average
classification precision. On most data sets, DRF achieves an 1%-4% higher recog-
nition rate than RF, except on ’la1s’, ’la2s’ and ’wap’. That is to say, in TC, our
proposed method, DRF, can utilize diversity in component trees and select a proper
subset of trees in RF for ensemble.

– Specifically, by selecting training sets (calculate the sample weights) carefully,
DRF has the minimum Rank and largest average recognition rate, and outperforms

2 http://www.cs.waikato.ac.nz/ml/weka/
3 https://code.google.com/p/randomforest-matlab/

http://www.cs.waikato.ac.nz/ml/weka/
https://code.google.com/p/randomforest-matlab/
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J48, MNB, SVM and RF. In most cases, DRF achieves the best performance when
there are enough training data for learning component trees, tree weights and sam-
ple weights. Consequently, our methods obtain the best rank (1.6) in all experimen-
tal approaches.

Table 2. Comparison of recognition rate (%) (Average±Standard Deviation).

Datasets J48 MNB SVM RF DRF
fbis 72.03 ± 2.07 77.30 ± 1.84 82.79 ± 1.07 82.74 ± 1.17 83.35± 1.20
la1s 75.56 ± 1.93 87.45 ± 0.51 87.83 ± 1.11 88.08± 1.61 88.05 ± 1.55
la2s 76.33 ± 1.66 88.78 ± 1.03 88.85 ± 1.17 88.93± 1.60 88.80 ± 1.60
oh0 81.05 ± 4.99 88.43 ± 3.09 85.14 ± 2.85 88.03 ± 2.66 88.03 ± 2.66
oh10 68.38 ± 3.06 78.00 ± 3.80 76.29 ± 4.54 80.95 ± 6.79 81.14± 6.79
oh15 72.39 ± 5.08 82.04 ± 1.81 76.88 ± 3.74 80.49 ± 5.08 81.04 ± 5.10
oh5 80.71 ± 5.13 87.47 ± 3.01 85.84 ± 4.68 87.58 ± 2.74 89.32± 2.74

ohscal 70.23 ± 5.10 73.99 ± 1.14 76.63 ± 1.49 80.87 ± 1.21 80.93± 3.21
re0 70.68 ± 1.96 76.87 ± 4.32 81.25 ± 4.30 81.32 ± 5.30 81.52± 5.26
re1 77.43 ± 4.43 79.05 ± 6.16 81.83 ± 4.23 81.81 ± 5.86 82.35± 5.86
tr11 77.06 ± 3.24 84.07 ± 3.07 87.20 ± 1.58 84.53 ± 2.87 88.41± 2.87
tr12 79.21 ± 4.05 81.76 ± 7.43 85.93 ± 4.02 87.19 ± 5.33 87.84± 5.33
tr21 77.95 ± 7.25 60.09 ± 6.01 86.00 ± 4.21 85.31 ± 4.53 86.28± 4.46
tr23 92.68± 5.17 69.07 ± 9.13 83.34 ± 4.66 83.89 ± 8.54 86.30 ± 8.54
tr31 93.53 ± 1.37 95.04 ± 1.35 97.09 ± 0.82 97.19 ± 2.52 97.52± 2.52
tr41 92.03 ± 2.67 93.97 ± 2.94 94.76± 1.69 92.94 ± 2.35 93.96 ± 2.35
tr45 91.01 ± 1.50 82.46 ± 3.78 89.28 ± 4.36 90.29 ± 4.51 92.75± 4.51
wap 65.38 ± 2.58 79.94 ± 3.94 84.49± 1.98 82.71 ± 2.15 81.23 ± 2.15
AVE 78.54 81.43 85.08 85.83 86.60

Ranks 4.6 3.6 2.8 2.4 1.6

5 Conclusion

Random Forests approach is widely considered as an effective method to improve ac-
curacy of various component trees, which has a variety of applications in information
retrieval and data mining, e.g., text categorization, image retrieval, and recommenda-
tion systems. By improving Random Forests from ensemble pruning aspect, we propose
a convex mathematical model for ensembling components in Random Forests, which
takes into account both diversity learning and sample weighting. We also propose an
iterative self-training algorithm for DRF, where the optimization problem is simplified
as a convex quadratic programming problem at each iteration. In the experiments, DRF
is compared with other state of art methods, e.g., J48, Multinomial Naive Bayes, Sup-
port Vector Machines and Random Forests. A series of experiments on benchmark data
sets show that our proposed method achieves very encouraging results for text catego-
rization.

Acknowledgments. The research was partly supported by the National Natural Science
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