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Abstract. Learning classifier systems (LCSs) are rule-based machine
learning technologies designed to learn optimal decision-making policies
in the form of a compact set of maximally general and accurate rules.
A study of the literature reveals that most of the existing LCSs focused
primarily on learning deterministic policies. However a desirable policy
may often be stochastic, in particular when the environment is partially
observable. To fill this gap, based on XCS, which is one of the most suc-
cessful accuracy-based LCSs, a new Michigan-style LCS called Natural
XCS (i.e. NXCS) is proposed in this paper. NXCS enables direct learning
of stochastic policies by utilizing a natural gradient learning technology
under a policy gradient framework. Its effectiveness is experimentally
compared with XCS and one of its variation known as XCSµ in this pa-
per. Our results show that NXCS can achieve competitive performance
in both deterministic and stochastic multi-step problems.

1 Introduction

Originated from John Holland’s seminal work on cognitive systems [5,6], learning
classifier systems (LCSs) are rule-based machine learning technologies designed
to learn optimal decision-making policies in the form of a compact set of maxi-
mally general and accurate rules (aka. classifiers) [13]. Among all LCSs developed
to date, XCS, which was introduced by Wilson, is unarguably the most success-
ful accuracy-based LCS [8]. In this paper, a new Michigan-style LCS with native
support for stochastic decision making will be developed based on XCS.

LCSs have been successfully applied to solve reinforcement learning problems
where a learning agent is situated in a multi-step environment often modeled as
a Markov Decision Process (MDP) [11]. A study of the literature reveals that
reinforcement learning is commonly conducted in LCSs by approximating the
state-action value function, which is represented jointly by a group of classifiers.

Due to the value-function based approach, the aim of a LCS is to learn de-
terministic policies. However, learning stochastic policies is often shown to be
more reliable, in particular when the environment is stochastic or partially ob-
servable [12]. To the best of our knowledge, few LCSs have ever attempted to

C.K. Loo et al. (Eds.): ICONIP 2014, Part III, LNCS 8836, pp. 300–307, 2014.
c© Springer International Publishing Switzerland 2014



Stochastic Decision Making in Learning Classifier Systems 301

directly learn stochastic policies that explicitly associate with each action a suit-
able probability for it to be performed in every state.

In view of the gap in the literature, a new LCS called Natural XCS (i.e. NXCS)
will be developed in this paper. NXCS enables direct learning of stochastic poli-
cies by utilizing a natural gradient learning technology under a policy gradient
framework [1]. Inspired by several temporal-difference based natural learning al-
gorithms [2, 10], this paper presents the first study of natural gradient learning
in LCSs.

The remainder of this paper is organized as follows. A short introduction to
the XCS classifier system can be found in Section 2. Based on XCS, NXCS will
be further developed in Section 3. The performance of NXCS is experimentally
compared with XCS and its recent variation known as XCSμ [9] in Section 4.
Finally Section 5 concludes this paper.

2 XCS Classifier System

XCS is an effective reinforcement learning method in which generalization is
obtained through evolving a population [P ] of classifiers. A detailed algorithmic
description of XCS can be found in [4]. At any discrete time t, a learning agent
receives sensory inputs from the current environment state st. It reacts by per-
forming an action a chosen from A. The environment then transits to a new
state at t+ 1, i.e. st+1, and a reward rt+1 is provided as feedback to the agent.
The goal of the agent is to maximize the amount of reward obtained in the long
run. We briefly review the four key components of XCS in this section.

Classifier: In XCS, each classifier cl has a condition ccl, an action acl, and
several other parameters, including 1) the prediction pcl that estimates the av-
erage payoff upon using the classifier; 2) the prediction error εcl ; and 3) the
fitness Fcl that estimates the average relative accuracy of classifier cl.

Performance Component: Whenever a decision is to be made at any time
t, XCS creates a match set [M ]t containing all classifiers in the population that
match the current sensory input from state st. For every action a ∈ A, the
agent calculates the predicted value of performing a, i.e. Pt(a), based on the
prediction from every classifier belonging to [M ]t [4]. After that, an action a will
be selected and the corresponding group of classifiers recommending a will form
the action set at time t, i.e. [A]t. The selected action will then be performed
and the reward rt+1 will be received subsequently. During learning, the ε-greedy
selection method will be exploited to randomize action selection. During testing,
however, an exploitation strategy will be employed such that the action a with
the highest Pt(a) will always be selected.

Reinforcement Component: Upon reaching a new state st+1, the param-
eters of those classifiers in [A]t will be updated according to [4]. In particular,
the prediction pcl of a classifier cl ∈ [A]t will be updated based on:

pcl(t+ 1) ← pcl(t) + β

(
rt+1 + γmax

a∈A
Pt+1(a)− pcl(t)

)
(1)
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where β is a fixed learning rate.
GA component: On a regular basis, a genetic algorithm will be applied to

those classifiers in [A]t. In particular, proportional to their fitness, two classifiers
from [A]t will be randomly selected to produce offspring classifiers, which are
further modified through the crossover and mutation operations.

3 Natural XCS Classifier System

Aimed at learning stochastic policies, based on XCS, a new NXCS classifier
system will be developed in this section. We organize our discussion into three
subsections. Subsection 3.1 introduces the concept of stochastic policy. The re-
inforcement component of NXCS is further presented in Subsection 3.2. Finally,
Subsection 3.3 develops a policy parameter learning component.

3.1 Stochastic Policy

In comparison with XCS, each classifier cl in NXCS includes an additional policy
parameter, denoted as θcl. At any time t, using all classifiers in the match set
[M ]t, the probability of taking any action a ∈ A is determined according to (2)
below.

πt(st, a) =

∏
cl∈[M ]at

eθcl

∑
b∈A

⎛
⎝ ∏

cl∈[M ]bt

eθcl

⎞
⎠

(2)

where πt(s, a) refers to a stochastic policy that assigns a certain probability for
performing any action a in state st at time t.

We construct a policy parameter vector θt to include θcl of every classifier cl
belonging to the match set [M ]t, assuming a pre-defined global order on these
classifiers. The policy πt(s, a) is subsequently viewed as a function of θt.

3.2 Prediction Reinforcement

NXCS follows a similar learning procedure as XCS. During a single learning step
at time t, based on the match set [M ]t, an action will be selected according to its
probability defined in (2). The chosen action is then performed. As a result, the
environment transits to a new state st+1 and a scalar reward rt+1 is observed.
rt+1 is then applied to update the prediction of each classifier cl ∈ [A] using the
updating rule below.

pcl(t+ 1) ← pcl(t) + β ·(
rt+1 + γ

∑
a∈A

πt(st+1, a) · Pt+1(a)− pcl(t)

)
(3)
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The prediction updating in NXCS is different from that of XCS as shown in
(1). This is because every policy in NXCS is stochastic. Hence prediction cannot
be updated by assuming that, at time t + 1, the action that gives the highest
prediction will always be performed.

3.3 Learning Policy Parameters

In this subsection, a policy gradient framework is adopted to learn policy pa-
rameters. In particular, because the learning performance J (i.e. the discounted
accumulated reward in the long run) can be treated as a function of θ, a straight-
forward approach is to learn θ based on

θt+1 ← θt + λ · �θt
J (4)

where λ is a fixed learning rate. Practical application often shows that learning
through (4) can be slow and unstable [10]. Instead of using �θtJ , a natural gradi-
ent concept proposed by Amari can be very helpful [1]. Theoretically, stochastic
policies learned through NXCS are equivalent to a family of statistical models
situated in a Riemannian parameter vector space of θ. Each point in the space
corresponds to a specific stochastic policy. In such a Riemannian space, learning
should be performed through the natural gradient of J , i.e. �̃θt

J . Particularly,
we have

θt+1 ← θt + λ · �̃θtJ (5)

where

�̃θtJ = G(θt)
−1 · �θtJ (6)

G(θt)
−1 is the inverse matrix of G(θt). G(θt) stands for the Fisher information

matrix [1] of the stochastic policy represented by θt. In line with (5) and (6), it
can be shown eventually that

�̃θt
J ∝ ·δt · �θt

log πt(s, a) (7)

where

δt = rt+1 + γ ·
∑
a∈A

πt(st+1, a) · Pt+1(a)−
∑
a∈A

πt(st, a) · Pt(a) (8)

Based on (7), the updating rule for learning policy parameters is determined
as

θt+1 ← θt + λ · δt ·ψs,a (9)

The learning parameter λ in (9) will be set to the inverse of the maximum
single-step reward in all experiments to be reported in Section 4. It can be
verified that the computational complexity of the performance component in
NXCS is O (|[M ]t|), which is the same as XCS. Meanwhile, the complexity of
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the reinforcement component in NXCS is O (Max(|[M ]t|, |[M ]t+1|)). Whereas in
XCS, the corresponding complexity is O (Max(|[A]t|, |[M ]t+1|)), which should
not appear significantly different in practice.

4 Experiment Results

Experiments on three reinforcement learning problems will be reported here.
The Woods101 problem is a partially observable environment. It is used to un-
derstand whether NXCS can better cope with perceptual aliasing [7] than XCS
and XCSμ. The Woods14 problem is further used to study the performance of
NXCS on benchmark deterministic multi-step problems with long-delayed re-
ward. Finally, we will study the reliability of the learning system on stochastic
maze problems, specifically the Maze5ε problem.

4.1 Experiments on the Woods101 Problem

The Woods101 problem, as described in [9], is a small grid environment that
consists of 10 empty positions and one terminal state F (i.e. the goal). The
agent, in any state, may choose to perform one of eight alternative actions.
In the absence of an obstacle, each alternative action will bring the agent to
a different adjacent position. To allow continued learning, whenever the agent
reaches the terminal state, it will receive a maximum reward of 1000 and will be
immediately relocated to a new state selected uniformly at random from the 10
empty positions.

Because an agent can only observe its adjacent positions in the grid, two states
in the Woods101 problem are indistinguishable. Whenever a deterministic policy
is followed, the same action will be performed in both states. There is hence a
chance for the agent to be trapped in a local optima [9]. In comparison, an agent
can achieve better performance by learning stochastic policies.

Fig. 1 presents the performance of NXCS, XCS, and XCSμ on the Woods101
problem. Also included in this figure is the performance of another LCS named
RXCS. RXCS is a learning system recently proposed by us for learning stochastic
policies without using the natural gradient learning method. The maximum pop-
ulation size in our experiments is set to 300 classifiers. To reduce randomness, 30
independent tests have been conducted for each LCS. The average performance
obtained is depicted in this figure. The same practice is also applied to build
other result figures included in this paper.

As can be seen from Fig. 1, NXCS appears to perform better than XCS and
XCSμ throughout the whole learning process. In particular, at the end of the
experiment (i.e. 8000 learning problems), the average performances achieved by
NXCS, XCS, and XCSμ are 4.39, 63.09, and 40.35 respectively. By using two-
tailed t-test, it can be confirmed that the performance of NXCS is statistically
better than that of XCS and XCSμ. Specifically, the p-value is 1.5483×10−127

for the t-test between NXCS and XCS and it equals to 9.1783×10−146 for the
t-test between NXCS and XCSμ. Both the two p-values are far less than 0.05,
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Fig. 1. Learning performance of NXCS, RXCS, XCS, and XCSµ on the Woods101
problem. The performance is measured as the average number of actions to be per-
formed by an agent in order to reach a goal. The theoretical optimal performance is
also indicated in this figure.

which is commonly used as the standard statistical significance level for t-tests.
Meanwhile, we found that, after about 2000 learning problems, NXCS achieved
an average performance that is very close to the theoretical optimum of 4.3 (with
a small difference less than 0.1).

4.2 Experiments on the Woods14 Problem

In this Subsection, the performance of NXCS is further tested on the Woods14
problem. The Woods14 is a difficult benchmark reinforcement learning prob-
lem [3]. In particular, due to the problem’s long-delayed reward, XCS has been
reported as failing to solve the problem properly [3].

Fig. 2. Learning performance of NXCS, RXCS, XCS, and XCSµ on the Woods14 prob-
lem. Performance is measured as the average number of actions an agent performs in
order to reach a goal. The theoretical optimal performance is also indicated in this
figure.
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Fig.2 depicts the learning performance of NXCS, XCS and XCSμ on the
Woods14 problem. Evidently, NXCS successfully stabilized its performance at
an average of 12.619 after 3000 learning problems. In comparison, both XCS and
XCSμ cannot solve the problem properly, eventually achieving averages of 33.684
and 162.088 in performance respectively. The best policy in theory can achieve
an average performance of 9.5 on the Woods14 problem. The performance of
NXCS appears to be quite close to this theoretical optimum.

4.3 Experiments on Stochastic Maze Problems

In this subsection, we investigate the reliability of the learning systems in stochas-
tic environments. Particularly, we have tested NXCS, XCS, and XCSμ on several
stochastic maze problems, including the Maze4ε, Maze5ε and Maze6ε problems.
All our results consistently show that NXCS is more effective at handling envi-
ronmental randomness. Specifically, to support this claim, we present here the
experiment results on the Maze5ε problem, which is a stochastic extension of
the benchmark Maze5 problem, as described in [9].

Fig. 3. Learning performance of NXCS, RXCS, XCS, and XCSµ on the Maze5ε prob-
lem. Performance is measured as the average number of actions an agent performs in
order to reach a goal.

As shown in Fig.3, NXCS has apparently performed better over the whole
learning process, developing an average performance of 8.731 after 5000 learning
problems. In line with the findings reported in [9], XCS failed to converge. Instead
it exhibits large fluctuations and produces an average performance of 24.036 after
5000 learning problems. XCSμ is more effective than XCS, achieving an average
performances of 12.313 at the end of the experiment. If we perform a t-test
between NXCS and XCSμ, a p-value of 4.758×10−32 is obtained, confirming
that the performance difference between the two learning systems is statistically
significant.
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5 Conclusions

Based on XCS, this paper successfully developed a new natural XCS (i.e. NXCS)
classifier system. Our research was inspired by the natural gradient learning
technology. To the best of our knowledge, this paper presented the first study of
natural gradient learning in XCS. Our method is general and can potentially be
applied to many other LCSs. Meanwhile, our experiments showed that NXCS
performed competitively with XCS and XCSμ.

Looking into the future, we would hope to see interesting applications of NXCS
to real-world problems that require sequential and stochastic decision making.
The potential usefulness of NXCS for a wide range of machine learning tasks,
including data mining problems, may also deserve in-depth investigation.
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