Autoencoder-Based Collaborative Filtering

Yuanxin Ouyang’?, Wenqi Liu!, Wenge Rong!?, and Zhang Xiong!-?

School of Computer Science and Engineering, Beihang University, China
Research Institute of Beihang University in Shenzhen, China
{oyyx@,wqliu@cse. ,w.rong@,xiongz@}buaa.edu.cn

Abstract. Currently collaborative filtering is widely used in recom-
mender systems. With the development of idea of deep learning, a lot
of researches have been conducted to improve collaborative filtering by
integrating deep learning techniques. In this research, we proposed an au-
toencoder based collaborative filtering method, in which pretraining and
stacking mechanism is provided. The experimental study on commonly
used MovieLens datasets have shown its potential and effectiveness in
getting higher recall.

1 Introduction

With the explosion of information on the Internet, people relied on more and
more recommender systems to solicit suggestions and/or make decisions, thereby
solving the information overload problem. A lot of recommendation related tech-
niques have been proposed and a notable one is collaborative filtering [1], which
is widely lauded as a practical method for providing recommendations by utilis-
ing users’ preference history to predict future preference. Generally, algorithms
for collaborative filtering can be roughly divided into two general classes, i.e.,
memory-based and model-based approaches. Memory-based methods try to pre-
dict users’ preference based on the ratings by other similar users, while model-
based methods mainly rely on a prediction model by using Clusetering, Baysesian
network and etc [3].

Currently, with the development of concept of deep learning, a new research
area and has proven its success in speech and image recognition [4], researchers
started to try to employ the inspiration of deep learning into collaborative filter-
ing based recommender systems. For example, Salakhutdinov et al. proposed an
approach employing Restricted Boltzmann Machines (RBM) [12] and Georgiev
et al. further extended the original RBM-based model to a unified non-IID frame-
work [5]. Truyen et al. explored joint modelling of users and items for collab-
orative filtering, but inside is an unrestricted version of Boltzmann Machines
(BMs) [10]. Oord et al. used deep convolutional neural networks to provide mu-
sic recommendation [9]. Gunawardana et al. described a tied Boltzmann Machine
combining collaborative and content information [7].

Deep learning is also called feature learning due to its powerful ability to learn
feature representations automatically. Besides, deep models can learn high-order
features of input data which may be useful for recommendation as indicated in

C.K. Loo et al. (Eds.): ICONIP 2014, Part III, LNCS 8836, pp. 284-291, 2014.
© Springer International Publishing Switzerland 2014

Autoencoder-Based Collaborative Filtering 285

[12]. Inspired by previous work, in this research we tried to employ another neural
network model, autoencoder, into the collaborative filtering task. Experimental
study on commonly used datasets is also conducted to present its potential and
effectiveness.

The rest of the paper is organised as following. Section 2 will introduce the
related work about collaborative filtering models and basic autoencoder. Then
a modified autoencoder based collaborative filtering model will be illustrated
in section 3. Section 4 will discuss the experimental study and Section 5 will
conclude this paper and point out possible future work.

2 Related Work

Early approaches for collaborative filtering assume that similar users have sim-
ilar interests, i.e., nearest neighbourhood based methods, which is normally
called memory-based approaches. However, memory-based approaches do not
scale well because they require access to the ratings of the entire set. Further-
more, there is another challenge that ratings are severe sparse making memory-
based approaches perform unsatisfied. To overcome this challenges, model-based
approaches such as singular value decomposition (SVD) have been proposed [6].
However, application of matrix factorization to sparse ratings matrices is still a
non-trivial challenge. As such, Hoffman proposed a formal statistical model of
user preferences using hidden variables over user-item-rating triplets [8].

Except for memory-based and model-based approaches, recently an alterna-
tive methods using idea of deep learning has been attached much importance.
Among them autoencoder is a widely used deep learning model. Suppose we
have only unlabelled training examples set {x(l),x(z),...}, where () € R". An
autoencoder neural network is an unsupervised learning algorithm that applies
backpropagation, setting the target values to be equal to the inputs. Le., it uses
y@ = 2 as shown in Fig. 1.

The autoencoder tries to learn a function hywp(x) = z. In other words, it
is trying to learn an approximation to the identity function, so as to output &
which is similar to x. By placing constraints on the network, such as limiting the
number of hidden units, interesting structure can be discovered about the data.
For instance, if some of the input features are correlated, then this algorithm
will be able to discover some of those correlations.

3 Autoencoders for Collaborative Filtering

3.1 Modeling User-Item Ratings

Suppose there are N users, M movies and integer ratings from 1 to K. An
important problem in applying autoencoders to movie ratings is how to cope
with the missing ratings efficiently. We cannot simply substitute missing values
with 0 because the model will think that user give a rating of 0 and learn the
negative preference, which is not the truth. In this paper we use a different

286 Y. Ouyang et al.

autoencoder for each user, as shown in Fig. 2. Every autoencoder has the same
number of hidden units, but an autoencoder only has input units for the movies
rated by that user. As a result an autoencoder has few connections if that user
rated few movies. Each hidden unit could then learn to model a significant
dependency between the ratings of different movies. Each autoencoder only has
a single training case, but all of the corresponding weights and biases are tied
together. If two users have rated the same movie, their two autoencoders must
use the same weights between the softmax input/output units for that movie and
the hidden units. To simplify the notation, we will now concentrate on getting
the gradients for the parameters of a single user-specific autoencoder. The full
gradients with respect to the shared weight parameters can then be obtained by
averaging over all N users.

Input layer Hidden layer Output layer
K K-1 2 1

Layer Lj

Layer Lg

Layer L;

Fig. 1. Architecture of autoen- Fig.2. An user-specific autoencoder for collabora-
coder tive filtering

Learning. Suppose a user rated m movies. Let a(!) be a K x m observed binary
f(l) = 1 if the user rated movie i as k and 0 otherwise.
We also let a§2), j=1,...,F, be the values of hidden variables. Here we choose
activation function to be the sigmoid function. In feedforward step, the only
difference is that because the output layer is of the same structure as the input

layer, we compute the output unit af(3) as:

k(2) (2) | k(2
K(3) _ f(ijij()a§)+bi()) (1)
i k(2) (2) | k(@)
Xk f(Zj wij()a§) +bi())

indicator matrix with a

where wf) denotes the weight associated with connection between a§»2) and

af(s), bf(z) is the bias of af(‘?). The denominator is the normalisation term which
; k(3) _

insures >, a;" = 1.

In backpropagation step, for a single training example (z, y), we define the

cost function J(w, b; x, y) to be squared-error function. Then given a training set

Autoencoder-Based Collaborative Filtering 287

of m examples, we define the overall cost function as:
Twb)= LS g bt)+) . 2
) m Z) b 9 2

The first item in the definition of J(w,b) is an average sum-of-squares error
term. the second term is a regularization term (also called a weight decay term)
which tends to decrease the magnitude of the weight and helps prevent overfitting
problem. Our goal is to minimise the total cost function J(w,b). Here we train
our autoencoder using batch gradient descent.

Making Predictions. Given the training set of one user and a new query item
¢, we can initialise the input layer of the autoencoder with known ratings and
carry out feedforward step. Specific units as(g) in the output layer represents the

probability which item ¢ will be rated value k. As such the expected rating for

item ¢ is computed as:
rq = Z k- a’;(g). (3)
k

3.2 Initialisation of Parameters

As the optimisation problem of neural networks is nonconvex, the standard way
to train autoencoders using backpropagation to reduce the reconstruction er-
ror is difficult to optimise the weights. Autoencoders with random small initial
weights typically find poor local minima. A popular solution to this problem is
greedy “pretraining” procedure. In this paper we use a two-layer network called
Restricted Boltzmann Machine (RBM) to pretrain autoencoders. A RBM is a
specific type of undirected bipartite graphical model consisting of two layers of
binary variables: hidden and visible with no intra-layer connections. Training an
autoencoder with RBM pretraining takes the following steps:

1) Train a RBM with analogous structure of autoencoder using input data.

2) Use the trained parameters of RBM to initialize corresponding weights and
biases of autoencoder.

3) Fine-tune the weights using Backpropagationfor for optimal reconstruction
of each user’s ratings.

The key idea is that the greedy learning algorithm will perform a global search
for a good, sensible region in the parameter space [11]. Therefore, with this
pretraining, we will have a good data reconstruction model. Backpropagation is
better at local fine-tuning of the model parameters than global search. So further
training of the entire autoencoder using backpropagation will result in a good
local optimum.

3.3 Deep Generative Models

A stacked autoencoder is a neural network consisting of multiple layers of autoen-
coders in which the outputs of each layer is wired to the inputs of the successive

288 Y. Ouyang et al.

layer. A good way to obtain good parameters for a stacked autoencoder is to
use greedy layer-wise training [2]. To do this, first we train the first layer on raw
input to obtain parameters and transform the raw input into a vector consisting
of activation of the hidden units. The second layer is then trained on this vector.
Repeat for subsequent layers, using the output of each layer as input for the
subsequent layer. While training each layer, we can also use RBM pretraining
method to get better local optimum as mentioned in the previous subsection.

This method trains the parameters of each layer individually while freezing
parameters for the remainder of the model. To produce better results, after
training phase is complete, fine-tuning using backpropagation can be used by
tuning the parameters of all layers are changed at the same time.

A stacked autoencoder enjoys all the benefits of any deep network of greater
expressive power. Further, it often captures a useful hierarchial grouping or part-
whole decomposition of the input. The first layer of a stacked autoencoder tends
to learn first-order features of the raw input. Higher layers tend to learn even
high-order features corresponding to patterns of previous-order features.

4 Experiments and Discussion

4.1 Datasets and Evaluation Metrics

We evaluated the above-described autoencoders on two MovieLens datasets,
which are commonly used for evaluating collaborative filtering algorithms.

The first dataset (MovieLens 100k) consists of 100,000 ratings for 1,682 movies
assigned by 943 users, while the second one (MovieLens 1M) contains one million
ratings for 3,952 movies by 6,040 users. Each rating is an integer between 1
(worst) to 5 (best). For both datasets, we use 80% to make training set and
others to be testing set.

To evaluate the proposed method, we use both mean absolute error (MAE)
and root mean squared error (RMSE). MAE measures the deviation of the pre-
dicted values p; from their true ratings r;, which computes the absolute difference
over all N pairs. Compared with MAE, RMSE gives more weights for prediction
with bigger errors. The evaluation rules are in the following form:

N . N o o)2
MAE = 2i=1 |JGZ Pi RMSE:\/Zz:l(Z i) (4)

4.2 Results and Discussion

Fig. 3 shows the dependency of MAE on the number of units in the hidden
layer when the autoencoders are trained for 200 epochs. We can see that models
get lower MAE values with the increasing number of hidden units, which is
not obvious after hidden units are more than 120. It can be imagined that
overfitting will become an issue with continuously increasing number of hidden
units. Next, Fig. 4 shows the dependency of MAE on the number of epochs when

Autoencoder-Based Collaborative Filtering 289
the autoencoders are trained for 100 hidden units. The curve is similar to the
previous one. After the number of training epochs is larger than 250, the MAE
value stays relatively stable. Training epochs needed to acquire stable MAE can
be different if learning rate is changed or with stochastic gradient descendent.

Feovo o

& 6--o-5 o3

MAE

el

S
N

~e
~e

S
o

.

o—o—o—

=4

0 20 40 60 80 100 120 140 160 180 200 o.
Hidden units 0 50 100 150 200 250 300

Epochs

Fig.3. Dependency of MAE on Fig.4. Dependency of MAE on
the Number of Hidden Units the Number of Epochs

We further compared the prediction quality achieved by different methods
using the MovieLens 100k and 1M datasets, respectively. Apart from the au-
toencoders described before, other collaborative filtering approaches based on
nearest neighbours, SVD and RBM are included.

Table 1 shows the MAE and RMSE values of some basic models and autoen-
coder models on both datasets. From the results on MovieLens 100k, it can be
seen that autoencoders without pretraining do not perform well enough, while
RBM-pretrained autoencoders have similar performance with nearest neighbors
and SVD models. Besides, the results of stacked autoencoders are slightly supe-
rior to autoencoders. But the gap is not obvious.

Evaluation measures on MovieLens 1M are shown on the right side. Apart
from that models perform better than those on MovieLens 100k, the trend of
results do not have big differences.

Finally, experiments are made to test the overlap degree between recom-
mended user-movie sets from autoencoders and other CF models. We define
recommended movie as that whose predict and real ratings are both higher
than 4. Under this condition, the prediction is precise and users have positive
references over these movies. Statistical data on MovieLens 100k are shown in
Table 2.

USER-BASED & AUTOENCODER represents the intersection of recom-
mended user-movie sets between user-based CF model and autoencoder model.
Comparing the first, fourth and fifth row, we can find that there is still a large
number of recommended movies beyond the intersection. Same phenomenon ap-
pears between autoencoders and other CF models.

After investigating the experimental result, some interesting findings can be
revealed:

290 Y. Ouyang et al.

Table 1. Prediction Quality on MovieLens Dataset

MovieLens 100k MovieLens 1M

CF Model RMSE MAE RMSE MAE
USER-BASED CF 0.937 0.736 0.915 0.709
ITEM-BASED CF 0.932 0.732 0.901 0.698
SVD 0.940 0.737 0.893 0.684
BIASED-SVD 0.926 0.721 0.887 0.681
RBM 0.953 0.752 0.918 0.710
AUTOENCODER(NO PRETRAINING) 1.004 0.804 0.966 0.754
AUTOENCODER(PRETRAINED) 0.939 0.737 0.892 0.688
STACKED AUTOENCODER(NO PRETRAINING) 0.992 0.791 0.957 0.747
STACKED AUTOENCODER(PRETRAINED) 0.933 0.728 0.890 0.684

Table 2. Size of Recommended User-Movie Set on MovieLens 100k

CF Model Size of Recommended User-Movie Set
USER-BASED 3244
ITEM-BASED 3299
SVD 3316
AUTOENCODER 2622
USER-BASED & AUTOENCODER 1880
ITEM-BASED & AUTOENCODER 2138
SVD & AUTOENCODER 2056

1) Autoencoders are effective models for collaborative filtering as they have
no worse performance than basic methods.

2) Pretraining with RBMs do make autoencoders get better local optimum
as the results improve a lot.

3) Stacked autoencoders are superior, but not enough with small rating dataset
alone which do not have enough high-order information.

4) Prediction quality of autoencoders remains consistent when the amount of
training data increases by an order of magnitude, which is a good indication for
potential practical applicability.

5) The results of autoencoders can be merged with other methods to get a
higher recall without reducing precision. It is good news for that we usually
combine different models in real circumstances but not use single model.

5 Conclusion and Future Work

In this paper we proposed a revised autoencoder models for collaborative filter-
ing. To acquire better performance, we tried some improvements such as pre-
training with RBM and stacking autoencoders together. Experimental study has
been conducted on two commonly used datasets to prove that those models are
effective and can be integrated with other CF models to get a higher recall.
There are several extensions to be considered. First our current models focus
on modelling the correlation between item ratings. We can generate a similar

Autoencoder-Based Collaborative Filtering 291

model focusing on user ratings and then combine them together to get a better
performance. Besides, we can introduce some content-based features into the
model so that deep models may acquire more high-order information.

Acknowledgements. This work was partially supported by the National Nat-
ural Science Foundation of China (No. 61103095), the International S&T Coop-
eration Program of China (No. 2010DFB13350), and the Fundamental Research
Funds for the Central Universities. We are grateful to Shenzhen Key Laboratory
of Data Vitalization (Smart City) for supporting this research.

References

10.

11.

12.

. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734749 (2005)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise
training of deep networks. Advances in Neural Information Processing Systems 19,
153 (2007)

Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algo-
rithms for collaborative filtering. In: Proceedings of 14th International Conference
on Uncertainty in Artificial Intelligence, pp. 43-52 (1998)

Deng, L.: An overview of deep-structured learning for information processing. In:
Proceedings of Asian-Pacific Signal and Information Processing-Annual Summit
and Conference (2011)

Georgiev, K., Nakov, P.: A non-iid framework for collaborative filtering with re-
stricted boltzmann machines. In: Proceedings of the 30th International Conference
on Machine Learning, pp. 1148-1156 (2013)

Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval 4(2), 133-151 (2001)
Gunawardana, A., Meek, C.: Tied boltzmann machines for cold start recommen-
dations. In: Proceedings of the 2008 ACM Conference on Recommender Systems,
pp. 19-26. ACM (2008)

. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Transactions

on Information Systems 22(1), 89-115 (2004)

van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recom-
mendation. In: Advances in Neural Information Processing Systems, pp. 2643-2651
(2013)

Phung, D.Q., Venkatesh, S., et al.: Ordinal boltzmann machines for collaborative
filtering. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intel-
ligence, pp. 548-556. AUAI Press (2009)

Salakhutdinov, R., Hinton, G.: An efficient learning procedure for deep boltzmann
machines. Neural Computation 24(8), 1967-2006 (2012)

Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collab-
orative filtering. In: Proceedings of the 24th International Conference on Machine
Learning, pp. 791-798. ACM (2007)

	Autoencoder-Based Collaborative Filtering
	1 Introduction
	2 Related Work
	3 Autoencoders for Collaborative Filtering
	3.1 Modeling User-Item Ratings
	3.2 Initialisation of Parameters
	3.3 Deep Generative Models

	4 Experiments and Discussion
	4.1 Datasets and Evaluation Metrics
	4.2 Results and Discussion

	5 Conclusion and Future Work
	References

