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Abstract. Motor imagery based Brain Computer Interface (BCI) sys-
tem is a promising strategy for the rehabilitation of stroke patients. Com-
mon Spatial Pattern (CSP) is frequently used in feature extraction of
motor imagery EEG signals and its performance depends heavily on the
choice of frequency component. Moreover, EEG of stroke patients, which
is full of noise, makes it hard for traditional CSP to extract discrimina-
tive patterns for classification. In order to deal with the subject-specific
band selection, in this paper, we adopt denoising autoencoders and con-
tractive autoencoders to extract and compose robust features from CSP
features filtered in multiple frequency bands. We compare our method
with traditional methods on data collected from two months clinical re-
habilitation. The results not only demonstrate its superior recognition
performance but also evidence the effectiveness of our BCI-FES rehabil-
itation training system.

1 Introduction

Brain Computer Interface (BCI), as an alternative communication channel be-
tween human brain and external devices, is a good way that combines Electroen-
cephalography (EEG) signals with motor control [1]. Recently some studies have
demonstrated that motor imagery based BCI is a very promising method in reha-
bilitation training of strokes [2]. One of the most effective algorithms for motor
imagery based BCI is Common Spatial Pattern (CSP) [3]. The spatial filters
generated by CSP reflect the specific activation of cortical areas. However, the
performance of CSP heavily depends on the proper selection of frequency bands
and channels [4][5].

It is generally considered that motor imagery of normal people attenuates
EEG μ and β rhythm over sensorimotor cortices [6][7]. However, for special pop-
ulations suffering from neurophysiological diseases (e.g., stroke), some studies
recently found that the μ and β rhythm in motor imagery EEG of stroke pa-
tients have been modulated [8]. In our analysis, a similar regularity is observed
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that the most informative frequency bands for classifying left and right motor
imagery have deviated from normal α and β rhythms in different stages of the
clinical experiments [9]. Furthermore, our analysis also illustrates that irregular
discriminative patterns from impaired cortex is different from those of the nor-
mal subjects, and there frequently exists messy imagination contents in the mo-
tor imagery EEG of stroke patients [10]. In consequence, conventional methods
suitable for normal subjects usually achieves a relatively low level classification
accuracy [11].

To make full use of latent spectral information in EEG of stroke patients
and extract robust features from noisy data, in this paper, we adopt denoising
autoencoders [12] and contractive autoencoders [13] to obtain a encoding of the
raw features of stroke patients’ signals.

The rest part of this paper is organized as follows: a detailed introduction
about our rehabilitation training system, experiment setup and data collection
are given in Section 2. Section 3 describes the deep learning method for extracting
EEG features. Section 4 demonstrates a comparative result when applying our
method, frequency boosting and CSP-SVM on data collected from clinical ex-
periments. Apart from the classification performance, we describe a phenomenon
of contribution of band changing during rehabilitation, which may reveal some
mechanisms of stroke patients’ recovery in frequency aspect. Finally we give a
brief conclusion in Section 5.

2 Experiment Paradigm

2.1 BCI-FES Rehabilitation Training System

Our BCI-FES rehabilitation system is consists of 5 modules: real-time data ac-
quisition module, data storage and analysis module, visualization module, multi-
modal feedback module and human effect training module [14].

In general, the system aims at restoring motor functions of paralyzed limbs
for post-stroke patients by active motor imagery directed by training tasks. EEG
signal is collected by data acquisition module during subject’s imagery and label
of each segment of subject’s motor imagery is recognized online after feature
extraction and classification in data storage and analysis module. Multi-modal
feedback module gives a corresponding feedback including visual, auditory and
tactile response given the classification result and visualization module gives a
real-time observation concurrently.

In order to improve training effect, we adopt a new rehabilitation training
paradigm which attempts to reconstruct the motor sensory feedback loop [15].
During experiments the subject is required to reconfirm the label and can correct
the label when necessary.

2.2 Experiment Setup and Data Collection

We conduct our clinical rehabilitation on seven participated subjects in hospital
training with our BCI-FES rehabilitation system. Another three patients only
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receiving regular clinical treatments are considered as control group to assess
the effectiveness of our system and rehabilitation paradigm.

In general, each subject is required to participate in 3 days’ training per week.
Each day’s training consists of 8 sessions which contains 15 trials of motor im-
agery tasks. Each trial lasts for 4 seconds and is cut into 25 1s sliding windows
with step length 0.125s for online classification. At the end of experiment cy-
cle, a post-training section consists of 2 sessions will be conducted to evaluate
rehabilitation efficacy. Raw EEG data is recorded by a 16-channel(FC3, FCZ,
FC4, C1-C6, CZ, CP3, CPZ, CP4, P3, PZ and P4) g.USBamp amplifier under
a sample rate of 256 Hz. After removing artifacts, we filter the EEG into α(8-12
Hz), β(12-30 Hz), γ(30-45 Hz) band for feature extraction.

3 Method

3.1 Common Spatial Pattern

The goal of CSP [3] is to design spatial filters that lead to optimal variances for
the discrimination of two populations of EEG related to left and right motor
imagery.

We denote raw EEG data as a ch × time matrix E, where ch is the number
of channels and time is the number of samples per channel. The filtered signal
matrix S is S = WE or S(t) = We(t), where W ∈ IRd×ch is spatial filter matrix.

First the sum spatial covariance can be eigen decomposed as Σ1 + Σ2 =
1
nL

∑nL

i=1
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E′
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trace(ELi
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Li
) +
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Then the whitened covariance by P =
√
D−1UT can be decomposed as Σ̂1 +

Σ̂2 = P (Σ1 +Σ2)P
T = V (ΛL + ΛR)V

T .
Finally, by selecting first and last m eigenvectors in V, the CSP filter is ob-

tained as W = PTV ∈ IR2m×ch. The filtered signal matrix is given by s(t) =
We(t) = (s1(t) . . . sd(t))

T , d = 2m. And feature vector x = (x1, x2, . . . , xd)
T is

calculated by xi = log( var[si(t)]∑d
j=1 var[sj(t)]

).

3.2 Autoencoder

A simplest autoencoder (AE) [16] is composed of two parts, an encoder and a
decoder. The encoder is a function f that maps an input x ∈ IRd to a hidden

representation h ∈ IRd′
through a deterministic mapping h = fθ1(x) = s(Wx+b),

parameterized by θ1 = {W, b}. The resulting latent representation h is mapped
back to a reconstruction y, where y = gθ2(h) = s(W ′h+ b′) with θ2 = {W ′, b′}.

Autoencoder training consists in optimizing parameters θ = {W, b,W ′, b′}
to minimize the average reconstruction error on a training set Dn: JAE(θ) =
∑

x∈Dn
L(x, g(f(x)))+ β

∑d′

j=1 KL(ρ||ρ̂j), where L is the reconstruction error, ρ
is sparsity parameter, ρ̂j is the average activation of hidden unit j and β controls
the weight of the sparsity penalty term KL(ρ||ρ̂j). In case of s being the sigmoid,

L is cross-entropy loss:L(x, y) = −∑d
i=1 xi log(yi) + (1− xi) log(1− yi).
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Denoising Autoencoder(DAE). To enforce robustness to noisy inputs, de-
noising autoencoder [12] first corrupts input x, then train the autoencoder to
reconstruct the clean version. The objective function is

JDAE(θ) =
∑

x∈Dn

Ex̃∼q(x̃|x)[L(x, g(f(x̃)))] (1)

where the expectation is over corrupted x̃ obtained from a corruption process
q(x̃|x).

Contractive Autoencoder(CAE). CAE [13] is obtained with the regulariza-

tion term ||Jf (x)||2F =
∑

ij(
∂fj(x)
∂xi

), giving objective function

JCAE(θ) =
∑

x∈Dn

(L(x, g(f(x))) + λ||Jf (x)||2F ) (2)

The basic autoencoders can be stacked into deep networks. Greedy layer-wise
training is a good way to initialize a stacked autoencoder. The features from
the stacked autoencoder can be used for classification by feeding the last layer’s
output to a softmax classifier.

In our analysis, EEG signals are filtered into α, β, γ band and form a channel×
time × window × band format data. Then CSP is applied to each band’s data
channel× time×window to extract frequency specific features. These features

are normalized to [0, 1] using NormalizedFeature = Feature−min(Feature)
max(Feature)−min(Feature)

and then fed into a stacked autoencoder.
We adopt two kinds of autoencoder described above to pretrain each layer in

turn with first week’s data and finetune the whole model using the same data
with labels. Then subsequent data are split into 2 parts: The first 7 sessions’
data in each day is used to finetune the network in order to adapt the model
to the pattern changing during rehabilitation and the last session’s data is for
testing. Figure 1 shows the structure of our model.
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Fig. 1. The structure of our model. EEG data filtered by each band are transformed
into a 4-dimensional feature by CSP, and fed into a neural network with 12×25×16×2
units after being normalized.



206 M. Chen, Y. Liu, and L. Zhang

4 Result

Considering the training parameters of DAE for all the subjects, we set learning
rate 0.5, scaling factor 0.99, momentum 0.5 and a binary masking noise with
fraction 0.3 as the input. The sparsity constraint and penalty factor is subject
specific.

In terms of CAE, we set λ 0.05, learning rate 0.5, scaling factor 0.99 and
momentum 0.5 for all the subjects.

In order to evaluate the performance of our method, we also apply traditional
CSP-SVM method and frequency boosting method on dataset of 4 patients.
We calculate classification accuracies of stroke patients EEG in the chosen 6
weeks out of 2 months and finally the mean test session accuracy of each week
is calculated. Table 1 shows test accuracies of 4 patients pretrained using DAE.

Table 1. Test accuracies of sliding windows using DAE. Note that the data collected
in first week are used to pretrain each layer’s autoencoder.

Subject Age 2nd Week 3rd Week 4th Week 5th Week 6th Week

1 65 0.57 0.63 0.61 0.73 0.79
2 71 0.49 0.51 0.51 0.56 0.76
3 50 0.56 0.55 0.51 0.60 0.69
4 65 0.52 0.58 0.53 0.62 0.72

Compared with other methods, our method achieves a better accuracy (Fig.
2, Table 2). We consider the hidden layer’s output as the hidden encoding of the
original features. The hidden encoding of autoencoders provides a new represen-
tation of the original data in the subspace defined by the weights. Our experiment
result shows that such representations are more robust to noisy data of stroke
patients and give us much useful discriminative information for classification,
which attributes to sparse and smooth representation.

Figure 2 also shows a rising tendency in terms of test accuracy. It’s worth
mentioning that the whole result also shows the feasibility and effectiveness of
our BCI-FES rehabilitation training system.

Table 2. Best Test Session Accuracy. The best session for all subjects all appeals in
the last week of our experiment.

Method Subject 1 Subject 2 Subject 3 Subject 4

CSP-SVM 0.64 0.818 0.626 0.671
F-Boost 0.843 0.843 0.669 0.737
CSP-DAE 0.941 0.913 0.779 0.72
CSP-CAE 0.923 0.779 0.711 0.749
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Fig. 2. Mean test accuracy of CSP-SVM, Frequency Boosting, CSP-DAE and CSP-
CAE over time. Note that: (1) For autoencoders, data of first week is used for pretrain-
ing. (2) CSP-DAE achieves a higher accuracy in most cases. (3) A rising tendency can
be observed over time.

To analyze the band contribution to classification, we calculate the relative
importance of each feature using connection weights [17]. Figure 3 shows the
gradual changes of importance during experiment of four subjects.
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Fig. 3. The contribution changes of each band over rehabilitation process
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The fact that the importance of gamma band increased for 3 patients while
the contribution of beta band increased for subject 2 over time implies the grad-
ual changes of motor imagery patterns of different stroke patients. Noting that
oscillatory activity in gamma band is related to gestalt perception and cogni-
tive functions and the oscillations in alpha and beta band are obvious indicators
of movement, this phenomenon may reveal potential mechanisms about stroke
recovery. We consider that the finetuning process of our last 5 weeks’ training
adapts the model to this migration so that the frequency modulations can be de-
tected by CSP, thus improves classification accuracy comparing with traditional
method.

Three patients receiving traditional clinical treatments get a lower clinical
rehabilitation parameters in post assessment, which indicates that our system
and active training paradigm accelerates the rehabilitation of impaired cortex.

5 Conclusion

In this paper, we propose a method which filters signal into multiple bands and
use the autoencoder paradigm to train a network to classify two classes’ motor
imagery EEG of stroke patients. This method detects important structure in
the raw common spatial patterns by using a local unsupervised criterion to
pretrain each layer in the network and captures discriminative pattern changes
during rehabilitation process by keeping finetuning the model. Compared with
traditional CSP-SVM classifier, our method achieves a better result on both
accuracy over time and optimal session accuracy. The analysis of band changing
during rehabilitation provides a prior knowledge about motor imagery pattern of
stroke patients. Furthermore, the comparison of experimental group with control
group demonstrates the effectiveness of our multi-modal BCI-FES rehabilitation
training system and active training paradigm.
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