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Abstract. Common spatial patterns (CSP) is a commonly used method
of feature extraction for motor imagery–based brain computer interfaces
(BCI). However, its performance is limited when subjects have small
training samples or signals are very noisy. In this paper, we propose a
new regularized CSP: temporally regularized common spatial patterns
(TRCSP), which is an extension of the conventional CSP by preserving
locally linear structure. The proposed method and CSP are tested on
data sets from BCI competitions. Experimental results show that the
TRCSP achieves higher average accuracy for most of the subjects and
some of them are up to 10%. Furthermore, the results also show that the
TRCSP is particularly effective in the small–sample data sets.

Keywords: brain–computer interfaces (BCI), common spatial patterns
(CSP), locally linear structure, regularization.

1 Introduction

Brain computer interfaces (BCI) have emerged as a promising way of non-
muscular communication with external world for severely paralyzed persons [1].
Electroencephalogram (EEG)–based BCI transfers intents of an individual, re-
flected in distinguishable EEG signals directly, into control commands of an
assistive device. The successful decoding of the mental tasks heavily relies on a
robust classification of the EEG signals. Among the plenty of decoding methods
[2], common spatial patterns (CSP) is a widely used feature extraction method
that can learn spatial filters maximizing the discriminability of two classes. Its
effectiveness has been demonstrated by the BCI competitions [3], [4].

Despite its popularity and efficiency, CSP is also known to be highly sensitive
to noise and outliers [5]. Mathematically, CSP is formulated as the simultaneous
diagonalization of two covariance matrices. There is an inherent drawback for the
estimation of covariance matrices in using the conventional strategy. Specifically,
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CSP does not take the temporal structure information of EEG time courses into
account in the estimation of covariance matrices. In other words, CSP is a time-
independent global method, and the temporal information is completely ignored.

In this paper, we propose a temporally regularized CSP (TRCSP), which in-
corporates the temporal structure information into the CSP learning process
under the umbrella of regularization [6]. The temporal structure of EEG trials is
characterized by using local linear embedding (LLE) [7]. Considering the advan-
tage of LLE in successful discovery of manifold structure in machine learning,
we aim to capture the locally linear structure of EEG trials with the LLE–based
regularization. It is expected that such a prior information would help finding
discriminative spatial filters, even with noisy EEG signals or small number of
training samples, since the locally linear structure explicitly considers the tem-
poral manifold behind the generation of EEG signals.

The framework of this paper is arranged as follows. Section 2 describes the
conventional CSP algorithm and the proposed TRCSP algorithm. Section 3 gives
details about the EEG data sets used for evaluation. Then the comparison results
of the two methods are presented in Section 4. And finally Section 5 concludes
the paper.

2 Methods

2.1 Common Spatial Patterns

Common spatial patterns(CSP) uses a linear transform to project multi–channel
EEG data points into a low–dimensional spatial subspace with a projection
matrix, of which each row consists of weights for channels. This transforma-
tion is to maximize the variance of band–pass filtered EEG signals of one class
while minimizing the variance of EEG signals of the other class. Let Xi ={
xi
l ∈ Rd|l = 1, 2, · · · , s} (i = 1, 2, · · · , nx) be the EEG trials of one class, and

Y j =
{
yj
l ∈ Rd|l = 1, 2, · · · , s

}
(j = 1, 2, · · · , ny) another class, where d denotes

the number of channels, s is the number of samples within a trial, and nx and
ny are the numbers of trials corresponding to the two classes. The trial segments
are assumed to be already band–pass filtered, centered and scaled. The spatial
covariance matrices of the two classes are calculated as

Cx =
1

nx

nx∑

i=1

XiXiT

tr
(
XiXiT

) Cy =
1

ny

ny∑

j=1

Y jY jT

tr
(
Y jY jT

) (1)

where T represents the transpose operator, tr is the trace operator that sums up
the diagonal entries of a matrix. The CSP approach aims to find a spatial filter
ω ∈ Rd to extract discriminative features. Mathematically, the spatial filter of
CSP is formulated by maximizing (or minimizing) the criterion[8], [9]

J (ω) =
ωTCxω

ωTCyω
(2)
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The spatial filter is solved by the generalized eigenvalue equation

Cxω = λCyω (3)

The few eigenvectors associated with eigenvalues from two ends of the eigenvalue
spectrum are employed as spatial filters. The variances (possibly after a log–
transformation) of the spatially filtered EEG data points are used as features
for the purpose of classification.

2.2 Temporally Regularized Common Spatial Patterns

In this subsection we formulate the proposed TRCSP algorithm, which seeks to
include temporal structure information into the learning process of the CSP. The
EEG samples within a trial are actually a time course of signals. The temporally
close samples usually correlated when recording a task–cued brain activity. It
is beneficial to make use of the intrinsically temporal correlation to provide
supplementary information and then regularize the computation of spatial filters.
In other words, we try to keep the intrinsically temporal structure of EEG trials
during the CSP filtering.

The temporal structure of EEG trials is captured by using LLE, which is well
developed in the field of machine learning and has shown effective in manifold
modeling. The basic idea is that we utilize LLE to consider temporally local rela-
tionship of EEG samples within the time course of EEG epochs. The relationship
is expressed in terms of locally linear representation. Mathematically, LLE mod-
els each sample as a linear combination of its k nearest neighbors, and try to
preserve this locally linear relationship in a transferred low–dimensional space.
Different from the conventional LLE, in which the k nearest neighbors are iden-
tified with respect to Euclidean distance, we choose the k nearest neighbor EEG
samples in terms of time points since we are interested in the temporal structure
information of EEG time course. The reconstruction error is then measured by
the cost function

ε (S) =
s∑

l=1

‖xl −
s∑

m=1

Slmxm‖2 (4)

where S is a matrix with real entries denoting representational weights. The
weights Slm summarize the contribution of the m th sample to the reconstruction
of the l th sample in terms of linear representation. To compute the weights Slm,
we minimize the cost function subject to two constraints: (a) Each sample xl is
reconstructed only from its k nearest neighbors, resulting in Slm = 0 if xm does
not belong to this set; (b) The row entries of the weight matrix sum to one, i.e.,∑s

m=1 Slm = 1 for the purpose of transitional invariance. The matrix of weights
S reflects the temporal structure information. Once S is obtained, LLE seeks a
low–dimensional filtered space that preserves the temporal structure information
of EEG trials as faithfully as possible. Let zl (1 ≤ l ≤ s) be the filtered signal of
xl (1 ≤ l ≤ s) via the linear transformation zl = ωTxl. One wishes to minimize
the cost function

Φ (Z) =

s∑

l=1

‖zl −
s∑

m=1

Slmzm‖2 (5)
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where Z = [z1, z2, · · · , zs]. Note that the weights matrix S is fixed here and the
transformation matrix Z is to be optimized. By substituting zl = ωTxl into (5),
it follows that

Φ (ω) =

s∑

l=1

‖ωTxl −
s∑

m=1

SlmωTxm‖2 (6)

With some matrix operations, (6) can be rewritten as

Φ (ω) = ωTXLXTω (7)

where X = [x1,x2, · · · ,xs], L =
(
Is − ST

)
(Is − S), and Is is an s× s identity

matrix.
We now incorporate Φ (ω) into the objective function of the classical CSP

in order to penalize solutions such that the temporal structure information is
preserved. Formally, the objective function of our TRCSP is given by

J (ω) =
ωTCxω

ωTCyω + α (ωTXLXTω)
=

ωTCxω

ωT
(
Cy + αXLXT

)
ω

(8)

Maximizing J (ω), would leads to the minimization of Φ (ω), thus modifying
spatial filters so as to satisfy the prior information. The parameter α is a user-
defined positive constant which adjust the influence of the regularization term
Φ (ω). The higher the value of α is, the more favor the regularization term is
given. The corresponding eigenvalue equation of (8) boils down to

Cxω = λ
(
Cy + αXLXT

)
ω (9)

Thus, the filters ω maximizing J (ω) are the leading eigenvectors correspond-
ing to the largest eigenvalues. In the other hand, we need to accordingly maximize
the dual objective function

J (ω) =
ωTCyω

ωTCxω + α (ωTXLXTω)
=

ωTCyω

ωT
(
Cx + αXLXT

)
ω

(10)

Eventually, the spatial filters used are the leading eigenvectors corresponding to
the eigenvalue problems of (8) and (10).

It is noted that in the above formulation of TRCSP, X denotes a general
EEG trial. In implementation, we exploit the temporally local information of
all the training trials. Specifically, we sum up all the locally linear structure
expression as the final regularization term. Besides, TRCSP has two parameters:
k which defines the number of the nearest neighbor samples, and α which defines
the level of regularization. In the following experiments, the two parameters are
specified with ten–fold cross validation on the training data. And we adopt linear
discriminant analysis (LDA) as the classifier.

3 Materials for Evaluation

Three EEG data sets from public BCI competitions, recorded from totally 17
subjects, are used to assess the proposed TRCSP, Its performance is compared
to the classic CSP algorithm.
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3.1 EEG Data Sets

Data set IVa of BCI competition III is of two–class motor imagery (MI) paradigm
by recording 5 subjects. Imagination of right hand and foot movements was
performed after a visual cue per trial. The EEG measurements were recorded
using 118 electrodes and sampled with 100Hz. For each subject, there are totally
280 trials for two classes, 140 per class. Among them, 168, 224, 84, 56 and 28
training trials are respectively for subject 1 through 5.

Data set IIIa of BCI competition III contains EEG signals from 3 subjects,
who performed 4 classes cued motor imagery, i.e., left hand, right hand, foot,
and tongue MI. The EEG measurements were recorded using 60 sensors by a
64–channel EEG amplifier from Neuroscan. The EEG was sampled with 250Hz
and filtered between 1 and 50Hz with Notchfilter on. In our study, only EEG
data corresponding to right and left hands MI are used. In both of the training
and testing sets, 45 trials per class are used for subject B1, and 30 trials per
class for subject B2 and B3.

Data set IIa of BCI competition IV was constructed by recording 9 subjects,
who carried out left hand, right hand, both feet and tongue MI tasks. 22 EEG
channels were recorded. Signals were sampled with 250Hz and bandpass filtered
between 0.5 and 100Hz with Notchfilter on. Only EEG signals of left and right
hands MI are used for the present study. Each subject participated a training
and a testing session, both sessions containing 72 trials for each class.

Table 1. Classification performances of CSP and TRCSP. The best percentage accu-
racy is displayed for each subject in the two Data sets of BCI competition III.

BCI competition III
Overall

Data set IVa Data set IIIa

Subject A1 A2 A3 A4 A5 B1 B2 B3 Mean std

CSP 66.07 91.07 53.6 71.88 52.78 96.67 61.67 96.67 73.8 17.3

TRCSP 68.75 100 62.2 82.14 85.71 96.67 68.33 96.67 82.56 13.8

Table 2. Classification performances of CSP and TRCSP. The best percentage accu-
racy is displayed for each subject in Data set IIa of BCI competition IV.

Data set IIa, BCI competition IV Overall

Subject C1 C2 C3 C4 C5 C6 C7 C8 C9 Mean std

CSP 86.11 57.64 96.5 70.1 60.42 70.14 82.64 93.0 93.75 78.92 13.9

TRCSP 87.5 63.89 97.9 70.1 65.97 68.75 81.94 95.83 92.36 80.47 12.7

3.2 Preprocessing

The EEG signals are band–pass filtered with cutoff frequencies 8Hz and 30Hz
by using a fifth order Butterworth filter as recommended in [10]. Following the
winner of BCI competition IV and [11], we use the time interval from 0.5 s to
2.5 s after the visual cue that indicates the start of imaginary as samples on all
of the three data sets.
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4 Results and Discussion

We use CSP and TRCSP to extract features on the data sets. Compared with
CSP, there are two parameters in TRCSP which need to be configured. The pa-
rameters are selected by using ten–fold cross–validation method on the training
sets. For each subject, the spatial filters are learnt on the training set available.
As suggested in [7], three pairs of spatial filters for feature extraction are calcu-
lated in CSP and TRCSP. Then the log–variances of the spatially filtered EEG
signals are used as input features for LDA. The results of classification accura-
cies and mean accuracies, as well as the corresponding standard deviations, are
reported in Tables 1 and 2.

All the classification accuracies performed by TRCSP are larger than 60%.
On average, TRCSP achieves better classification accuracies (mean: 81.45 ±
13.3) than CSP (mean: 76.51± 15.8). Whereas, it seems that TRCSP does not
give high increase in classification accuracy for subjects who already have good
performances (except for A2). With a closer look, results show that, for some
subjects, using TRCSP leads to dramatic increase in performance as high as
10%, even higher than 30% for the subject whose performance is close to random
by CSP (A5). It is interesting that the classification accuracy for A2 is always
kept in 100% when using TRCSP in a wild range of parameters. Especially for
the data set IVa of BCI competition III, the performance of TRCSP is much
better than CSP. For the subjects A3, A4 and A5, TRCSP significantly enlarges
the classification accuracies compared with CSP. It is probably because of the
very small training set for these three subjects. It implies that adding a prior
information, here a locally linear preserving penalty can help to find spatial
filters despite the limited amount of training data, as agreed with [12].

Surprisingly, TRCSP leads to poorer performance than CSP on a few sub-
jects, focusing on data set IIa of BCI competition IV. This might be due to the
instability of EEG signal itself and the playing condition of subjects. Besides,

Fig. 1. Mappings of spatial filters obtained with CSP and TRCSP, for some subjects:
A1, A5 (118 electrodes), B2 (60 electrodes), and C2, C9 (22 electrodes).
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there is a very important point we can not ignore. That is, the best parameter
may not be exactly found by the cross–validation strategy. It means that the
real classification capacity TRCSP could possibly achieve better performances.

Some mappings of spatial filters obtained with both of CSP and TRCSP are
presented in Fig. 1. The deeper color represents the greater weights. That is,
they are more important for classification. In general, these pictures show that
the CSP filters with large weights distribute in the whole brain, roughly and
irregularly. Relatively, the TRCSP filters are generally smoother and more in line
with the physiological characteristics. As expected from cerebral physiological
theory, the weights are stronger over the motor cortex area. This suggests that
the TPCSP algorithm lead to filters with more neurophysiological reality.

5 Conclusion

In this paper, we propose a new approach, called TRCSP, for optimizing spatial
filers by incorporating temporal structure information to the conventional CSP.
We add a locally linear regularization term to the CSP objective function. The
experimental results confirm that TRCSP has the ability to obtain improved
accuracies. In the future, much work is still needed to tune the appropriate
parameters of TRCSP.
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