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Abstract. A new algorithm for removing random-valued impulse noise
is proposed. We use a standardized version of the Rank Ordered Absolute
Differences statistic of Garnett et al. [1] to attribute weights to noisy
pixels. These weights are then incorporated into the Optimal Weights
Filter approach from [2,3] to construct a new filter. Simulation results
show that our method performs significantly better than a number of
existing techniques.
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1 Introduction

Random-valued impulse noise can be systematically introduced into digital im-
ages during acquisition and transmission [4]. Impulse noise is characterized by
replacing a portion of an images pixel values with random values, leaving the
remainder unchanged. In most applications, denoising is fundamental to subse-
quent image processing operations, such as edge detection, image segmentation,
object recognition, etc. The goal of denoising is to effectively remove noise from
an image while keeping its features intact. To this end, a variety of techniques
have been proposed to remove impulse noise.

Recently, an edge-preserving regularization method has been proposed to
remove impulse noise [5]. It uses a nonsmooth data-fitting term along with
edge-preserving regularization. In order to improve this variational method in
removing impulse noise, a two-stage method was proposed in [6] and [7]. It is
efficient in dealing with high noise ratio, e.g., ratio as high as 90% for salt-and-
pepper impulse noise and 50% for random-valued impulse noise. Its performance
is impaired by the inaccuracy of the noise detector in the first phase. In order
to find a better noise detector, especially for the random-valued impulse noise,
Garnett et al. [1] introduced a new local image statistic called ROAD to identify
the impulse noisy pixels. The result is a trilateral filter, which performs well
for removing impulse noise. However, when the noise level is high, it blues the
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images significantly. Dong et al. [8] amplified the differences between noisy pix-
els and noise-free pixels in ROAD, by introducing a new statistic called ROLD,
so that the noise detection becomes more accurate. When the random-valued
impulse noise ratio is as high as 60%, they still can remove most of the noise
while preserving image details.

The ROAD statistic is efficient but turns out to be sensible to the proportion
of the impulse noise, so that it is difficult to determine the parameters of the
concerned filters. In this paper, we propose a standardized version of the ROAD
statistic, called SROAD, to provide a more stable filter for which the determina-
tion of the parameters is simpler. We define new impulsive weights to magnify
the difference of SROAD values between noisy pixels and noise free pixels. We
then propose an efficient filter that combines the SROAD impulse noise detec-
tor with the optimal weights algorithm from [2,3] for removing random-valued
impulse noise. Extensive experimental results show that our method performs
significantly better than many known techniques.

2 Optimal Weights Filter for Random-Valued Impulse
Noise

2.1 Impulse Noise Model

An image containing random-valued impulse noise can be described as follows:

y(x) =

{
u(x), with probability 1− p;
n(x), with probability p,

(1)

where u(x), x ∈ I = {1, 2, · · · ,M} × {1, 2, · · · , N}, is the original image, n(x),
x ∈ I, are independent random variables uniformly distributed in [smin, smax],
smin and smax being respectively the lowest and the highest pixel luminance
values within the dynamic range, and p denotes the proportion of noisy pixels.
The goal is to recover the original image u(x), x ∈ I, from the observed image
y(x), x ∈ I.

2.2 Standardized Rank Ordered Absolute Differences

The ROAD (Rank Ordered Absolute Differences) statistic introduced by Garnett
et al. [1] is known to be efficient in removing impulse noise. However this statistic
is too sensitive to the proportion p of noisy points. We find that the operability
of the ROAD statistic can be improved by its standardization.

For any pixel x0 ∈ I, we define the square window of pixels (whose center is
excluded) of size (2d+ 1)× (2d+ 1):

Ω0
x0,d = {x : 0 < ‖x− x0‖∞ ≤ d}, (2)

where d is a positive integer and ‖ · ‖∞ denotes the supremum norm: ‖y‖∞ =
max{|y1|, |y2|} for y = (y1, y2). We define the SROAD statistic by

SROAD(x0) =
1

K

K∑
i=1

ri(x0), x0 ∈ I, (3)
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where ri(x0) is the i-th smallest term in the set {|y(x) − y(x0)| : x ∈ Ω0
x0,d

}
and 2 ≤ K < card Ω0

x0,d
. Without the coefficient it is just the ROAD statistic

introduced by Garnett et al. [1]. The factor 1/K makes the statistic less sensible
to variations of the level of the noise p and to the choice of K.

We then define the impulsive weight as follows:

J(x,H) = e−
(SROAD(x)−b)2+

2H2 , (4)

where b is the hard threshold of SROAD values, H is a parameter and (·)+ is
the positive part function: (y)+ = max{y, 0}. The impulsive weights measure
the degree of contamination of a given pixel. With these weights we are able to
construct a filter which is stable to the variations of the impulse noise levels: the
constructed filter can remove most of the noise while preserving image details
even when the impulse noise ratio is as high as 60%. Furthermore, we do not need
the computationally expensive joint impulsivity weights introduced in Garnett
et al. [1].

2.3 Construction of Optimal Weights Impulse Noise Filter

Now, we adapt the Optimal Weights Filter [2,3] to treat random-valued impulse
noise. For any pixel x0 ∈ I and a given h ∈ N+, the square window of pixels

Ux0,h = {x ∈ I : ‖x− x0‖∞ ≤ h} (5)

will be called search window at x0. The size of the square search window Ux0,h is
the positive integer number D = (2h+1)2 = card Ux0,h. For any pixel x ∈ Ux0,h

and a given η ∈ N+, a second square window of pixels Vx,η = Ux,η will be
called for short a similarity patch at x in order to be distinguished from the
search window Ux0,h. The size of the similarity patch Vx,η is the positive integer
S = (2η+1)2 = card Vx,η. The vector Yx,η = (y(x))x∈Vx,η

formed by the values
of the observed noisy image at pixels in the patch Vx,η will be called simply data
patch at x ∈ Ux0,h.

Consider the weighted patch distance

‖Yx0,η −Yx,η‖J,κ =√√√√√√
∑

x′∈Vx0,η

κ(x′)J(x′, H)J(Txx′, H)(y(Txx′)− y(x′))2

∑
x′∈Vx0,η

κ(x′)J(x′, H)J(Txx′, H)
,

where Tx is the translation map defined by Txy = y + x − x0, and κ is the
smoothing kernel defined by

κ (x) =

h∑
k=max(1,j)

1

(2k + 1)2
(6)
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if ‖x−x0‖∞ = j for some j ∈ {0, 1, · · · , h} and x ∈ Ux0,η. Introduce the impulse
detection distance by

ρ̂J,κ,x0(x) =
(
‖Yx0,η −Yx,η‖J,κ − μ

)
+
, (7)

where μ is parameter which controls the robustness of the estimate.
We define our new filter, called Optimal Weights Impulse Noise Filter (OW-

INF) by

ũh(x0) =

∑
x∈Ux0,h

J(x,H2)Ktr

(
ρ̂J,κ,x0 (x)

âJ

)
y(x)

∑
x∈Ux0,h

J(x,H2)Ktr

(
ρ̂J,κ,x0 (x)

âJ

) , (8)

where the bandwidth âJ > 0 can be calculated as in Remark 1 of [2] (cf. the
algorithm below), H2 is a parameter and Ktr is the triangular kernel:

Ktr(t) = (1− t)+.

Notice that H and H2 may take different values. The weights defined by the
triangular kernel appears as optimal in [2,3].

To give some insights on the filter (8), note that the function J(x,H2) acts
as a filter on the points contaminated by the impulse noise. In fact, if x is an
impulse noisy point, then J(x,H2) ≈ 0. So, in the new filter, the basic idea is
to apply the Optimal Weights Filter [2] by giving nearly 0 weights to impulse
noisy points. The computational algorithm is as follows.

– Algorithm : Optimal Weights Impulse Noise Filter

– Step 1
For each x ∈ I compute:

ROADG(x) = 1
K

K∑
i=1

ri(x)

J(x,H) = exp
(
− (ROADG(x)−b)2+

H2

)

J(x,H2) = exp
(
− (ROADG(x)−b)2+

H2
2

)
– Step 2 Repeat for each x0 ∈ I

if ROADG(x) = 0
ũh(x0) = u(x0).

else

a) compute {ρ̂J,κ,x0(x) : x ∈ Ux0,h} by (7);
b) compute the bandwidth â at x0 :

reorder {ρ̂J,κ,x0(x) : x ∈ Ux0,h} as an increasing sequence, say
ρ̂J,κ,x0(x1) ≤ ρ̂J,κ,x0(x2) ≤ · · · ≤ ρ̂J,κ,x0(xM )

loop from k = 1 to M

if
k∑

i=1

ρ̂J,κ,x0(xi) > 0
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if
σ2+

k
∑

i=1

ρ̂2
J,κ,x0

(xi)

k
∑

i=1

ρ̂J,κ,x0 (xi)

≥ ρ̂J,κ,x0(xk)

then â =
σ2+

k
∑

i=1

ρ̂2
J,κ,x0

(xi)

k
∑

i=1

ρ̂J,κ,x0 (xi)

else quit loop
else continue loop
end loop;
c) compute the estimated weights: for i = 1, ...,M,

ŵ(xi) =
J(xi,H2)Ktr

(

ρ̂x0 (xi)

â

)

∑

M
j=1 J(xj ,H2)Ktr

(

ρ̂x0 (xj)

â

) ;

d) compute the filter ũh at x0 :

ũh(x0) =
∑M

i=1 ŵ(xi)y(xi).

To avoid the undesirable border effects in our simulations, we mirror the image
outside the image limits. In more detail, we extend the image outside the image
limits symmetrically with respect to the border. At the corners, the image is
extended symmetrically with respect to the corner pixels.

Here the parameter σ acts as a smoothing factor for the restored image. The
larger the value of σ, the more smooth the denoised image is. When computing
SROAD values, we follow approximately the rules:

d = [4p+ 1] and (9)

K = (2d+ 1)2 ×min(0.5,−p/4 + 0.55). (10)

For example when the noise ratio is 60% we use 7 × 7 windows and K = 19;
when the noise ratio is 40% we use 5× 5 windows and K = 10; when the noise
ratio is 20% we use 3× 3 windows and K = 4. The other parameters are chosen
as follows:

S = (2[10p+ 7] + 1)2, D = (2[4p+ 1] + 1)2,

H = 5 +
30

1 + 20p
and H2 = 27− 20p.

We point out that the values of parameters or the coefficients in the above
formulae can vary within certain range. The dependence of the filter on the
values of H and H2 in a neighborhood of the suggested value given above is not
very noticeable.

3 Simulation

In this section, the proposed algorithm is evaluated and compared with several
other existing techniques for removing random-valued impulse noise. Extensive
experiments are conducted on four standard 512× 512 , 8-bit gray-level images
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Table 1. Comparison of restoration in PSNR(db) for images corrupted with random-
valued impulse noise

Images Baboon Bridge Lena Pentagon

p% 20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

Method PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

MF [9] 22.52 20.65 19.36 25.04 22.17 19.36 32.37 27.64 21.58 28.29 25.16 23.41

SS-I [10] 22.46 21.35 19.42 25.90 22.85 19.04 33.43 27.75 20.61 28.28 26.43 23.85

ACWM[11] 24.17 21.58 19.56 27.08 23.23 19.27 36.07 28.79 21.19 30.23 26.84 23.50

PWMAD[12] 23.78 21.56 19.68 26.90 23.83 20.83 36.50 31.41 24.30 30.11 27.33 24.46

IMF[13] 24.18 21.41 19.08 27.05 23.88 19.74 36.90 30.25 22.96 30.42 26.93 23.72

TriF [1] 24.18 21.60 19.52 27.60 24.01 20.84 36.70 31.12 26.08 30.33 27.14 24.60

ACWM-EPR [7] 23.97 21.62 19.87 27.31 24.60 20.89 36.57 32.21 24.62 30.03 27.35 24.59

ROLD-EPR [8] 24.49 21.92 20.38 27.86 24.79 22.59 37.45 32.76 29.03 30.73 27.73 25.70

FWNLM [14] 23.45 21.71 20.45 26.82 24.23 22.23 34.95 32.12 28.03 30.26 27.48 25.48

OWINF 25.01 22.41 20.46 27.86 24.91 22.49 37.56 33.07 29.05 31.18 28.19 25.78

(a) (b) (c)

(d) (e) (f)

Fig. 1. Results of different methods in restoring 40% corrupted images ”Baboon”:
(a)the noisy image; (b) results after the ACWM-EPR method [7]; (c) results after the
ROAD-trilateral filter [1]; (d) results after the ROLD-EPR method [8]; (e) results after
our OWINF; (f) the original image
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with different features, including ”Baboon,” ”Bridge”, ”Lena”, and ”Pentagon”.
Our experiments are done in the same way as in [8] in order to produce compara-
ble results. The authors of [8] kindly provided us with their set of noisy images,
restored images and PNSR values1.

3.1 PSNR Comparison

We first concentrate on directly comparable and quantitative measures of image
restoration. In particular, we evaluate the performance by using the peak signal-
to-noise ratio (PSNR) [15]. If u is the original image and ũ is a restored image
of u, the PSNR of ũ is given by

PSNR = 20 log10
255√
MSE

,

MSE =
1

card I

∑
x∈I

(u(x)− ũ(x))2.

Larger PSNR values signify better restoration.
In Table 1, we list the best PSNR values from all considered methods for

the four images with p ∈ {20%, 40%, 60%}. The best values are marked in bold.
From Table 1, it is clear that OWINF proposed in this paper provides significant
improvement over all other algorithms for the images ”Baboon”, ”Lena” and
”Pentagon”. For the image ”Bridge”, ROLD-EPR and our algorithm all provide
satisfactory denoising performance.

3.2 Visual Quality

Our main goal was to ensure that our approach provides improved denoising and
visually pleasing results. To compare the results subjectively, we enlarge portion
of the images restored by some methods listed in Table 1. Fig. 1 shows the
results in restoring 40% corrupted images of ”Baboon”. In the images restored
by ACWM-EPR [7] and ROAD-trilateral filter [1], we can see that there are still
some loss of details in the hair around the mouth of the baboon. The visual
qualities of images restored by ROLD-EPR [8] are improved obviously, but we
can still find a few noise around the nose of baboon. Our restored images are
quite good: they not only retain the abundance of image details, but also keep
the continuity of the details.

4 Conclusions

In this paper, we use a standardized version of ROAD statistic [1] to define new
impulsive weights in order to measure the degree of the contamination of a pixel
by a random impulse noise. Then we combine it with the Optimal Weights Filter
from [2,3] to get a new filter for removing impulse noise. Simulation results show
that our method is competitive compared with a number of existing methods
both quantitatively and visually.

1 All of them are in www.math.cuhk.edu.hk/~rchan/paper/dcx/

www.math.cuhk.edu.hk/~rchan/paper/dcx/
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