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Abstract. New learning algorithms and systems for retrieving similar
videos are presented. Each query is a video itself. For each video, a set
of exemplars is machine-learned by new algorithms. Two methods were
tried. The first and main one is the time-bound affinity propagation. The
second is the harmonic competition which approximates the first. In the
similar-video retrieval, the number of exemplar frames is variable accord-
ing to the length and contents of videos. Therefore, each exemplar pos-
sesses responsible frames. By considering this property, we give a novel
similarity measure which contains the Levenshtein distance (L-distance)
as its special case. This new measure, the M-distance, is applicable to
both of global and local alignments for exemplars. Experimental results
in view of precision-recall curves show creditable scores in the region of
interest.

Keywords: Similar-video retrieval, exemplar, time-bound affinity prop-
agation, M-distance, numerical label.

1 Introduction

Machine learning or computational intelligence has discovered its own new values
in the age of big data. Today, various types of unstructured data are continually
accumulated. A typical case can be found in videos. Advent of smart phones
made users produce and upload their own videos to the Web easily. However,
most of them are structured poorly. This hinders users from utilizing rich hidden
resources. The tendency is worse than the era of the static image retrieval [1] [2].
Reflecting this situation, efforts have been made on content-based approaches to
the video retrieval as is surveyed in [3]. In this paper, we give new machine learn-
ing methods for automatic exemplar extraction and novel similarity measures,
as well as their applications to similar-video retrieval.
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The organization of this paper is as follows. In Section 2, we give a novel
learning algorithm called time-bound affinity propagation (TBAP). This has the
frame-order awareness which cannot be realized by the original affinity propaga-
tion (AP) of [4]. This is an unsupervised learning algorithm which finds represen-
tative frames in a video. In Section 3, we give a class of new similarity measures
with time-warping which includes the Levenshtein distance (L-distance) [5], the
Needleman-Wunsch algorithm [6] and the Smith-Waterman algorithm [7] as its
special cases. Such a new measure, the M-distance, is an important part of this
paper’s similar-video retrieval. In Section 4, a test set of videos is designed. We
will prepare a data set which depends on subject’s sensibility as less as possible.
In Section 5, we give a class of alternative learning methods to the time-bound
affinity propagation. That is based on the harmonic competition [8]. Section 6
gives concluding remarks.

2 Problem Description

2.1 Exemplars Reflecting Time Information

Let {xt}nt=1 be a given time series. xt can be any vector. In this paper, this is a
feature vector series in terms of the color structure descriptor (CSD) of MPEG-7.
The CSD is a patch-based histogram.

Fig. 1. Exemplars reflecting time information

Figure 1 illustrates a time series of frames {xt}10t=1. Let this conceptual video
have three similar frames of {1, 2, 10}, {3, 4, 5} and {6, 7, 8, 9}. If time informa-
tion or frame ordering were not considered, a learning system would choose only
frames {2, 4, 7} as exemplars (Fig. 1 bottom left). But, this is not appropriate
as a label for the video retrieval. Rather, we want to have a learning algorithm
to find {2, 4, 7, 10} as exemplars (Fig. 1 bottom right). In this case, the exem-
plar set also gives responsible frames or dominant neighbors. For instance, we
have {(1, 2, 0), (1, 4, 1), (1, 7, 2), (0, 10, 0)}. In the next section, we will give a
new learning algorithm to obtain an order-aware exemplar set like Fig. 1 bottom
right.
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2.2 Time-Bound Affinity Propagation

Before going to the algorithm for the exemplar frame learning, it is necessary to
have a right understanding about the following items.

(a) The plain affinity propagation algorithm can produce only the case of Fig.
1 bottom left. We need to obtain an algorithm which is aware of the frame
ordering.

(b) Since we want to obtain exemplars, i.e., existing frames, the affinity propa-
gation was set as a basic tool. However, the harmonic competition [8] which
is a generalization of the vector quantization will also be applicable to the
order-aware exemplar extraction.

In this section, we focus on item (a). Item (b) will be discussed in Section 5.

Our method to find order-aware exemplars is as follows.

[Intra-Video Processing: Time-Bound Affinity Propagation (TBAP)]

Step 1: A time series of feature vectors of video frames {xt}nt=1 is given. Each
vector is a normalized CSD histogram whose summation is unity. A similarity

measure s(xi,xj)
def
= s(i, j) is given. Here, s(k, i) > s(k, j) holds if and only

if xi is more similar to xk than xj . In our experiments, we will use

s(i, j) = D̄ − ‖xi − yj‖. (1)

Here, D̄ is a constant which can be chosen by users.1 Other design parameters
appearing in subsequent steps are set here. A convergence criterion is also
specified here.

Step 2: Prepare a matrix A = [aij ] whose initial value is a zero matrix O. This
is called the availability.

Step 3: Pick up xi, xj , and xk by considering their temporal ordering in a
window.

Window length: Set a sliding window of length 2w − 1.

Windowing (Order awareness property 1):
The following computation of the responsibility matrix and the availability
matrix is computed for

i : 1 ≤ i ≤ n,

j : 1 ≤ j ≤ n constrained by i− w < j < i+ w. (2)

Responsibility matrix update (Order awareness property 2):
R = [rij ], which is symmetric, is updated by

ρij := s(i, j)− max
k: k �=j

{aik + s(i, k)}, (3)

rij := (1− λ)ρij + λrij . (4)

1 The choice of D̄ does not affect the result of this TBAP which is an intra-video
processing. Therefore, it can be set zero here. However, for the inter-video compar-
ison based on the similarity, D̄ becomes an important design parameter for users.
Its default value will be discussed in Section 3.1.
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Availability matrix update (Order awareness property 3):
The availability matrix A is updated by

αii :=
∑

k �=i

max{rki, 0}, (5)

αij := min{0, rjj +
∑

k: k �=i, k �=j

max{rkj , 0}}, (i �= j), (6)

aij := (1− λ)αij + λaij (including i = j). (7)

The design parameter λ ∈ (0, 1) is a dumping factor.

Step 4 (Order awareness property 4): If a convergence criterion is not sat-
isfied for aij + rij , then Step 3 is repeated. If the convergence is met,

argmax
j: i−w<j<i+w for 1≤i≤n

{aij + rij} (8)

is adopted as an exemplar index. The final exemplar set is determined by
collecting such indices.

Theoretical Consideration: The affinity propagation (AP) [4] was theoreti-
cally derived from the maximization of a similarity measure with a constraint of
the node labeling in view of message passing. The labeling stands for the iden-
tification of exemplars. In this paper, however, each node has a sequence index.
That is, the node is a frame of a video. Therefore, we added a constraint on
the message passing so that the set of nodes is a time series. This is our TBAP
algorithm.

3 Distance Measure and Similarity Comparison

3.1 Data Normalization and Distance Measure

The similarity measure s(i, j) can be any as long as it leads to the convergence
of the algorithm. We found that the form of equation (1) gives the convergence
of the algorithm if λ is chosen appropriately. The bias D̄ in Equation (1) has
effects on inter-video comparison appearing in later sections.

Since each vector xt is normalized to have only nonnegative elements whose
summation makes unity, possible choices of D̄ are as follows.

(a) The average of all possible data distances: This is acceptable only if the data
size is small.

(b) A fixed choice of
√
2,

√
(d− 2)/(2d), or

√
1− (1/d): Here, d is the dimen-

sion of xt which resides in a simplex. Note that
√
2 is the edge length of

this simplex.
√
(d− 2)/(2d) ≈ 1/

√
2 is the radius of the interior sphere.√

1− (1/d) ≈ 1 is the radius of the exterior sphere. In experiments, we will
use the exterior radius with d = 768 which is our size of CSD bins by the
HSV expression of the color space (Hue-Saturation-Value).
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3.2 Similarity Comparison 1: M-distance for Global Alignment

Here, we give a method to compare two different videos with different exemplar
sets. Although we use the terminology of videos, the method is applicable to any
time series with exemplars. Our method generalizes the Levenshitein distance (L-
distance) [5] of discrete text processing, and the Needleman-Wunsch algorithm
(NW algorithm)[6] for the global alignment in bioinformatics. After the name
of the L-distance, the similarity comparison below will be called M-distance for
the global alignment.2

[Global Alignment and Retrieval]

Step 1: For the video vA, sets of exemplars {eAi } and accompanied dominance
lengths by the relevance {EA

i }, (i = 1, 2, · · · ) are given. For the video vB,
similar sets are given. The similarity measure (1) is chosen here.

Step 2: Fill a global alignment table, and then backtrack a path by the following
dynamic programming procedure.

(2-1) A gap penalty g is chosen as a design parameter.
(2-2) Make a table.

Fill the {i = 0}-th row by (0,−gEB
1 ,−g

∑2
j=1 E

B
j ,−g

∑3
j=1 E

B
j , · · · ).

Fill the {j = 0}-th column by (0,−gEA
1 ,−g

∑2
i=1 E

A
i ,−g

∑3
i=1 E

A
i , · · · ).

(2-3) Starting from the position of (i, j) = (1, 1), fill elements by

f(i, j) = max

{f(i− 1, j)− gEA
i , f(i− 1, j − 1) + r(i, j)s(i, j), f(i, j − 1)− gEB

j }. (9)

To a cell which gave the maximum, an arrow is directed as a pointer.
Here, r(i, j) is a weight which reflects the exemplar dominance. We will
use r(i, j) = (EA

i + EB
j )/2 in experiments. If we backtrack from the

bottom right element of the value flast, the path gives a global alignment.

Step 3: The similarity between vA and vB is computed by

u(A,B) = h(flast)/w(
∑

i
EA

i ,
∑

j
EB

j ). (10)

Here, h(x) is a monotone increasing function. w is an averaging function.
The simplest one is an arithmetic mean.

3.3 Similarity Comparison 2: M-distance for Local Alignment

If video lengths are considerably different, the global alignment might deviate
from human sensibility. In such a case, we use a local alignment which can
compare the most similar parts. The following algorithm generalizes the Smith-
Waterman algorithm for the local alignment [7] in bioinformatics. Only the dif-
ference from the global alignment is described.

[Local Alignment and Retrieval]
2 The M-distances of Section 3.2 and Section 3.3 are due to the last and second
authors, Matsuyama and Moriwaki.
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Step 1: This step is the same as the global alignment.
Step 2: Fill a local alignment table and backtrack a path by the following dy-

namic programming procedure.

(2-1) A gap penalty g is chosen as a design parameter.
(2-2) Make a table. Fill elements in the {i = 0}-th row and {j = 0}-th column

all by zero. Starting from the position of (i, j) = (1, 1), fill elements by

f(i, j) = max

{0, f(i− 1, j)− gEA
i , f(i− 1, j − 1) + r(i, j)s(i, j), f(i, j − 1)− gEB

j }. (11)

To a cell which gives a non-zero maximum, an arrow is directed as a
pointer. We backtrack from the position of the largest value fmax. This
path gives a local alignment.

Step 3: This step is the same as the global alignment.

4 Experiments

4.1 Data Preparation

Since end users of the retrieval are human, the final similarity judgment strongly
depends on their sensibility. Therefore, it is desirable that the similarity judg-
ment depends on subjects as less as possible. But, such a simple set would be
too easy to judge even by plain machines. Therefore, we designed a data set so
that the following is satisfied.

(a) Source video data are totally unlabeled.

(b) Precision and recall on their retrieval can be judged mechanically.

(c) Each video possesses temporal changes of concepts so that the time-dependent
property of Fig. 1 bottom right can be identified.

Fig. 2 and Fig. 3 illustrate the generation procedure of the source data.

Fig. 2. Groups of videos made from NHK Creative Library
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Fig. 3. Twenty classes of videos

Fig. 2 illustrates two groups of videos extracted from the NHK Creative Li-
brary which is royalty free [9]. One is a scene of a peeping chick (group A). The
other is that of a cautious lesser panda (group B). From these groups, 20 classes
of video films were generated as is illustrated in Fig. 3. Each class has 21 videos.
Thus, there are 420 test videos, all of which are different each other.

4.2 Alignment Example

On the prepared video set, we tried the time-bound affinity propagation of Sec-
tion 2.2 to find exemplars accompanied with responsible frames. This is an im-
portant step to give a numerical annotation to each video. It is equivalent to
give a structure to the unorganized video set of Fig. 3 in terms of numerical tags.
Such tags can be computed either on-line or off-line.

The M-distance is computed by the procedures of Section 3.2 or Section 3.3.
Fig. 4 shows a global alignment by D̄ = 1/

√
1− (1/d), d = 3× 256 = 768, and

g = 0.05. The backtracking starts from the last element. Fig. 5 illustrates a local
alignment by the same D̄ and g. Here, the backtracking starts from the largest
value. This gave a local matching of Video A to a segment of Video B.

Fig. 4. A global alignment example

4.3 Evaluation by Precision Recall Curves

Since the video data set was designed deliberately, a mechanical judgment of
the precision (11-point interpolated precision) and recall is possible. Numerical
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Fig. 5. A local alignment example

values are computed as follows.

recall = |correct videos found| /Nsame class (12)

precision = |correct videos found| / |top rank videos to be checked| (13)

Fig. 6. Precision-recall curves

Fig. 6 illustrates the precision recall curves. We can find that, in its region of
interest (recall≤ 20%), the precision is very satisfactory since correct videos are
almost always included. On the other hand, the plain AP is unsatisfactory since
the time-bound property of Section 2.2 is not considered.
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5 Alternative Methods

Here, we consider possibilities of other learning algorithms with the help of
Table 1 which summarizes characteristics of exemplar finding methods. This
table suggests that a competitive learning approach is possible as a version of
the harmonic competition [8].

Table 1. Comparison of methods

Method Elements # of exemplars Mode

time-bound AP exemplar variable successive

harmonic competition
mean vector

pre-specified batch
→ exemplar

Step 1: Data set {f(xt, t)}nt=1 and the number of clusters are given.
Step 2: Iterations for learning are conducted until the convergence is met.
Step 3: The nearest frame to each centroid is regarded as an exemplar.

Comparison with TBAP: We conducted a set of preliminary experiments by
f(xt, t) = [xt, αt]

T with α = 0.015. Its performance was slightly inferior to the
result of Fig. 6. But, the learning speed of a single run was much faster than the
affinity propagation family.

6 Concluding Remarks

We presented algorithms and systems for the similar-video retrieval. Since a
video has a large size, the set of exemplars and their responsible frames are
usually computed off-line. Therefore, they can be used as numerical labels for
structure information on a big data set. The reverse direction, or the retrieval,
is fast by computing the M-distance.

In [4], it is pointed out that finding the exemplars has a relationship to the
labeling by a mechanism of the Hopfield network [10]. After the structural and
algorithmic speedup became mature, configurations using such a strategy (e. g.,
[11]) could be used.
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