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Abstract. Identifying causal relations among simultaneously acquired
signals is an important challenging task in time series analysis. The orig-
inal definition of Granger causality was based on linear models, its ap-
plication to nonlinear systems may not be appropriate. We consider an
extension of Granger causality to nonlinear bivariate time series with
the universal approximation capacity in reproducing kernel Hilbert space
(RKHS) while preserving the conceptual simplicity of the linear model.
In particular, we propose a computationally simple online measure by
means of quantized kernel least mean square (QKLMS) to capture in-
stantaneous causal relationships.

Keywords: Granger causality, kernel methods, quantized kernel least
mean square(QKLMS), nonlinear time series.

1 Introduction

The problem of quantifying causal connectivity among simultaneously acquired
time series has received considerable attention in the recent years due to its
growing applicability in economy [1], neuroscience [2,3,4], medical and clinical
science [5], and many others. One approach to evaluate causal relations between
two time series is to examine if one series is better predicted by adding knowledge
from the other. This was originally proposed by Wiener [6] and later formalized
by Granger in the context of linear regression models of stochastic processes
[1]. In particular, if the prediction error of the first time series is reduced by
incorporating measurements from the second time series, then the second time
series is said to have a causal inference on the first time series. By exchanging
the roles of the two time series, the causal influence in the opposite direction can
be addressed.
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As a technique to understand the directed connectivity of the underlying
mechanisms, Granger causality has been well explored and construed in many
different ways. Also, there is a freely available software toolbox incorporating
these methods to facilitate its broadly application in neuroscience data analysis
[7]. However, since Granger causality was formulated as linear regression, its ap-
plication to nonlinear systems, such as brain signal that is highly nonlinear at
many levels of description, may not be appropriate. There are several competing
approaches to this problem. A simple solution [8] is to fit autoregressive coef-
ficients to Taylor expansions of the data, but this method requires estimating
a large number of parameters. Alternative approaches include the radial basis
functions (RBFs) [9] and kernel methods. The kernel methods transform the
data into a high dimensional reproducing kernel Hilbert space (RKHS) such
that appropriate linear methods can be applied on the transformed data[10].
Most of these methods, however, assume the stationarity of the signals.

In this work, we propose a computationally simple online kernel method for
causality detection, called the twin quantized kernel least mean square (twin-
QKLMS) , which is able to capture the causal relations between nonlinear and
non-stationary time series.

2 Granger Causality

2.1 Linear Modeling

Linear Granger causality is defined based on vector autoregressive model [1].
Let X ≡ {xk}k=1,...,N and Y ≡ {yk}k=1,...,N be two time series of N simul-
taneously measured quantities. Usually the stationarity of the time series is
required. For i = 1 to M (where M = N − m, m being the order of the
model), we denote xi = xi+m, yi = yi+m, x(i) = (xi+m−1, xi+m−2, . . . , xi) and
y(i) = (yi+m−1, yi+m−2, . . . , yi) and treat these quantities as M realizations of
the stochastic variables (x, y,x,y). The following model is then considered:

x = w1 · x+ ξx

y = w2 · y + ξy
(1)

Here {w} being m-dimensional real vectors to be estimated from data, ξx and
ξy being the residuals (prediction errors) for each time series when predicted
solely based on the knowledge of its own past values. We denote their variance
as εx = var(ξx) and εy = var(ξy) which are equal to the mean square prediction
errors since zero mean has been guaranteed by pre-processing. The temporal
dynamics of the two time series can be described by a bivariate autoregressive
model:

x = w11 · x+w12 · y + ξx|Y
y = w21 · x+w21 · y + ξy|X

(2)

Similarly, we define εx|y = var(ξx|Y ) and εy|x = var(ξy|X). If the prediction of x
improves by incorporating the past values of series Y , that εx|y is smaller than
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εx, then Y has a causal influence on X . Analogously, if εy|x is smaller than εy,
then X has a causal influence on Y . The magnitude of this interaction can be
measured by the log ratio of the prediction error variances:

FY →X = ln
εx
εx|y

FX→Y = ln
εy
εy|x

(3)

The maximum of both terms

FXY = max{FY→X , FX→Y } (4)

represents a simple measure for the strength of directional and/or bi-directional
interaction.

2.2 Nonlinear Modeling in RKHS

The mapping from input to feature space is induced by a Mercer kernel which is
a continuous, symmetric, and positive definite function κ : X× X → R,X ⊆ R

m

[12,13]. The Gaussian kernel is widely used for its proved universal approximation
property for any continuous function [14].

κ(x,x′) = exp(
−‖x− x′‖2

2σ2
) (5)

where σ > 0 is the kernel size (or kernel bandwidth). According to the Mercer
theorem [11,12], any Mercer kernel κ(x,x′) induces a mapping ϕ such that the
inner product between the transformed input data (feature vectors) satisfies
〈ϕ(x),ϕ(x′)〉 = κ(x,x′).

We now construct the autoregressive model and bivariate model in trans-
formed feature space.

x = Ω1 · ϕ(x) + ξx

y = Ω2 · ϕ(y) + ξy
(6)

with the corresponding prediction error variance εx and εy.

x = Ω11 ·ϕ(x) +Ω12 · ψ(y) + ξx|Y
y = Ω21 ·ϕ(y) +Ω22 · ψ(x) + ξy|X

(7)

where {Ω} are the weight vectors in feature space (infinite dimensional for the
Gaussian kernel case). The prediction errors to minimize are defined as:

εx|y =
1

M

M∑

i=1

[xi −Ω11 ·ϕ(x(i)) −Ω12 ·ψ(y(i))]2

εy|x =
1

M

M∑

i=1

[yi −Ω21 ·ϕ(y(i)) −Ω22 · ψ(x(i))]2

(8)
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By using the kernel trick, we can efficiently compute the inner product output
by kernel evaluation without knowing the exact form of mapping. In the following
we take the bivariate model to predict x as an example, the prediction of y can
be derived analogously:

f(x) = Ω11 · ϕ(x) =
l∑

i=1

αiϕ(ci)
Tϕ(x) =

l∑

p=1

αiκ(ci,x)

g(y) = Ω12 ·ϕ(y) =
s∑

i=1

βiϕ(c
′
i)

Tϕ(y) =

l∑

i=1

βiκ(c
′
i,y)

(9)

where {ci, αi}li=1 and {c′
i, βi}si=1 are the parameters to learn. Note we assume

that x is the sum of a term depending solely on x and a term depending solely on
y instead of the general bivariate model which are depending on the appending
vector (x y):

x = f(x) + g(y) (10)

It has been proposed that any prediction scheme providing a nonlinear exten-
sion of Granger causality should satisfy the following (P1) property [9]: if y is
statistically independent of x and x, then εx = εx|y; if x is statistically indepen-
dent of y and y, then εy = εy|x; Let us suppose y is statistically independent of
x and x. Then ϕ(x) is uncorrelated with x and with ψ(y). It follows that

εx|y =var[x −Ω11 ·ϕ(x) −Ω12 · ψ(y)]

=var[x −Ω11 ·ϕ(x)] + var[Ω12 · ψ(y)]
(11)

To minimize εx|y it follows that Ω12 = 0 which satisfy P1 property.

2.3 Twin-QKLMS Causality Detector

The QKLMS is one of the most simple and efficient online kernel adaptive filter
algorithm. It natrally creates a growing radial-basis function network, learning
network topology adaptively. It has been verified that a sufficient condition for
mean square convergence and a bounded theoretical value of the steady-state
excess mean square error [11]. Inheriting from KLMS, it does not need explicit
regularization to obtain solutions that generalize appropriately [15]. In this sec-
tion we propose a novel online detector for causality analysis and employ a
twin QKLMS to the bivariate nonlinear model described in previous section. We
name the model as ”twin-QKLMS” to emphasize that two QKLMS filters work
in parallel in an online mode. The reason to choose QKLMS comes from the key
properties highlight below:

– QKLMS uses quantization to compress the input space so as to constrain
the network size growth. Different from conventional sparsification methods
normally discarding samples simply, the ”redundant” data are used to locally
update the coefficient of the closest center, which help to achieve better
accuracy and a more compact network.
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– The codebook is trained directly from online samples and is adaptively grow-
ing, unlike RBF constrains the network size to a fixed size (by cluster to n
prototypes).

Fig. 1. Twin-QKLMS model as an estimator of mapping x = f(x)+ g(y), filter g(·) is
employed to predict the residual of x− f(x) incorporating the knowledge from input y

The twin-QKLMS models a dual filtering structure in Fig.1. Denote ϕ(i) =
ϕ(u(i)), quantizing the input vector in the filter update equation. Using the
basics of QKLMS, we propose the twin-QKLMS algorithm below.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f0 = 0
g0 = 0
ξi = xi − fi−1(x(i))
fi = fi−1 + λξiκ(Q [x(i)], ·)
ξ
′
i = ξi − gi−1(y(i))

gi = gi−1 + ηξ
′
iκ(Q [y(i)], ·)

(12)

where ξi is the prediction error at iteration i by predicting xi with filter fi−1

enclosed input x (i), ξ
′
i is the prediction error that predict residual ξi with filter

gi−1 that incorporate the knowledge of the other series y(i), λ and η are the
step size, Q [.] denotes the quantization operator. fi is the composition of Ωf

and ϕ, that is fi = Ω11(i)
Tϕ(·), gi is the composition of Ω12 and ψ, that is

gi = Ω12(i)
Tψ(·). They’re calculated with kernel evaluation in original input

space.
Notice the knowledge from the possible causal series is used to predict the

residual as a measure to count its improvement to prediction power. The pro-
posed twin-QKLMS framework is described in Algorithm 1.

3 Experiments

As a real example, we consider the physiological bivariate data (instantaneously
acquired breath rate and heart rate) of a sleep human suffering from sleep apnea.
The data can be downloaded: http://physionet.incor.usp.br/physiobank/

http://physionet.incor.usp.br/physiobank/database/santa-fe/
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Algorithm 1. Twin-QKLMS Algorithm

Input: {x(i) ∈ X ⊆ R
m,y(i) ∈ Y ⊆ R

m, xi ∈ R}.
Initialization: Choose step size λ, η > 0, kernel width σf , σg > 0, the quantization size εX, εY ≥ 0

and initialize the codebook (center set) Cf (1) = {x(1)}, C g(1) = {y(1)} and coefficient vector:
α(1) = [λx1],β(1) = [0].

1: while {x(i),y(i), xi} (i > 1) available do
2: Compute the output of the filter f and g:

fi−1 =

size(Cf (i−1))∑

j=1

αj(i− 1)κ(Cf (i− 1),x(i))

gi−1 =

size(Cg(i−1))∑

j=1

βj(i− 1)κ(Cg(i − 1),y(i))

3: Compute the error: ξi = xi − fi−1, ξ
′
i = ξi − gi−1

4: Compute the distance between x(i) and Cf (i− 1) and distance between y(i) and Cg(i− 1):
dis(x(i),Cf (i− 1)) = min

1≤j≤size(Cf (i−1))
‖x(i) − Cf (i− 1)‖

dis(y(i),Cg(i − 1)) = min
1≤j≤size(Cg(i−1))

‖y(i) − C g(i − 1)‖
5: if dis(x(i),Cf (i − 1)) ≤ εX then
6: Keep the codebook unchanged: Cf (i) = C f (i− 1), and quantize x(i) to the closest center

through updating the coefficient of that center αj∗ (i) = αj∗ (i − 1) + λei,

where j∗ = argmin1≤j≤size(Cf (i−1))‖x(i) − Cf (i− 1)‖
7: else
8: Assign a new center and corresponding new coefficient: Cf (i) = {Cf (i − 1),x(i)} and

α(i) = [α(i− 1), λei ]:
9: end if
10: Similarly, repeat step 5-9 to update the codebook Cg .
11: end while

database/santa-fe/ (data set B). Figure 2 clearly shows that bursts of the
patient breath and cyclical fluctuations of heart rate are interdependent. Both
time series have been normalized to be zero mean and unit variance in pre-
processing.

We set the quantization size εX=1 and εY=0.5 to constrain the network size in
a reasonable range. The other parameters are adjusted empirically to minimize
the training error:

εn+1 =
n

n+ 1
εn +

1

(n+ 1)
ξTn+1ξn+1 (13)

To detect the causal relation from breath to heart rate we set λ=0.2, η=0.01,
σf=1.6, σg=0.8; for the reverse case we take λ=0.02, η=0.02, σf=1.8, σg=1.1.
We also evaluate the influence of different m on causality detection and the
results are shown in Figure 3. We may observe: 1) with proper m values, the
causal influence of heart rate on breath is, obviously, stronger than the reverse
and this coincide with the results in [9]; 2) if m is too small(e.g. m = 2), the
detected causal relationship is controversial to the expectation since long memory
dynamic structured can not be modelled; 3) the causality measures change over
time, and track the non-stationary dynamical behavior of the time series well.

http://physionet.incor.usp.br/physiobank/database/santa-fe/
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Fig. 2. Bivariate time series of the heart (upper) and breath signal (lower) of a patient
suffering sleep apnea (Samples 2350-5350 of the data set are highly non-stationary and
include abrupt changes in the last 1000 points). Data sampled at 2Hz.
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Fig. 3. Causality detection results by twin-QKLMS with different m values

4 Conclusions

We develop a computationally simple online algorithm with kernel method,
called twin-QKLMS, to capture instantaneous causal relationships, which can
be applied especially to nonlinear and non-stationary signals. There are several
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key problems that need to be addressed in the future: a) the current QKLMS
algorithm does not discard old centers and hence the network size is growing
especially in non-stationary situation, and this leads to increase computational
burden; b) how to optimize the free parameters in twin-QKLMS, since they
have significant influence on the causality detection result; c) more experiments
need to be done to explore its applicability such as the causality analysis in
neuroscience.
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