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Abstract. In this article we propose a modification to the HMRF-EM
framework applied to image segmentation. To do so, we introduce a new
model for the neighborhood energy function of the Hidden Markov Ran-
dom Fields model based on the Hidden Markov Model formalism. With
this new energy model, we aim at (1) avoiding the use of a key parameter
chosen empirically on which the results of the current models are heavily
relying, (2) proposing an information rich modelisation of neighborhood
relationships.
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1 Introduction

A Markov Random Fields network is a graphical probabilistic model aiming
at taking into consideration the neighborhood interactions between the data in
addition to the observed a priori knowledge. Such model allows considering the
explicit dependencies between the data and to weight their influence. In the case
of image segmentation, these dependencies are the links between two neighbor
pixels or segments (patches of pixels). Markov Random Fields networks rely on
this notion of neighborhood, and are represented as non-oriented graphs the
vertices of which are the data and the edges are the links between them. This
additional information on the data has been shown to significantly improve the
global results of the image segmentation process [1].

The Hidden Markov Model is also a probabilistic model in which a set of
random variables S = {s1, ..., sN}, si ∈ 1..K are linked to each other by neigh-
borhood dependencies and are emitting observable data X = {x1, ..., xN} where
the xi are the vectors containing the attributes of each observation. The goal is
then to determine the optimal configuration for S, i.e. finding the values of the
si in order to get the segmentation.

The hidden Markov random field model is the application of the hidden
Markov model to the specific dependency structure of the Markov random fields.
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Fig. 1. An example of graph modelling the HMRF model

This model is quite common in image segmentation [2,3]. An example of a typical
structure for the HMRF model is shown in Figure (1).

The main goal of the hidden Markov random field model applied to image
segmentation is to find the right label for each pixel or segment of a picture
in order to get a segmentation in homogeneous and meaningful areas. Doing so
requires to infer the si ∈ 1..K, which is often achieved by using the maximum a
posteriori criterion (MAP) to determine S such as:

S = argmax
S

(P (X |S,Θ)P (S)) (1)

P (X |S,Θ) =
∏

t

P (xt|st, θst) (2)

As it is often the case in image segmentation, we will consider that P (xt|st, θst)
follows a Gaussian distribution of parameters θst = (μst , Σst).

The most common way to maximize P (X |S,Θ)P (S) is to use the two-step
HMRF-EM couple [4]:

– Research of the prototype parameters Θ and maximization of P (X |S,Θ)
using the Expectation Maximization algorithm (EM) [5].

– Local optimization of P (X |S,Θ)P (S) using the Iterated Conditional Modes
Algorithm (ICM) [6].

The principle of the ICM algorithm is to iteratively perform a local optimiza-
tion of P (x|s, θ)P (s). Such optimization is often done by minimizing an energy
function with a form deriving from the logarithm of P (x|s, θ)P (s) is shown in
equation (3).

U(s, x) = Uobs(s, x, θs) + β
∑

v∈Vx

Uneighbor(sv, s) (3)

Uobs and Uneighbor are potential energy functions: Uobs is the potential energy
derived from the observed data, also known as the data term, and Uneighbor
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the potential energy derived from the neighborhood configuration, sometimes
refered as the smoothness term. Vx is the neighbor list of the observed data. β
is an empirical constant used to modulate the weight of the neighborhood.

In its current versions, the HMRF-EM algorithm heavily relies on the choice of
β to determine the quality of the results. Furthermore, while the energy function
Uobs usually is the logarithmic form of P (x|s, θs) the emission law, the exact form
of P (s) is unknown. For this reason, the neighborhood energy Uneighbor is chosen
as simple as possible: another gaussian distribution for complex models, and in
most cases something even simpler such as the Kronecker delta function [4,7,8].

Our goal in this paper is to propose a method to approach the local value
of P (s) in order to provide a more accurate and information rich neighborhood
energy function, and avoid using the empirical constant β.

2 Proposed Modifications to the HMRF-EM Algorithm

In this section we consider a set of linked random variables S = {s1..., sN},
si ∈ 1..K that are emitting observable data X = {x1, ..., xN}, xi ∈ R

d. We
assume the emission law of the xi by the si to be a Gaussian distribution and
we chose to consider a first order neighborhood for our Markov Random Fields.
By convention, μs shall refer to the mean vector of a considered state s and Σs

to its covariance matrix. Then, for each observation x associated to a state s we
have the following data term as the observable energy:

Uobs(s, x) =
1

2
(x− μs)

TΣ−1
s (x − μs) + log(

√
|Σs|(2π)d) (4)

2.1 Proposed Energy Model

In the hidden Markov model formalism, the neighborhood relations are often
described by a transition matrix A = {ai,j}K×K where each ai,j is the transi-
tion probability from one state to another between two neighboring data. We
propose to keep this formalism and to adapt it to the HMRF model. Then, for
P (x|s, θs)P (s), we get the following expression:

P (x|s, θs)P (s) = P (x|s, θs)×
∏

v∈Vx

P (s|sv) = 1

Z
×N (μs, Σs)×

∏

v∈Vx

a
1

|Vx|
sv ,s (5)

By considering the logarithm of equation (5) and the observable energy from
equation (4), we get the following complete energy function to be minimized:

UHMRF (s, x) =
1

2
(x−μs)

TΣ−1
s (x−μs)+log(

√
|Σs|(2π)d)−

∑

v∈Vx

log(asv ,s)

|Vx| (6)

Since the ai,j are values between 0 and 1, our neighborhood energy is a positive
penalty function. This penalty function can take as many as K2 distinct values
instead of only two values (0 or β) for the regular neighborhood energy functions.
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We note that this fitness function is as difficult to optimize as those from other
models and that there is no warranty that the global optimum can be found.

It is important to highlight that in addition of providing a more flexible en-
ergy model for the HMRF-EM framework, the transition probability matrix also
provides semantic information on the clusters: The diagonal of the matrix gives
some insight on the clusters compactness, non-diagonal values provide informa-
tion on cluster neighborhood affinities, but also incompatibilities for values near
0, or the inclusion of a cluster inside another one for values above 0, 5.

2.2 Proposed Algorithm

The main difficulty in our approach is that we have to evaluate the transition
matrix A in order to run our HMRF-EM algorithm. Without some external
knowledge on the neighborhoods of the different clusters, there is no way to get
the exact values for the transition probabilities. It is however possible to ap-
proach them by evaluating the a posteriori transition probabilities after the EM
algorithm and after each step of the ICM algorithm. This method is described
in Algorithm (1).

We note δn,m the Kronecker delta function the value of which is 1 if n and
m are identical and 0 otherwise. We note C the set of all the oriented binary
cliques of the considered dataset (since the Markov Random Field Model is
usually non-oriented, all links are represented twice in C to cover both directions
of each dependency). The a posteriori transition probabilities ai,j are evaluated
by browsing all the data and counting the number of transitions from variables
whose state is i to variables in the state j, divided by the number of all links
starting from variables whose state is i:

ai,j =
Card(c ∈ C|c = (i, j))

Card(c ∈ C|c = (i,#))
(7)

Algorithm 1. EM+ICM with transition matrix update

Initialize S and Θ with the EM algorithm
Initialize A using Equation (7)
while the algorithm has not converged do

for each x ∈ X do
Minimize UHMRF (s, x) as defined in Equation (6)

end
Update A from the new distribution S using Equation (7)

end

The idea behind this computation is that the ICM algorithm is already mak-
ing an approximation by considering that the states evaluated in its previous
iterations can be used to evaluate the potential neighborhood energy in the cur-
rent iteration. We are using this same approximation to approach the probability
of a given transition between two states.
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In our model each transition probability is computed with the goal of detecting
statistically unlikely labels among the data depending on their neighborhood.
While the classical energy formula penalty may give erratic results depending
on both the picture and the penalty value β, our energy model proposes a more
flexible penalty which is the result of a less coarse, but still highly improvable
vision of how to model neighborhood relations in a Markov random field model.

The complexity of the regular HMRF-EM version is O(i×k×d×n× ¯|V |). Since
we have to browse the data twice instead of only once in order to update A with
our proposed algorithm, we can expect that the optimization process will be up to
twice slower. The complexity for our algorithm is O(i×(k×d×n× ¯|V |+n× ¯|V |)),
which is equivalent to the complexity of the original ICM algorithm.

3 Experiments

In our first experiment, we wanted to compare the performance of our energy
model with the other models in term of raw segmentation results and cluster
characteristics. To do so, we have been testing the HMRF-EM frameworks with
three different energy models: An ICM algorithm with a basic energy formula
based on the Potts model [7], see Equation (8), an HMRF-EM algorithm with
one of the most commonly used energy formula, see Equation (9) [4,8], and the
HMRF-EM framework with our Energy model, see Equation (6).

UPOTTS(s, x) = (1− δsx,st−1
x

) + β
∑

v∈Vx

(1− δsv ,s) (8)

UMRF (s, x) = (x− μs)
TΣ−1

s (x− μs) + log(
√
|Σs|(2π)d) + β

∑

v∈Vx

(1− δsv ,s) (9)

Fig. 2. From left to right : Original picture 481×321 pixels, 3-clusters segmentation us-
ing energy formula (9) and β = 0.66, 3-clusters segmentation using our energy formula,
3-clusters segmentation using energy formula (8) and β = 1.0.

The results in Figure (2) and Table (1) show that our model achieves decent
segmentation results that are similar to what can be done with other energy
models using a nearly optimal value for β.

Furthermore, our method seem to be effective to agglomerate pixels in ho-
mogeneous areas while conserving a low internal variance for the clusters which
tends to prove that the resulting areas are meaningful.
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Table 1. Purity of the expected clusters and average internal variance (3 clusters)

Cluster Purity Internal Variance

UPOTTS, β = 2/3 73.42% 6.10
UPOTTS, β = 1 73.38% 6.13
UMRF , β = 2/3 69.37% 5.83
UMRF , β = 2/3 69.36% 5.84
Our UHMRF 73.46% 5.86

Similar results have been found on another experiment on a satellite image,
see Figure (3) (2014 Cnes/Spot Image, DigitalGlobe, Google), thus confirming
that our approach is competitive when compared to what has already been done
in this area.

Fig. 3. From left to right, and from top to bottom : The original image 1131 × 575
pixels, the result of our algorithm, the result using energy equation (8) and β = 1, the
result using energy equation (9) and β = 1

As can be seen on a color and full scale version of Figure (3), our energy model
achieves a decent segmentation with a fair amount of easily visible elements
such as roads, rocky areas and some buildings. On the other hand the classical
HMRF-EM algorithm using Equation (9) fails to aggregate neighbor pixels from
common elements despite a relatively high value for β (the same phenomenon
can be observed in Figure (2)), while the algorithm based on the Potts model
using Equation (8) tends to give too coarse results. This second experiment
emphasizes again that finding a right value for β is a difficult task.

Our third experiment was on a satellite image from a more difficult dataset.
In this dataset from [9], a very high resolution image from the city of Stras-
bourg (France) is described in 187.058 unlabeled segments having 27 numeri-
cal attributes either geometrical or radiometrical. Another particularity of this
dataset is that the segments have irregular neighborhoods: each segment can
have one to fifteen neighbors. The neighborhood irregular configuration of this
dataset makes it impractical to find an optimal value for the constant β and the
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segmentation results using conventional HMRF-EM energy functions (8) and (9)
were quite poor.

An extract of a 9-clusters segmentation on this dataset is available in Figure (4).
The result shows that various elements of the city have been correctly detected
such as sport areas, the river, and some buildings. On a full scale version of this
image, we can see that some streets and houses have also been correctly labeled.

Furthermore, this experiment has also confirmed that our matrix represen-
tation for the neighborhood made sense, and that at a segment level it was
possible to interpret some of the matrix elements (whereas it was difficult at a
pixel level). For instance, on this dataset the matrix featured a low transition
probability between building areas and water areas which is consistent with the
satellite image. We also had an important transition probability from tree areas
to grass areas (≈ 0.65) which is consistent with the fact that tree areas often
come by patches instead of compact blocks and are often surrounded by grass.

Fig. 4. On the left: One of the original source image, c©CNES2012, Distribution As-
trium Services / Spot Image S.A., France, All rights reserved. On the right: the resulting
9-clusters segmentation for the area.

In a last experiment, we have compared the computation times of the 3 energy
models introduced in this article for 3 pictures of different sizes, see Table (2).

The results have confirmed what we had already hinted while describing the
complexity of our modified HMRF-EM algorithm. Our version of the algorithm
is slower, and it was to be expected because of the time needed to update the
transition matrix after each iteration. Nevertheless, it is important to emphasize
that it is still faster to run our version of HMRF-EM rather than trying several β
values, or running an optimization algorithm for β, with another energy formula.

Table 2. Computation times in ms, Intel Core I5-3210M, 2.5GHz

404 × 476px 380× 270px 1131× 575px 1131 × 575px
4 clusters 4 clusters 4 clusters 8 clusters

UPotts (8) 4451ms 2453ms 13370ms 26920ms
UMRF (9) 4933ms 2717ms 14771ms 29433ms
Our UHMRF (6) 6632ms 3418ms 20810ms 42736ms
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4 Conclusion and Future Work

We have proposed an improvement to the energy model of the Hidden Markov
Random Field Model applied to image segmentation. In our model, the neigh-
borhood energy formula is based on an approached transition matrix rather than
an empirical penalty parameter. Our preliminary experiments have shown our
model to give competitive results compared with other models based on more
classical energy functions who rely on finding an optimal penalty value for the
neighborhood energy.

Furthermore, while our contribution does not bring any significant improve-
ment on the quality of the results for image segmentation, our neighborhood
energy model using a transition matrix gives the opportunity to have a semantic
rich representation of the interactions between the clusters.

In our future works, we will focus on using the information collected in these
transition matrices with the goal of proposing collaborative frameworks such
as the collaborative segmentation of similar pictures using several HMRF-based
algorithms sharing their prototypes and transition matrices, or the segmentation
of a sequence of pictures using an HMRF-HMM hybrid framework.

Acknowledgements. This work has been supported by the ANR Project
COCLICO, ANR-12-MONU-0001.

References

1. Hernández-Gracidas, C., Sucar, L.E.: Markov Random Fields and Spatial Infor-
mation to Improve Automatic Image Annotation. In: Mery, D., Rueda, L. (eds.)
PSIVT 2007. LNCS, vol. 4872, pp. 879–892. Springer, Heidelberg (2007)

2. Zhang, L., Ji, Q.: Image segmentation with a unified graphical model. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 32(8), 1406–1425 (2010)

3. Roth, S., Black, M.J.: Fields of experts, Markov Random Fields for Vision and
Image Processing, pp. 297–310. MIT Press (2011)

4. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a
hidden markov random field model and the expectation-maximization algorithm.
IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)

5. Dempster, A.P., Laird, N.M., Rubin, D.: Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1), 1–38 (1977)

6. Besag, J.: On the Statistical Analysis of Dirty Pictures. Journal of the Royal Sta-
tistical Society. Series B (Methodological) 48(3), 259–302 (1986)

7. Weinman, J.: A Brief Introduction to ICM (2008),
http://www.cs.grinnell.edu/ weinman/courses/CSC213/2008F/labs/

11-threads-icm.pdf

8. Kato, Z., Berthod, M., Zerubia, J.: A Hierarchical Markov Random Field Model
and Multi-temperature Annealing for parallel Image Classification. Graphical Mod-
els and Image Processing 58(1), 18–37 (1996)

9. Rougier, S., Puissant, A.: Improvements of urban vegetation segmentation and clas-
sification using multi-temporal Pleiades images. In: 5th International Conference
on Geographic Object-Based Image Analysis, Thessaloniki, Greece, p. 6 (2014)

http://www.cs.grinnell.edu/~weinman/courses/CSC213/2008F/labs/11-threads-icm.pdf
http://www.cs.grinnell.edu/~weinman/courses/CSC213/2008F/labs/11-threads-icm.pdf

	A New Energy Model for the Hidden MarkovRandom Fields
	1 Introduction
	2 Proposed Modifications to the HMRF-EM Algorithm
	2.1 Proposed Energy Model
	2.2 Proposed Algorithm

	3 Experiments
	4 Conclusion and Future Work
	References




