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Abstract. Kernel canonical correlation analysis (CCA) aims to extract
common features from a pair of multivariate data sets by maximizing a
linear correlation between nonlinear mappings of the data. However, the
kernel CCA tends to obtain the features that have only small informa-
tion of original multivariates in spite of their high correlation, because
it considers only statistics of the extracted features and the nonlinear
mappings have high degree of freedom. We propose a kernel method for
common feature extraction based on mutual information that maximizes
a new objective function. The objective function is a linear combination
of two kinds of mutual information, one between the extracted features
and the other between the multivariate and its feature. A large value of
the former mutual information provides strong dependency to the fea-
tures, and the latter prevents loss of the feature’s information related
to the multivariate. We maximize the objective function by using the
Parallel Tempering MCMC in order to overcome a local maximum prob-
lem. We show the effectiveness of the proposed method via numerical
experiments.

Keywords: Kernel canonical correlation analysis, mutual information,
Parallel Tempering.

1 Introduction

Recently, we can obtain data from multiple sources simultaneously such as elec-
troencephalography (EEG) and near infra-red spectroscopy (NIRS) measure-
ments of brain activity. Canonical correlation analysis is known as a linear
method to extract common features in which source-specific noise is reduced
from the original observations.

Kernel canonical correlation analysis (Kernel CCA; [1], [8], [3]) is a nonlinear
extension of canonical correlation analysis with positive definite kernels. Given
a pair of multivariates x and y, the kernel CCA aims to extract the common
features from them by finding nonlinear mappings f(x) and g(y) such that
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the correlation coefficient is maximized. The kernel CCA has been applied for
extracting nonlinear relations between the multivariates in various data, e.g.,
genomic data and functional magnetic resonance imaging (fMRI) brain images.
The kernel CCA is one of kernel methods ([11]) that use nonlinear mappings of
the multivariates instead of linear transformations used in traditional multivari-
ate analysis.

The kernel CCA uses flexible nonlinear mappings to extract nonlinear relation
between the multivariates. However, since large degrees of freedom of the map-
pings are devoted to their correlation maximization, the features, the mappings
of the multivariates, lose a large amount of information related to the multi-
variates in many cases. The kernel CCA evaluates only the relation between the
features and fails to detect the relationship between the multivariates.

The kernel CCA also extracts the features that have no interdependency, even
though the correlation coefficient of them is high. The correlation coefficient
cannot evaluate the dependency correctly when the data follow a non-Gaussian
distribution. Thus, the correlation coefficient is not an appropriate criterion that
evaluates the dependency of the features of the data that have nonlinear struc-
ture.

In this study, we propose a kernel method for common feature extraction that
maximizes a new objective function based on mutual information. The objective
function is a linear combination of mutual information between the features and
that between the multivariate and its feature for each data set. The mutual in-
formation can evaluate essential dependency between the variables distributed
with any distribution, so that the mutual information is a suitable criterion for
the relation between the features and between the feature and the multivariate.
A large value of the former mutual information provides the highly interdepen-
dent features and the latter prevents the features from losing a large amount of
information about the original multivariate.

We apply the proposed method to an analysis of synthetic data, and show
that our method can extract the true nonlinear structure of the data, which
cannot be extracted by the conventional kernel CCA.

2 Kernel Canonical Correlation Analysis

Suppose there is a pair of multivariates x ∈ R
nx and y ∈ R

ny , the kernel
CCA aims to find a pair of nonlinear mappings f(x) and g(y) such that their
correlation coefficient is maximized, where f and g belong to the respective
reproducing kernel Hilbert spaces (RKHS) Hx and Hy.

Since the maximization is ill-posed when the dimensionalities of the RKHS Hx

andHy are large, we introduce a quadratic regularization term η(‖f‖2Hx
+‖g‖2Hy

),
where η > 0 is a regularization parameter. The kernel CCA maximizes the
objective function that consists of the correlation coefficient between f(x) and
g(y) and the regularization term.

The kernel CCA does not always extract essential common structure of a pair
of multivariate data. For example, a common factor underlying the synthetic
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data shown in Fig. 1 is not extracted by the kernel CCA. The synthetic data
sets, {xi,yi}50i=1, were generated from the two dimensional circle-shaped distri-
butions derived from common random angle (details of this data are in Section
5). However, the values of the common angle are mixed in the features extracted
by the kernel CCA with Gaussian kernel (Fig. 2(a)). This is because the kernel
CCA finds redundant nonlinear mappings that often produce features having
small information about the multivariate (Fig. 2(b.1)-(b.2)).
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Fig. 1. Synthetic data sets, (a) xi, (b) yi. The data in each data set are grouped into
five sections by intervals of the common angle value. The five groups are denoted by
the five different marks.

−1 0 1 2

−
1

0
1

2

u

v

(a)

−1.0−0.5  0.0  0.5  1.0  1.5

−
2

−
1

 0
 1

 2
 3

−1.5

−1.0

−0.5

 0.0

 0.5

 1.0

xi1

x i
2f(x

)

(b.1)

−1.0−0.5  0.0  0.5  1.0  1.5

−
2

−
1

 0
 1

 2
 3

−1.5

−1.0

−0.5

 0.0

 0.5

 1.0

yi1

y i
2g(

y)

(b.2)

Fig. 2. (a) The features extracted by the kernel CCA, ui = f̂(xi), vi = ĝ(yi), where f̂
and ĝ are the nonlinear mappings estimated by the kernel CCA. The marks correspond
to those in Fig. 1. (b.1) f̂(xi), (b.2) ĝ(yi).

This result shows that the kernel CCA dedicates the degree of freedom of
nonlinear mappings to maximize the correlation of the features, and then the
features’ information on the multivariates is sacrificed. Therefore, the kernel
CCA extracts only little information shared by the data set even if it obtains
highly correlated features, because the features have little information about the
multivariates.
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The kernel CCA with another set of the regularization parameter and the
Gaussian kernel’s parameter extracts the non-informative features whose corre-
lation coefficient is high (Fig. 3). This indicates that the correlation coefficient
is not appropriate to evaluate the interdependence of the features.
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Fig. 3. The features extracted by the kernel CCA with other parameters

3 Mutual Information Based Objective Function

We propose a kernel method for common feature extraction based on mutual
information that maximizes a new objective function. The objective function is
constructed as follows.

We substitute the correlation coefficient between the features, u = f(x)
and v = f(y), with the mutual information between them. The mutual in-
formation between two random variables, x ∈ X and y ∈ Y, is I(x, y) =∫
Y
∫
X p(x, y) log p(x,y)

p(x)p(y)dxdy, where p denotes a density function. The mutual

information quantifies interdependence between random variables, and is inter-
preted as a measure of information shared by the random variables from an
information theoretic point of view.

Since the maximization of the mutual information between the features also
causes information loss of the features related to the multivariate, we add a
constraint that the mutual information between the feature and the multivariate
is enough large for each data set. That is, we consider an optimization problem

max
f∈Hx,g∈Hy

I(u, v), subject to I(u,x) ≥ sx, I(v,y) ≥ sy, (1)

where u = f(x), v = g(y) and sx, sy > 0.
The problem in (1) is solved by maximizing the objective function

Lλ(f, g) = I(u, v) + λxI(u,x) + λyI(v,y),

where λ = (λx, λy) are regularization parameters and λx, λy > 0. The regular-
ization parameters λ control the amount of the mutual information between the
feature and the multivariate. The regularization term, λxI(u,x)+λyI(v,y), pre-
vents loss of the information shared by the feature and the multivariate. The large
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value of the mutual information between the features that have enough informa-
tion on the multivariate provides the features capturing an essential nonlinear
relation between the multivariates.

The mutual information does not depend on scale of random variables, that is,
I(cX, cY ) = I(X,Y ), for c �= 0. Therefore, we maximize the objective function
under the constraint ‖f‖2Hx

= ‖g‖2Hy
= 1.

In practice, we have to find the desired mappings from finite amount of data,
{xi,yi}Ni=1, so that we estimate the mutual information by Mean Nearest Neigh-
bor (MeanNN) method ([4],[6]). The mutual information between x and y esti-
mated by the MeanNN method is

Î(x,y) = Ĥ(x) + Ĥ(y) − Ĥ(x,y),

where Ĥ(x) = nx

N(N−1)

∑
i�=j log ‖xi − xj‖+ const.

Therefore, we maximize the objective function L̂λ(f, g) under ‖f‖2Hx
=

‖g‖2Hy
= 1, where L̂λ(f, g) = Î(u, v)+λxÎ(u,x)+λy Î(v,y). The solution of this

problem is represented as f(·) =
∑N

i=1 αikx(xi, ·) and g(·) =
∑N

i=1 βiky(yi, ·)
by the Representer theorem ([10]), where kx and ky are kernel functions, and
αi, βi ∈ R. We assume that f ’s orthogonal part to the span of kx(xi, ·) is zero as
well as g. The objective function of α = (α1, . . . , αN ), β = (β1, . . . , βN ), L̂λ(α, β),
is obtained by applying the representation of the solution to f, g. The constraint
is also represented by αTKxα = βTKyβ = 1, where (Kx)ij = kx(xi,xj) and
(Ky)ij = ky(yi,yj). However, since the constraint space is too complex to find
the solution, we impose the simplified constraint ‖α‖2 = ‖β‖2 = 1 in place of
the constraint above for the sake of computational efficiency.

4 Algorithm

Since the objective function L̂λ(α, β) has many local maximum points, simple
optimization methods such as a gradient method do not find a reasonable solu-
tion. To cope with this localization problem, we employ the Parallel Tempering
([5],[7]), which is one of the Markov chain Monte Carlo (MCMC) methods ([9]).

The MCMC methods efficiently generate samples from a target probability
distribution by simulating a Markov chain that converges to the distribution. The
Parallel Tempering introduces auxiliary distributions with a parameter called the
temperature, generates multiple MCMC samples from target and the auxiliary
distributions in parallel, and exchanges the positions of two samples.

The target distribution and the auxiliary distributions with inverse tempera-
tures tl are

πtl(αl, βl) ∝ exp
(
tlL̂λ(αl, βl)

)
, l = 1, . . . , L,

where t1 > · · · > tL > 0, πt1(α1, β1) is a target distribution, and the others are
the auxiliary distributions.
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The Parallel Tempering executes either of the parallel step and the exchange
step at each iteration. The parallel step generates the L samples according to
πtl(αl, βl) for each by using a Metropolis algorithm. The Metropolis algorithm
uses a proposal distribution that generates a sample candidate, which becomes
the MCMC sample if accepted, and is rejected otherwise. We employ a von Mises-
Fisher distribution, which is a probability distribution on the (N−1)-dimensional
sphere in R

N , as the proposal distribution. The proposal distribution enables us
to directly generate samples of α on the constraint space, ‖α‖ = 1, as well as β.
The exchange step randomly chooses adjacent two samples and exchanges them
with a Metropolis acceptance probability.

Since the target distribution is maximized if and only if the objective function
is maximized, we find the solution from the samples generated by the Parallel
Tempering.

5 Numerical Validation

Our method and the kernel CCA were applied to the circle data (analysed in
Section 2) in order to show that our method can extract the essential nonlinear
structure of a pair of data which the kernel CCA cannot extract.

The circle data, xi,yi ∈ R
2, i = 1, . . . , 50, were generated as follows. First θi

is generated from the uniform distribution on (1, 2π), and then xi and yi were
generated by,

xi =

(
cos(θi)
sin(θi)

)

+ εxi and yi =

(
sin(θi)
cos(θi)

)

+ εyi ,

where εxi , ε
y
i are independent two dimensional Gaussian noises with a mean 0

and a standard deviation 0.01.
In this experiment, we used the Gaussian kernel k(xi,xj) = exp

(
− ‖xi−xj‖2

2σ2

)

both for x and y. The Parallel Tempering was run for 5 × 105 iterations, and
the first inverse temperature was t1 = 1, the other parameters were determined
by one simulation of the adaptive Parallel Tempering ([2]).

Our method extracted the features as reconstructions of the common fac-
tor θi between xi and yi (Fig. 4(a)), while the kernel CCA could not extract
(Fig. 5-6(a)). The nonlinear mappings estimated by our method provide enough
information about the multivariates to the features (Fig. 4 (b.1)-(b.2)). On the
other hand, those obtained by the kernel CCA provide only a part of information
about the multivariates to the features (Fig. 5-6 (b.1)-(b.2)).
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Fig. 4. (a) The features extracted by our method with parameters σ = 0.45 (the
same value used in Section 2) and λx = λy = 1. (b.1)-(b.2) The nonlinear mappings
estimated by our method, f̂(xi) (b.1) and ĝ(yi) (b.2). (The marks are defined in Fig. 1
in Section 2.)
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Fig. 5. (a) The features extracted by the kernel CCA with parameters σ = 0.15, η = 3.
(b.1)-(b.2) The nonlinear mappings estimated by the kernel CCA.
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Fig. 6. (a) The features extracted by the kernel CCA with parameters σ = 1.3, η = 7.
(b.1)-(b.2) The nonlinear mappings estimated by the kernel CCA.
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6 Conclusions

We proposed the kernel method based on mutual information to extract com-
mon features from a pair of data sets. The proposed method maximizes a new
objective function that consists of the mutual information between the features
and those between the feature and the multivariate. The maximization of the
objective function provides the features that represent nonlinear structure of a
pair of the multivariate data set, because a large value of the mutual informa-
tion between the feature and the multivariate provides the enough multivariate’s
information to the feature and the mutual information between the features is
enlarged.

We also showed that our method can extract the common feature of the circle
data which the kernel CCA cannot extract. This is because our method solves
the essential problem of the kernel CCA that it tends to extract the features
that have small information on the multivariates.

Our information-based method is difficult to apply to the extremely high
dimensional data because estimation of entropy becomes unstable in such situ-
ation. However, our method is useful in adequate dimensional cases, in which it
is difficult to extract nonlinear relations by the conventional kernel CCA.

The proposed method extracts only one component, so that we will extend the
proposed method to the method that can extract multiple components. We will
also develop faster algorithm that maximizes the proposed objective function,
since the Parallel Tempering spends relatively large computational time.

Acknowledgments. Part of this work was supported by MEXT KAKENHI
No.25120011 and JSPS KAKENHI No.25870811.

References

1. Akaho, S.: A kernel method for canonical correlation analysis. In: Proceedings of
the International Meeting of the Psychometric Society (IMPS 2001) (2001)

2. Araki, T., Ikeda, K.: Adaptive Markov chain Monte Carlo for auxiliary variable
method and its application to Parallel Tempering. Neural Networks 43, 33–40
(2013)

3. Bach, F.R., Jordan, M.I.: Kernel independent component analysis. The Journal of
Machine Learning Research 3, 1–48 (2003)

4. Faivishevsky, L., Goldberger, J.: ICA based on a smooth estimation of the differen-
tial entropy. In: Advances in Neural Information Processing Systems, pp. 433–440
(2008)

5. Geyer, C.: Markov chain Monte Carlo maximum likelihood. In: Proc. 23rd Symp.
Interface Comput. Sci. Statist., pp. 156–216 (1991)

6. Hino, H., Murata, N.: A conditional entropy minimization criterion for dimensional-
ity reduction and multiple kernel learning. Neural Computation 22(11), 2887–2923
(2010)

7. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to
spin glass simulations. Journal of the Physical Society of Japan 65(6), 1604–1608
(1996)



34 T. Araki, H. Hino, and S. Akaho

8. Melzer, T., Reiter, M.K., Bischof, H.: Nonlinear feature extraction using general-
ized canonical correlation analysis. In: Dorffner, G., Bischof, H., Hornik, K. (eds.)
ICANN 2001. LNCS, vol. 2130, pp. 353–360. Springer, Heidelberg (2001)

9. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer (2004)
10. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In:

Helmbold, D.P., Williamson, B. (eds.) COLT/EuroCOLT 2001. LNCS (LNAI),
vol. 2111, pp. 416–426. Springer, Heidelberg (2001)

11. Schölkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge (2002)


	A Kernel Method to Extract Common FeaturesBased on Mutual Information
	1 Introduction
	2 Kernel Canonical Correlation Analysis
	3 Mutual Information Based Objective Function
	4 Algorithm
	5 Numerical Validation
	6 Conclusions
	References




