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Abstract. This paper proposes a feature extraction method from the
given empirical kernel vector. We show the necessary condition for
the feature extraction mapping to make the trained classifier by using
the linear SVM with the extracted feature vectors equivalent to the one
obtained by the standard kernel SVM. The proposed feature extrac-
tion mapping is defined by using the eigen values and eigen vectors of
the Gram matrix. Since the eigen vector problem of the Gram matrix is
closely related with the kernel Principal Component Analysis, we can ex-
tract a dimension reduced feature vector. This feature extraction method
becomes equivalent to the kernel SVM if the full dimension is used. The
proposed feature extraction method was evaluated by the experiments
using the standard data sets. The cross-validation values of the proposed
method were improved and the recognition rates were comparable with
the original kernel SVM. The number of extracted features was very low
compared to the number of features of the kernel SVM.

1 Introduction

Support vector machine (SVM) [15,12,3,7] has been successfully applied to
many pattern recognition problems such as object detection[5] and image
classification[4] etc. The nonlinear classifier with good generalization can be
constructed by using kernel-trick and margin maximization.

However, the dimension of the empirical kernel vector in the kernel SVM in-
creases as the number of training samples increases. Especially for big data, this
makes the computation of the learning algorithm intractable. Also the general-
ization ability of the trained classifier probably decreases because the number
of parameters increases as the number of training samples increases. It is well
known that the complexity of the model used in the learning and the intrinsic
dimension to describe the target classification problem should be the same to
get the classifier with good generalization.

To reduce the difference between the complexities of the learning model and
the the target classification problem, Nishida et al. proposed a method to select
the important kernel features by using Boosting [10]. Also Nishida et al. proposed
an algorithm called RANSAC-SVM in which the subsets of the training samples
were randomly generated and the best subset was selected [11].
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In this paper, we propose a method to extract new feature vector from the
given empirical kernel vector by using kernel Principal Component Analysis (the
kernel PCA).

At first, we show the necessary condition which has to be satisfied to make
the classifier obtained by using the linear SVM with the extracted feature vector
from the empirical kernel vector in the case of full dimension equivalent to the one
trained by using the standard kernel SVM. Then a feature extraction mapping
from the given empirical kernel vector is derived. The feature extraction mapping
can be defined by using the eigen values and eigen vectors of the Gram matrix.

The eigen vector problem of the Gram matrix is closely related with the
kernel PCA [1,13]. The eigen vectors corresponding to the first largest eigen
values are the principal components and extract the dominant information from
the Gram matrix. By combining the feature extraction mapping by Gram matrix
and the dimension reduction by the kernel PCA, we can design feature extraction
method in which the dominant information of the given empirical kernel vector
is extracted but the unnecessary details are neglected. This feature extraction
becomes equivalent to the kernel SVM if the full dimension is used.

By the experiments using the standard data sets, we found that the very few
features were enough to achieve good recognition rates for test samples by using
the proposed dimension reduced feature vectors. These results shows that the
empirical kernel vector includes redundant information and there is margin to
reduce the number of dimension.

As the related works, general theory of the kernel PCA whitening in kernel-
based methods is shown in [13]. A relation between the kernel PCA and the least
squares SVM (LS-SVM) is shown in [14]. Q. Chen et al. proposes a combination
of the kernel PCA and LS-SVM and applied to time series prediction [2]. In this
paper we experimentally evaluate the effect of the dimension reduction by using
the kernel PCA whitening for the case of the kernel SVM. Also it is reported that
the whitening using the covariance matrix of the HOG features can improve the
recognition performance when it is used as the input of the linear SVM in [6].
The tendency of our experimental results agrees with the results of the whitening
of the HOG features.

2 Feature Extraction from Empirical Kernels

In this paper we extract dimension reduced feature vector from the given em-
pirical kernel vector by using a linear mapping. Then the extracted new feature
vectors are used as the input of the linear SVM. We want to make the obtained
classifier without dimension reduction identical to the one obtained by the orig-
inal kernel SVM. To consider the constraints which should be satisfied by this
linear mapping, we will briefly review the linear and kernel SVM.

2.1 Linear and Kernel SVM

The linear SVM determines the separating hyperplane with a maximal margin
by using the given training samples {< xi, ti > |i = 1, . . . , n}, where xi is the
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input feature vector and ti =∈ {+1,−1} is the class label of the i-th sample.
Then the classification function of the linear SVM is given as

y = sign(wTx− h), (1)

wherew and h are the weight vector and the threshold, respectively. The function
sign(u) is a sign function which outputs 1 when u > 0 and outputs −1 when
u ≤ 0. The soft-margin SVM is defined as an optimization problem for the
following evaluation function

L(w, ξ) =
1

2
||w||2 + γ

n∑

i=1

ξi, (2)

under the constraints ξi ≥ 0, ti(w
txi − h) ≥ 1 − ξi, i = 1, . . . , n, where

ξi is the measure of the error for the training sample xi. The dual problem is
obtained as the optimization problem that maximizes the object function

LD(α) =

n∑

i=1

αi − 1

2

n∑

i,j=1

αiαjtitjx
T
i xj (3)

under the constraints
∑n

i=1 αiti = 0, 0 ≤ αi ≤ γ, i = 1, . . . , n.
By solving this optimization problem, the optimal classification function can

be expressed as

y = sign(
∑

i∈S

α∗
i tix

T
i x− h∗), (4)

where S is a set of support vectors and α∗
i and h∗ are the optimal solutions.

By using the kernel-trick, this linear SVM can be extended to nonlinear (kernel
SVM). In the kernel SVM, input vectors are mapped to higher dimensional
feature space by non-linear function φ(x) and the linear SVM is applied to the
mapped features. Since the linear SVM depends only on the inner products of
the input vectors, we can define the object function as

LD(α) =
n∑

i=1

αi − 1

2

n∑

i,j=1

αi αjtitjK(xi,xj), (5)

where K(xi,xj) = φ(xi)
Tφ(xj) is the kernel function. Usually the kernel func-

tion K(x,y) is defined a priori. The polynomial function and the Radial Basis
function are often used as the kernel function.

Then the optimal classification function of the kernel SVM can be derived as

y = sign(
∑

i∈S

α∗
i tiφ(xi)

Tφ(x)− h∗) = sign(
∑

i∈S

α∗
i tiK(xi,x)− h∗). (6)

2.2 Feature Extraction from Empirical Kernel Vector

The classification function of the kernel SVM given in equation (6) determines
the separating hyperplane on the n dimensional feature vector

k(x) = (K(x1,x), . . . ,K(xn,x))
T . (7)
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This means that this n dimensional feature vector include enough information
to construct the classification function of the kernel SVM. We call this n dimen-
sional feature vector the empirical kernel vector.

To extract effective features from this empirical kernel vector, we consider the
following linear feature extraction

g(x) = UTk(x). (8)

Then we use this new feature vector g(x) as the input of the linear SVM.
By substituting the xi with the new feature g(xi) in the equation (3), we

have

LD(α) =

n∑

i=1

αi − 1

2

n∑

j=1

αjtjΓKUUTk(xj), (9)

where K = (K(xi,xj))
n
i,j=1 and Γ = diag(α1t1, . . . , αntn). The matrix K is

known as the kernel Gram matrix.
Similarly, the optimal classification function becomes

y = sign(Γ ∗KUUTk(x)− h∗), (10)

where Γ ∗ = diag(α∗
1t1, . . . , α

∗
ntn).

To get the same object function and the classification function with the kernel
SVM, the coefficient matrix U must be satisfy the condition UUT = K−1. Since
the kernel Gram matrix K is real symmetric, we can compute the U by using
the eigen values λi and the corresponding eigen vectors ai of the kernel Gram
matrix K. The eigen values and the corresponding eigen vectors of the kernel
Gram matrix K are given by

KA = AΛ (11)

where Λ = diag(λ1, . . . , λn) is the diagonal matrix with the eigen values and
A = (a1 · · ·an) is the matrix of eigen vectors. Thus the coefficient matrix U in
the feature extraction mapping to make the obtained classifier coincident with
the kernel SVM can be given by

U = AΛ− 1
2 , (12)

where Λ−1/2 = diag( 1√
λ1
, 1√

λ2
, . . . , 1√

λn
). Since the matrix A is orthogonal, we

can confirm the condition of the inverse matrix as

K(UUT ) = KAΛ− 1
2Λ− 1

2AT = AΛΛ−1AT = AAT = I. (13)

Then the feature extraction which gives the same results with the kernel SVM
is given by

gSV M (x) = Λ− 1
2ATk(x). (14)

This feature extraction is closely related with the kernel PCA and we can extract
the dimension reduced features in terms of the kernel principal components.
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2.3 Relation with Kernel Principal Component Analysis

Nonlinear extension of PCA using the kernel-trick is known as the kernel PCA.
In the kernel PCA, the input vectors are also mapped to the higher dimensional
feature space by non-linear function φ(x) and the linear PCA is applied to the
mapped features.

For the given data set {x1, . . . ,xn}, the kernel PCA computes the principal
score as

y(x) = UTφ(x). (15)

Since the coefficient matrix can be represented by the linear combinations of the
mapped feature vectors as

U =

n∑

j=1

φ(xj)α
T
j , (16)

the principal score vector can be given by

y(x) =

n∑

j=1

αjφ(xj)
Tφ(x) =

n∑

j=1

αjK(xj ,x). (17)

The optimal solution can be obtained by taking the L eigen vectors Ã =
(α1 · · ·αL) of the kernel Gram matrix K corresponding to the L largest eigen
values λ1, . . . , λL. The eigen vector equation for kernel PCA is given by

KÃ = ÃΛ̃, (18)

where Λ̃ = diag(λ1, . . . , λL).
By comparing the eigen vector equation (18) for the kernel PCA and the eigen

vector equation (11) for the feature extraction from the empirical kernels, it is
noticed that they are the same. Since the kernel PCA can extract dominant
information from the data set and neglect the unnecessary details by taking
the principal components, we can construct new dimension reduced features by
taking the L eigen vectors of the kernel Gram matrix K corresponding to the L
largest eigen values as

gPCA(x) = Λ̃− 1
2 ÃTk(x). (19)

This feature vector gPCA(x) can extract the dominant information of the train-
ing data set and neglect the unnecessary details. Also this feature vector can
produce almost same result with the kernel SVM when this feature vector is
used as the input of the linear SVM. Especially the result becomes the same as
the kernel SVM if the full dimension, namely L = n, is used.

3 Experiments

The effectiveness of the proposed feature extraction defined in the equation (19)
was evaluated by using seven standard data sets (heart, iris, vowel, breast-
cancer, glass, and vehicle) from LIBSVM data sets [8]. The number of classes,



14 T. Kurita and Y. Harashima

Table 1. The cross validation values (%), recognition rates (%) and the dimension of
extracted feature vector for the standard data sets

data set K-SVM FE-PCA

heart CV 85.33 (2.06) 86.16 (1.32)
training 87.41 (2.06) 86.94 (1.32)
test 78.52 (5.67) 78.70 (5.03)
dim. 216 18.6 (20.17)

iris CV 97.50 (0.88) 97.58 (1.00)
training 97.66 (1.23) 97.83 (1.05)
test 95.33 (2.81) 93.67 (4.83)
dim. 120 4.8 (1.93)

vowel CV 98.58 (0.45) 98.70 (0.49)
training 99.98 (0.07) 99.95 (0.01)
test 98.58 (0.80) 98.58 (0.67)
dim. 677 168.7 (67.15)

breast-cancer CV 97.20 (0.35) 97.29 (0.42)
training 97.33 (0.36) 97.31 (0.37)
test 97.23 (1.74) 97.23 (1.81)
dim. 546 7.8 (8.66)

glass CV 72.88 (3.20) 74.10 (2.76)
training 92.75 (5.20) 89.59 (6.39)
test 67.21 (8.09) 68.14 (7.44)
dim. 171 52.6 (29.61)

vehicle CV 85.30 (1.10) 85.89 (0.98)
training 93.24 (0.80) 91.57 (0.90)
test 83.41 (2.33) 83.29 (2.86)
dim. 170 89.8 (10.76)

the number of samples, and the number of features are (2, 270, 13), (3, 150,
4), (11, 528, 10), (2, 683, 10), (6, 214, 9), and (4, 846, 18) respectively. For
classification experiments, each data set was randomly divided into a training
set (80% of all samples) and a test set (remaining samples). We performed 10
times with different partitions of training and test samples and the average and
the standard deviation were measured. The Radial Basis functions K(x,y) =

exp
(
− ||x−y||2

2σ2

)
was used as the kernel function.

Table 1 shows the cross-validation values and the recognition rates for training
samples and test samples of the proposed feature extraction methods, namely the
feature extraction from empirical kernel vectors by using PCA (denoted as FE-
PCA). In the proposed feature extraction method, the extracted feature vector
was classified by using the linear SVM. The recognition rates of the standard
kernel SVM (denoted as K-SVM) are also shown in Table 1 for comparison. In
these experiments, the Radial Basis function is used as the kernel function. The
parameters of the linear and the kernel SVM, i.e. the soft margin parameter γ and
the kernel parameter σ2 were determined by 10-fold cross validation (For the data
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(a) heart (b) vehicle

Fig. 1. Relation between the recognition rates and the extracted dimension

set glass, 5-fold cross validation was used because of the shortage of the samples
of each class). Since the recognition rate depends on the number of extracted
features in the proposed feature extraction methods, the best dimension was
selected by the cross validation. The average and the standard deviation of the
selected dimension are also shown in Table 1 (denoted as dim.).

From Table 1, the cross-validation values of the proposed feature extraction
method gives a little bit better results for all data sets than the standard SVM
while the recognition rates for training and test samples are comparable. This
means that the proposed dimension reduction method can keep the generaliza-
tion performance of the kernel SVM.

The number of extracted features is very low compared to the number of
original features of the kernel SVM. For example, 546 was reduced to 7.8 for
breast-cancer. This means that the empirical kernel vector includes very re-
dundant information and there is margin to reduce the number of dimension.

Figure 1 shows the relation between the recognition rates and the number of
dimension of the extracted feature vector for heart and vehicle data sets. It is
noticed that there is almost flat regions from low to high dimension. This also
shows that information included in the empirical kernel vector is very redundant
and the proposed feature extraction method can extract intrinsic information
from the empirical kernel vector.

Since the number of features of the kernel SVM increases as the number
of training samples increases, the difference between the number of features of
the kernel SVM and the intrinsic dimension of the target classification problem
becomes large for large data. It is expected that the proposed feature extraction
method can be used to reduce this gap.
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