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Abstract. K-means is one of the most popular clustering algorithm,
it has been successfully applied in solving many practical clustering
problems, however there exist some drawbacks such as local optimal
convergence and sensitivity to initial points. In this paper, a new ap-
proach based on enhanced particle swarm optimization (PSO) is pre-
sented (denoted CMPNS), in which PSO is enhanced by new neigh-
borhood search strategy and Cauchy mutation operation. Experimental
results on fourteen used artificial and real-world datasets show that the
proposed method outperforms than that of some other data clustering
algorithms in terms of accuracy and convergence speed.
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1 Introduction

Data clustering is the process of identifying natural groupings or clusters, within
multidimensional data, based on some similarity measure. The K-means cluster-
ing algorithm was developed by J.A. Hartigan [1] which is one of the most
popular and widely used clustering techniques because it is easy to implement
and very efficient, with linear time complexity. However, its main drawbacks
are that it converges to arbitrary local optima as well as at local maxima and
saddle points and that it cannot deal well with non-spherical shaped clusters
[2]. The performance of the K-means algorithm depends on the initial choice
of the cluster centers. In order to tackle the drawback of initialization, in [3] a
method called K-means++ was presented, where a new initial method was pre-
sented. An alternative approach is applying evolutionary algorithms (EAs) in
clustering, yielding EA-based clustering algorithms. Unlike K-means clustering,
they simultaneously optimize a population of candidate solutions, which give
them the ability to escape from local optima. Various EA-based clustering algo-
rithms have been developed, including genetic algorithms, differential evolution,
ant colony optimization, artificial bee colony, and particle swarm optimization
[4–6].
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Remain of this paper is structured as follows: some preliminaries of K-means
and PSO algorithms are briefly reviewed in Section 2. The proposed CMPNS
algorithm will be described in Section 3. The benchmark datasets, parameters
setting and results will be demonstrated in Section 4. Finally, in Section 5 the
conclusions will be drawn.

2 Preliminaries

2.1 K-means Clustering Algorithm

In partitioning clustering problems, we need to divide a set of N objects into K
clusters. Let O(o1, o2, ..., oN ) be the set of N objects of data set. Each object
has D features, and each feature is quantified with a real-value. Let SN×D be
the feature data matrix. It has N rows and D columns. Each row Si presents a
data vector and sij corresponds to the jth feature of ith data vector (i=1,2,...,N,
j=,1,2,...,D). Let C = (C1, C2, ..., CK) be the K clusters. Then Ci �= φ, Cj ∩
Ci �= φ, ∪K

j=1 Ci = O, i, j = 1, 2, ...,K, i �= j. The goal of clustering algorithm
is to find such a C that makes the objects in the same clusters are as similar as
possible while other objects in the different clusters as dissimilar, which can be
measured by some criterions.

K-means clustering [1] groups data vectors into a pre-specified number of
clusters, based on Euclidean distance as similarity measure. The classical K-
means algorithm is summarized as follows:

Step 1. Randomly choose K cluster centroids from N objects.
Step 2. For each data vector, assign the vector to the cluster with the closest

centroid, where the distance to the centroid is determined by Eq. (1).

d (Si, Zj) =

√
√
√
√

D∑

p=1

(Sip − Zjp)
2 (1)

Step 3. Recalculate the cluster centroids, using Eq. (2) as follows:

Zj =
1

NCj

∑

∀Sp∈Cj

Sp (2)

where NCj is the number of data vectors in cluster j and Cj is the subset of data
vectors that form cluster j, return Step 2 if stopping criterion is not satisfied.

2.2 Particle Swarm Optimization

Each particle in PSO [7, 8] has a velocity vector (V ) and a position vector
(X ). PSO remembers both the best position found by all particles and the best
positions found by each particle in the search process. For a search problem in
D -dimensional space, a particle represents a potential solution. The velocity and
position of particle are updated according to Eqs. (3) and (4).

vij = w · vij + c1 · rand1ij · (pbestij − xij) + c2 · rand2ij · (gbestj − xij) (3)
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xij = xij + vij (4)

where the particles index i =1, 2, ..., NP, NP is the population size, xi is the
position of the ith particle, vi represents the velocity of ith particle, pbesti is
the best previous position yielding the best fitness value for the ith particle,
and gbest is the global best particle found by all particles so far, rand1ij and
rand2ij are two random numbers independently generated within the range of
[0, 1], c1 and c2 are two learning factors which control the influence of the social
and cognitive components, w is the inertia factor. The inertia weight w in Eq.
(3) was introduced by Y. Shi et al. [9], a w linearly decreasing with the iterative
generations was proposed as Eq. (5).

wk = w0 − (w0 −w1) · k
Max Gen

(5)

where k is the kth generation index, w0 and w1 are maximum and minimum
inertia weight value, respectively.

3 Proposed Method

To improve the performance of K-means over the drawbacks and enhance the
algorithm in terms of convergence speed and accuracy, in this paper we present a
new approach based on improved PSO, where PSO is introduced into K-means.

3.1 Neighborhood Search

By employment of local neighborhood search and global neighborhood search
strategies with ring topology and radius is equal to 2, H. Wang et al. [10] pro-
posed DNSPSO approach to enhance PSO algorithm, in which a local neigh-
borhood search (LNS) and global search (GNS) strategies were proposed. To
improve the exploitation ability of the local search strategy, the best particle of
local neighbour is employed to generate the trial particle LNS. The neighbor-
hood of a particle Pi, a trial particle Li = (LXi, LVi) is generated by Eqs. (6, 7).

LXi = r1 ·Xi + r2 · (pbesti −Xi) + r3 · nbesti (6)

LVi = Vi (7)

where Xc and Xd are the position vectors of two random particles in the k -
neighborhood radius of Pi, c, d ∈ [i− k, i+ k]∧c �= d �= i, r1, r2 and r3 are three
uniform random numbers within (0,1), and r1 + r2 + r3 = 1, and nbesti is the
best particle of Xi neighborhood.

Besides the LNS, a global neighborhood search (GNS) strategy is proposed
to enhance the ability of exploration. When searching the neighborhood of a
particle Pi, another trial particle Gi = (GXi, GVi) is generated by Eqs. (8, 9).

GXi = r4 ·Xi + r5 · gbest+ r6 · (Xe −Xf ) (8)
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GVi = Vi (9)

where Xe and Xf are the position vectors of two random particles chosen for
the entire swarm, e, f ∈ [1, NP ] ∧ e �= f �= i, r4, r5 and r6 are three uniform
random numbers within (0, 1), and r4 + r5 + r6 = 1.

3.2 Diversity Mechnism

Like DNSPSO [10], the diversity mechanism was employed, where for each par-
ticle Pi(t) a new particle Pi(t+ 1) is generated by the PSO’s velocity and po-
sition updating equations. By recombining Pi(t) and Pi(t+ 1), a trial particle
TPi(t+ 1) = (TXi(t+ 1), TVi(t+ 1)) is generated as follows:

TXij(t+ 1) =

{

Xij(t+ 1) if randj(0, 1) < Pr

Xij(t) otherwise
(10)

TVij(t+ 1) = Vij(t+ 1) (11)

where Pr is a user-defined value of greedy selection probability. After recombi-
nation, a greedy selection is used as follows:

Pi(t+ 1) =

{

TPi(t+ 1) if f (TPi(t+ 1)) < f (Pi(t+ 1))
Pi(t+ 1) otherwise

(12)

3.3 Cauchy Mutation

Aim to improve the convergence speed, in each iteration the global best particle
is mutated by Cauchy distribution function [11] as follows:

gbestj = gbestj + Cauchy() (13)

3.4 Reinitialization

Similar to the scout bee of artificial bee colony (ABC) [12], particle is reinitialized
randomly if the number of relative pbest fitness not changed is more than the
pre-defined number (called limit, in this case the particle may be trapped into
local optima). By this technique, the exploration ability of the algorithm can be
enhanced.

3.5 Proposed Algorithm

Firstly, particle is encoded according to Eqs. (14), (15). Each particle is a poten-
tial candidate solution for the optimal center centroids. In this case, solving data
clustering problem can be seen as solving the global optimization with fitness
function is the validity index of SED calculated by Eq. (16).

Xi = (Xi1, ..., Xij , ..., XiK) (14)

Vi = (vi,1, vi,2, ..., vi,K×D) (15)
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Table 1. The main steps of CMPNS

1 Initialize each particle by randomly selecting from dataset;
2 While FEs ≤ MaxFEs do
3 Update inertia weight w according to Eq. (5);
4 For i = 1 to NP do
5 Update the velocity and position according to Eq. (3, 4);
6 Generate a new trial particle TP i by Eqs. (10, 11);
7 Select a fitter one between Pi and TP i as the new Pi by Eq. (12);
8 Update pbest and gbest;
9 If f(pbest) = f(lastpbest) then monitor[i] + + else monitor[i] = 0;
10 End for
11 For i = 1 to NP do
12 If rand(0, 1) ≤ Pns then
13 Generate a trial particle Li according to Eqs. (6, 7);
14 Generate a trial particle Gi according to Eqs. (8, 9);
15 Select the best one among Pi, Li, and Gi as the new Pi;
16 Update pbest and gbest;
17 If f(pbest) = f(lastpbest) then monitor[i] + + else monitor[i] = 0;
18 End if
19 End for
20 Mutate gbest according to Eq. (13);
21 If monitor[k] ≥ max(monitor[j], j = 1, .., NP ) and monitor[k] ≥ limit then
22 Reinitialize the kth particle from random K distinct data objects of dataset;
23 End while

where D-dimensional vector Xij = (xi,1j , xi,2j , ..., Xi,Dj) represents the jcluster
centroid of ith particle.

L. Kaufman et al. [13] suggested that Sum of Euclid Distance (SED) is better
than Mean Squared Error (MSE) for measuring cluster analysis results. In this
paper we also use SED, which is calculated by Eq. (16), is used as the fitness
function.

SED =

K∑

j=1

∑

Si∈Cj

‖Si −Xj‖ (16)

The main steps of the proposed algorithm are listed in Table 1, where NP
is the population size, K is the number of clusters, lastpbest records the last
fitness values of pbest. monitor[i] records the successive number of iterations
where the fitness values of pbesti does not change. FEs is the number of fitness
evaluations, and MaxFEs is the maximum number of fitness evaluations. Pns

is the probability to implement the neighborhood search strategy, limit is the
pre-defined number. The fitness function is SED function calculated by Eq. (16).

3.6 Measure Criterions

Two metrics were used in our experiments, the first measure is the fitness value,
the sum of Euclid distance SED, as defined in Eq. (16). The second metric is
the clustering accuracy, which is the percentage of the objects that are correctly
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recovered in a clustering result (called classification accuracy percentage CAP)
defined in Eq. (17).

CAP = 100× #of correctly classified examples

size of test data set
(17)

4 Experimental Results

To evaluate the performance of the proposed algorithm, fourteen benchmark
datasets including four artificial datasets and ten real-world datasets were
used. In addition, four data clustering algorithms K-means[1], K-means++[3],
KPSO[4], and PSOK[5] were compared to the proposed algorithm in terms of
fitness value SED and accuracy CAP.

Table 2. The main properties of artificial datasets

Data set Size Features No of clusters Data set Size Features No of clusters

Dataset1 400 3 4 Dataset3 300 2 6
Dataset2 250 2 5 Dataset4 500 2 10

4.1 Benchmark Datasets

The details of properties of artificial datasets are described in Table 2 [14], the
properties of ten real-world datasets Iris, Wine, Glass, Ecoli, Liver disorder,
Vowel, Vowel 2, Pima, WDBC, and CMC can be found in [15].

4.2 Parametric Settings

In this test, the parameters of four other competitive algorithms K-means, K-
means++, KPSO, PSOK are set according to their experiments. For the sake
of fair comparison, the population size NP=100. The maximal number of fitness
evaluationsMaxFEs was set to 10e+04 for all algorithms, all algorithms were run
on each of the 14 datasets over 25 times and their mean value of SED, accuracy
percentage. For CMPNS, other parameters were empirically set as follows: w0 =
0.9, w1 = 0.4, c1 = c2 = 1.49, Pr = 0.9, Pns = 0.6, limit = 50.

4.3 Comparison of Results

The results of SED are shown in Tables 3, where the best values are written
in bold. The results in Table 3 indicate that the proposed CMPNS algorithm
has the best results of SED on 12 of 14 datasets, two other datasets of Vowel2
and Ecoli belong to K-means and K-means++, respectively. In order to compare
the performance of multiple algorithms on the test suite, we conduct Friedman
test [16], the highest ranking belongs to CMPNS, namely the ranks of K-means,
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Table 3. Comparison of SED results

Data set K-means K-means++ KPSO PSOK CMPNS
Dataset1 8.5182e+02 7.4998e+02 8.1271e+02 7.4997e+02 7.4961e+02
Dataset2 3.2838e+02 3.2816e+02 4.1106e+02 3.2841e+02 3.2644e+02
Dataset3 4.4943e+02 4.2890e+02 4.4795e+02 3.7449e+02 3.7361e+02
Dataset4 9.4805e+02 8.7136e+02 1.1241e+03 8.8793e+02 8.6534e+02
Iris 1.0502e+02 9.8663e+01 1.0685e+02 9.7272e+01 9.6691e+01
Wine 1.6838e+04 1.7339e+04 1.7078e+04 1.6364e+04 1.6299e+04
Glass 2.2470e+02 2.3202e+02 2.4546e+02 2.1866e+02 2.1773e+02
Ecoli 6.4785e+01 6.3604e+01 6.7063e+01 6.4673e+01 6.4697e+01
Liver dis 1.0213e+04 1.0222e+04 1.0262e+04 9.8829e+03 9.8519e+03
Vowel 1.5306e+05 1.5304e+05 1.7413e+05 1.5119e+05 1.5069e+05
Vowel2 7.0912e+02 7.0980e+02 8.6285e+02 7.2348e+02 7.1489e+02
Pima 5.2072e+04 5.2072e+04 5.0867e+04 4.7832e+04 4.7564e+04
WDBC 1.5295e+05 1.5295e+05 1.5215e+05 1.4985e+05 1.4953e+05
CMC 5.5133e+03 5.5142e+03 6.1808e+03 5.5140e+03 5.5103e+03
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Fig. 1. The convergence curves on artificial datasets

Table 4. Comparison of results of CAP on artificial datasets (in percentage)

Data set K-means K-means++ KPSO PSOK CMPNS
Dataset1 96.25±9.16 100.00±0 100.00±0 100.00±0 100.00±0
Dataset2 94.00±0 94.68±1.09 85.44±5.07 95.80±1.62 96.46±1.50
Dataset3 89.17±9.79 92.50±8.51 97.95±4.04 100.00±0 100.00±
Dataset4 89.13±4.81 91.01±5.38 92.31±4.84 93.76±5.23 94.85±4.28
Iris 82.27±10.48 87.83±4.99 88.30±2.98 89.33±0.43 89.97±0.15
Wine 69.97±0.62 69.24±1.18 71.29±1.03 70.84±0.25 71.52±0.32
Glass 56.80±2.51 55.33±3.26 59.30±0.86 59.37±3.40 60.09±2.81
Ecoli 80.51±2.76 81.49±1.99 78.81±3.01 81.12±2.20 80.79±3.03
Liver 57.97±0 57.97±0 57.97±0 57.97±0 57.97±0
Vowel 58.29±2.78 58.86±2.21 57.65±2.68 58.27±1.66 59.39±2.70
Vowel2 37.43±2.36 36.66±1.83 34.99±2.72 36.94±1.96 37.44±1.93
Pima 65.10±0 65.10±0 65.10±0 66.02±0 66.02±0
WDBC 85.41±0 85.41±0 86.29±0.79 86.41±0.38 86.820
CMC 45.34±0.40 45.11±0.38 44.95±0.91 45.26±0.38 45.58±0.13

K-means++, KPSO, PSOK, and CMPNS are 3.29, 3.07, 3.18, 2.36, and 1.29, re-
spectively. The representative convergence curves of artificial datasets are illus-
trated in the Fig. 1.

The CAP results of CAP average of 25 times on each of all datasets are listed
in Tables 4, where the best results be written in bold. The results in Tables
show that the proposed CMPNS algorithm has the best accuracy percentage in
majority of benchmark datasets, only on Ecoli dataset the best result belongs
to K-means++ algorithm.



158 D.C. Tran and Z. Wu

5 Conclusions

In this study, we propose a new data clustering approach in order to improve K-
means algorithm by enhanced PSO algorithm. Aiming to overcome the shortcom-
ing of K-means, enhanced PSO approach by employing the proposed neighbor-
hood search strategy and combining with diversity mechanism, Cauchy
mutation operation, and reinitialization was introduced into K-means. The re-
sults obtained from testing on fourteen benchmark datasets including artificial
and real-world datasets the proposed CMPNS algorithm is also good at data
clustering in compared with some data clustering algorithms. So that, CMPNS
can be an alternative for solving data clustering problems and other relevant
problems.
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