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Abstract. Dimensionality reduction is a fundamental yet active re-
search topic in pattern recognition and machine learning. On the other
hand, Gaussian Mixture Model (GMM), a famous model, has been widely
used in various applications, e.g., clustering and classification. For high-
dimensional data, previous research usually performs dimensionality re-
duction first, and then inputs the reduced features to other available
models, e.g., GMM. In particular, there are very few investigations or
discussions on how dimensionality reduction could be interactively and
systematically conducted together with the important GMM. In this pa-
per, we study the problem how unsupervised dimensionality reduction
could be performed together with GMM and if such joint learning could
lead to improvement in comparison with the traditional unsupervised
method. Specifically, we engage the Mixture of Factor Analyzers with
the assumption that a common factor loading exist for all the compo-
nents. Such setting exactly optimizes a dimensionality reduction together
with the parameters of GMM. We compare the joint learning approach
and the separate dimensionality reduction plus GMM method on both
synthetic data and real data sets. Experimental results show that the
joint learning significantly outperforms the comparison method in terms
of three criteria for supervised learning.

1 Introduction

Dimensionality Reduction (DR) has been an important and fundamental re-
search topic in pattern recognition and machine learning. Over the last fifty
years, there have been many famous proposals in this area. Among them are
Principal Component Analysis (PCA), Independent Component Analysis (ICA),
Fisher Discriminant Analysis (FDA), Latent Diriclet Analysis (LDA), Maxi-
Min Discriminant Analysis (MMDA) [6], and 1-norm based feature selection
approach. In the context of classification or regression, DR could be conducted
in the supervised style by utilizing certain supervised information (e.g., class la-
bels) so as to find a subspace where different classes of data could be separated as
far as possibly. These methods include the above mentioned FDA and MMDA.
On the other hand, when the class information is not available, DR is performed
in an unsupervised way. This family of approaches includes the famous PCA
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and ICA. On the other hand, Gaussian Mixture Model (GMM) has achieved
big success in both supervised learning, e.g., classification and regression, and
unsupervised learning, e.g., clustering.
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(a) 2-d subspace by PCA
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(b) 2-d subspace by joint learning

Fig. 1. Comparison of DR by PCA and the joint learning on simulated data (see
Sect. 4.1). Data points with the same shape are supposed to be clustered together.

When GMM is used for practical data, it is usually to perform dimensionality
reduction beforehand. The purpose is both to reduce the computational time for
high dimensional data and to find a suitable subspace where better clustering
or classification performance could be achieved due to the removal of possible
noisy features. In this setting, the optimal subspace and the following optimal
parameters of GMM are searched separately or independently. Apparently, the
optimal subspace obtained by the independent DR may not be appropriate for
the following GMM. This is particularly the case in the context of unsupervised
learning, e.g., clustering. In supervised learning, class labels could be used for
deriving a good subspace, whilst in unsupervised learning, the principles used
for DR (e.g., maximization of variance in PCA) may not be appropriate for
GMM [4]. Figure 1 (a) illustrates the best 2-dimensional subspace obtained by
PCA in one synthetic data. Clearly, the original clustering information among
data was less obvious after PCA.

To handle unsupervised dimensionality reduction for GMM, we argue that
both the optimal subspace and the parameters for GMM should be jointly
learned. This is significantly different from the traditional setting that the two
steps are usually conducted separately. Specifically, we engage the Mixture of
Factor Analyzers (MFA) [5] where a common factor loading is assumed to ex-
ist for all latent factors. Importantly, when this special MFA called MCFA is
optimized via the modified EM algorithm, the common factor loading could be
regarded as the dimensionality reduction matrix, while the mixture of latent fac-
tors can be regarded as the GMM. When GMM is used for unsupervised cluster-
ing, its joint learning with the DR subspace would make the clustering properties
clearly reserved and even clear. To see the advantages, we also show in Figure 1
(b) the subspace obtained by the joint learning method. Obviously, it could lead
to much better clustering performance, especially compared with PCA.
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It should be noted that although mixture of factor analysis has been earlier
discussed literatures such as [1], it was presented from the viewpoint of data
analysis rather than dimensionality reduction. More importantly, the idea of
using common loadings, or the joint learning, could also be applied in other
mixture models [2]. This presents one important contribution of this paper.

2 Notation

Finite mixture of models are important models and have been widely used in
many applications [3]. In the following, we present the notation used in this paper
with the focus on introducing GMM. Suppose y be a p-dimensional vector of
feature variables. The density of y could be modeled by a mixture of g multi-
variate normal component distributions P (y; θ) =

∑g
i=1 πiN (y;μi, σi), where

each gaussian distribution N (y;μ, σ) is known as a component of this model
and describes the p-variate normal density function with mean μ and covariance
matrix σ. The unknown parameter vector θ consists of the mixture weight πi,
the means of component μi, and the covariance of component matrices σi(i =
1, . . . , g). This vector can be estimated by maximizing the log-likelihood function:
logL(θ) =

∑n
j=1 logP (yj ; θ), where {yj} (j = 1, . . . , n) is an observed random

sample set. By using the Expectation-Maximization (EM) algorithm [1], the
local maximizers of log-likelihood function can be obtained as follows:

π
(k+1)
i =

1

n

n∑

(i=1)

P (k)(ωi | yj ; θ), μ(k+1) =

∑n
(i=1) P

(k)(ωi | yj ; θ)yj
∑n

(i=1) P
(k)(ωi | yj ; θ)

σ(k+1) =

∑n
(i=1) P

(k)(ωi | yj ; θ)(yj − μ(k))(yj − μ(k))T
∑n

(i=1) P
(k)(ωi | yj ; θ)

.

In the above, ωi represent the i-th latent component category that each sample
yj belongs to. With the Bayes theorem, the posterior distribution P (ωi | yj; θ)

can be expressed as P (ωi | yj ; θ) =
πiN (yj ;μi,σi)∑g

h=1
πhN (yj ;μh,σh)

, i = 1, . . . , g; j = 1, . . . , n.

Here, as the categories ωi of each sample yj are unknown, the latent variable
is the indicator variable ω, ω = {0, 1}, πi = P (ωi = 1). A data point could be
assigned to the component that has the highest estimated posterior probability.

3 Unsupervised Dimensionality Reduction with MCFA

In this section, we will present the mixtures of factor analyzers with common
factor loadings (MCFA). This model learns jointly the dimensionality reduction
and the parameters of GMM. We will first describe the model definition, and
then introduce the involved optimization.
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3.1 Model Description

Suppose Y = (Y1, . . . , Yp)
T be generated by linear combination with q-

dimensional vector of (unobservable) factors Zi1, . . . ,Zin. In MFA, the mixture
weight πi, (i = 1, . . . , g) is modeled as

Yj − μi = ΛZij + eij , (1)

where Λ is called the factor loading vector, the factors Zij are distributed in-
dependently as N (0, Iq), eij is random noise distributed independently under
N (0,Di). Here Di is a q × q positive definite symmetric matrix (i = 1, . . . , g).
MCFA further assumes the additional restrictions:

μi = Aξi; σi = AΩiA
T +D; Di = D; Λi = AKi, (2)

where A is a p× q matrix, ξi is a q-dimensional vector (i = 1, . . . , g), and D is
a diagonal p× p matrix. Hence the distribution of Yj is modeled as

Yj = AZij + eij , (3)

where the (unobservable) factors Zij are distributed independently under
N (ξi,Ωi), eij is random noise distributed independently under N (0,D), and
D is a diagonal matrix. Here the common loading A can easily be seen as the
transformation matrix, reducing p-dimensional to a latent q-dimensional space.

With the above definitions, the MCFA model can be written as

P (y; θ) =

g∑

i=1

n∑

j=1

πiN (yj ;Aξi,AΩiA
T +D).

Assume we have a mixture of g components by the component-indicator labels
ωi, where ωi is one or zero depending on whether or not yj belongs to the i-th
component of the model. The likelihood function can then be written as

L(y) =
g∏

i=1

n∏

j=1

P (yj | Zij , ωi)P (Zij | ωi)P (ωi).

Since the factors are distributed independently N(ξi,Ωi), we have P (Zij | ωi) =
N (Zij | ξi,Ωi). Then, the log-likelihood function is given by

logLc(θ) =

g∑

i=1

n∑

j=1

ωij{logπi + logN (yj ;Auij ,D) + logN (Zij ; ξi,Ωi)}. (4)

In the next subsection, we will introduce how to use EM to find the dimen-
sionality reduction matrix A as well as the parameters of GMM.

3.2 Optimization

Maximization of (4) can be conducted by the famous EM algorithm, or in partic-
ularly, the alternating expectation-conditional maximization algorithm
(AECM) [5].
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E-step. At this step, we need to compute expectations of the hidden variables
τij , E(Z | yj , ωi) and E(ZZ′ | yj , ωi) that appear in the log-likelihood for all
data point j = 1, . . . , n and mixture components i = 1, . . . , g. It is easily verified
that

E(Z | yj , ωi) = ξi + γT
i (yj −Aξi), (5)

E(ZZ′ | yj , ωi) = (Iq − γT
i A)Ωi + E(Z | yj , ωi)E(Z | yj , ωi)

′, (6)

where γi = (AΩiA
T )−1AΩi.

At each iteration, it is also necessary to compute the conditional expectation
of (4) denoted by Q(θ; θ(k)). Given the observed data y and θ(k), we have

Q(θ; θ(k)) := P (Zk | yk; θ). (7)

The conditional expectation of the component labels ωij(i=1, . . . , g; j=1, . . . , n)
can be written as Eθ{ωij | yj} = Prθ{ωij = 1 | yj} = τi(yj ; θ), where τi(yj) is
the posterior probability that yj belongs to the ith component. From (2), it can
then be obtained

τi(yj ; θ) =
πiφ(yj ;Aξi,AΩiA

T +D)
∑g

h=1 πhφ(yj ;Aξh,AΩhAT +D)
, (8)

Denoting τ
(k)
ij = τi(yj ; θ

(k)), we can transform (7) as

Q(θ; θ(k)) =

g∑

i=1

n∑

j=1

τ
(k)
ij {log πi + Eθ(k){logN (yj ;Azij , D)|yj , ωij = 1}

+ Eθ(k){logN(zij ; ξi,Ωi)|yj , ωij = 1}}.

M-step. At the (k+1)-th iteration of the EM algorithm, the M-step consists of

calculating the updated estimates π
(k+1)
i , ξ

(k+1)
i , Ω

(k+1)
i , A(k+1) and D(k+1) by

maximization of Q(θ; θ(k)). The updated estimates of the mixing proportions πi

are derived in the case of the normal mixture model by π
(k+1)
i = 1

n

∑n
j=1 τ

(k)
ij ,

(i = 1, . . . .g). Concerning the other parameters, we have the following

ξ
(k+1)
i =ξ

(k)
i +

∑n
j=1 τ

(k)
ij ϕ(k)

∑n
j=1 τ

(k)
ij

,Ω
(k+1)
i =

∑n
j=1 τ

(k)
ij ϕ(k)ϕ(k)T

∑n
j=1 τ

(k)
ij

+ (Iq − ϕ(k))Ω
(k)
i ,

ϕ(k) = (A(k)Ω
(k)
i A(k)T +D(k))−1A(k)Ω

(k)
i (yj −A(k)ξ

(k)
i ).

The updated estimates D(k+1) = diag(D
(k)
1 +D

(k)
2 ), where

D
(k)
1 =

∑g
i=1

∑n
j=1 τ

(k)
ij D(k)(Ip − β

(k)
i )

∑g
i=1

∑n
j=1 τ

(k)
ij

, β
(k)
i = (A(k)Ω(k)A(k)T +D(k))−1D(k),

D
(k)
2 =

∑g
i=1

∑n
j=1 τ

(k)
ij β

(k)T

i (yj −A(k)ξ
(k)
i )(yj −A(k)ξ

(k)
i )Tβ

(k)
i

∑g
i=1

∑n
j=1 τ

(k)
ij

.
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We also have A(k+1) = (
∑g

i=1 A
(k)
1i )(

∑g
i=1 A

(k)
2i )−1, where A

(k)
1i =

∑g
i=1 τ

(k)
ij {yjE(k)(Z | yj , ω

(k)
i )};A(k)

2i =
∑g

i=1 τ
(k)
ij {E(k)(ZZ′ | yj , ω

(k)
i )}.

4 Experiments

In this section, we evaluate the performance of the joint learning approachMCFA
on one simulation and three real data sets (obtained from UCI machine learning
repository) in comparison with the PCA followed by GMM. Following previous
research, we report the error rate (ERR), the adjust rand index (ARI), and
the Bayesian information criterion (BIC) to compare different algorithms. Note
that, although we did not use any labeled information in clustering, the clustering
result for each sample is known beforehand in the data sets used. Hence we could
exploit ERR as the evaluation metric for clustering.

Table 1. Comparison among the MCFA and PCA-GMM on Simulated Data

MCFA PCA

Cluster DIM ERR BIC ARI Cluster DIM ERR BIC ARI

2 2 0.3333 4173 0.5600 2 2 0.3333 3153 0.5553
3 2 0.0100 4105 0.9702 3 2 0.0300 3080 0.9126

Simulation Data. To validate the effectiveness of the joint learning approach
MCFA, we first performed a simulation experiment. We generated 300 random
vectors from each of g = 3 different three-dimensional multivariate normal dis-
tributions. The three distributions have respectively means μ1 = (0, 0, 0)T , μ2 =
(2, 2, 6)T , μ3 = (8, 8, 8)T , and covariance matrices

Σ1 =

⎛

⎝
4 −1.8 −1

−1.8 2 0.9
−1 0.9 2

⎞

⎠ , Σ2 =

⎛

⎝
4 1.8 0.8

1.8 2 0.5
0.8 0.5 2

⎞

⎠ , Σ3 =

⎛

⎝
4 0 −1

−1.8 2 0.9
−1 0.9 2

⎞

⎠ .

We compared the performance of MCFA with PCA, and plot the unsupervised
feature reduction results on Figure 1. It is obvious the joint learning approach
leaded to better data separation. To quantitatively evaluate the clustering per-
formance, we compute the ERR, ARI and BIC with the PCA followed by GMM
and the joint learning MCFA. These results are shown in Table 1. From the ta-
ble, the lowest BIC of both approaches are pointed to 3 clusters, indicating that
3 is the best cluster number. Moreover, in case of 3 cluster number, the joint
learning MCFA outperformed PCA followed by GMM significantly in terms of
the other two criteria.
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Table 2. Comparison among MCFA and PCA+GMM on User Knowledge Data

User Knowledge Modeling

MCFA PCA

Cluster DIM ERR BIC ARI Cluster DIM ERR BIC ARI

2
2 0.3891 -117 0.4474

2
2 0.4358 187 0.2469

3 0.3891 -87 0.4474 3 0.4514 212 0.2896
4 0.3891 -48 0.4474 4 0.4553 150 0.2442

3
2 0.3074 -126 0.4190

3
2 0.3735 210 0.3001

3 0.3035 -121 0.4242 3 0.3969 232 0.2924
4 0.3074 -22 0.4477 4 0.4786 159 0.1781

4
2 0.1634 -142 0.6456

4
2 0.4008 225 0.2771

3 0.1868 -92 0.6240 3 0.4591 230 0.2791
4 0.2451 -86 0.5901 4 0.4669 216 0.2593

User Knowledge Modeling Data. This data set consists of n = 403 samples
and 5 attribute information. The classes are four knowledge levels of the students.
As we usually do not know the cluster number, we have compared the joint
learning MCFA and PCA+GMM in case of various cluster number and different
dimensionality ranged from 2 to the feature number. We report the comparison
results in Table 2. Again, it is observed that almost in all the cases, the joint
learning demonstrated the better performance than PCA+GMM. Furthermore,
the best estimated cluster number of MCFA is 4 and 2 factors according to the
lowest BIC. This setting also achieved the lowest ERR, and the highest ARI. It
is significantly better than the best case of PCA+GMM.

Table 3. Comparison among the MCFA and PCA+GMM on Physical Data

Physical Data

MCFA PCA

Cluster DIM ERR BIC ARI Cluster DIM ERR BIC ARI

2

2 0.3146 7398 0.4717

2

2 0.3258 4142 0.3963
3 0.2921 7134 0.5397 3 0.3202 5106 0.4219
4 0.2921 7010 0.5298 4 0.3202 5945 0.4820
5 0.2753 6962 0.5711 5 0.3258 6452 0.4088
6 0.2697 6973 0.5820 6 0.3315 6922 0.3916
7 0.2697 6986 0.5820 7 0.2865 7255 0.5499
8 0.2697 7045 0.5820 8 0.2921 7487 0.5397

3

2 0.0562 7384 0.8298

3

2 0.2978 4130 0.3827
3 0.0225 7096 0.9295 3 0.2697 5109 0.4302
4 0.0225 6922 0.9309 4 0.1401 5872 0.6170
5 0.0169 6935 0.9485 5 0.0730 6413 0.7822
6 0.0056 6881 0.9817 6 0.0562 6905 0.8319
7 0.0056 6948 0.9817 7 0.0618 7253 0.8185
8 0.0056 6944 0.9832 8 0.0449 7462 0.8708

4

2 0.0618 7411 0.8145

4

2 0.2978 4165 0.3600
3 0.0393 7106 0.8792 3 0.2865 5143 0.3977
4 0.0169 6999 0.9470 4 0.1404 5863 0.6479
5 0.0169 6988 0.9470 5 0.1124 6445 0.7531
6 0.0169 7018 0.9551 6 0.1180 6992 0.7436
7 0.0056 7099 0.9833 7 0.0899 7327 0.8355
8 0.0056 7121 0.9900 8 0.1011 7505 0.8264
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Physical Data. This data set contains results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars.
It consists of 178 samples with 13 constituents and 3 classes. Again, we have
compared the joint learning MCFA and PCA+GMM in Table 3 in cases of
various cluster number and different dimensionality ranged from 2 to the feature
number. Obviously, in almost all the cases, the joint learning leaded to better
performance than PCA+GMM in terms of ERR and ARI. Furthermore, the best
estimated cluster number of MCFA is 3 according to the lowest BIC. This also
matches the class number in this data set. Such setting again achieved the lowest
ERR, and the highest ARI, which outperformed that of PCA+GMM.

Iris Data. The data set contains 3 classes of 150 3-dimensional instances. Using
the similar setting in the previous data, we present the performance of the joint
learning model MCFA and PCA+GMM approaches in Table 4. Once again,
MCFA demonstrated better performance than PCA+GMM. In particular, when
cluster number is set to 2, MCFA performed the same as PCA+GMM, while it
outperformed significantly in cases of 3 and 4 cluster numbers.

Table 4. Comparison among the MCFA and PCA+GMM on Iris Data

Iris

MCFA PCA

Cluster DIM ERR BIC ARI Cluster DIM ERR BIC ARI

2
2 0.3333 624 0.5681

2
2 0.3333 672 0.5681

3 0.3333 571 0.5681 3 0.3333 717 0.5681

3
2 0.0200 654 0.9410

3
2 0.0267 672 0.9222

3 0.0200 571 0.9410 3 0.0267 733 0.9222

4
2 0.0200 692 0.9410

4
2 0.0533 706 0.8700

3 0.0200 628 0.9410 3 0.0800 755 0.8570

5 Conclusion

This paper mainly introduced a method learning jointly both the optimal
subspace and the parameters for GMM. This is significantly different from tra-
ditional unsupervised dimensionality reduction for GMM, where the dimension-
ality reduction and parameter learning are usually conducted independently. A
series of experiments on 1 synthetic and 3 real data sets showed that the engaged
joint learning approach consistently outperformed the competitive model.
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